Data Mining: Foundation, Techniques and Applications

Lesson 10: Mining and Searching High Dimensional Data

Li Cuiping(李翠平) School of Information Renmin University of China

Anthony Tung(鄧锦浩) School of Computing National University of Singapore

- Sources of HDD
- Challenges of HDD
- Foundation
 - Similarity Function
 - High Dimensional Distance Join
- Techniques & Application
 - Finding Nonlinear Correlated Clusters in High Dimensional Data
 - Finding Patterns in Extremely High Dimensional Data

Sources of High Dimensional Data

- Microarray gene expression
- Text documents
- Images
- Features of Sequences, Trees and Graphs
- Audio, Video, Human Motion Database (spatio-temporal as well!)

Challenges of High Dimensional Data

Indistinguishable

- Distance between two nearest points and two furthest points could be almost the same
- Sparsity
 - As a result of the above, data distribution are very sparse giving no obvious indication on where the interesting knowledge is

Large number of combination

- Efficiency: How to test the number of combinations
- Effectiveness: How do we understand and interpret so many combinations?

- Sources of HDD
- Challenges of HDD
- Foundation
 - Similarity Function
 - High Dimensional Distance Join
- Techniques & Application
 - Finding Nonlinear Correlated Clusters in High Dimensional Data
 - Finding Patterns in Extremely High Dimensional Data

Similarity Search : Traditional Approach

Objects represented by multidimensional vectors

Elevation	Aspect	Slope	Hillshade (9am)	Hillshade (noon)	Hillshade (3pm)	
2596	51	3	221	232	148	

The traditional approach to similarity search: kNN query
 Q = (1, 1, 1, 1, 1, 1, 1, 1, 1)

ID	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	Dist
P1	1.1	1	1.2	1.6	1.1	1.6	1.2	1.2	1	1	0.93
P2	1.4	1.4	1.4	1.5	1.4	1	1.2	1.2	1	1	0.98
P3	1	1	1	1	1	1	2	1	2	2	1.73
P4	20	20	21	20	22	20	20	19	20	20	57.7
P5	19	21	20	20	20	21	18	20	22	20	60.5
P6	21	21	18	19	20	19	21	20	20	20	59.8

Deficiencies of the Traditional Approach

- Deficiencies
 - Distance is affected by a few dimensions with high dissimilarity
 - Partial similarities can not be discovered
- The traditional approach to similarity search: kNN query
 Q = (1, 1, 1, 1, 1, 1, 1, 1, 1)

ID	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	Dist
P1	1.1	100	1.2	1.6	1.1	1.6	1.2	1.2	1	1	99.0
P2	1.4	1.4	1.4	1.5	1.4	100	1.2	1.2	1	1	99.0
P3	1	1	1	1	1	1	2	100	2	2	99.0
P4	20	20	21	20	22	20	20	19	20	20	57.7
P5	19	21	20	20	20	21	18	20	22	20	60.5
P6	21	21	18	19	20	19	21	20	20	20	59.8

Thoughts

- Aggregating too many dimensional differences into a single value result in too much information loss. Can we try to reduce that loss?
- While high dimensional data typically give us problem when in come to similarity search, can we turn what is against us into advantage?
- Our approach: Since we have so many dimensions, we can compute more complex statistics over these dimensions to overcome some of the "noise" introduce due to scaling of dimensions, outliers etc.

The *N*-Match Query : Warm-Up

Description

- Matches between two objects in *n* dimensions. ($n \le d$)
- The *n* dimensions are chosen dynamically to make the two objects match best.

How to define a "match"

- Exact match
- Match with tolerance δ

The similarity search example

Q = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) **n = 6**

ID	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	Dist
P1	1.1	100	1.2	1.6	1.1	1.6	1.2	1.2	1	1	0.2
P2	1.4	1.4	1.4	1.5	1.4	100	1.2	1.2	1	1	0.4
P3	1	1	1	1	1	1	2	100	2	2	0
P4	20	20	21	20	22	20	20	19	20	20	19
P5	19	21	20	20	20	21	18	20	22	20	19
P6	21	21	18	19	20	19	21	20	20	20	19

The *N*-Match Query : The Definition

• The *n*-match difference

Given two *d*-dimensional points $P(p_1, p_2, ..., p_d)$ and $Q(q_1, q_2, ..., q_d)$, let $\delta_i = |p_i - q_i|, i = 1, ..., d$. Sort the array $\{\delta_1, ..., \delta_d\}$ in increasing order and let the sorted array be $\{\delta_1', ..., \delta_d'\}$. Then δ_n' is the **n-match difference**, between *P* and *Q*.

The *n*-match query

Given a *d*-dimensional database *DB*, a query point *Q* and an integer n ($n \le d$), find the point $P \in DB$ that has the smallest *n*-match difference to *Q*. *P* is called the *n*-match of *Q*.

• The similarity search example

 $\boldsymbol{\mathcal{Q}} = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)$

П	D

ceyb	etweei	1		
10	- ● <i>E</i>	1-ma	atch=A	
8	- - • <i>D</i>	2-ma	atch=B	
6	_ _ ●			
4	_ A	• R	•	
2		D	С	
Q	2	4 6	8 10	\rightarrow_{x}

ID	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	Dist
P1	1.1	100	1.2	1.6	1.1	1.6	1.2	1.2	1	1	0.6
P2	1.4	1.4	1.4	1.5	1.4	100	1.2	1.2	1	1	0.4
P3	1	1	1	1	1	1	2	100	2	2	1
P4	20	20	21	20	22	20	20	19	20	20	19
P5	19	21	20	20	20	21	18	20	22	20	19
P6	21	21	18	19	20	19	21	20	20	20	19

The *N*-Match Query : Extensions

The k-n-match query

Given a *d*-dimensional database *DB*, a query point *Q*, an integer *k*, and an integer *n*, find a set *S* which consists of *k* points from *DB* so that for any point $P1 \in S$ and any point $P2 \in DB$ -*S*, P1's n-match difference is smaller than P2's *n*-match difference. *S* is called the *k*-*n*-match of *Q*.

The frequent k-n-match query

Given a *d*-dimensional database *DB*, a query point *Q*, an integer k, and an integer range $[n_0, n_1]$ within [1,d], let S_0, \ldots, S_i be the answer sets of k- n_0 -match, \ldots, k - n_1 -match, respectively, find a set *T* of *k* points, so that for any point $P1 \in T$ and any point $P2 \in DB$ -*T*, *P1*'s number of appearances in S_0, \ldots, S_i is larger than or equal to *P2*'s number of appearances in S_0, \ldots, S_i .

• The similarity search example

 $\boldsymbol{\mathcal{Q}} = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)$

n = 6

	<u> </u>	• • • • • •		· · · · /							_
ID	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	Dist
P1	1.1	100	1.2	1.6	1.1	1.6	1.2	1.2	1	1	0.2
P2	1.4	1.4	1.4	1.5	1.4	100	1.2	1.2	1	1	0.4
P3	1	1	1	1	1	1	2	100	2	2	0
P4	20	20	21	20	22	20	20	19	20	20	19
P5	19	21	20	20	20	21	18	20	22	20	19
P6	21	21	18	19	20	19	21	20	20	20	19

Cost Model

The multiple system information retrieval model

- Objects are stored in different systems and scored by each system
- Each system can sort the objects according to their scores
- A query retrieves the scores of objects from different systems and then combine them using some aggregation function

The cost

• Retrieval of scores – proportional to the number of scores retrieved

The goal

To minimize the scores retrieved

The AD Algorithm

• The AD algorithm for the *k*-*n*-match query

- Locate the query's attributes value in every dimension
- Retrieve the objects' attributes value from the query's attributes in both directions
- The objects' attributes are retrieved in Ascending order of their Differences to the query's attributes. An n-match is found when it appears n times.

Q: color='2 edina (ch (q6 ee;: 170 u)) d; 780 te \$ 100) e "cloud"

d1			d	2		d	3	
Object ID	Attr		Object ID	Attr		Object ID	Attr	
1	0.4		1	1.0		1	1.0	
2	2.8	3.0	5	1.5		2	2.0	4.0
5	3.5		2	5.5	7.0	3	5.0	
3	6.5		3	7.8		5	8.0	
4	9.0		4	9.0	1	4	9.0	
		•						•

Auxiliary structures

- Next attribute to retrieve g[2d]
- d1 d2 d3 3,3.5 2,1.5 4,2.0 1,2.6 2,2.0 5,4.0 3 1 2 4 5 0 2 0 2 1
- Number of appearances *appear*[c]
- Answer set *S*

{3,2}

The AD Algorithm : Extensions

• The AD algorithm for the frequent *k*-*n*-match query

- The frequent *k*-*n*-match query
 - Given an integer range $[n_0, n_1]$, find $k \cdot n_0$ -match, $k \cdot (n_0+1)$ -match, ..., $k \cdot n_1$ -match of the query, S_0, S_1, \dots, S_i .
 - Find k objects that appear most frequently in $S_{0'}$, $S_{1'}$, ..., $S_{i'}$
- Retrieve the same number of attributes as processing a $k-n_1$ -match query.

Disk based solutions for the (frequent) k-n-match query

- Disk based AD algorithm
 - Sort each dimension and store them sequentially on the disk
 - When reaching the end of a disk page, read the next page from disk
- Existing indexing techniques
 - Tree-like structures: R-trees, k-d-trees
 - Mapping based indexing: space-filling curves, iDistance
 - Sequential scan
 - Compression based approach (VA-file)

Experiments : Effectiveness

Searching by k-n-match

- COIL-100 database
- 54 features extracted, such as color histograms, area moments

Searching by frequent k-n-match

- UCI Machine learning repository
- Competitors:
 - IGrid
 - Human-Computer Interactive NN search (HCINN)

<i>k-r</i>	<i>n</i> -match query, <i>k</i> =4
п	Images returned
5	36, 42, <mark>78</mark> , 94
10	27, 35, 42, <mark>78</mark>
15	3, 38, 42, <mark>78</mark>
20	27, 38, 42, <mark>78</mark>
25	35, 40, 42, 94
30	10, 35, 42, 94
35	35, 42, 94, 96
40	35, 42, 94, 96
45	35, 42, 94, 96
50	35, 42, 94, 96

_									
<i>k</i> NN query									
k	Images returned								
10	13, 35, 36, 40, 42 64, 85, 88, 94, 96								

Data sets (<i>d</i>)	IGrid	HCINN	Freq. <i>k-n</i> -match
Ionosphere (34)	80.1%	86%	87.5%
Segmentation (19)	79.9%	83%	87.3%
Wdbc (30)	87.1%	N.A.	92.5%
Glass (9)	58.6%	N.A.	67.8%
Iris (4)	88.9%	N.A.	89.6%

Experiments : Efficiency

Disk based algorithms for the Frequent k-n-mach query

- Texture dataset (68,040 records); uniform dataset (100,000 records)
- Competitors:
 - The AD algorithm
 - VA-file
 - Sequential scan

Data Mining: Foundation, Techniques and Applications

Experiments : Efficiency (continued)

Comparison with other similarity search techniques

- Texture dataset ; synthetic dataset
- Competitors:
 - Frequent k-n-match query using the AD algorithm
 - IGrid
 - scan

Future Work(I)

- We now have a natural way to handle similarity search for data with categorical, numerical and attributes.
 Investigating k-n-match performance on such mixed-type data is currently under way
- Likewise, applying k-n-match on data with missing or uncertain attributes will be interesting
- Query={1,1,1,1,1,1,1,M,No,R}

ID	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10
P1	1.1	1	1.2	1.6	1.1	1.6	1.2	М	Yes	R
P2	1.4	1.4	1.4	1.5	1.4	1	1.2	F	No	В
P3	1	1	1	1	1	1	2	М	No	В
P4	20	20	21	20	22	20	20	М	Yes	G
P5	19	21	20	20	20	21	18	F	Yes	R
P6	21	21	18	19	20	19	21	F	Yes	Y

Future Work(I)

- We now have a natural way to handle similarity search for data with categorical, numerical and attributes.
 Investigating k-n-match performance on such mixed-type data is currently under way
- Likewise, applying k-n-match on data with missing or uncertain attributes will be interesting
- Query={1,1,1,1,1,1,1,M,No,R}

ID	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10
P1		1	1.2	1.6	1.1	1.6	1.2	М		R
P2	1.4	1.4		1.5		1	1.2	F	No	В
P3	1	1	1	1	1		2	М	No	В
P4	20	20		20	22	20	20	М		G
P5	19	21	20	20	20		18		Yes	R
P6	21		18		20		21	F	Yes	Y

Future Work(II)

- In general, three things affect the result from a similarity search: noise, scaling and axes orientation. K-n-match reduce the effect of noise. Ultimate aim is to have a similarity function that is robust to noise, scaling and axes orientation
- Eventually will look at creating mining algorithms using k-n-match

- Sources of HDD
- Challenges of HDD
- Foundation
 - Similarity Function
 - High Dimensional Distance Join
- Techniques & Application
 - Finding Nonlinear Correlated Clusters in High Dimensional Data
 - Finding Patterns in Extremely High Dimensional Data

KNN-Join

KNN-Join between R and S

- assigns to each point in R its K-nearest neighbours in S
- based on a distance function
- Important in many data mining algorithms
 - k-mean clustering
 - LOF (intensity based outlier detection)

KNN-Join: Existing Algorithms

- Only up-to-date algorithm: MuX
- uses R-tree as index structure
- R-tree problems with many dimensions
 - R-tree performance degenerates
 - High memory requirement for the index structure (for storing high dimensional bounding boxes)

GORDER KNN-Join

- Sorts the datasets in the Grid-Order
- Uses a scheduled block nested loop join
- Advantages
 - reduces random reads
 - uses pruning to reduce I/O and similarity computation
 - reduces the cost of the distance computation by doing it in lower dimensions

G-Ordering

Consists of two steps

- Principal component analysis
- Grid order sorting

Grid Order

- partition space into I^d cells
- identification vector <s₁..s_n> for each cell
- sort lexicographically by id vector

G-ordering: Example

G-ordering: Example

G-ordered data: properties

- estimation of distance between p, q by projection to the first k dimensions
 - first dimensions are the most important ones
- for a **block** of points (p₁...p_m) bounding box can easily be calculated
 - check the first and the last point
 - check the first dimension in where they differ (active dimension of the block)

Distance between blocks

- MinDist(B_r, B_s)
 - minimum distance of the bounding boxes
- MaxDist(B_r, B_s)
 - maximum distance of the bounding boxes
- bdist(B_r, B_s): first consider MinDist(), if equal then consider MaxDist()

Observation

 MinDist() is a lower bound for the real distance of points in the block

Pruning

- Idea: if a set of points are farer away than the kth candidate of p (∈ B_r), do not consider
 them when joining with p
- Point pruning: MinDist(B_r, B_s) > prunedst(p)
 - prunedst(p): distance to the k-th NN candidate
- Block pruning: MinDist(B_r, B_s) > prunedst(Br)
 - prunedst(Br) = max (prunedst(p), p in B_r)

Join GORDERed Data

foreach Block B_r of R:

- foreach Block B_s of S orderd by bdist:
 - if (MinDist(B_r, B_s) > prunedst(B_r)) break;
 - MemoryBlocking(B_r, B_s)
- Output KNN of B_r

Observations:

- bounding box of each S block in memory
 - easy sorting
- Ioading of block data only if doing the join

Joining: MemoryBlocking(B_r, B_s)

- To reduce computational cost: subdivide into smaller blocks
- Subdivide B_r, B_s into smaller blocks
- foreach Block B[']_r of B[']_r:
 - foreach Block B_s' of S orderd by bdist:
 - if $(MinDist(B_{r'}, B_{s'}) > = prunedst(B_{r'}))$ break;
 - MemoryJoin(B_{r'}, B_{s'})

Joining: MemoryJoin(B_r, B_s)

foreach point p in B_r

- if (MinDist(B_r, B_s) <= prunedst(p)):</pre>
 - for each point q in B_s
 - ComputeDist(p, q)

Calculating the Distance

 $\mathbf{P} \in \mathbf{B}_{r'} \mathbf{q} \in \mathbf{B}_{s}$

- Consider the distance in a 1 dimensions
- $a = min(active dimension B_r, B_s)$
- MinDist(B_{r,a-1}; B_{s,a-1}) <= d_{{1..a-1}</sub>(p, q)
- $MinDist(B_{r,a-1}; B_{s,a-1}) + d_{\{a..d\}}(p, q) \le d(p,q)$
- Use the above expression as a estimation for pruning

Calculating the Distance

- for (k = a to d):
 - pdist += $(p.x_k q.x_k)^2$
 - if (pdist > prunedst(p)) return;
- pdist -= MinDist(B_{r,a-1}; B_{s,a-1})

- pdist += $(p.x_k q.x_k)^2$
- if (pdist > prunedst(p)) return;
- Add q to the KNN of p

Performance Evaluations (1)

Performance Evaluations (1)

Performance Evaluations (1)

Performance Evaluations: Scaling

Performance Evaluations: Scaling

- Sources of HDD
- Challenges of HDD
- Foundation
 - Similarity Function
 - High Dimensional Distance Join
- Techniques & Application
 - Finding Nonlinear Correlated Clusters in High Dimensional Data
 - Finding Patterns in Extremely High Dimensional Data

Motivation

- Data objects are strongly correlated only in a subset of features instead of globally correlated in all the features.
- The correlation among the subset of features can be nonlinear as well as linear, e.g., the co-expression patterns of genes in a gene network, the Gas Laws in physic

Existing clustering algorithms

ORCLUS and 4C

- Microclusters (seeds, core objects) are initialized to group nearby data objects together.
- Microclusters that are close in proximity and similar in orientation are merged together

Challenges

- Determination of an appropriate neighborhood to capture the local orientation correctly
- Merge microclusters of different orientations to capture the nonlinear correlation

Algorithm

- Fuzzy EM clustering
- Cluster expansion
- NNCO plot: Visualization
- Top-down clustering
- Time complexity analysis

EM Clustering

Clustering model

- Mean vector
- Covarience Matrix
- Iterative adjustment of model
 - E Step: update the member probability of each data for each microcluster
 - M Step: update the clustering model for each microcluster
 - Stopping criteria: log likelihood of mixture model is converged or MaxLoopNum is achieved.

Desirable Characteristic of EM

Fuzzy Clustering

- In real life dataset, each point can belong to different subspace, E.g., a patient may suffer from two types of disease A and B
- Points become "stretchable" like bond in metals. Can define microclusters similarity based on number of points shared

Iterative

 Overcoming the catch-22 situation. Neighbors in full space might not be neighbors in subspace. But how do we know neighbors in subspace?

Co-sharing Level

• Co-sharing level: $\cosh are(M_i, M_j) = \sum_{x \in D} [PR(M_i | x) * PR(M_j | x)]$

Co-sharing level matrix: M, each entry

$$M_{ij} = \cosh are(M_i, M_j)$$

Co-sharing Example

 Iterative merge M_c with the highest co-sharing value to current cluster C

 $\cosh are(C, M_c) = Max\{\cosh are(C, M_i)\}$

Matrix updating in cluster expansion

 $\cosh are(C, M_k) = Max(\cosh are(C, M_k), \cosh are(M_c, M_k))$

 Optimization: only keep the top I_{top} PR(M_i|x) for each data x

Cluster Expansion Example

Cluster Expansion Example Cont.

NNCO Plot

- Nearest neighbor cosharing level plot (NNC plot)
- Orientation plot

Axes of NNCO Plot

- Horizontal axis: the microcluster order in cluster expansion.
- Vertical axis above: the cosharing level between the microcluster and the cluster being processed to which it is added.
- Vertical axis below: dimension values of the orientation vector for each microcluster

dimension values orientation vector

- Normalization: each dimension value y of the microcluster orientation vector is normalized to the range of [-127.5, +127.5].
- Color Mapping:

Color(y) = [R(y + 127.5), G(y + 127.5), B(y + 127.5)]

NNCO Plot Example

Top-down Clustering

 Motivation: the first round clustering on the global data space might only capture the global orientation of each cluster.

A synthetic 9D dataset with 3 clusters in different existing space

 Identify clusters in global space {X₁, X₂,..., X_d} which are separated by NNC gaps.

Top-down Clustering II

Identify the data members for each cluster

Max { $PR(M_i|x)$ }= $PR(mc_{50}|x)$, i=1, 2, ..., 300.

Top-down Clustering III

Project the data members of each cluster C_i into the corresponding cluster existing space {e_{i1},e_{i2},...,e_{il}} (I<=d)

$$x' = (x \Box e_{i1}, x \Box e_{i2}, \dots, x \Box e_{il})$$

x: d-dimensional vector.

 e_{ij} : I-dimensional vector, eigenvector with the minimum eigenvalue decomposed from the covariance matrix of cluster C_i 's datamembers.

Top-down Clustering IV

Run CURLER again to capture the local cluster structure of the interested cluster in the new space

Data Mining: Foundation, Techniques and Applications

Time Complexity Analysis

n: number of data objects

- k₀: number of microclusters
- EM Clustering
 - matrix operation: O(d³)
 - matrix operation for $k_0 \text{ mcs}$: $O(k_0 \cdot d^3)$
 - computation of PR(x|M_i): O(d²)
 - total: $O(k_0 \cdot n \cdot d^2 + k_0 \cdot d^3)$
- Cluster Expansion
 - cosharing level matrix initialization: O(n · I_{top}²)
 - matrix updating: O(k₀)
 - maximal number of updating: k₀
 - total: $O(n \cdot I_{top}^2 + k_0^2)$

Evaluation of Efficiency

Runtime of CURLER when varying dataset size and microcluster number on the 9D synthetic dataset

Evaluation of Effectiveness

Synthetic 9D dataset

- Iris and Image datasets from UCI repository of machine learning databases and domain theories
- Iyer time series gene expression data

4D Iris Dataset of 3 Classes

16D Image Dataset of 7 Classes

Data Projection

Iyer Dataset

Summary

- CURLER is pretty simple after explaining. Main contributions are the insights:
 - Identify the concepts of global and local orientation
 - Realize the characteristic need for various components of CURLER
 - The engineering work needed to put things together

Future Work

- When can we stop the sublevel clustering ? Can we do it automatically using a modification of residue analysis ?
- Can we make use of CURLER for visual classification ?
- A look at how the catch-22 situation can be avoid by looking at better similarity function

- Sources of HDD
- Challenges of HDD
- Foundation
 - Similarity Function
 - High Dimensional Distance Join
- Techniques & Application
 - Finding Nonlinear Correlated Clusters in High Dimensional Data
 - Finding Patterns in Extremely High Dimensional Data

A Microarray Dataset

1000 - 100,000 columns

100- 500 rows		Class	Gene1	Gene2	Gene3	Gene4	Gene 5	Gene 6	Ge
	Sample1	Cancer							
	Sample2	Cancer							
	• •								
	SampleN-1	~Cance r							
	SampleN	~Cance r							

- Find closed patterns which occur frequently among genes.
- Find rules which associate certain combination of the columns that affect the class of the rows
 - Gene1, Gene10, Gene1001 -> Cancer
 Data Mining: Foundation, Techniques and Applications
Challenge I

Large number of patterns/rules

number of possible column combinations is extremely high

Solution: Concept of a closed pattern

- Patterns are found in exactly the same set of rows are grouped together and represented by their upper bound
- Example: the following patterns are found in row 2,3 and 4

i	ri	Class
1	<mark>a</mark> ,b,c,l,o,s	С
2	<mark>a</mark> ,d, <mark>e</mark> , h ,p,l,r	С
3	a,c,e,h,o,q,t	С
4	a, e,f, h,p,r	~C
5	b,d,f,g,l,q,s,t	~C

"a" however not part of the group

lower bounds Data Mining: Foundation, Techniques and Applications

Challenge II

- Most existing frequent pattern discovery algorithms perform searches in the column/item enumeration space i.e. systematically testing various combination of columns/items
- For datasets with 1000-100,000 columns, this search space is enormous
- Instead we adopt a novel row/sample enumeration algorithm for this purpose.
 CARPENTER (SIGKDD'03) is the <u>FIRST</u> algorithm which adopt this approach

Column/Item Enumeration Lattice

- Each nodes in the lattice represent a combination of columns/items
- An edge exists from node A to B if A is subset of B and A differ from B by only 1 column/item
- Search can be done breadth first

i	ri	Class
1	a,b,c,l,o,s	С
2	a,d,e,h,p,l,r	С
3	a,c,e,h,o,q,t	С
4	a,e,f,h,p,r	~ C
5	b,d,f,g,l,q,s,t	~ C

Column/Item Enumeration Lattice

- Each nodes in the lattice represent a combination of columns/items
- An edge exists from node A to B if A is subset of B and A differ from B by only 1 column/item
- Search can be done depth first
- Keep edges from parent to child only if child is the prefix of parent

i	ri	Class
1	a,b,c,l,o,s	С
2	a,d,e,h,p,l,r	С
3	a,c,e,h,o,q,t	С
4	a,e,f,h,p,r	~C
5	b,d,f,g,l,q,s,t	~C

General Framework for Column/Item Enumeration

	Read-based	Write-based	Point-based
Association Mining	Apriori[AgSr94], DIC	Eclat, MaxClique[Zaki01], FPGrowth [HaPe00]	Hmine
Sequential Pattern Discovery	GSP[AgSr96]	SPADE [Zaki98,Zaki01], PrefixSpan [PHPC01]	
Iceberg Cube	Apriori[AgSr94]		BUC[BeRa99], H- Cubing [HPDW01]

A Multidimensional View

Sample/Row Enumeration Algorihtms

- To avoid searching the large column/item enumeration space, our mining algorithm search for patterms/rules in the sample/row enumeration space
- Our algorithms does not fitted into the column/item enumeration algorithms
- They are not YAARMA (Yet Another Association Rules Mining Algorithm)
- Column/item enumeration algorithms simply does not scale for microarray datasets

Existing Row/Sample Enumeration Algorithms

CARPENTER(SIGKDD'03)

- Find closed patterns using row enumeration
- FARMER(SIGMOD'04)
 - Find interesting rule groups and building classifiers based on them

COBBLER(SSDBM'04)

 Combined row and column enumeration for tables with large number of rows and columns

Topk-IRG(SIGMOD'05)

 Find top-k covering rules for each sample and build classifier directly

Concepts of CARPENTER

i	ri	Class
1	a,b,c,l,o,s	С
2	a,d,e,h,p,l,r	С
3	a,c,e,h,o,q,t	С
4	a,e,f,h,p,r	~ C
5	b,d,f,g,l,q,s,t	~C

Example Table

ij	R(ij)	
	<i>C</i>	~ <i>C</i>
a	1,2,3	4
b	1	5
С	1,3	
d	2	5
e	2,3	4
ſ		4,5
g		5
h	2,3	4
1	1,2	5
0	1,3	
p	2	4
\boldsymbol{q}	3	5
r	2	4
S	1	5
t	3	5

	С	~ C
а	1,2,3	4
е	2,3	4
h	2,3	4

TT|_{2,3}

Transposed Table, TT

Row Enumeration

ij

a

<u>R (ij)</u> C

Pruning Method 1

 Removing rows that appear in all tuples of transposed table will not affect results

r4 has 100% support in the conditional table of "r2r3", therefore branch "r2 r3r4" will be pruned.

Pruning method 2

1275 if a rule is discovered before, we can prune enumeration below this node

- Because all rules below this node has been discovered before
- For example, at node 34, if we found that {aeh} has been found, we can prune off all branches below it

Pruning Method 3: Minimum Support

Example: From TT|_{1}, we can see that the support of all possible pattern below node {1} will be at most 5 rows.

 $|TT|_{\{1\}}$

From CARPENTER to FARMER

- What if classes exists ? What more can we do ?
- Pruning with Interestingness Measure
 - Minimum confidence
 - Minimum chi-square
- Generate lower bounds for classification/ prediction

Interesting Rule Groups

- Concept of a rule group/equivalent class
 - rules supported by exactly the same set of rows are grouped together
- Example: the following rules are derived from row 2,3 and 4 with 66% confidence

Pruning by Interestingness Measure

- In addition, find only interesting rule groups (IRGs) based on some measures:
 - minconf: the rules in the rule group can predict the class on the RHS with high confidence
 - minchi: there is high correlation between LHS and RHS of the rules based on chi-square test
- Other measures like lift, entropy gain, conviction etc. can be handle similarly

Ordering of Rows: All Class C before ~

<u>R (ij)</u> C

ij

a b

Pruning Method: Minimum Confidence

Example: In TT|{2,3} on the right, the maximum confidence of all rules below node {2,3} is at most 4/5

 $TT|_{\{2,3\}}$

Pruning method: Minimum chi-square

Same as in computing maximum confidence

_{2,3}

	С	~C	Total
А	max=5	min=1	Computed
~A	Computed	Computed	Computed
	Constant	Constant	Constant

Finding Lower Bound, MineLB

Caladidiatateolovereboondaadaae,eboodbee, cd, ce

K Beensinveel rsinkervel rebanenst ib vervietebthend

- Example: An upper bound rule with antecedent A=abcde and two rows (r1 : abcf) and (r2 : cdeg)
- Initialize lower bounds {a, b, c, d, e}
- add "abcf"--- new lower {d ,e}
- Add "cdeg"--- new lower bound{ad, bd, ae, be}

Implementation

- In general, CARPENTER FARMER can be implemented in many ways:
 - FP-tree
 - Vertical format
- For our case, we assume the dataset can be fitted into the main memory and used pointerbased algorithm similar to BUC

Experimental studies

Efficiency of FARMER

- On five real-life dataset
 - lung cancer (LC), breast cancer (BC), prostate cancer (PC), ALL-AML leukemia (ALL), Colon Tumor(CT)
- Varying minsup, minconf, minchi
- Benchmark against
 - CHARM [ZaHs02] ICDM'02
 - Bayardo's algorithm (ColumE) [BaAg99] SIGKDD'99
- Usefulness of IRGs
 - Classification

Example results--Prostate

Example results--Prostate

Top k Covering Rule Groups

Rank rule groups (upper bound) according to

- Confidence
- Support
- Top k Covering Rule Groups for row r
 - k highest ranking rule groups that has row r as support and support > minimum support
- Top k Covering Rule Groups = TopKRGS for each row

Usefulness of Rule Groups

- Rules for every row
- Top-1 covering rule groups sufficient to build CBA classifier
- No min confidence threshold, only min support
- #TopKRGS = $k \times \#$ rows

Top-k covering rule groups

- For each row, we find the most significant k rule groups:
 - based on confidence first
 - then support
- Given minsup=1, Top-1
 - row 1: $abc \rightarrow C1(sup = 2, conf = 100\%)$
 - row 2: abc→C1
 - $abcd \rightarrow C1(sup=1,conf = 100\%)$
 - row 3: cd→C1(sup=2, conf = 66.7%)
 - If minconf = 80%, ?

• row 4: cde \rightarrow C2 (sup=1, conf = 50%)

class	Items
C1	a,b,c
C1	a,b,c,d
C1	c,d,e
C2	c,d,e

- The number is bounded by the product of k and the number of samples
- Treat each sample equally → provide a complete description for each row (small)
- The minimum confidence parameter-- instead k.
- Sufficient to build classifiers while avoiding excessive computation

Top-k pruning

- At node X, the maximal set of rows covered by rules to be discovered down X-- rows containing X and rows ordered after X.
 - minconf ← MIN confidence of the discovered TopkRGs for all rows in the above set
 - minsup ← the corresponding minsup
- Pruning
 - If the estimated upper bound of confidence down $X < \text{minconf} \rightarrow \text{prune}$
 - If same confidence and smaller support \rightarrow prune
- Optimizations

Classification based on association rules

- Step 1: Generate the complete set of association rules for each class (minimum support and minimum confidence.)
 - CBA algorithm adopts apriori-like algorithm -fails at this step on microarray data.
- Step 2:Sort the set of generated rules
- Step 3: select a subset of rules from the sorted rule sets to form classifiers.

Features of RCBT classifiers

Problems	RCBT
To discover, store, retrieve and sort a large number of rules	Mine those rules to be used for classification.e.g.Top-1 rule group is sufficient to build CBA classifier
Default class not convincing for biologists	Main classifier + some back-up classifiers
Rules with the same discriminating ability, how to integrate? Upper bound rules: specific Lower bound rules: general	A subset of lower bound rules— integrate using a score considering both confidence and support.

Experimental studies

- Datasets: 4 real-life data
- Efficiency of Top-k Rule mining
 - Benchmark: Farmer, Charm, Closet+
- Classification Methods:
 - CBA (build using top-1 rule group)
 - RCBT (our proposed method)
 - IRG Classifier
 - Decision trees (single, bagging, boosting)
 - SVM

Runtime v.s. Minimum support on ALL-AML dataset

Scalability with k

Data Mining: Foundation, Techniques and Applications

Biological meaning – Prostate Cancer Data

Classification results

Dataset	# Original Genes	# Genes after Discretization	Class 1	Class 0	# Training	# Test
ALL/AML (ALL)	7129	866	ALL	AML	38 (27 : 11)	34
Lung Cancer (LC)	12533	2173	MPM	ADCA	32 (16 : 16)	149
Ovarian Cancer (OC)	15154	5769	tumor	normal	210 (133 : 77)	43
Prostate Cancer (PC)	12600	1554	tumor	normal	102 (52 : 50)	34

Table 1: Gene Expression Datasets
Classification results

Dataset	RCBT	CBA	IRG Classifier	C4.5 family			SVM
				single tree	bagging	boosting	
AML/ALL (ALL)	91.18%	91.18%	64.71%	91.18%	91.18%	91.18%	97.06%
Lung Cancer(LC)	97.99%	81.88%	89.93%	81.88%	96.64%	81.88%	96.64%
Ovarian Cancer(OC)	97.67%	93.02%	-	97.67%	97.67%	97.67%	97.67%
Prostate Cancer(PC)	97.06%	82.35%	88.24%	26.47%	26.47%	26.47%	79.41%
Average Accuracy	95.98%	87.11%	80.96%	74.3%	77.99%	74.3%	92.70%

Table 2: Classification Results

Data Mining: Foundation, Techniques and Applications

References

- Anthony K. H. Tung, Rui Zhang, Nick Koudas, Beng Chin Ooi. "<u>Similarity Search: A</u> <u>Matching Based Approach</u>", VLDB'06.
- C. Xia, H. Lu B. C. Ooi, and J. Hu "<u>GORDER: An Efficient Method for KNN Join</u> <u>Processing</u>" VLDB 2004
- Anthony K. H. Tung, Xin Xu, Beng Chin Ooi. "<u>CURLER: Finding and Visualizing Nonlinear</u> <u>Correlated Clusters</u>" In Proceedings, SIGMOD'05, Baltimore, Maryland 2005.
- Gao Cong, Kian-Lee Tan, Anthony K. H. Tung, Xin Xu. "<u>Mining Top-k Covering Rule Groups</u> for Gene Expression Data". In Proceedings SIGMOD'05, Baltimore, Maryland 2005

Optional References:

- Feng Pan, Gao Cong, Anthony K. H. Tung, Jiong Yang, Mohammed Zaki, "<u>CARPENTER:</u> <u>Finding Closed Patterns in Long Biological Datasets</u>", In Proceedings KDD'03, Washington, DC, USA, August 24-27, 2003.
- Gao Cong, Anthony K. H. Tung, Xin Xu, Feng Pan, Jiong Yang. "FARMER: Finding Interesting Rule Groups in Microarray Datasets". Iin SIGMOD'04, June 13-18, 2004, Maison de la Chimie, Paris, France.
- Feng Pang, Anthony K. H. Tung, Gao Cong, Xin Xu. "<u>COBBLER: Combining Column and</u> <u>Row Enumeration for Closed Pattern Discovery</u>". SSDBM 2004 Santorini Island Greece.
- Gao Cong, Kian-Lee Tan, Anthony K.H. Tung, Feng Pan. "Mining Frequent Closed Patterns in Microarray Data". In IEEE International Conference on Data Mining, (ICDM). 2004
- Xin Xu, Ying Lu, Anthony K.H. Tung, Wei Wang. "<u>Mining Shifting-and-Scaling Co-Regulation Patterns on Gene Expression Profiles</u>". ICDE 2006.