
CS5330 Randomized Algorithms: RP1 - Randomized Decision Trees

Main Content: Pages 6 - 12

Kiran Gopinathan, Jishnu Mohan

1 Introduction
A pertinent issue when dealing with randomised algorithms is the question of whether the use of randomisation

improves the runtime of an algorithm (if at all) and by how much? and what if bounded errors are allowed? Un-

fortunately, it turns out that answering such questions in a general model of computation is typically di�cult as it

is challenging to establish strong lower bounds on runtimes - �nding non-trivial lower bounds for several standard

algorithmic problems still remain as open questions. Spurred by this fact, some researchers have instead consid-

ered assessing randomisation within the context of other weaker computational models, such as query complexity,

where lower bounds are easier to �nd. Query complexity is a form of complexity analysis that considers a simpli�ed

model of computation with algorithms represented entirely by binary decision trees, and asks about the number of

bits of an input that an algorithm will have to read to compute a function. In 1986, Saks et al.[1] proved a tight lower

bound ofO(D(f)0.753...) on the query complexity of a randomised algorithm for computing NAND formulae (where

D(f) is the complexity of an optimal deterministic algorithm computing the same value), and conjectured that this

separation is the best possible query complexity improvement over all boolean functions that one can obtain by

introducing randomisation. Recent breakthroughs[2][3] in this area have disproven this bound by demonstrating a

speci�c family of functions for which there exist randomized algorithms that produce even greater improvements

over optimal deterministic strategies, up to the theoretical maximum of O(
√

D(f)).

In this report, we provide a survey of the main developments into this question, providing a carefully curated walk

through each of the key proofs and algorithms. Finally, we conclude by investigating how these techniques can be

applied to one of the remaining open problems in this area - that of whether there exists a function exhibiting the

optimal cubic separation between bounded-error query complexity R(f) and deterministic query complexity D(f).

The remainder of this report will adopt the following structure: Section 2 provides an overview of query complexity

research, presenting the key de�nitions and covering a few standard properties, as well as discussing Saks et al.’s
original hypothesis[1]. We end this section with an overview of the best known bounds between deterministic

and randomised query complexity. In Section 3, we introduce the speci�c family of functions that will be used

in the subsequent analysis - the Göös-Pitassi-Watson (GPW) function [4] - proving a few of its basic properties

and providing intuition for why it is a particularly suitable candidate for randomised solutions. Following this,

Section 4 presents an algorithm devised by Mukhopadhyay et al. [2] and proves that it calculates the GPW function

with bounded error (Monte Carlo) in O(
√
D(f)) queries. Then, Section 5 discusses how GPW can be modi�ed to

increase the opportunities for randomisation, presenting algorithms by Ambainis et al. [3] which use modi�cations

to the GPW function to obtain even greater optimal separations. Finally, Section 6 concludes the report, providing

a summary of the various bounds, discussing how these techniques can be extended to attack the open problem of

whether the lower bound of a cubic separation between bounded-error query complexity R(f) and deterministic

query complexity D(f) is tight.

2 Randomized Query Complexity
In this section we introduce the reader to the �eld of query complexity, beginning with a review of the basic de�ni-

tions and notations of query complexity, and also presenting a few of the important standard properties. The section

then moves to describe the context and motivation behind Saks et al.’s conjecture, and discusses its importance and

implications. Finally, the section ends with an overview of the current state of the �eld, discussing the best known

separations between deterministic and randomised query complexity.

2.1 De�nitions and Standard Properties
Query complexity proposes a measure of computational complexity wherein the cost of an algorithm is not mea-

sured by the number of steps it takes, but rather by the number of bits of the input it reads (queries) in order to

1

xi

xj

0 . . . 1

. . .

(a) Basic decision tree

xi

Rp

.

. . .
Randomized

transition

Deterministic

transition

(b) Randomised decision tree

Fig. 1: Query complexity computational model

carry out its computation. More formally, problems in query complexity involve computing some boolean function

f : {0, 1}n → {0, 1}, and the complexity of algorithms calculating this function are measured by the number of

bits of the input that they have to read in the worst case.

Computational model It turns out then, that when analysing algorithms under this particular restrictive cost

model, all algorithms can be entirely encoded as some variant of a binary decision tree, where each node of the tree

branches based on some bit of the input. More formally, the exact formulation of the decision tree slightly varies

depending on the class of algorithm - deterministic or randomised:

• Deterministic Trees - In the case of a deterministic algorithm, the algorithm can be completely encoded by a

decision tree like the one presented in Figure 1a. Each interior node of the tree is labelled with an index i into

the input, and the leaf nodes are annotated with either 1 or 0. Then, to execute this tree on some given input,

we start from the root, and then while we are on an interior node, we read the i-th bit of input as speci�ed

by the node and recursively transition either left or right depending on its value. Once a leaf is reached, we

terminate and output the value attached to the leaf.

• Randomised Trees - In the case of randomised algorithms, there are two equivalent encodings in terms

of decision trees. The �rst approach is presented in Figure 1b, wherein a randomised algorithm is encoded

as decision tree with an additional randomised type of node (represented in the diagram with Rp) which is

evaluated by sampling from a Bernoulli random variable of some parameter p, and then taking the branch

corresponding to the outcome. The other approach of encoding randomised algorithms is to consider them

as distributions over the space of all possible deterministic decision trees. It is fairly easy to show that these

two encodings are equivalent as we can always convert one to the other. We will use this fact as a given and

freely transition between the two formulations as required in our proofs.

Tree complexity Due to the relatively simple structure of these computational models, it becomes fairly easy to

measure the query complexity, as this simply resolves to some expression of the maximum depth of the correspond-

ing binary tree. Once again, there are some slight di�erences depending on whether the algorithm is deterministic

or randomised:

• Deterministic Complexity - The deterministic complexity of a boolean function f , denoted by D(f), is

de�ned as the maximum number of queries Q made by an optimal algorithm AD in the worst case.

De�nition 2.1. The deterministic complexity D(f) of a boolean function f is given by:

D(f) = min
AD

max
x

Q[AD(x)]

where AD is drawn from the set of deterministic algorithms computing f .

By our earlier reasoning, if we represent the optimal algorithm as a decision tree, then this simply becomes

the maximum depth of the corresponding tree.

One other measure of query complexity that also shows up in the literature is the non-deterministic complex-

ity N(f):

De�nition 2.2. The non-deterministic complexity N(f) of a boolean function f is given by:

N(f) = min
ANF

max
x

Q[ANF (x)]

where ANF is over the set of non-deterministic algorithms computing f .

It is also easy to show that this measure of query complexity corresponds to the maximum degree of any

clause in the disjunctive normal form of the logical representation of the function f - for this reason, it is also

sometimes referred to as deg(f).

2

• Randomised/Quantum Complexity - In the case of randomised algorithms, there is a wider variety of

complexity measures, depending on whether we wish to allow for errors or not.

At it’s most simplest, the zero-error randomised complexity of a function f , denoted by R0(f), is the maxi-

mum number of queriesQ on any input for any choice of randomnessQ for the optimal randomised algorithm

A that computes f with no error.

De�nition 2.3. The zero-error randomised complexity R0(f) of a boolean function f is de�ned as:

R0(f) = min
ARF

max
x

E[Q[ARF (x)]]

This zero error formulation is also referred to as a Las-Vegas style randomised algorithm, as it always computes

the correct answer, but may have variable run time based on the random choices it makes.

Alternatively, we may instead take a Monte-Carlo style approach wherein we compute a function f with a

randomised algorithm ARF , while allowing a small probability of error c - i.e

∀x, P [ARF (x) 6= f(x)] ≤ c.
In this case, we characterise the complexity of the function f in terms of the bounded-error randomised

complexity R(f), which measures the maximum number of queries Q taken by a bounded-error optimal

algorithm ARF in the worst case:

De�nition 2.4. The bounded-error randomised complexity R(f) of a boolean function f is de�ned as:

R(f) = min
ARF

max
x,Q

Q[AQ
RF (x)]

where AQ
RF denotes the execution of a randomised algorithm ARF , drawn from the set of all randomised

algorithms which compute f with some small probability of error, where the randomness has been �xed

according to a speci�cation Q.

Finally, in certain cases the function f that we’re computing may have asymmetric behaviours on 1 and

0 inputs - i.e it may be easier to determine 0-outputs than 1-outputs. To capture these situations, we can

also consider the 1-bounded-error randomised complexity R1(f), which measures the maximum number of

queries taken by a 1-bounded-error algorithm (i.e only makes errors for x such that x ∈ f−1(1)) in the worst

case:

De�nition 2.5. The 1-sided bounded-error randomised complexity R1(f) of a boolean function f is

de�ned as:

R1(f) = min
ARF

max
x,Q

Q[AQ
RF (x)]

where ARF is drawn from the set of all randomised algorithms which compute f with some small probability

of error for x ∈ f−1(1), and no error otherwise.

Standard properties As is typical with complexity analysis, past research has established several relations between

these complexity measures. Below we present a few of the relevant relations to provide context for the separations

covered in this report, however as the focus of this report is on more recent developments, we will not discuss their

proofs in detail, and recommend the reader consult the referenced papers for a more complete coverage.

• Query Complexity Hierarchy - The �rst obvious relation between these complexity measures arises from

the fact that each subsequent measure represents a more powerful model of computation - i.e a bounded

error randomised algorithm can easily execute a 0-error randomised algorithm, and similarly a randomised

algorithm can easily simulate a deterministic one. From this we conclude:

R(f) ≤ R0(f) ≤ D(f)

• MaximumRandomisation Separation - One interesting question that has already been partially answered

is a bound on the maximum possible improvement in query complexity when introducing randomisation.

This result for the 0-error case was �rst derived by demonstrating a bound on the separation between the

deterministic D(f) and non-deterministic complexity N(f) for any function f by Blum et al. [5]:

D(f) ≤ N(f)2

3

This bound is demonstrated by devising an algorithm that computes the function f by repeatedly trying

each one of the possible non-deterministic queries (i.e clauses of the DNF of f), and using the results of f to

minimise the number of iterations - in the interests of time, we won’t cover this proof here.

From this relation, we can then simply use the fact that N(f) ≤ R0(f) to conclude that:

R0(f) = Ω(D(f)
1
2)

As such any randomisation can at best have a quadratic improvement in the query complexity of a determin-

istic algorithm, however, until recently, it was not known whether this is tight, as most known randomised

algorithms have had a weaker speedup than this. In fact, others have even conjectured the existence of a

tighter lower bound.

As in general N(f) 6≤ R(f), this result does place any bounds on the maximum separation when allowing

bounded errors. In fact, a separate lower bound for this case was proven separately by Nissan et al. [6], who

showed that the maximum separation for bounded error is at most cubic
1
:

R(f) = Ω(D(f)
1
3)

Unlike the previous bound, this relation is not known to be tight, and no prior research has found any functions

exhibiting such a cubic separation.

2.2 Maximum separations between complexity measures
A long-standing open problem in the �eld of query complexity has been, until recently, the question of the maxi-

mum possible separation between randomised and deterministic algorithms. In 1986, Saks and Wigderson[1] were

investigating the use of randomisation in e�ciently computing AND-OR trees for use in arti�cially intelligence.

As part of this research, they developed a randomised variant of alpha-beta pruning and proved that the optimal

complexity of randomised 0-error algorithm for this function R0(f) was exactly Θ(D(f)0.753...). As, at the time,

this was the greatest separation between randomised and deterministic algorithms that had been found, Saks and

Wigderson then conjectured that the known quadratic lower bound on deterministic versus random separation was

not tight, and that O(D(f)0.753) was in fact the optimal separation. This conjecture has remained standing for over

20 years since it was proposed, and has only recently been disproven.

D(f)

Sak’s conjecture

O(D(f)0.753...)
D(f)2/3

D(f)1/2

R0(f)

R0(f)1/2

R1(f)

R(f)

Sec 4.1

Sec 5.1

Sec 4.2

Sec 5.2

Mukhopadhyay et al.

Ambainis et al.

Fig. 2: Separations between Deterministic and Randomised Query Complexity

This breakthrough came about as a result of a publication by Göös et al. [4] in the orthogonal �eld of communication

complexity. Speci�cally, Göös et al.. devised a novel strategy of using pointers within the de�nition of a boolean

function to reduce the cost of calculating a 1-instance. Subsequently, other researchers in query complexity realised

that this type of function had certain properties that made it particularly e�cient to verify using randomisation.

1

This paper also proved R1(f) = Ω(D(f)
1
2), although this is known to be tight.

4

Following this observation, a number of later papers built on GPW’s strategy to develop new results in query

complexity, and in particular, disprove Saks and Wigderson’s conjecture, as well as produce several improvements

in the best known separations between various randomised and deterministic complexity classes. Figure 2 presents

an overview of the main separations that were developed during this phase - note that the functions f for each

comparison are not necessarily the same.

In the remainder of this report, we will present the core concepts behind these developments, starting with a dis-

cussion of Göös et al.’s function in the next section.

3 Göös-Pitassi-Watson Function
In this section we gradually build up the intuition and context behind the Göös-Pitassi-Watson function, henceforth

referred to as GPW, providing its de�nition and proving some of its basic properties.

3.1 Motivation for Göös-Pitassi-Watson Function
When Göös et al. initially developed the GPW function they were actually working on problems in communication

complexity, an orthogonal �eld of analysis considering games in which two parties must work together to calcu-

late a joint boolean function while minimising the number of messages they exchange. Over the course of their

research, Göös et al. had managed to reduce their analysis to a smaller problem in query complexity, and, owing to

this di�erence in perspective, were interested in �nding boolean functions with particular properties not typically

considered by standard analysis in this area. More speci�cally, given the overlying context of communicating be-

tween parties, Göös et al. were interested in �nding a boolean function that had unambiguous 1-certi�cates - i.e.
given any input for which the function outputs 1, there should be exactly 1 unique collection of bits of the input

that are necessary and su�cient to verify the output of the function as 1. As it turns out, enforcing unambiguity on

certain boolean functions can also make them particularly amenable to admitting randomised solutions.

To build up our intuition for this, we will begin our analysis on a less complex boolean function. Consider a function

f : {0, 1}r×s → {0, 1}, de�ned as treating its input as a matrix, and then outputting 1 if and only if it contains a

unique column (the principal column) of all 1s (see Figure 3). For simplicity, we’ll assume that r = s = n. Also,

note that this function is not unambiguous, as there may be multiple “proofs” of that an input is a valid 1-instance

- speci�cally, to prove a 1-instance, we just need to select the principal column, and point out at least a single 0 in

every other column, of which there may be multiple entries to choose from.

Unlucky run

1 1 0 0 0

1 1 0 0 0

1 1 0 1 1

1 1 0 1 0

1 0 1 1 0

0 1 0 0 0

1

1

1

1

1

1

Fig. 3: Boolean matrix function input

At �rst glance, this function seems to be an ideal win for randomisation, as a deterministic algorithm must always

take r×s = O(n2) queries in the worst case (owing to the possibility of unlucky runs as presented in the diagram),

whereas randomised algorithms always have the chance of solving the problem in r = O(n) (in the case that

the algorithm reads exactly the bits from the column and a 0 from one cell in every other column). However, a

closer analysis reveals that this function has certain inherent complexity that forces poor performance even for

randomised solutions. More speci�cally, the possibility of unlucky runs (see Figure 3) means that in the worst case

the algorithm may take considerable time to �nd both the 1-column and witness 0-cells for the other columns - i.e.
consider the case where each non-principal column has exactly 1 0-cell, then if each column is sampled randomly

in turn, the expected time till the 0-cell is found is O(n) (as the sampling is essentially a geometric random variable

with probability
1
n , hence as there are n columns in the input, the overall search takes O(n2)).

5

In particular, Göös et al. noticed that if a randomised algorithm commits to a particular column as being the principal

column and then it later turns out to contain a 0, then the queries spent reading the values of this column are

entirely wasted. It turns out that the primary reason for this cost is the ambiguity in the function, which limits the

information that can be inferred by reading values from one column, thereby requiring the algorithm to waste its

queries in the presence of an unlucky run.

In attempting to correct for this issue by enforcing unambiguity, the GPW function was conceived.

3.2 De�nition
The GPW function is de�ned as a property f : Σr×s → {0, 1} on a n × n matrix as in our prior example - again,

for simplicity we’ll assume that r = s = n. However, unlike in that previous instance, the elements of the matrix,

are not just values in {0, 1}, but are drawn from a set Σ, de�ned as:

Σ = {0, 1} × ([r]× [s] ∪ {⊥})

More speci�cally, each element of Σ is a product of a value v ∈ {0, 1} and a nullable pointer p ∈ [r]× [s]∪ {⊥} to

another position in the matrix. We brie�y also note that as the pointers themselves can be encoded in O(log(rs))
space, this modi�cation only changes the size of an input by a poly-logarithmic factor O(log(n)), and thus does not

signi�cantly a�ect the complexity.

With this de�nition, it becomes possible to extend the previous task of determining the existence of a unique prin-

cipal column of all 1s to have unambiguous 1-certi�cates. In particular, Göös-Pitassi-Watson de�ne their function

to return 1 on a matrix M if and only if the following holds:

1. There is a unique principal column C of the matrix with entries which have their values all equal to 1.

2. The principal column C of M has exactly 1 entry with a non-null pointer p∗ 6= ⊥.

3. The pointer p∗ starts a pointer chain that only visits 0 valued entries, and visits all other columns than C in

n− 1 steps

Figure 4 illustrates an example 1-instance of the function.

The core modi�cation that was made to the prior function is that the “proofs” of validity are now encoded in the

function itself - rather than validating a unique principal column by requiring at least one 0-entry in every other

column (of which there may be multiple entries that can be chosen as a witness), the pointer chain from the principal

column now directly points out the speci�c 0-entry cells. As such, this new function has unambiguous 1-certi�cates,

as the principal column and the pointer chain uniquely specify the bits required to verify the output of the function

in the case of a 1-instance.

0

0

0

⊥
0 0

1

⊥
1

⊥
1

⊥
1

⊥
1

1

⊥

Fig. 4: Göös-Pitassi-Watson function input

As explored in more depth in Section 4, this additional structure in the input format also provides opportunities for

e�cient randomised solutions. Intuitively, this is because the presence of a pointer chain that passes through every

column, means that even if a randomised algorithm commits to a single column and it turns out to be an unlucky

run as before, the queries are not wasted, as it will �nd an element on the pointer chain and can use this to eliminate

other columns.

As we will see in the next subsection, this additional structure can not always be e�ectively exploited by determin-

istic algorithms, and there still exists worst-case inputs for which the deterministic query complexity is large.

6

3.3 Deterministic Query Complexity
We will now show that despite this additional structure, the worst case deterministic query complexity for this

function is still large. In order to do this, we will construct an adversarial input strategy that requires that any

deterministic algorithm makes Ω̃(n2) queries.

The strategy is as follows:

1. Respond to each initial query for an entry with a value of 1,⊥ and track which entries of the matrix have

been seen so far.

2. Whenever the algorithm queries a cell which is the last unseen cell in its respective column, respond with

either a 0,⊥, if this is the �rst unqueried cell, or 0, p, where p is a pointer to the last 0 cell that was returned.

3. When the algorithm �nally queries the last unseen cell, return either 1, p or 0,⊥ to force the input instance

to be either a 1-instance or a 0-instance.

The intuition behind this strategy is that each response to a query is crafted to ensure that the search continues for

as long as possible. For example, step 1 ensures that a deterministic algorithm will never �nd the principal column

�rst, as whenever it tries to query all the elements of any single column, the very last element will always turn out

to be 0. Additionally, the choice to ensure that the pointer for each column always points to a previously seen cell

means that the deterministic algorithm can never learn any additional information by following the pointer chain,

as it only visits previously seen entries.

Following this reasoning, the value of the GPW function on this adversarial input will not be known until every cell

has been queried
2
, which means that any correct deterministic algorithm will have to query all rs = n2

entries of

the matrix in the worst case before it can calculate the value of the function. As each entry is log(rs) = O(log(n))
size, the overall deterministic query complexity of this function is O(n2 log(n)) = Õ(n2) (where the Õ hides poly-

logarithmic factors).

We will now explore how introducing randomisation can circumvent this strategy and obtain even smaller query

complexity bounds.

4 Deterministic vs Monte Carlo separation and Corollaries
In this section, we demonstrate how the GPW function can solved e�ciently using randomised algorithms, basing

our analysis on the original proof by Mukhopadyay et al. [2]. We begin by presenting an algorithm for the 1-bounded

error case and proving that it can be executed in Õ(n) time, thereby establishing a quadratic separation from the

deterministic complexity. Then, in order to extend this to the 0-error case, we also consider 0-bounded error, and

we present an algorithm that we prove can be executed in Õ(n2/3) time. We use this algorithm to obtain a Õ(n2/3)
solution for the 0-error case, and thereby refute Saks et al.’s original conjecture. Finally, we discuss the various

issues with the GPW that prevent randomised solutions obtaining the optimal quadratic separations, proving some

lower bounds on the maximum separation that is possible using this function.

4.1 Upper bound on 1-sided error Randomised Complexity
We will now consider how to design an randomised algorithm that e�ciently computes the GPW function with

1-bounded error. When dealing with 1-sided error, as no errors are permitted for x ∈ f−1(0), the algorithm must

only return an 1 if it �nds a valid 1-certi�cate, but can conservatively return a 0 at any point. In other words, a

1-sided bounded error randomised algorithm can be trivially obtained if we can devise a search procedure that �nds

1-certi�cates with su�cient probability given an x ∈ f−1(1) - i.e we run the search algorithm, if it returns a valid

1-certi�cate then we return 1, else return 0.

To simplify the reasoning we’ll perform the analysis in terms of “cells” of the input matrix that have been read (i.e

a cell is read if any/all of it’s bits are read). As each cell constitutes log(rs) = O(log(n)) bits, this will add at most

a factor of log(n) to our results, which will not a�ect the subsequent complexity analysis.

4.1.1 Intuition

The logic underpinning Mukhopadyay et al.’s algorithm quite closely follows the random sampling strategy we

brie�y mentioned in Section 3.1, wherein we eliminate columns by randomly sampling for 0-cells in them. As before,

in the worst case, if each non-principal column contains exactly one 0-cell, then the sampling of each column can

be treated as a geometric random variable with parameter
1
r , and thus the expected number of steps to eliminate a

2

Functions with this property are referred to as evasive in the literature.

7

single column isO(r). If we were to simply repeat this process for each of the s columns, then the overall complexity

would be O(rs) = O(n2) which wouldn’t improve on the deterministic case.

The key observation found by Mukhopadyay et al. is that the pointers from cells on the principal chain must also

link to cells in other columns that may have not yet been removed. As such, we can modify the algorithm to follow

the pointer chains of each cell they �nd, and use it to eliminate other columns. Additionally, using the fact that each

column must contain exactly one 0-cell on the principal chain, we can conclude that, in expectation, one such cell

will be found once every r samples. As can be found formally proven in Appendix A, it also turns out that, with high

probability, each cell we �nd on the principal chain will contain a constant fraction of the unseen columns ahead

of it. Combining these two facts, we can then conclude that with high probability the search will take O(r log(s))
rather than the O(rs) result from the previous naive strategy.

Finally, once the principal column has been found, the veri�cation can be done in O(r+s) time by simply verifying

the principal column contains only 1s and then traversing the principal chain.

4.1.2 Challenges

While this strategy seems to be suitable, there is a particular challenge that we have failed to account so far - if we

simply follow all the pointer chains of each 0-cell we �nd without validation, then then this allows an adversary

to force the algorithm to waste queries by creating fake pointer chains (Figure 5) that only visit columns we have

already seen. In the worst case, each pointer chain could be of length Ω(s), and thereby increase the time complexity

of the search to O(rs) = O(n2), once again failing to exhibit any separation from the deterministic solutions.

0

0

0

⊥
0 0

1

⊥
1

⊥
1

⊥
1

⊥
1

1

⊥

0

0

0

0

Fake pointer chains

Fig. 5: Göös-Pitassi-Watson Long pointer chains

The key observation to solving this problem is to realise that fake pointer chains of themselves are not an issue - as

long as the chain visits su�ciently many unseen columns, it is not important whether it actually a principal chain or

not, as the analysis will hold regardless. Additionally, as we are sampling randomly from the columns, our position

on the pointer chain is e�ectively chosen uniformly at random, and thus we can expect that when following the

principal chain, we will see undiscovered columns at a consistent rate.

Using these two observations, an obvious strategy presents itself - speci�cally, when following pointer chains, we

keep track of the rate at which unseen columns are found - if the rate is too low, then we are probably not on

the principal chain, and thus can terminate the search early and return to sampling. As proven in Appendix A,

adopting this strategy then allows the algorithm to achieve speed-up using pointer chains without also introducing

the potential for adversarial attacks.

We direct the reader to Appendix A for a more formal proof.

4.1.3 Bounding the Separation between R1(f) and D(f)

Putting these results together, we �nd that we can compute GPW in Õ(r + s) queries - this is quite impressive, as

simply verifying the principal column alone takes r + s queries, so when using randomisation, the 1-certi�cate can

be found with at most a poly-logarithmic factor of extra queries. If we set r = s = n, then the deterministic query

complexity as before is Õ(rs) = Õ(n2), whereas the 1-bounded error randomised query complexity is Õ(r + s) =

Õ(n). Hence, R1(f) = O(D(f)
1
2), thereby exhibiting an optimal quadratic separation.

8

4.2 Extending to 0-error Randomised Complexity
In this section, we will consider how to bound the query complexity ofR0(f) following the strategy by Mukhopadyay et al.,
and discuss how to use this result to refute Saks et al.’s conjecture.

4.2.1 Intuition

While the previous section demonstrated a quadratic separation between the randomised bounded error R1(f) and

deterministic query complexity D(f), Saks et al.’s conjecture is speci�cally about 0-error randomised algorithms,

not covered by this analysis. Fortunately, there is a simple way to build upon the prior results to provide a bound

for the 0-error case. In particular, if we can devise an algorithm to compute the negation of GPW (GPW) with

1-bounded randomised error in a number of queries that is bounded by some function g(r, s), then we can obtain

a simple algorithm to calculate GPW with 0 error with O(r + s + g(r, s)) queries in expectation. This is by simply

running both algorithms, and returning any result with 0-error guarantees (i.e returning 1 if the algorithm for

computing GPW returns 1 and 0 if the algorithm for computing GPW returns 1). While there is a possibility that

both may return results without 0-error guarantees, by the fact that these events have a constant probability bound,

we can simply repeat the process until we obtain a favourable outcome, and compute a 0-error result in an constant

factor of extra expected time.

Following the same reasoning as in the previous section, we will be able to implement a bounded error randomised

algorithm for the GPW if we can devise a search strategy for the 1-certi�cates with su�cient success probability.

As this time we’re dealing with GPW, the 1-certi�cates are not all the same structure, but rather can be split into

one of the two forms:

1. A single 0-cell witness in each of the s columns.

2. A principal column with no valid pointer chain.

Both of these two requirements seem to be plausible to �nd using the earlier strategy of random sampling, but the

lack of a guaranteed existence of an unambiguous principal pointer chain suggests that the complexity may be too

large.

The key observation made by Mukhopadyay et al. for tackling this problem is to notice that while these two con-

straints do in fact capture all 1-certi�cates of GPW, there is a slightly weaker property on pointer chains that can

be used to eliminate inputs and is also easier to compute.

In particular, if we use span(i) to denote the set of columns accessible via a non-repeating 0-cell-visiting pointer

chain from a entry in column i, then if we can �nd two columns i, j such that i 6∈ span(j) and j 6∈ span(i), then

this is su�cient to conclude that the output of GPW is 1 (as there is no possible pointer chain that could cover all

columns).

This weaker condition happens to be easier to compute, as it allows the use of a pointer-based elimination strategy

as with the previous analysis. More speci�cally, provided the number of 0s in each column are small (≤
√
r), we can

again consistently eliminate a constant proportion of the remaining columns by simply sampling from the columns

and discarding any columns that are in the span (taking Õ(r+
√
rs) to perform). Using this strategy, the elimination

process will take at most Õ((r +
√
rs) log(s)) to complete with su�cient probability.

Finally, in order to satisfy the constraint that the number of 0s in each column are su�ciently small, we can prepro-

cess the input by eliminating columns with more than

√
r 0-cells by random sampling as in the previous analysis. In

particular, for these violating columns, as each draw has a probability of at least

√
r
r = 1√

r
of obtaining a 0-cell, we

will be able to eliminate all the columns with more than

√
r 0-cells after sampling Õ(

√
r) times from each column

with su�cient probability. As such, the overall complexity is Õ(r +
√
rs).

We direct the reader to Appendix B for a more formal proof.

4.2.2 Refuting Saks et al.’s Conjecture

Following the earlier reasoning, the overall 0-error complexity of GPW R0(f) can thus be shown to be Õ(r +
√
rs).

If we set r = s2, then this becomes Õ(s2 + s2) = Õ(s2), whereas the deterministic complexity is Õ(rs) = Õ(s3).

Hence, there is a separation of
2
3 between the 0-error randomised query complexity and the deterministic query

complexity R0(f) = Õ(D(f)
2
3), thereby refuting Saks’s et al’s conjecture.

While we will not cover it here, Mukhopadyay et al. also separately prove that this bound is optimal for the GPW

function. This means that while the GPW function can disprove Saks et al.’s conjecture, it can not answer the

9

question of whether a quadratic lower bound on the separation betweenR0(f) andD(f) is actually tight. Instead, in

order to tackle this remaining open problem, other researchers have considered modi�cations of the GPW function.

We will investigate these modi�cations in more detail in the next section.

5 Achieving quadratic separation and Further relations
At this point, we have seen that the GPW function is su�cient to both disprove Saks’ conjecture and show a

quadratic separation between R1(f) and D(f). However, the separation of
2
3 shown between R0(f) and D(f) is

still di�erent from the lower bound of 1/2. In the next section, we will discuss the work by Ambainis et al. [3] that

improve these results by introducing some extensions to the GPW function. With this, we can see that the quadratic

separation between R0(f) and D(f) is a tight bound, and that there is also a function that provides a quadratic

separation between R0(f) and R1(f)

5.1 Quadratic Separation between Las Vegas and Deterministic
A quadratic separation betweenR0(f) andD(f) can be shown by extending the GPW function with back pointers.
A second bit of information is added to the witness zeroes in each column. Each witness must have a pointer back

to the principal column. Each input is therefore de�ned by a triple - a boolean value, a forward pointer to another

input or null, and a back pointer to another input or null.

The function is de�ned such that it is 1 only if the following conditions are all satis�ed for a n×m grid of boolean

values:

• There is exactly 1 column with all values as 1. (The principal column).

• For each other column j, there is at least one 0 which has a backpointer back to the principal column. This is

a witness zero. It has a forward pointer to another witness zero or null.

• All of the principal column cells have both pointers set to null, except one special element which has a forward

pointer to a witness. Following the forward pointers until a null is seen from this element traverses one

witness in each column.

The deterministic query complexity for this function is O(m2) for the case where n = 2m. We can see this by

constructing an adversarial strategy based on Ambainis et al.’s work. Let k be the number of queries made for a

column. The adversary returns 1 (and null pointers) for k ≤ m queries for the column, and returns 0s with back

pointers to the k−m column. The adversary also maintains a counter for the last response with back pointer set to

k −m initialised to null, which is used to set the forward pointer for the next response with the same backpointer

value (which must be in a di�erent column by construction) So after all cells in a column are queried, there are m
1s and m 0s where each 0 points back to a di�erent column and may point forward to a 0 in a di�erent column that

shares a backpointer destination.

This construction leads to an answer of 0 for the function. However, to set the answer to 1, we just need some column

which only has responded to queries with 1s (to pick as the principal column) and ability to create a path of witnesses

in the other columns. Picking the principal column is su�cient since based on the adversary response, there are

already possible paths that traverses zeroes in each column and point back to the principal column. Therefore, as

long as there at least m unanswered queries in a column the function is undetermined. At least m2
queries to make

sure that the number of unanswered queries is < m so m2
is also a lower bound.

A randomised algorithm can solve this in ≈ O(n + m) queries. Notice that once a column with all 1s is found,

the remaining of the veri�cation can be done in n + m by �nding the special element and traversing the path of

witnesses. The algorithm is as follows:

• First, pick any column and query all its elements.

• If they are all 1, move to the veri�cation step.

• Otherwise, sample the set of possible principal columns by looking at the destinations of the back pointers

on the zeros.

• If the set is empty, reject the function as there is no possible witness.

• If the sampling surfaces any zeroes, remove the column from possibly being the principal column. Determine

the sampling threshold to ensure that the probability of seeing zeroes is some small constant.

• Repeat by picking a new column to query all elements from the set of possible principal columns.

• By picking an appropriate threshold, halve the probability of seeing zeroes is halved in each iteration such

that in logarithmic number of iterations the all-1s column is found if it exists.

10

This gives us the optimal separation between R0 and D.

5.2 Quadratic Separation between Las Vegas and Monte Carlo
A quadratic separation betweenR0(f) andR1(f) can be shown by extending the GPW function with backpointers
and changing the path of witnesses to a a balanced binary tree. Additionally, only half of the ’leaves’ of the tree

(equivalent to the witness in the original GPW) have backpointers to the principal column. The intuition here is that

by making only half the witnesses useful, we make the function hard for 0-error but easy for one-sided bounded

error.

Each input is de�ned by a quadruple - a boolean value, a left pointer to another input or null, a right pointer to

another input or null, and a back pointer to another input or null. Additionally, a balanced binary tree T is de�ned

which has 1 node per column in the input grid, and each node is uniquely labeled with a column. For some column

j ∈ m, T (j) is de�ned as the path from the root to the node with its label (as a sequence of lefts and rights).

The function is de�ned such that it is 1 only if the following conditions are all satis�ed:

• There is exactly 1 column with all values as 1. (The principal column).

• In the principal column there is exactly 1 cell with all pointers as null. (The special element).

• For each non principal column j, we de�ne l(j) as the result of following the path speci�ed by T (j) starting

from the special element. The condition is that l(j) exists, is in column j and has value equals 0. (These are

called the leaves of the tree, similar to the witnesses seen earlier).

• Exactlym/2 leaves have backpointers to the special element. The remainingm/2−1 leaves have backpointers

somewhere else or null.

A Las Vegas algorithm takes Ω(nm) queries. This can be shown via Yao’s principle, by constructing a probability

distribution on the input that will take at least mn queries for a deterministic algorithm.

The input is constructed such that all pointers are null, and for each column 1 cell is set to 0 if lx(i) = j, sampled

over a uniform distribution over all functions lx : [m] → n while the others are 1. An algorithm should return

negative for this input. To prove that at least mn queries are required, it must be shown that with fewer queries, an

adversary can still construct a positive input (and so the algorithm cannot be correct).

This is shown in 2 parts - �rst, if the algorithm hasn’t seen O(m) zeroes, a positive input can still be constructed.

By this assumption, there are at least m/2+1 columns without zeroes. To construct the positive input, divide these

columns into three exclusive sets - 1) a single column b that will be the principal column, 2) a set G of size m/2 to

contain the leaves of the tree which have backpointers and 3) any remaining columns. For the principal column, set

a = (lb, b) to be the special element. For the columns c ∈ G set the values of (lc, c) to be 0 and have backpointers

to a. Finally for any remaining columns, set the values of (lx, x) to be 0 and have null backpointers. There are still

enough unqueried cells to add the remaining cells needed for the tree with the pointers to preserve the structure, to

create a positive input. Second is to prove that it takes O(mn) queries to get to a state with O(m) zeroes with the

input distribution. Formally, this is shown by Ambainis et al. by an application of Markov’s inequality. However,

this is intuitive since in the chosen input distribution, each column has exactly 1, randomly selected zero, and so

there is no query process that takes fewer than O(mn) queries to observe O(n) zeroes.

The intuition behind the R1 algorithm for this function which takes O(n + m) time is to focus on the fact that

exactly m/2 of the non-principal columns have leaves with backpointers to the column. Let such a column be good,

so that a positive input has exactly n/2 good columns while a negative input has none. A building block for the

approach is that there exists an algorithm with O(1) queries on a vector to di�erentiate between all zeroes and

exactly m/2 ones. Then, if there is an algorithm to determine the goodness of a column in O(n + m) queries, that

can be directly used to build an R1 algorithm to evaluate the function.

The procedure to identify whether a given column j is good or not is as follows:

• Start with a set I of potential leaves in j, |I| < n and a set B of potential principal columns, |B| < m − 1.

Building this can be done in O(n) time.

• For each element in I , follow the tree path outward, if any. If the path ends in a column k with value 0, than

it can be removed from B.

• After iterating over all elements, if B has only one element, then verify whether it is a principal column and

whether the constructing conditions are satis�ed. If yes, accept, else reject.

In each iteration, either 1 leaf or 1 potential principal column is ruled out, so this runs in O(n + m).

11

Considering the case where n = m, then Las Vegas algorithms have O(n2) query complexity while Monte Carlo

algorithms have O(n) query complexity, which is a quadratic separation.

6 Open problems and Concluding Remarks
In the previous sections of this report, we have presented a tour of the recent breakthroughs in query complexity

research that have arisen due to the discovery of the GPW function. While many of the long-standing open problems

in this area have been solved following this �urry of developments, there has been one question in particular -

whether a cubic lower bound on the maximum separation between R(f) and D(f) is tight? (see Section 2.1) - that

has not had any similar success. In this �nal section of the report, we investigate this problem, discussing whether

any of the techniques and insights used in the prior analysis can be extended to this problem, and providing some

preliminary directions for future work.

6.1 Cubic Separation between D(f) and R(f)

We will decompose investigating this open problem through the following 2 steps: (i) �rst, we will try to summarise

the key insights from the previous sections in terms of a sequence of requirements that any proposed function should

probably satisfy, following this, (ii) we will propose a few functions that meet these requirements and consider their

potential as directions for future work.

6.1.1 Key Insights

From analysing the components of the GPW function that made the prior developments possible, we identify the

following three requirements that seem to be useful for exhibiting large separations between deterministic and

randomised algorithms:

1. Evasive function - in the worst case, a deterministic algorithm should need to read all bits of its input to

compute the value of the function. The intuition for this property is fairly simply - as we are trying to exhibit

as large a separation between deterministic and randomised algorithms as possible, it would be helpful if the

deterministic complexity is as large as possible.

2. Low (approximate) certi�cate complexity - the number of queries to verify an output as either 1 or 0

should be small relative to the input size. Additionally, as we are now dealing with bounded-error R(f),

it is su�cient for the certi�cate complexity to be small only when verifying with probability of error - i.e

allowing the use of functions such as the majority (see Section 5.2). The intuition for this requirement is that

the veri�cation complexity is a rough lower bound on the complexity of the overall function, as algorithms

will likely need to verify solutions to ensure error guarantees.

3. Pointer-aided sampling - the function should make use of pointers in such a way that it is still possible

to learn information from bad samples by following pointer chains. This property draws from one of the

key steps in the development of the GPW function, wherein the use of pointers allowed converting an ine�-

cient Õ(rs) sampling strategy to an e�cient Õ(r + s) with at most a poly-logarithmic factor increase in the

complexity.

In the next section, we will consider using these requirements to evaluate possible functions for this open problem.

6.1.2 Potential Directions - Extending GPW to 3D

Following on from insights in the previous section, we now move to investigate a selection of functions that we feel

show promise for tackling this problem.

Before we begin, we must �rst reevaluate whether the GPW function is a suitable function for this analysis. Note

that, as the certi�cate complexity provides a rough lower bound
3

on the query complexity of a randomised algorithm

for computing a function f , GPW seems to unsuitable for this task. This is because its 1-certi�cate complexity

alone is Ω(n), whereas the deterministic complexity is Ω(n2). As such, it seems likely that the greatest separation

we might hope to be able to establish between R(f) and D(f) will be around quadratic, failing to meet our cubic

requirements. However, while this reasoning does invalidate the use of the GPW function, it also suggests a natural

extension to circumvent this problem. More speci�cally, as one of the main limiting factors is the Ω(n2) bound on

the deterministic implementation, one way to avoid this problem is to simply extend the GPW function from acting

on an 2D n× n matrix to a 3D n× n× n one.

While this seems to be a straightforward transformation, a closer inspection reveals that there are in fact multiple

3

It is not a exact bound as we allow bounded errors i.e.- it may be possible to approximately verify an input in fewer queries.

12

(a) Orthogonal multi-dimensional
GPW

(b) Generalised multi-dimensional
GPW

(c) Majority multi-dimensional
GPW

plausible ways in which the GPW function could be extended to 3D - we will now investigate and evaluate a few

of these approaches:

a) Orthogonal multi-dimensional GPW - A natural way of extending GPW to 3D is to simply run GPW

simultaneously on multiple dimensions - i.e we split the input into n matrices of size n × n along each

dimension, and require that at least one instance of GPW along each dimension is a 1-instance. Using this

strategy, the veri�cation time (for 1-instances) is still linear in terms of the input O(2× (r + s)) = O(r + s),

while making full use use of the n3
space.

Analysis: The main �aw with this strategy is that, as the instances of GPW along each dimension overlap, it

is possible for an algorithm to infer information about the GPW instances on a given dimension by querying

along another dimension. As a result, the function ceases to be evasive, and thus we conclude that this is not

a suitable direction.

b) Generalised multi-dimensional GPW - An alternative approach is to take a more holistic view of the

GPW function and attempt to generalise its logic to higher dimensions. More speci�cally, rather than running

multiple instances of GPW in the additional space as before, we will now devise a variant GPW to act over

the entire matrix, instead subdividing the input matrix into smaller cubes of size k3 where k is some arbitrary

size. These cubes will act as substitutes for columns in 2D GPW, and thus a 1-instance corresponds to a single

cube with all 1s and a pointer chain traversing through all other cubes and demonstrating at least one 0-cell

in the cube.

Analysis: While this seems like a natural extension of GPW to multiple dimensions, by sticking too closely

to the original structure, its certi�cate complexity ends up being too large. In particular, if we set k to be

√
n,

then the input will consist of (
√
n)3 = n3/2

large cubes each of size n3/2
cells - as such, in order to verify a

1-instance, we must at least read n3/2
bits (all n3/2

cells in the principal “block” and then at least one 0-cell in

the remaining n3/2−1 blocks), producing a rough lower bound on the optimal separation as quadratic rather

than cubic.

c) Majority multi-dimensional GPW - Having seen that running GPW in multiple dimensions fails to pro-

duce an evasive function due to the interactions between the orthogonal planes, a natural alternative direction

is to consider running multiple instances of GPW on parallel planes. The problem with this strategy alone

is that, as verifying a single instance of GPW takes linear time, verifying all the instances along any single

dimension will take quadratic time, thereby making the function unlikely to admit a cubic separation. To

circumvent this issue we draw from the analysis by Ambainis et al. and rather than requiring all the parallel

instances to be valid, simply a majority of the instances.
Analysis: As noted by Ambainis et al., when using a majority vote in a boolean function, it is possible for

a randomised algorithm to compute the answer with bounded error using just O(1) samples. As such, this

strategy allows us to extend the GPW to multiple-dimensions without a�ecting the certi�cate complexity too

much and retaining evasiveness. We can also extend the pointer structures to connect between the principal

chains of parallel instances, and thereby also optimise for sampling strategies.

As such, from our analysis, we �nd that the Majority-GPW extension seems to be the most promising direction

forward. In the next section, we will try to explore the behaviours of these functions empirically to see if this can

lead to any insights.

6.1.3 Experiments

Having found a suitable function - Majority multi-dimensional GPW (MGPW) - from the analysis in the previous

section, we now try to characterise the speci�c behaviours of this function in more detail through a few empirical

experiments. These experiments and their associated code have been compiled together into a small framework[7]

for performing empirical experiments on randomised query complexity functions. The framework is open source

and can be publicly accessed at: https://github.com/Gopiandcode/query-complexity-framework.

Given the time constraints, we did not devise a novel algorithm for solving MGPW, but rather investigated how

13

https://github.com/Gopiandcode/query-complexity-framework

Mukhopadyay et al.’s pointer-following sampling strategy (Section 4.1) performs when used to solve majority GPW.

Our algorithm to solve MGPW was to simply randomly draw l (a constant) planes (each containing a distinct GPW

instance) from the input, and then use Mukhopadyay et al.’s strategy to evaluate whether they are true (a valid
plane) or false (an invalid plane). The algorithm would then accept or reject if the number of valid planes exceeds a

speci�c bound
4
.

Having implemented this function, we performed a series of experiments to investigate the behaviours of this

strategy:

• False-positives rate - Our �rst experiment was to investigate the speci�c error-rate of this strategy. In

particular, as this strategy of using sampling to evaluate a majority only has bounds on correctness when

dealing with a 1-instance input
5
, our algorithm may still error with high probability when dealing with a

0-instance
6
. As such, a important question for the viability of this strategy is how severely the error rate

changes as the number of valid planes in the input increases.

Our methodology to investigate this question was as follows: we �rst �xed an input size of n = 20, and then,

varying the number of valid planes from 0 to 9, generated a single random 0-instance input for each option.

We then ran the algorithm 100 times on each generated input and evaluated how the false positive rate of

the algorithm would change as the number of valid planes were increased. The results of this experiment are

presented in Figure 7.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

No. valid planes

F
a
l
s
e

p
o

s
i
t
i
v
e

r
a
t
e

Fig. 7: MGPW False-positive rate with limited valid planes

As we predicted, the false positive rate increases quite severely as the number of valid planes becomes closer

to the number of invalid planes. While this is a signi�cant issue for achieving bounded error guarantees, it is

important to note that the correctness of the function may be improved if we also ran Mukhopadyay et al.’s
GPW 1-bounded error algorithm (Section 4.2) and repeating the sampling algorithm but testing for invalid-

plane majority.

• Empirical query complexity - Our second experiment investigates how the query complexity of this al-

gorithm varies with the input. Our main aim with this experiment was to evaluate whether our analysis of

achieving a linear veri�cation time was reasonable.

Our methodology was as follows: �rst, varying the input size from 4 to 20, we generated a single true and

false instance for each input size, and then repeatedly ran the algorithm 100 times on these inputs and took

the average number of queries for each input. The results of this analysis are presented in Figure 8.

As we would expect, as the number of samples increases, the query complexity does correctly become linear,

verifying our earlier analysis. The slight abnormality for input sizes n ≤ 10 is due the fact that the constant

number of samples l used in the majority estimation algorithm is set to 10, so for input sizes less than that,

we just use half the input size, thereby leading to the odd non-linear behaviour.

• Impact of invalid pointer chains - Our �nal experiments sought to investigate whether the structure of

the GPW function could be further optimised for bounded error separation. In particular, given the special

4

The speci�c bound was n/2−
√
n, which has a probability of ≥ 2

3
of occurring when dealing with a 1-instance.

5

Achieved using a Cherno� bound, as each sample has a probability ≥ 1
2

of being correct.

6

This is most likely to occur when the number of 1-instances in the input is very close to the number of 0-instances.

14

0 5 10 15 20

0

200

400

600

Input size (n)

N
o
.

q
u

e
r
i
e
s

1-instance

0-instance

Fig. 8: MGPW Empirical query complexity

case reasoning for fake pointer chains that the prior research had to include, we were interested in working

out whether fake pointer chains have a signi�cant in�uence on the query complexity of this algorithm.

Our methodology was as follows: �rst, varying the input size from 4 to 20, we generated 100 random inputs

that had random pointers for non principal chain columns. For each input size, we ran the algorithm 10 times

for each input and took the average over all times and inputs. The results of this experiment are presented in

Figure 9.

0 5 10 15 20

0

2,000

4,000

6,000

Input size (n)

N
o
.

q
u

e
r
i
e
s

No pointers

Fake pointers

Fig. 9: MGPW impact of fake pointers (1-instance)

Surprisingly, contrary to our expectations, there is a slight decrease rather than increase in the number of

queries when we introduce fake pointers. This is surprising as we were expecting the fake pointers to increase

the query complexity by forcing the algorithm to follow fake pointer chains. One possible explanation for this

phenomena could be that as we are randomly generating pointers, the likelihood of an actual pointer chain

forming by chance is fairly small, and so most pointers have a high probability of helping the algorithm to

�nd the remaining columns.

6.2 Concluding Remarks
This report has aimed to cover the main developments in query complexity research over the past years, providing

an account of the insights and observations that have �nally lead to the refutation of Saks et al.’s longstanding

conjecture. We began with the Göös-Pitassi-Watson function, discussing its de�nitions and the intuition behind

it’s suitability for randomisation. Following this, we presented an algorithm by Mukhopadyay et al. that was able

to solve GPW with bounded error, and described how this result could be used to obtain an algorithm computing

GPW with 0-error, refuting Saks’s conjecture, but also failing to exhibit the optimal quadratic separation. We then

considered Ambainis et al.’s extensions to GPW and investigated how they were not only able to achieve this

optimal separation, but also able to exhibit the �rst known quadratic separation between 0-error and bounded

error randomised algorithms. Finally, in the last sections of this report, we considered how the methodology of

15

introducing pointer-based optimisations as done with the GPW function, could be used to attack another open

problem in this space - that of whether it is possible to exhibit a cubic separation between deterministic and 2-sided

error randomised algorithms.

References
[1] M. Saks and A. Wigderson, “Probabilistic boolean decision trees and the complexity of evaluating game trees,” in 27th Annual Symposium

on Foundations of Computer Science (sfcs 1986), IEEE, 1986, pp. 29–38.

[2] S. Mukhopadhyay and S. Sanyal, “Towards better separation between deterministic and randomized query complexity,” arXiv preprint
arXiv:1506.06399, 2015.

[3] A. Ambainis, K. Balodis, A. Belovs, T. Lee, M. Santha, and J. Smotrovs, “Separations in query complexity based on pointer functions,”

J. ACM, vol. 64, no. 5, Sep. 2017, issn: 0004-5411. doi: 10.1145/3106234. [Online]. Available: https://doi.org/10.1145/3106234.

[4] M. Goos, T. Pitassi, and T. Watson, “Deterministic communication vs. partition number,” SIAM Journal on Computing, vol. 47, no. 6,

pp. 2435–2450, 2018.

[5] M. Blum and R. Impagliazzo, “Generic oracles and oracle classes,” in 28th Annual Symposium on Foundations of Computer Science (sfcs
1987), IEEE, 1987, pp. 118–126.

[6] N. Nisan, “Crew prams and decision trees,” SIAM Journal on Computing, vol. 20, no. 6, pp. 999–1007, 1991.

[7] K. Gopinathan and J. Mohan, QUERY COMPLEXITY FRAMEWORK: FRAMEWORK FOR EMPIRICALLY EXPLORING QUERY COMPLEX-
ITY QUESTIONS, https://github.com/Gopiandcode/query-complexity-framework, 2020.

16

https://doi.org/10.1145/3106234
https://doi.org/10.1145/3106234
https://github.com/Gopiandcode/query-complexity-framework

A Formal Analysis of R1(GPW)

We will now provide a more formal analysis of the strategy presented in the previous subsection and demonstrate

that it does in fact produce a valid 1-bounded error randomized algorithm that executes with Õ(r+ s) queries. The

�rst part of this section will describe the exact algorithm in a formal notation, and the subsequent parts will tackle

proving the query complexity and correctness of the algorithm separately.

Listing 1 and 2 present a formal description of the general algorithm. As we can see, the code mostly follows the

strategy outlined earlier - we repeatedly sample from the matrix and use the pointer chains to eliminate columns.

Once the elimination is complete, we return 1 if we have actually found a valid 1-certi�cate, and otherwise return

0.

1: Initialize S to contain all columns {1, . . . , s}
2: for t← 1 to Ar log(s) do
3: Sample a random column j from S
4: Sample a random row i from [r]
5: Update S using FollowPointer(S , i, j)

6: end for
7: if S contains exactly one remaining column that is a 1-certi�cate then
8: return 1
9: else

10: return 0
11: end if

Listing 1: High level structure of 1-bounded error algorithm

We implement the rate-aware pointer following algorithm by means of a dynamic loop bound step ≤ 100s |D||S| . In

particular, each colum we discard in a single call increases the maximum bound for that iteration by 100 s
|S| steps,

where S is the set of remaining columns. As a simple sanity-check, we can quickly verify that as 100 s
|S| is always

greater than 1, we will never incorrectly reject a pointer chain of just consecutive unseen columns (i.e in the case

that our initial sample is lucky and our �rst sample is the �rst element of the pointer chain). Additionally, as we

will see in the subsequent analysis, it also means that as the number of remaining columns decreases, the reward

for �nding an undiscarded column increases, which accounts for the reduced rate of column-�nding as the search

progresses.

1: function FollowPointer(S , i, j)

2: step← 0
3: D ← ∅
4: while step ≤ 100s |D||S| do
5: step← step + 1
6: Read the value xi,j and pointer pi,j of cell i, j
7: if xi,j 6= 0 then break
8: if j ∈ S/D then Update D with D ∪ {j}
9: if pi,j = ⊥ then break

10: Update (i, j) with pi,j
11: end while
12: return S/D
13: end function

Listing 2: Rate tracking follow pointer subroutine

Query Complexity We will now prove that the query complexity of this function is Õ(r + s).

We note that the �nal veri�cation steps at line 7 of Listing 1 of ensuring that a column is a valid 1-certi�cate takes

at most Õ(r+s) queries as we simply need to read one column of length r and the principal pointer chain of length

s− 1. As such, provided we can place an Õ(r + s) bound on the Ar log(s) sampling steps, then the overall bound

will hold.

As such, let qi denote the number of queries made in the i-th iteration of the sampling step, let si be the size of the

remaining columns at that iteration, and let di denote the number of columns that are discarded in that iteration.

Note that di = si − si+1.

17

As queries in the sampling step are only made inside the FollowPointer subroutine, we will �rst place a simpler

bound on the number of queries made in a single call to this routine. In particular, as each iteration of the while

loop (line 4, Listing 2) makes at most 1 query, we can bound the number of queries by the maximum bound of the

loop qi ≤ step, hence:

qi ≤ 100s
di
si

+ 1

With the +1 as in the �nal iteration of the loop,

Now to bound the total number of queries, we consider the summation over all t steps:

t∑
i=1

qi ≤ 100s

t∑
i=1

di
si

+ t

Expanding di =
∑di

1 1:

= 100s
t∑

i=1

di∑
j

1

si
+ t

As di < si + 1:

≤ 100s
t∑

i=1

di∑
j

1

si − j + 1
+ t

Expanding the summation:

= 100s

t∑
i=1

(
1

si
+ · · ·+ 1

si − di + 1

)
+ t

Using the fact that di = si − si+1:

= 100s
t∑

i=1

(
1

si
+ · · ·+ 1

si+1 + 1

)
+ t

Expanding the summation:

= 100s

{(
1

s1
+ · · ·+ 1

s2 + 1

)
+ · · ·+

(
1

st
+ · · ·+ 1

st+1 + 1

)}
+ t

So overall, the sum iterates over
1
si

for i from 1 to t. From here, using the fact that st+1 represents the size of the

set at step t and that s1 = s:

≤ 100s

{
s∑

i=st+1

1

i

}
+ t

Expanding the de�nition of t and using the standard logarithmic bound for an inverse sum:

≤ 100s log(s) + Ar log(s)

≤ Õ(r + s)

As such, the sampling has the complexity bound as the veri�cation of Õ(r + s), giving the overall algorithm a

complexity bound of Õ(r + s).

Bounded Error We will now prove that this function will �nd a 1-certi�cate with probability at least
2
3 when given

an input x ∈ f−1(x).

18

Let |S|t denote the number of remaining columns at time t. Observe that for a 1-input, the search succeeds if S at

the end has exactly 1 element.

If we can show that with su�cient probability (≥ 1
8r), each call to FollowPointer reduces the number of remain-

ing columns by a constant faction (
1
2), then the overall statement can be easily proven by considering conditional

expectations.

E[|S|t||S|t−1] ≤
(

1− 1

8r

)
|S|t−1 +

1

8r

|S|t−1
2

≤
(

1− 1

16r

)
|S|t−1

Hence, by induction:

E[|S|t] ≤
(

1− 1

16r

)t

s

≤ exp

{
− 1

16r
t

}
s

≤ exp

{
− 1

16r
Ar log(s)

}
s

≤ s1−
A
16

Thus for a su�ciently large constant A, we can apply Markov’s inequality to conclude that the probability of the

search failing is less than
1
3 .

Now, all that remains is to prove that each call to FollowPointer reduces the number of columns by a constant

fraction with su�cient probability.

In order to prove this, we can �rst prove a slightly more general property that places bounds on the deviation of

the value of various subsequences of a summation from the total value.

Theorem A.1 (Subsequence Summation Bound). Suppose we have a summation of l non-negative values x1, . . . , xl
such that

∑l
i=1 xi = N for some value N .

We de�ne a index j as bad (and otherwise good) if it denotes the start of a sub-sequence of some lengthD ∈ [1, l] such
that the value of the summation is signi�cantly greater than than the average value:

j+D−1∑
i=j

xi ≥ 100D
N

l

Then, the number of bad indices in the �rst half of the sum is bounded:

|{j ≤ l/2 ∧ j is good}| ≥ l

4

Proof. To prove this, we �rst divide the array into disjoint subsets K1, . . .Km, by repeatedly drawing out the asso-

ciated ranges for a bad index starting from the smallest remaining bad index (see Figure 10).

xi xj xk xl xx xy xz

K1 K2 K3 K4

Fig. 10: Subdividing array by bad indices

Clearly, by construction, every bad index is now contained in one of these subsets, and as each subset contains

exactly the D elements associated with its smallest bad index, we can bound the size as follows:

100|Ki|
N

l
<
∑
i∈Ki

xi

19

Hence, by rearranging:

|Ki| <
1

100
× l

N
×
∑
i∈Ki

xi

From this, we note that the number of bad indices b is now trivially bounded by the size of the union of each of

these disjoint sets, hence:

b ≤
m∑
i=1

|Ki|

≤ 1

100
× l

N
×

m∑
i=1

∑
j∈Ki

xj

As the total number of elements in the subsets is at most all the elements in the array:

≤ 1

100
× l

N
×

l∑
i=1

xi

By the assumption that the total sum is N :

≤ 1

100
× l

N
×N

≤ l

100

As such, the number of good indices in the range 1 to l/2, is at least l/2− l/100, which is greater than l/4

Finally to apply this to our situation, suppose we are at some iteration t of the algorithm, and the remaining columns

are de�ned by the set S , de�ne m1, . . .m|S|−1 to be the order in which the principal chain visits the elements of S .

Additionally, let xi denote the number of seen columns (i.e columns in [s]/S) that the principal chain passes when

moving from mi to mi+1.

We will now consider the summation of these xis, which represents the total number of previously seen columns

that are encountered during the pointer following search (including the column we start on). Clearly, the following

trivial bounds apply to the summation:

|S| − 1 ≤
|S|−1∑
i=1

xi ≤ s− 1

Notice, that our pointer following algorithm will fail if and only if the index it chooses is “bad” (using the de�nition

from the previous theorem), as the rate at which unseen columns are found will be too low.

Using this observation and the previous theorem, the lemma trivially follows. When we sample an element, with

probability
1
r it will be on the pointer chain, with probability

1
2 it will be in the �rst half, and with probability

1
4 it

will be one of the “good” indices.

Hence, with probability
1
8r , the pointer following algorithm will not terminate and will consume at least half of the

remaining columns.

B Formal Analysis of R1(GPW)

In this section we will provide a formal proof of the 1-bounded randomized query complexity of GPW. This section

begins with a formal description of the exact algorithm and then proves the query complexity and probability of

correctness separately.

Listing 3 presents the formal description of the algorithm. As described earlier, the algorithm �rst preprocesses the

input by eliminating all columns with greater than

√
r 0-cells by random sampling. After this is done, the algorithm

simply uses the pointer-following technique to either �nd a 1-certi�cate or to eliminate columns. At the end, if

there are more than 1 remaining columns, the algorithm conservatively returns 1 and otherwise deterministically

calculates the exact answer.

Query Complexity We will now show that this function takes Õ(r +
√
rs) queries to compute.

20

1: Initialize S to all columns in {1, . . . , s}
2: for c in S do
3: for t = 1 to 10

√
r log(s) do

4: Sample a cell v randomly from c
5: if v is a 0-cell then update S with S/{c}
6: end for
7: end for
8: for t = 1 to B log(s) do
9: if |S| ≤ 1 then break

10: Sample two columns i, j from S
11: if more than

√
r cells with 0 value found then return 1

12: if i 6∈ span(j) ∧ j 6∈ span(i) then return 0

13: else
14: Update S with S/(span(i) ∪ span(j))
15: end if
16: end for
17: if |S| > 1 then return 0

18: else
19: Deterministically check if 0 or 1 instance.

20: end if

Listing 3: High level structure of 1-bounded error GPW algorithm

Proof. This proof is fairly trivial, and follows from the bounds of each of the loops of the algorithm. The �rst loop

iterates 10
√
r log(s) times for each of the s columns and makes a single query each iteration, hence contributes

to the complexity by Õ(
√
r log(s) × s) = Õ(

√
rs). The second loop iterates B log(s) times, and in each iteration

calculates the span of 2 random columns, taking at most Õ(r+
√
rs) queries for each column (r queries to read the

column, and

√
rs queries to follow the pointer chains from each 0-cell), hence contributes to the overall complexity

by Õ(B log(s)× (r +
√
rs)) = Õ(r +

√
rs). The �nal veri�cation step takes at most Õ(r + s) queries.

As such, by summing all these bounds, the overall complexity is Õ(r +
√
rs) as claimed.

Bounded Error We will also prove that this function will return 1 when fed an x ∈ f−1(1) with probability at

least
2
3 .

This proof follows by three main steps: (i) �rst, we prove that the �rst loop has a high probability of eliminating

any columns with more than

√
r 0-cells, then conditioning on this, (ii) the second step involves proving that when

sampling columns we have a high probability of either �nding a 1-certi�cate or eliminating a large number of

remaining columns, �nally, (iii) we combine these facts to demonstrate that with high probability the remaining

columns after both loops will less than or equal to 1.

(i) Removing 0-cell dense columns - Suppose a column c contains more than

√
r 0-cells. As such, each time

we sample from c, there is at least a probability of

√
r
r = 1√

r
that we obtain a 0-cell and thereby eliminate

c. From this, the probability that c is not eliminated after all 10
√
r log(s) is at most (1 − 1√

r
)10
√
r log(s) ≤

exp{−10 log(s)} = s−10. By the union bound, the probability that all such column are eliminated is at least

1− s−9.

(ii) Span-based column elimination - We will now show that each time we sample columns i, j randomly from

the set of remaining columns S in the second loop, then one of the following must happen:

(a) P [|span(i) ∩ S| ≥ |S|10] ≥ 1
10

(b) P [i 6∈ span(j) ∧ j 6∈ span(i)] ≥ 1
2

As such, each time we sample, we either �nd a 1-certi�cate with high probability or are able to eliminate a

constant fraction of the remaining columns.

To prove this, suppose that that the �rst statement is false, then the with probability at least
9
10 , |span(i)∩S| < |S|

10 .

As such, when we randomly sample another column j, with probability at most
9
10 , j 6∈ span(i). Combining

these two events, the probability that j ∈ spani is at most 0.2. The same analysis holds for the converse case

i ∈ spanj, and so by the union bound, with probability at least
1
2 , i 6∈ span(j) ∧ j 6∈ span(i).

(iii) Remaining Columns - Let |S|t denote the number of remaining columns at the tth iteration of the second

21

loop (i.e |S|0 is the number of columns after completing the �rst loop).

We will now show that E[|S|t||S|t−1] ≤
(

99
100

)
|S|t−1.

Each time we sample a column, using the result of the previous step, we know that we either a) �nd a 1-

certi�cate with at least
1
2 probability or b) we eliminate at least

1
10 th of the remaining columns with a proba-

bility of at least
1
10 . We’ll consider these two cases seperately:

a) If we �nd a 1-certi�cate, then we terminate the loop, hence |S|t = 0:

E[|S|t||S|t−1] ≤
1

2
0 +

1

2
Stt− 1 ≤

(
99

100

)
|S|t−1

b) Assuming we eliminate the columns with probability at least
1
10 :

E[|S|t||S|t−1] ≤
(

1− 1

10

)
|S|t−1 +

1

10

1

10
|S|t−1 ≤

(
99

100

)
|S|t−1

Hence, in either case, this claim holds.

Applying induction, we can conclude that E[|S|t] ≤
(

99
100

)B log(s)
s.

We conclude by applying Markov to note that for a large enough constant B, the probability of the event that

|S|t > 1 (and thereby there is a possibility that the algorithm could be wrong) will be at most
1
3 .

22

	Introduction
	Randomized Query Complexity
	Definitions and Standard Properties
	Maximum separations between complexity measures

	Göös-Pitassi-Watson Function
	Motivation for Göös-Pitassi-Watson Function
	Definition
	Deterministic Query Complexity

	Deterministic vs Monte Carlo separation and Corollaries
	Upper bound on 1-sided error Randomised Complexity
	Intuition
	Challenges
	Bounding the Separation between R1(f) and D(f)

	Extending to 0-error Randomised Complexity
	Intuition
	Refuting Saks et al.'s Conjecture

	Achieving quadratic separation and Further relations
	Quadratic Separation between Las Vegas and Deterministic
	Quadratic Separation between Las Vegas and Monte Carlo

	Open problems and Concluding Remarks
	Cubic Separation between D(f) and R(f)
	Key Insights
	Potential Directions - Extending GPW to 3D
	Experiments

	Concluding Remarks

	Formal Analysis of R1(GPW)
	Formal Analysis of R1(GPW)

