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Sources of High Dimensional Data

Microarray gene expression
Text documents
Images
Features of Sequences, Trees and Graphs
Audio, Video, Human Motion Database 
(spatio-temporal as well!)
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Challenges of High Dimensional Data

Indistinguishable
Distance between two nearest points and two furthest points 
could be almost the same

Sparsity
As a result of the above, data distribution are very sparse 
giving no obvious indication on where the interesting 
knowledge is

Large number of combination
Efficiency: How to test the number of combinations
Effectiveness: How do we understand and interpret so many 
combinations?
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Similarity Search : Traditional Approach

Objects represented by multidimensional vectors

The traditional approach to similarity search: kNN query
Q = ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

Elevation Aspect Slope Hillshade (9am) Hillshade (noon) Hillshade (3pm)

2596 51 3 221 232 148

…

…

ID d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 Dist

P1 1.1 1 1.2 1.6 1.1 1.6 1.2 1.2 1 1

P2 1.4 1.4 1.4 1.5 1.4 1 1.2 1.2 1 1

P3 1 1 1 1 1 1 2 1 2 2

P4 20 20 21 20 22 20 20 19 20 20

P5 19 21 20 20 20 21 18 20 22 20

P6 21 21 18 19 20 19 21 20 20 20

0.93

0.98

1.73

57.7

60.5

59.8
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Deficiencies of the Traditional Approach

Deficiencies
Distance is affected by a few dimensions with high dissimilarity
Partial similarities can not be discovered

The traditional approach to similarity search: kNN query
Q = ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

ID d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 Dist

P1 1.1 1 1.2 1.6 1.1 1.6 1.2 1.2 1 1

P2 1.4 1.4 1.4 1.5 1.4 1 1.2 1.2 1 1

P3 1 1 1 1 1 1 2 1 2 2

P4 20 20 21 20 22 20 20 19 20 20

P5 19 21 20 20 20 21 18 20 22 20

P6 21 21 18 19 20 19 21 20 20 20

0.93

0.98

1.73

57.7

60.5

59.8

100

100

100

99.0

99.0

99.0
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Thoughts

Aggregating too many dimensional differences 
into a single value result in too much information 
loss. Can we try to reduce that loss?
While high dimensional data typically give us 
problem when in come to similarity search, can 
we turn what is against us into advantage?
Our approach: Since we have so many 
dimensions, we can compute more complex 
statistics over these dimensions to overcome 
some of the “noise” introduce due to scaling of 
dimensions, outliers etc.
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The N-Match Query : Warm-Up

Description
Matches between two objects in n dimensions. (n ≤ d)
The n dimensions are chosen dynamically to make the two objects match 
best.

How to define a “match”
Exact match
Match with tolerance δ

The similarity search example
Q = ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

ID d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 Dist

P1 1.1 1 1.2 1.6 1.1 1.6 1.2 1.2 1 1

P2 1.4 1.4 1.4 1.5 1.4 1 1.2 1.2 1 1

P3 1 1 1 1 1 1 2 1 2 2

P4 20 20 21 20 22 20 20 19 20 20

P5 19 21 20 20 20 21 18 20 22 20

P6 21 21 18 19 20 19 21 20 20 20

0.98

1.73

100

100

100

0.2

0.4

0

19

19

19

n = 6
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The N-Match Query : The Definition

The n-match difference
Given two d-dimensional points P(p1, p2, …, pd) and Q(q1, q2, …, qd), let δi = 
|pi - qi|, i=1,…,d. Sort the array {δ1 , …, δd} in increasing order and let the 
sorted array be {δ1’, …, δd’}. Then δn’ is the n-match difference between 
P and Q.

The n-match query
Given a d-dimensional database DB, a query point Q and an 
integer n (n≤d), find the point P ∈ DB that has the smallest 
n-match difference to Q. P is called the n-match of Q.

The similarity search example
Q = ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

ID d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 Dist

P1 1.1 1 1.2 1.6 1.1 1.6 1.2 1.2 1 1

P2 1.4 1.4 1.4 1.5 1.4 1 1.2 1.2 1 1

P3 1 1 1 1 1 1 2 1 2 2

P4 20 20 21 20 22 20 20 19 20 20

P5 19 21 20 20 20 21 18 20 22 20

P6 21 21 18 19 20 19 21 20 20 20

0.98

1.73

100

100

100

0.2

0.4

0

19

19

19

n = 6n = 7n = 8

0.2

0.4

1

19

19

19

0.6

0.4

1

19

19

19

Q

A

D

E

CB

y

x2 4 6 8 10

2

4

6

8

10
1-match=A

2-match=B
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The N-Match Query : Extensions

The k-n-match query
Given a d-dimensional database DB, a query point Q, an integer k, and an integer 
n, find a set S which consists of k points from DB so that for any point P1 ∈ S
and any point P2∈ DB-S, P1’s n-match difference is smaller than P2’s n-match 
difference. S is called the k-n-match of Q.
The frequent k-n-match query
Given a d-dimensional database DB, a query point Q, an integer 
k, and an integer range [n0, n1] within [1,d], let S0, …, Si be 
the answer sets of k-n0-match, …, k-n1-match, respectively, 
find a set T of k points, so that for any point P1 ∈ T and any point 
P2 ∈ DB-T, P1’s number of appearances in S0, …, Si is larger 
than or equal to P2’s number of appearances in S0, …, Si .
The similarity search example

Q = ( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
ID d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 Dist

P1 1.1 1 1.2 1.6 1.1 1.6 1.2 1.2 1 1

P2 1.4 1.4 1.4 1.5 1.4 1 1.2 1.2 1 1

P3 1 1 1 1 1 1 2 1 2 2

P4 20 20 21 20 22 20 20 19 20 20

P5 19 21 20 20 20 21 18 20 22 20

P6 21 21 18 19 20 19 21 20 20 20

0.98

1.73

100

100

100

0.2

0.4

0

19

19

19

n = 6
Q

A

D

E

CB

y

x2 4 6 8 10

2

4

6

8

10
2-1-match={A,D}

2-2-match={A,B}



Data Mining: Foundation, Techniques and Applications

Cost Model

The multiple system information retrieval model
Objects are stored in different systems and scored by each system
Each system can sort the objects according to their scores
A query retrieves the scores of objects from different systems and then combine them 
using some aggregation function

The cost
Retrieval of scores – proportional to the number of scores retrieved

The goal
To minimize the scores retrieved

System 1: Color

Object ID Score

1

2

3

4

5

0.4

2.8

6.5

9.0

3.5

System 1: Color

Object ID Score

1 0.4

2 2.8

5 3.5

3 6.5

4 9.0

System 3: Texture

Object ID Score

1 1.0

2 2.0

3 5.0

5 8.0

4 9.0

System 2: Shape

Object ID Score

1 1.0

5 1.5

2 5.5

3 7.8

4 9.0

System 2: Shape

Object ID Score

1

2

3

4

5

1.0

5.5

7.8

9.0

1.5

System 3: Texture

Object ID Score

1

2

3

4

5

1.0

2.0

5.0

9.0

8.0

Q : color=“red” & shape=“round” & texture “cloud”
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The AD Algorithm

The AD algorithm for the k-n-match query
Locate the query’s attributes value in every dimension
Retrieve the objects’ attributes value from the query’s attributes in both directions
The objects’ attributes are retrieved in Ascending order of their Differences to the query’s attributes. An n-
match is found when it appears n times.

System 1: Color

Object ID Score

1 0.4

2 2.8

5 3.5

3 6.5

4 9.0

System 2: Shape

Object ID Score

1 1.0

5 1.5

2 5.5

3 7.8

4 9.0

System 3: Texture

Object ID Score

1 1.0

2 2.0

3 5.0

5 8.0

4 9.0

Q : color=“red” & shape=“round” & texture “cloud”Q : ( 3.0 , 7.0 , 4.0 )

d1 d2 d3

2-2-match of Q : ( 3.0 , 7.0 , 4.0 )

Auxiliary structures
Next attribute to retrieve g[2d]

Number of appearances appear[c]

Answer set S

d1 d2 d3

2 , 0.2 5 , 0.5 2 , 1.5 3 , 0.8 2 , 2.0 3 , 1.0

1 2 3 4 5

0 0 0 0 0

{ }

1

1 , 2.6

3.0

7.0

4.0

1

3 , 3.5

1

4 , 2.0

2

5 , 4.0

2

{ 3 }

d1 d2 d3

{ 3 , 2 }

Attr Attr Attr
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The AD Algorithm : Extensions

The AD algorithm for the frequent k-n-match query
The frequent k-n-match query

Given an integer range [n0, n1], find k-n0-match, k-(n0+1)-match, ... , 
k-n1-match of the query, S0, S1, ... , Si.
Find k objects that appear most frequently in S0, S1, ... , Si.

Retrieve the same number of attributes as processing a k-n1-match query.

Disk based solutions for the (frequent) k-n-match query

Disk based AD algorithm
Sort each dimension and store them sequentially on the disk
When reaching the end of a disk page, read the next page from disk

Existing indexing techniques
Tree-like structures: R-trees, k-d-trees
Mapping based indexing: space-filling curves, iDistance
Sequential scan 
Compression based approach (VA-file)
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Experiments : Effectiveness

Searching by k-n-match
COIL-100 database
54 features extracted, such as color histograms, area moments

Searching by frequent k-n-
match

UCI Machine learning repository
Competitors: 

IGrid
Human-Computer Interactive NN 
search (HCINN)

k-n-match query, k=4

n Images returned

5 36, 42, 78, 94

10 27, 35, 42, 78

15 3, 38, 42, 78

20 27, 38, 42, 78

25 35, 40, 42, 94

30 10, 35, 42, 94

35 35, 42, 94, 96

40 35, 42, 94, 96

45 35, 42, 94, 96

50 35, 42, 94, 96

kNN query

k Images returned

10 13, 35, 36, 40, 42
64, 85, 88, 94, 96

Data sets (d) IGrid HCINN Freq. k-n-match

Ionosphere (34) 80.1% 86% 87.5%

Segmentation (19) 79.9% 83% 87.3%

Wdbc (30) 87.1% N.A. 92.5%

Glass (9) 58.6% N.A. 67.8%

Iris (4) 88.9% N.A. 89.6%
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Experiments : Efficiency

Disk based algorithms for the Frequent k-n-mach query
Texture dataset (68,040 records); uniform dataset (100,000 records)
Competitors: 

The AD algorithm
VA-file
Sequential scan
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Experiments : Efficiency (continued)

Comparison with other similarity search techniques
Texture dataset ; synthetic dataset
Competitors: 

Frequent k-n-match query using the AD algorithm
IGrid
scan
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Future Work(I)

We now have a natural way to handle similarity search for 
data with categorical , numerical and attributes. 
Investigating k-n-match performance on such mixed-type 
data is currently under way
Likewise, applying k-n-match on data with missing or 
uncertain attributes will be interesting
Query={1,1,1,1,1,1,1,M,No,R}

ID d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

P1 1.1 1 1.2 1.6 1.1 1.6 1.2 M Yes R

P2 1.4 1.4 1.4 1.5 1.4 1 1.2 F No B

P3 1 1 1 1 1 1 2 M No B

P4 20 20 21 20 22 20 20 M Yes G

P5 19 21 20 20 20 21 18 F Yes R

P6 21 21 18 19 20 19 21 F Yes Y
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Future Work(I)

We now have a natural way to handle similarity search for 
data with categorical , numerical and attributes. 
Investigating k-n-match performance on such mixed-type 
data is currently under way
Likewise, applying k-n-match on data with missing or 
uncertain attributes will be interesting
Query={1,1,1,1,1,1,1,M,No,R}

ID d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

P1 1 1.2 1.6 1.1 1.6 1.2 M R

P2 1.4 1.4 1.5 1 1.2 F No B

P3 1 1 1 1 1 2 M No B

P4 20 20 20 22 20 20 M G

P5 19 21 20 20 20 18 Yes R

P6 21 18 20 21 F Yes Y
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Future Work(II)

In general, three things affect the result from a 
similarity search: noise, scaling and axes 
orientation. K-n-match reduce the effect of noise. 
Ultimate aim is to have a similarity function that 
is robust to noise, scaling and axes orientation
Eventually will look at creating mining algorithms 
using k-n-match
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KNN-Join

KNN-Join between R and S
assigns to each point in R its K-nearest neighbours in S
based on a distance function

Important in many data mining algorithms
k-mean clustering
LOF (intensity based outlier detection) 
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KNN-Join: Existing Algorithms

Only up-to-date algorithm: MuX
uses R-tree as index structure
R-tree problems with many dimensions

R-tree performance degenerates
High memory requirement for the index structure (for storing 
high dimensional bounding boxes) 
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GORDER KNN-Join

Sorts the datasets in the Grid-Order
Uses a scheduled block nested loop join
Advantages

reduces random reads
uses pruning to reduce I/O and similarity computation
reduces the cost of the distance computation by doing it in 
lower dimensions
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G-Ordering

Consists of two steps
Principal component analysis
Grid order sorting

Grid Order
partition space into ld cells
identification vector <s1..sn> for each cell
sort lexicographically by id vector
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G-ordering: Example
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G-ordering: Example
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G-ordered data: properties

estimation of distance between p, q by projection 
to the first k dimensions

first dimensions are the most important ones

for a block of points (p1...pm) bounding box can 
easily be calculated

check the first and the last point
check the first dimension in where they differ 
(active dimension of the block) 
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Distance between blocks

MinDist(Br, Bs) 
minimum distance of the bounding boxes

MaxDist(Br, Bs) 
maximum distance of the bounding boxes

bdist(Br, Bs): first consider MinDist(), if equal 
then consider MaxDist() 
Observation

MinDist() is a lower bound for the real distance of points in 
the block
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Pruning

Idea: if a set of points are farer away than the 
kth candidate of p (∈ Br), do not consider
them when joining with p
Point pruning: MinDist(Br, Bs) > prunedst(p) 

prunedst(p): distance to the k-th NN candidate

Block pruning: MinDist(Br, Bs) > prunedst(Br) 
prunedst(Br) = max (prunedst(p), p in Br) 
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Join GORDERed Data

foreach Block Br of R:
foreach Block Bs of S orderd by bdist:

if (MinDist(Br, Bs) > prunedst(Br)) break;
MemoryBlocking(Br, Bs) 

Output KNN of Br

Observations:
bounding box of each S block in memory

easy sorting
loading of block data only if doing the join
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Joining: MemoryBlocking(Br, Bs) 

To reduce computational cost: subdivide into 
smaller blocks
Subdivide Br, Bs into smaller blocks

foreach Block Br' of Br:
foreach Block Bs' of S orderd by bdist:

if (MinDist(Br', Bs') >= prunedst(Br')) break;
MemoryJoin(Br', Bs') 
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Joining: MemoryJoin(Br, Bs) 

foreach point p in Br
if (MinDist(Br, Bs) <= prunedst(p)):

for each point q in Bs
ComputeDist(p, q) 
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Calculating the Distance

p ∈ Br, q ∈ Bs

Consider the distance in a – 1 dimensions
a = min(active dimension Br, Bs) 
MinDist(Br,a-1; Bs,a-1) <= d{1..a-1}(p, q) 
MinDist(Br,a-1; Bs,a-1) + d{a..d}(p, q) <= d(p,q) 
Use the above expression as a estimation for 
pruning
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Calculating the Distance

pdist = MinDist(Br,a-1; Bs,a-1) 
for (k = a to d):

pdist += (p.xk – q.xk)
2

if (pdist > prunedst(p)) return;

pdist -= MinDist(Br,a-1; Bs,a-1) 
for (k = 1 to a – 1) 

pdist += (p.xk – q.xk)
2

if (pdist > prunedst(p)) return;

Add q to the KNN of p
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Performance Evaluations (1) 
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Performance Evaluations (1) 
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Performance Evaluations (1) 
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Performance Evaluations: Scaling
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Performance Evaluations: Scaling
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Motivation

Data objects are strongly correlated only in a 
subset of features instead of globally 
correlated in all the features. 
The correlation among the subset of features 
can be nonlinear as well as linear, e.g., the 
co-expression patterns of genes in a gene 
network, the Gas Laws in physic
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Space

Orientation

full space subspace

Shape

spherical arbitrary parallel arbitrary

partitioning
based

density
based

GDR 
PCA

DBSCAN 

OPTICS

CLIQUE

OptiGrid

PROCLUS
EM***

K-mean

ORCLUS

Correlation

4C

linear nonlinear

CURLER

Existing clustering algorithms
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ORCLUS and 4C

Microclusters (seeds, 
core objects) are 
initialized to group 
nearby data objects 
together.
Microclusters that are 
close in proximity and 
similar in orientation are 
merged together

Unable to merge clusters 
with different orientations!
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Challenges

global orientation

local orientation

Determination of an 
appropriate 
neighborhood to 
capture the local 
orientation correctly

Merge microclusters of 
different orientations to 
capture the nonlinear 
correlation
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Algorithm

Fuzzy EM clustering
Cluster expansion
NNCO plot: Visualization
Top-down clustering
Time complexity analysis
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EM Clustering

Clustering model 
Mean vector  

Covarience Matrix

Iterative adjustment of model
E Step: update the member probability of each data for each microcluster

M Step:  update the clustering model for each microcluster

Stopping criteria: log likelihood of mixture model is converged or MaxLoopNum is 
achieved.
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Desirable Characteristic of EM

Fuzzy Clustering
In real life dataset, each point can belong to different 
subspace, E.g., a patient may suffer from two types of 
disease A and B
Points become “stretchable” like bond in metals. Can define 
microclusters similarity based on number of points shared

Iterative
Overcoming the catch-22 situation. Neighbors in full space 
might not be neighbors in subspace. But how do we know 
neighbors in subspace?
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Co-sharing level:

Co-sharing level matrix: M, each entry

Co-sharing Level

cosh ( , )ij i jM are M M=

cosh ( , ) [ ( | ) ( | )]i j i j
x D

are M M PR M x PR M x
∈

= ∗∑

X1

X2
microcluster
orientation

coshare M1 M2 M3 M4 M5

M1 - 0.9 0.4 0.3 0.2

M2 - 0.5 0.2 0.3

M3 - 0.5 0.4

M4 - 0.9

M5 -
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X1

X2 microcluster
orientation

Co-sharing Example
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Cluster Expansion I

Iterative merge Mc with the highest co-sharing value 
to current cluster C

Matrix updating in cluster expansion

Optimization: only keep the top ltop PR(Mi|x) for each 
data x

cosh ( , ) (cosh ( , ), cosh ( , ))k k c kare C M Max are C M are M M=

cosh ( , ) {cosh ( , )}c iare C M Max are C M=



Data Mining: Foundation, Techniques and Applications

-M5

0.9-M4

0.40.5-M3

0.30.20.5-M2

0.20.30.40.9-C

M5M4M3M2Ccoshare

coshare C M3 M4 M5

C - 0.5 0.3 0.3

M3 - 0.5 0.4

M4 - 0.9

M5 -

coshare C M5

C - 0.9

M5 -

coshare C M4 M5

C - 0.5 0.4

M4 - 0.9

M5 -

C={M1}
C={M1, M2}

C={M1, M2, M3}
C={M1, M2, M3,M4}

C={M1, M2, M3,M4,M5}

Cluster Expansion Example
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X1

X2 microcluster
orientation

Cluster Expansion Example Cont.
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NNCO Plot

Nearest neighbor co-
sharing level plot 
(NNC plot)

Orientation plot

NNC Plot

Orientation Plot
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Horizontal axis: the 
microcluster order in cluster 
expansion.
Vertical axis above: the co-
sharing level between the 
microcluster and the cluster 
being processed to which it 
is added.
Vertical axis below: 
dimension values of the 
orientation vector for each 
microcluster

NNC

Axes of NNCO Plot

microcluster order

dimension values 
orientation vector

X1

X2

X3
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Color Mapping

Normalization: each dimension value y of the 
microcluster orientation vector is normalized to the 
range of [-127.5, +127.5].
Color Mapping: 
Color(y)=[R(y+127.5), G(y+127.5), B(y+127.5)]

y=127.5 (white)

0 +127.5-127.5

y=0 (grey)

y=-127.5 (black) y
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X1

X2 microcluster
orientation

NNC

Orientation
microcluster
order

1.0

0.5

X1

X2

0

NNCO Plot Example
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Motivation: the first round clustering on the global 
data space might only capture the global orientation 
of each cluster.

Top-down Clustering

A synthetic 9D dataset with 3 clusters in different existing 
space

cluster 1 cluster 2 cluster 3
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Top-down Clustering I

Identify clusters in global space {X1,X2,…,Xd} which 
are separated by NNC gaps.
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Top-down Clustering II

Identify the data members for each cluster

cluster 1
mc1~110

cluster 3
mc111~200

cluster 2
mc201~300

Max {PR(Mi|x)}=PR(mc50|x), i=1, 2, …, 300.
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Top-down Clustering III

Project the data members of each cluster Ci into the 
corresponding cluster existing space {ei1,ei2,…,eil} 
(l<=d)

1 2' ( , , ......, )i i ilx x e x e x e=

x: d-dimensional vector.

eij: l-dimensional vector, eigenvector with the minimum 
eigenvalue decomposed from the covariance matrix of cluster 
Ci’s datamembers.
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Run CURLER again to capture the local cluster 
structure of the interested cluster in the new space

Top-down Clustering IV
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n: number of data objects
k0: number of microclusters

EM Clustering
matrix operation: O(d3)
matrix operation for k0 mcs: O(k0·d3)
computation of PR(x|Mi): O(d2) 
total: O(k0·n·d2+k0·d3)

Cluster Expansion
cosharing level matrix initialization: O(n·ltop

2)
matrix updating: O(k0)
maximal number of updating: k0

total: O(n·ltop
2+k0

2)

Time Complexity Analysis
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Evaluation of Efficiency

Runtime of CURLER when varying dataset size and microcluster
number on the 9D synthetic dataset
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Evaluation of Effectiveness

Synthetic 9D dataset
Iris and Image datasets from UCI repository of 
machine learning databases and domain theories
Iyer time series gene expression data
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4D Iris Dataset of 3 Classes

Data Projection

NNCO Plot

Microcluster Traversal
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16D Image Dataset of 7 Classes

Data Projection
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Microcluster TraversalNNCO Plot
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Iyer Dataset
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Summary

CURLER is pretty simple after explaining. Main 
contributions are the insights:

Identify the concepts of global and local orientation
Realize the characteristic need for various components of CURLER
The engineering work needed to put things together

Future Work
When can we stop the sublevel clustering ? Can we do it automatically 
using a modification of residue analysis ?
Can we make use of CURLER for visual classification ?
A look at how the catch-22 situation can be avoid by looking at better 
similarity function
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Outline

Sources of HDD
Challenges of HDD
Foundation

Similarity Function
High Dimensional Distance Join

Techniques & Application
Finding Nonlinear Correlated Clusters in High Dimensional Data
Finding Patterns in Extremely High Dimensional Data



Data Mining: Foundation, Techniques and Applications

A Microarray Dataset

Class Gene1 Gene2 Gene3 Gene4 Gene
5

Gene
6

Ge

Sample1 Cancer

Sample2 Cancer

.

.

.
SampleN-1 ~Cance

r

SampleN ~Cance
r

1000 - 100,000 columns

100-
500 
rows

Find closed patterns which occur frequently among genes.
Find rules which associate certain combination of the 
columns that affect the class of the rows

Gene1,Gene10,Gene1001 -> Cancer
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lower bounds

Challenge I

Large number of patterns/rules  
number of possible column combinations is extremely high

Solution: Concept of a closed pattern
Patterns are found in exactly the same set of rows are grouped 
together and represented by their upper bound

Example: the following patterns are found in row 2,3 
and 4 �i ri Class 

1 a ,b,c,l,o,s C 
2 a ,d, e , h ,p,l,r C 
3 a ,c, e , h ,o,q,t C 
4 a , e ,f, h ,p,r ~C 
5 b,d,f,g,l,q,s,t ~C 

ae ah eh

e h

upper 
bound 
(closed 
pattern)

aeh

“a” however not part of 
the group
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Challenge II

Most existing frequent pattern discovery 
algorithms perform searches in the column/item 
enumeration space i.e. systematically testing 
various combination of columns/items
For datasets with 1000-100,000 columns, this 
search space is enormous
Instead we adopt a novel row/sample 
enumeration algorithm for this purpose. 
CARPENTER (SIGKDD’03) is the FIRST algorithm 
which adopt this approach
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Column/Item Enumeration Lattice

Each nodes in the lattice 
represent a combination of 
columns/items 
An edge exists from node A to B 
if A is subset of B and A differ 
from B by only 1 column/item
Search can be done a,c a,e bb,ca,b

b,ca,b,e a,c,ea,b,c

a b c

a,b,c,e

{}start

a b ca b c

a,c a,e bb,ca,b a,c b,c

b,cb,c

�i ri Class 
1 a,b,c,l,o,s C 
2 a,d,e,h,p,l,r C 
3 a,c,e,h,o,q,t C 
4 a,e,f,h,p,r ~C 
5 b,d,f,g,l,q,s,t ~C 

breadth first

a b ca b ca b c

a,c a,e b,ca,b a,c a,e b,ca,b a,c b,c

b,ca,b,e a,c,ea,b,c b,cb,c
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Column/Item Enumeration Lattice
Each nodes in the lattice 
represent a combination of 
columns/items 
An edge exists from node A to B 
if A is subset of B and A differ 
from B by only 1 column/item
Search can be done depth first
Keep edges from parent to child 
only if child is the prefix of parent

a,c a,e bb,ca,b

b,ca,b,e a,c,ea,b,c

a b c

a,b,c,e

{}start

a b ca b c

a,c a,e bb,ca,b a,c b,c

b,cb,c

�i ri Class 
1 a,b,c,l,o,s C 
2 a,d,e,h,p,l,r C 
3 a,c,e,h,o,q,t C 
4 a,e,f,h,p,r ~C 
5 b,d,f,g,l,q,s,t ~C 

a

a,b

a,b,c a,b,e

a,c

a,c,e
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General Framework for Column/Item Enumeratio

Read-based Write-based Point-based

Association Mining Apriori[AgSr94],
DIC

Eclat, 
MaxClique[Zaki01], 
FPGrowth [HaPe00]

Hmine

Sequential Pattern 
Discovery

GSP[AgSr96] SPADE 
[Zaki98,Zaki01], 

PrefixSpan
[PHPC01]

Iceberg Cube Apriori[AgSr94] BUC[BeRa99], H-
Cubing [HPDW01]
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A Multidimensional View

types of data 
or knowledge

lattice transversal/ 
main operations

others

associative 
pattern

sequential 
pattern

iceberg 
cube

read write point

other interest 
measure

compression method

pruning method

constraints

closed/max 
pattern
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Sample/Row Enumeration Algorihtms

To avoid searching the large column/item 
enumeration space, our mining algorithm search 
for patterms/rules in the sample/row 
enumeration space
Our algorithms does not fitted into the 
column/item enumeration algorithms
They are not YAARMA (Yet Another Association 
Rules Mining Algorithm)
Column/item enumeration algorithms simply does 
not scale for microarray datasets
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Existing Row/Sample Enumeration Algorithms

CARPENTER(SIGKDD'03)
Find closed patterns using row enumeration

FARMER(SIGMOD’04)
Find interesting rule groups and building classifiers based on 
them 

COBBLER(SSDBM'04)
Combined row and column enumeration for tables with large 
number of rows and columns

Topk-IRG(SIGMOD’05)
Find top-k covering rules for each sample and build classifier 
directly
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Concepts of CARPENTER

Example Table

C ~C 
a 1,2,3 4
b 1 5
c 1,3 
d 2 5
e 2,3 4
f 4,5 
g 5
h 2,3 4
l 1,2 5
o 1,3 
p 2 4
q 3 5
r 2 4
s 1 5
t 3 5

ij R (ij ) 

�i ri Class 
1 a,b,c,l,o,s C 
2 a,d,e,h,p,l,r C 
3 a,c,e,h,o,q,t C 
4 a,e,f,h,p,r ~C 
5 b,d,f,g,l,q,s,t ~C 

 C  ~C 
 a  1,2,3  4 
 e  2,3  4 
 h  2,3  4 

Transposed Table,TT

TT|{2,3}
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Row Enumeration

{bls}
15

{l}
125
{a}124

{a}123

{al}

{aco}

{abclos}

{}
13

12

1 134

{f}

{}

{}

{}

{}

{a}

1245

1345

1235

1234

{}
345

12345

{aeh}
34

35

45

{q}

{acehoqt}
3

{}
245

{a}

2345

{bdfglqst}
5

{aefhpr}
4

{adehplr}
2

{dl}
25

{aehpr}
24

{aeh}
23

{}
235

{aeh}
234

{}
135

{}
145

{a}
14

{}

C ~C 
a 1,2,3 4
b 1 5
c 1,3 
d 2 5
e 2,3 4
f 4,5 
g 5
h 2,3 4
l 1,2 5
o 1,3 
p 2 4
q 3 5
r 2 4
s 1 5
t 3 5

ij R (ij ) 

C ~C 
a 1,2,3 4
b 1 5
c 1,3 
l 1,2 5
o 1,3 
s 1 5

ij R (ij ) 

TT|{1}

C ~C 
a 1,2,3 4
l 1,2 5

ij R (ij ) 

TT|{12}

C ~C 
a 1,2,3 4

ij R (ij ) 

TT|{123}

C ~C 
a 1,2,3 4

ij R (ij ) 

TT|{124}
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Pruning Method 1

Removing rows that appear in all 
tuples of transposed table will not 
affect results

r2 r3
{aeh}

r4 has 100% support in the conditional table of 
“r2r3”, therefore branch “r2 r3r4” will be 
pruned.

r2 r3 r4 
{aeh}

 C  ~C 
 a  1,2,3  4 
 e  2,3  4 
 h  2,3  4 

TT|{2,3}
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Pruning method 2

if a rule is discovered 
before, we can prune 
enumeration below 
this node

Because all rules below 
this node has been 
discovered before
For example, at node 
34, if we found that 
{aeh} has been found, 
we can prune off all 
branches below it

{bls}
15

{l}
125
{a}124

{a}123

{al}

{aco}

{abclos}

{}
13

12

1 134

{f}

{}

{}

{}

{}

{a}

1245

1345

1235

1234

{}
345

12345

{aeh}
34

35

45

{q}

{acehoqt}
3

{}
245

{a}

2345

{bdfglqst}
5

{aefhpr}
4

{adehplr}
2

{dl}
25

{aehpr}
24

{aeh}
23

{}
235

{aeh}
234

{}
135

{}
145

{a}
14

{}

 C  ~C 
 a  1,2,3  4 
 e  2,3  4 
 h  2,3  4 

TT|{3,4}
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Pruning Method 3: Minimum Support

Example: From TT|{1}, we 
can see that the support of 
all possible pattern below 
node {1} will be at most 5 
rows.

C ~C 
a 1,2,3 4
b 1 5
c 1,3 
l 1,2 5
o 1,3 
s 1 5

ij R (ij ) 

TT|{1}
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From CARPENTER to FARMER

What if classes exists ? What more can 
we do ?
Pruning with Interestingness Measure

Minimum confidence
Minimum chi-square

Generate lower bounds for classification/ 
prediction
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lower bounds

Interesting Rule Groups

Concept of a rule group/equivalent class
rules supported by exactly the same set of rows are grouped 
together

Example: the following rules are derived from row 
2,3 and 4 with 66% confidence

�i ri Class 
1 a ,b,c,l,o,s C 
2 a ,d, e , h ,p,l,r C 
3 a ,c, e , h ,o,q,t C 
4 a , e ,f, h ,p,r ~C 
5 b,d,f,g,l,q,s,t ~C 

ae-->C (66%) ah--> C(66%) eh-->C (66%)

e-->C (66%) h-->C (66%)

upper 
boundaeh--> C(66%)

a-->C however is not in 
the group
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Pruning by Interestingness Measure

In addition, find only interesting rule groups 
(IRGs) based on some measures:

minconf: the rules in the rule group can predict the class on 
the RHS with high confidence
minchi: there is high correlation between LHS and RHS of the 
rules based on chi-square test

Other measures like lift, entropy gain, conviction 
etc. can be handle similarly
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Ordering of Rows: All Class C before ~C

{bls}
15

{l}
125
{a}124

{a}123

{al}

{aco}

{abclos}

{}
13

12

1 134

{f}

{}

{}

{}

{}

{a}

1245

1345

1235

1234

{}
345

12345

{aeh}
34

35

45

{q}

{acehoqt}
3

{}
245

{a}

2345

{bdfglqst}
5

{aefhpr}
4

{adehplr}
2

{dl}
25

{aehpr}
24

{aeh}
23

{}
235

{aeh}
234

{}
135

{}
145

{a}
14

{}

C ~C 
a 1,2,3 4
b 1 5
c 1,3 
d 2 5
e 2,3 4
f 4,5 
g 5
h 2,3 4
l 1,2 5
o 1,3 
p 2 4
q 3 5
r 2 4
s 1 5
t 3 5

ij R (ij ) 

C ~C 
a 1,2,3 4
b 1 5
c 1,3 
l 1,2 5
o 1,3 
s 1 5

ij R (ij ) 

TT|{1}

C ~C 
a 1,2,3 4
l 1,2 5

ij R (ij ) 

TT|{12}

C ~C 
a 1,2,3 4

ij R (ij ) 

TT|{123}

C ~C 
a 1,2,3 4

ij R (ij ) 

TT|{124}
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Pruning Method: Minimum Confidence

Example: In TT|{2,3} on 
the right, the maximum 
confidence of all rules below 
node {2,3} is at most 4/5

 C  ~C 
 a  1,2,3,6  4,5
 e  2,3,7  4,9
 h  2,3  4 

TT|{2,3}
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Pruning method: Minimum chi-square

Same as in computing 
maximum confidence

 C  ~C 
 a  1,2,3,6  4,5
 e  2,3,7  4,9
 h  2,3  4 

TT|{2,3}
C ~C Total

A max=5 min=1 Computed

~A Computed Computed Computed

Constant Constant Constant
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Finding Lower Bound, MineLB

Example: An upper 
bound rule with 
antecedent A=abcde and 
two rows (r1 : abcf ) and 
(r2 : cdeg)
Initialize lower bounds 
{a, b, c, d, e}
add “abcf”--- new lower 
{d ,e}
Add “cdeg”--- new lower  
bound{ad, bd, ae, be} 

a,b,c,d,e

a
b c d

e

abc

Candidate lower bound: ad, ae, bd, be, cd, ce

Removed since d,e are still lower bound

cde

Candidate lower bound: ad, ae, bd, be

Kept since no lower bound override them

ad ae bd be
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Implementation

In general, CARPENTER FARMER 
can be implemented in many 
ways:

FP-tree
Vertical format

For our case, we assume the 
dataset can be fitted into the 
main memory and used pointer-
based algorithm similar to BUC

C ~C 
a 1,2,3 4
b 1 5
c 1,3 
d 2 5
e 2,3 4
f 4,5 
g 5
h 2,3 4
l 1,2 5
o 1,3 
p 2 4
q 3 5
r 2 4
s 1 5
t 3 5

ij R (ij ) 
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Experimental studies

Efficiency of FARMER
On five real-life dataset

lung cancer (LC), breast cancer (BC) , prostate cancer 
(PC), ALL-AML leukemia (ALL), Colon Tumor(CT)

Varying minsup, minconf, minchi
Benchmark against

CHARM [ZaHs02] ICDM'02
Bayardo’s algorithm (ColumE) [BaAg99] SIGKDD'99

Usefulness of IRGs
Classification
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Example results--Prostate

1
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100

1000

10000

100000

9876543

minimum sup p o r t

FARM ER

Co lumnE

CHARM
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Example results--Prostate

0

200

400

600

800

1000

1200

0 50 70 80 85 90 99

minimum confidence(%)

FARM ER:minsup=1:minchi=10

FARM ER:minsup =1
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Top k Covering Rule Groups

Rank rule groups (upper bound) according to
Confidence
Support

Top k Covering Rule Groups for row r
k highest ranking rule groups that has row r as support and 
support > minimum support

Top k Covering Rule Groups = 
TopKRGS for each row
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Usefulness of Rule Groups

Rules for every row
Top-1 covering rule groups sufficient to build CBA 
classifier
No min confidence threshold, only min support
#TopKRGS = k x #rows
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Top-k covering rule groups

For each row, we find the most 
significant k rule groups: 

based on confidence first 
then support

Given minsup=1, Top-1
row 1: abc C1(sup = 2, conf= 100%)
row 2: abc C1

abcd C1(sup=1,conf = 100%)
row 3: cd C1(sup=2, conf = 66.7%)

If minconf = 80%, ?
row 4: cde C2 (sup=1, conf = 50%)

class Items

C1 a,b,c

C1 a,b,c,d

C1 c,d,e

C2 c,d,e
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Main advantages of Top-k coverage rule group

The number is bounded by the product of k 
and the number of samples
Treat each sample equally provide a 
complete description for each row (small)
The minimum confidence parameter-- instead 
k. 
Sufficient to build classifiers while avoiding 
excessive computation
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Top-k pruning

At node X, the maximal set of rows covered by rules 
to be discovered down X-- rows containing X and 
rows ordered after X.

minconf MIN confidence of the discovered TopkRGs for all rows in 
the above set
minsup the corresponding minsup

Pruning
If the estimated upper bound of confidence down X < minconf prune
If same confidence and smaller support prune

Optimizations
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Classification based on association rules

Step 1: Generate the complete set of association 
rules for each class ( minimum support and 
minimum confidence.) 

CBA algorithm adopts apriori-like algorithm -fails at this step on 
microarray data.

Step 2:Sort the set of generated rules 
Step 3: select a subset of rules from the sorted rule 
sets to form classifiers.
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Features of RCBT classifiers

Problems RCBT

To discover, store, retrieve and 
sort a large number of rules

Mine those rules to be used for 
classification.e.g.Top-1 rule group 
is sufficient to build CBA classifier

Default class not convincing for 
biologists

Main classifier + some back-up 
classifiers

Rules with the same 
discriminating ability, how to 
integrate? 
Upper bound rules: specific 
Lower bound rules: general

A subset of lower bound rules—
integrate using a score 
considering both confidence and 
support.
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Experimental studies

Datasets: 4 real-life data
Efficiency of Top-k Rule mining

Benchmark: Farmer, Charm, Closet+

Classification Methods:
CBA (build using top-1 rule group)
RCBT (our proposed method)
IRG Classifier 
Decision trees (single, bagging, boosting)
SVM
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Runtime v.s. Minimum support  on ALL-
AML dataset
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Scalability with k
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Biological meaning –Prostate Cancer Data
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Classification results
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Classification results
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