Data Mining: Foundation, Techniques and Applications

Lesson 11: Mining and Search Sequences

Li Cuiping(李翠平) School of Information Renmin University of China

Anthony Tung(鄧锦浩) School of Computing National University of Singapore

8/19/2002

Outline

- Types of sequences
- Foundation
 - Full matching: Building a disk based suffix tree
 - Approximate matching Using vgrams
- Technique & Application
 - Finding global partial order in sequence
 - Finding motif in sequence

Types of sequences

Symbolic vs Numeric

 We only touch discrete symbols here. Sequences of number are called time series and is a huge topic by itself!

Single dimension vs multi-dimensional

 Example: <u>Yueguo Chen</u>, Shouxu Jiang, Beng Chin Ooi, Anthony K. H. Tung. "<u>Querying Complex Spatial-Temporal Sequences in Human Motion</u> <u>Databases</u>" accepted and to appear in 24th IEEE International Conference on Data Engineering (ICDE) 2008

Single long sequence vs multiple sequences

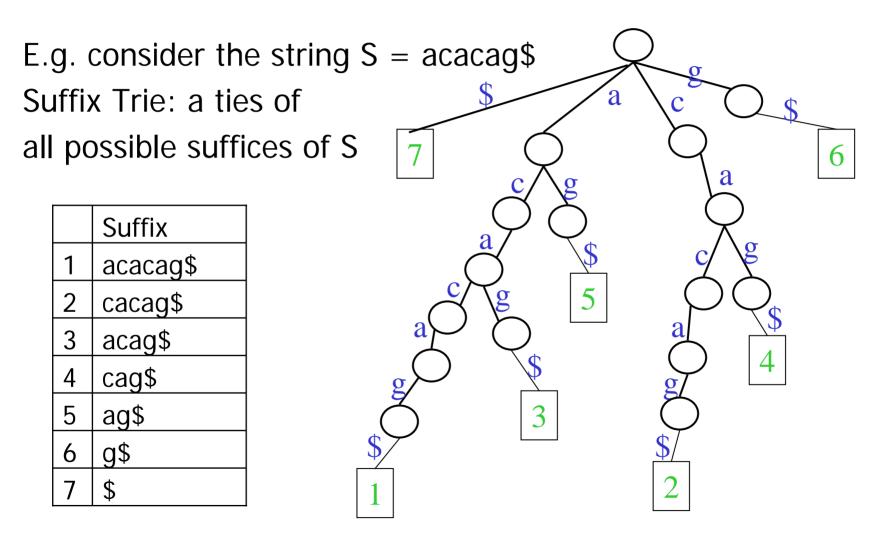
Outline

- Types of sequences
- Foundation
 - Full matching: Building a disk based suffix tree
 - Approximate matching Using vgrams
- Technique & Application
 - Finding global partial order in sequence
 - Finding motif in sequence

- 1. acacag\$
- 2. cacag\$
- 3. acag\$
- 4. cag\$
- 5. ag\$

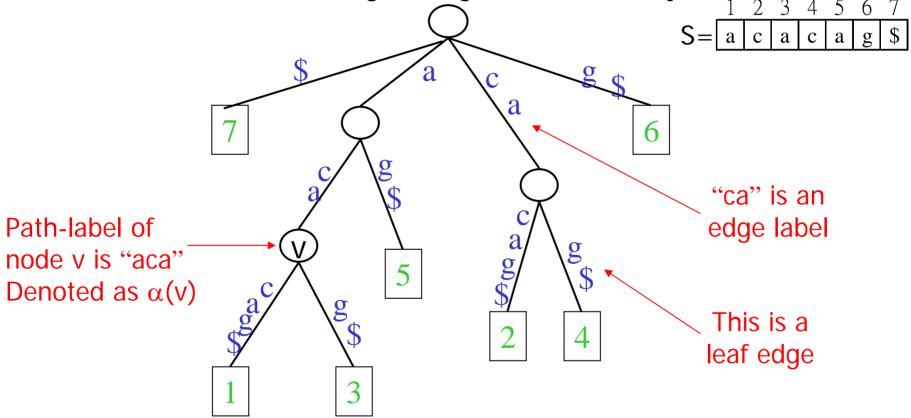
Suffix

6. g\$ 7. \$ Suffix Trie



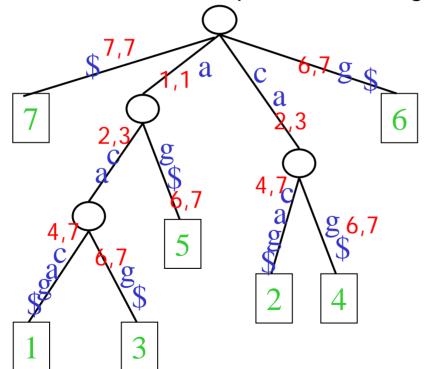
Suffix Tree (I)

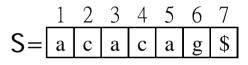
Suffix tree for S=acacag\$: merge nodes with only one child



Suffix Tree (II)

Suffix tree has exactly n leaves and at most n edges The label of each edge can be represented using 2 indices Thus, suffix tree can be represented using O(n log n) bits

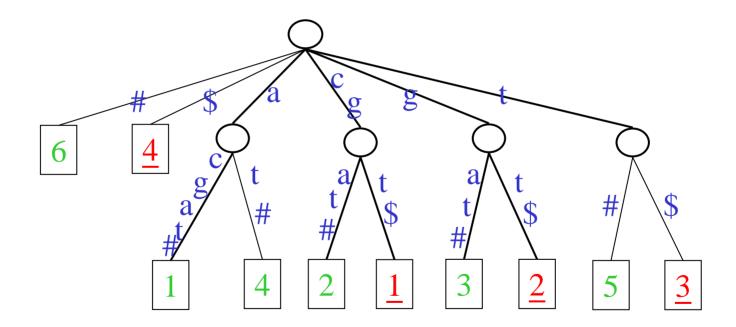




Note: The end index of every leaf edge should be 7, the last index of S. Thus, for leaf edges, we only need to store the start index.

Generalized suffix tree

- Build a suffix tree for two or more strings
- E.g. $S_1 = acgat#, S_2 = cgt$



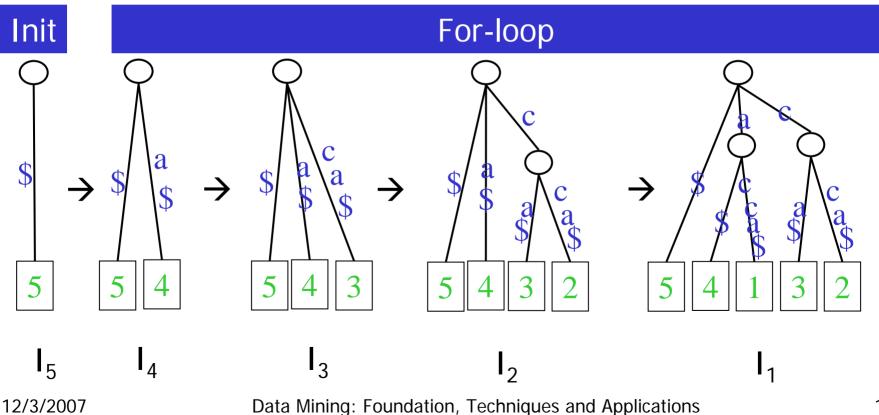
Straightforward construction of suffix tree

- Consider $S = s_1 s_2 \dots s_n$ where $s_n =$
- Algorithm:
 - Initialize the tree we only a root
 - For i = n to 1
 - Includes S[i..n] into the tree

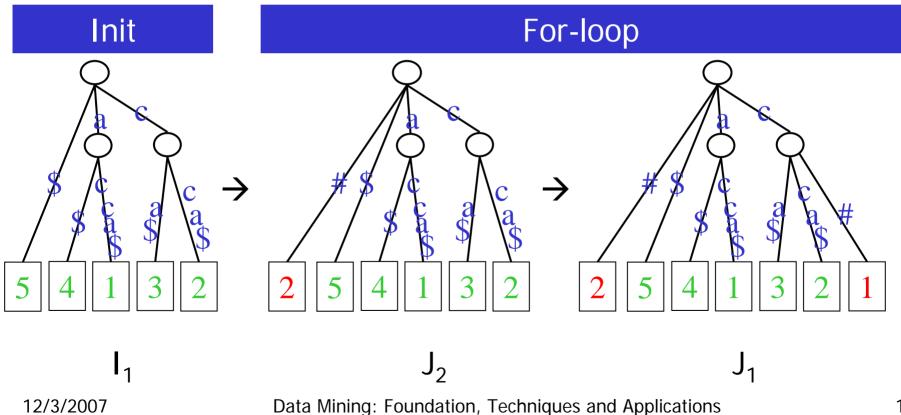
Time: O(n²)

Example of construction

S=acca\$



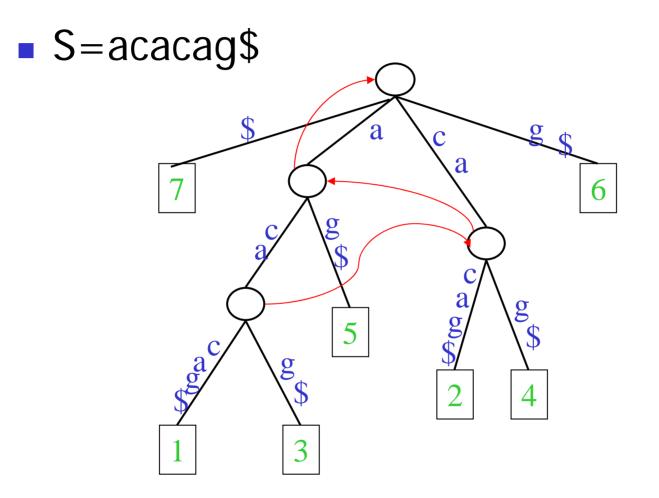
Construction of generalized suffix tree



Property of suffix tree

- Fact: For any internal node v in the suffix tree, if the path label of v is α(v)=ap, then
 - there exists another node w in the suffix tree such that α(w)=p.
- Proof: Skip the proof.
- Definition of Suffix Link:
 - For any internal node v, define its suffix link sl(v) = w.

Suffix Link example



Can we construct a suffix tree in O(n) time?

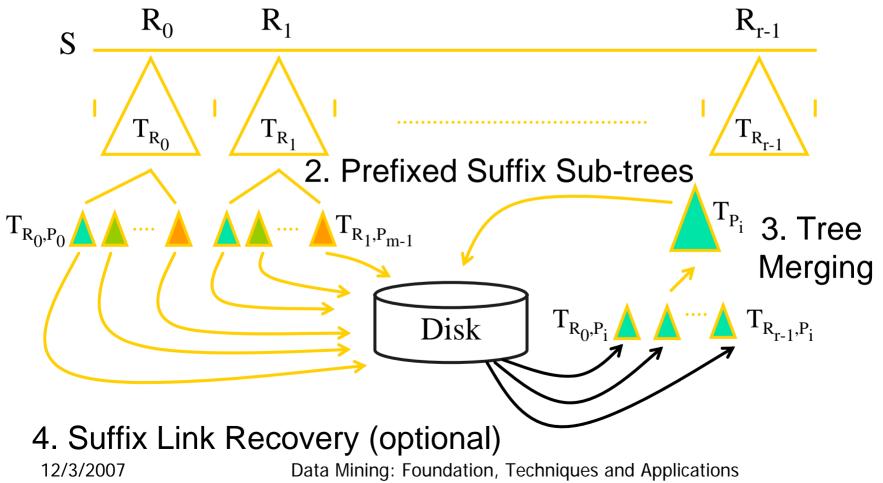
- Yes. We can construct it in O(n) time and O(n) space
 - Weiner's algorithm [1973]
 - Linear time for constant size alphabet, but much space
 - McGreight's algorithm [JACM 1976]
 - Linear time for constant size alphabet, quadratic space
 - Ukkonen's algorithm [Algorithmica, 1995]
 - Online algorithm, linear time for constant size alphabet, less space
 - Farach's algorithm [FOCS 1997]
 - Linear time for general alphabet
 - Hon,Sadakane, and Sung's algorithm [FOCS 2003]
 - O(n) bit space O(n log^en) time for 0<e<1
 - O(n) bit space O(n) time for suffix array construction
- But they are all in-memory algorithm that does not guarantee locality of processing

Trellis Algorithm

- A novel disk-based suffix tree construction algorithm designed specifically for DNA sequences
- Scales gracefully for very large genome sequences (i.e. human genome)
- Unlike existing algorithms,
 - Trellis exhibits no data skew problem
 - Trellis recovers suffix links quickly
 - Trellis has fast construction and query time
- Trellis is a 4-step algorithm

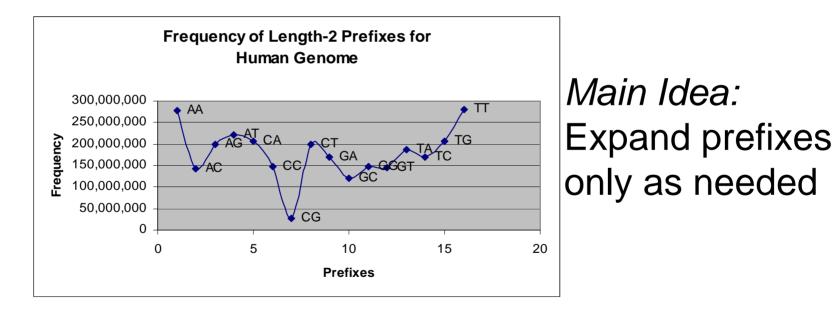
Trellis: Algorithm Overview

1. Variable-length prefixes: e.g. AA, ACA, ACC, ...



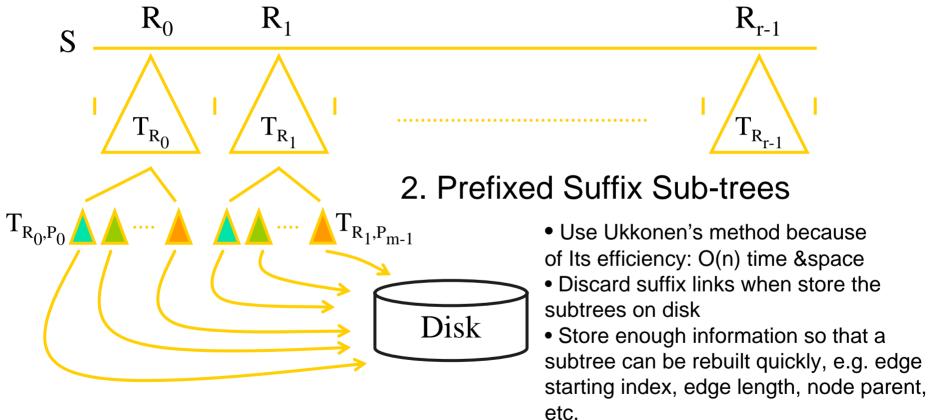
1. Variable-length Prefix Creation

 Goal: Separate the complete suffix tree by prefixes of suffixes, such that each subtree can reside entirely in the available memory



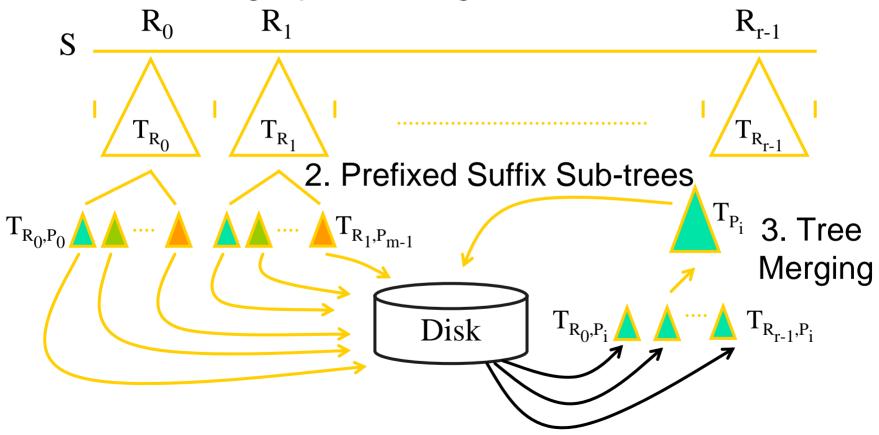
2. Suffix Tree Partitioning

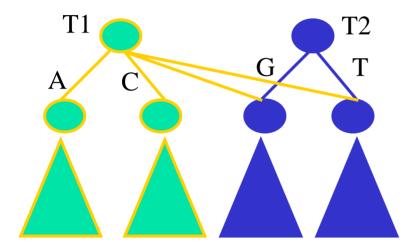
1. Variable-length prefixes: e.g. AA, ACA, ACC, ...



3. Suffix Tree Merging

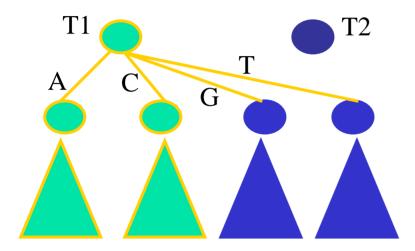
1. Variable-length prefixes: e.g. AA, ACA, ACC, ...



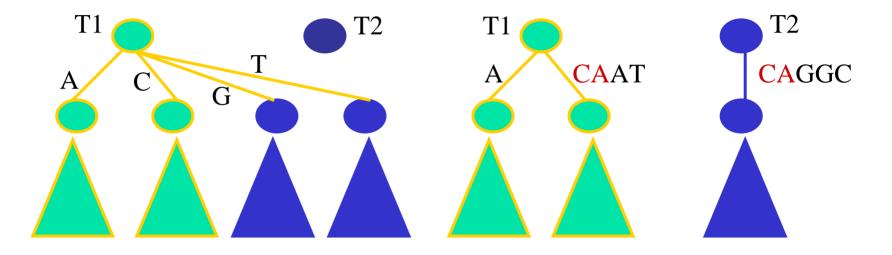


Case 1: No common prefix

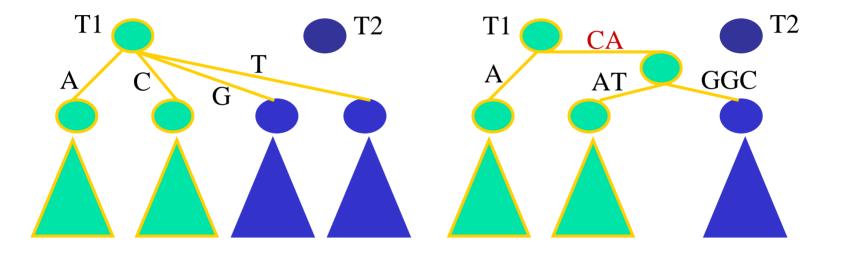
12/3/2007



Case 1: No common prefix



<u>Case 1</u>: No common prefix <u>Case 2</u>: Has common prefix



<u>Case 1</u>: No common prefix <u>Case 2</u>: Has common prefix

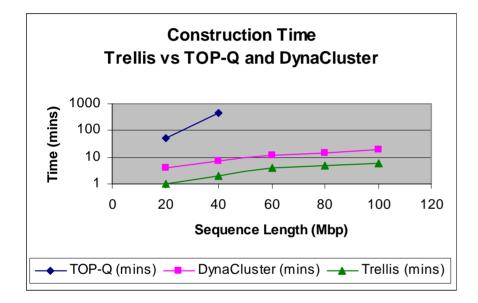
4. Suffix Link Recovery

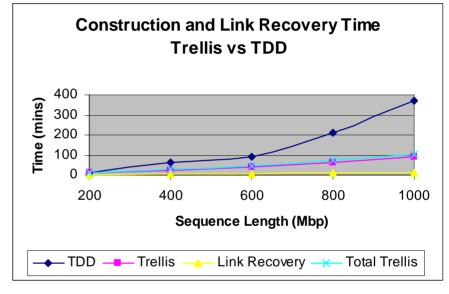
- Some internal nodes have suffix links from the Ukkonen's algorithm in Step #1
- Some internal nodes are created in the merging step and do not have suffix links
- Discard all suffix link information from step #1 and stored suffix trees on disk (does not help speed this step up, so discard to simplify)
- Should suffix links are required, use the suffix link recovery algorithm to rebuild them

4. Suffix Link Recovery (cont.

- For each prefixed suffix tree, recursively call this function from the tree's root.
- x: an internal node
- L: be edge label between x and parent(x)

Experimental Results





- Memory: 512 MB
- TOP-Q and DynaCluster parameters were set as recommended in their papers
- Memory: 512MB

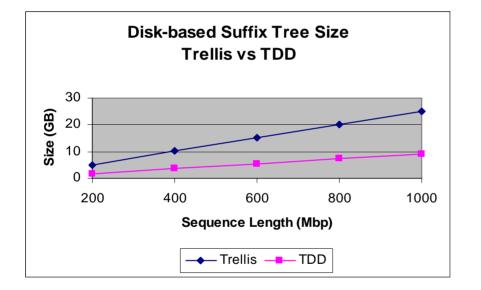
Human genome suffix tree

(size ~3Gbp, using 2GB of memory)

<u>Trellis</u> <u>TDD</u>: 12.8hr • Without links: 4.2hr Data Mining: Foundation, Techniques and Applications 5.9hr

Experimental Results (cont.)

Disk Space Usage



Human Genome	
<u>Trellis</u>	<u>TDD</u>
72GB	54GB

On average, Trellis uses about 27 bytes per character indexed while TDD uses about 9.7 bytes.

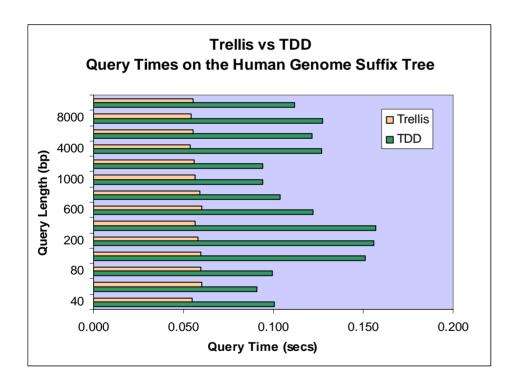
For the human genome, TDD uses about 19.3 bytes/char because it requires 64-bit environment to index larger sequences.

Trellis remains at 27 bytes/char for the human genome.

Disk-space vs query time tradeoff

Experimental Results (cont.)

Query time (without suffix links)



Hence, faster query time!

TDD

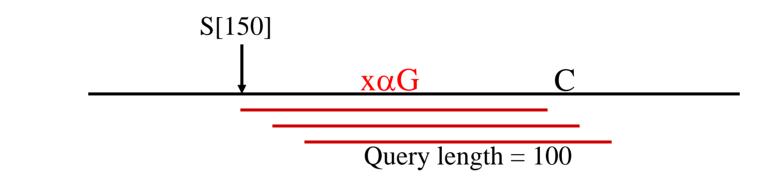
- smaller suffix trees
- edge length must be determined by examining *all* children nodes
- each internal node only has a pointer to its *first* child, i.e. children must be *linearly* scanned during a query search

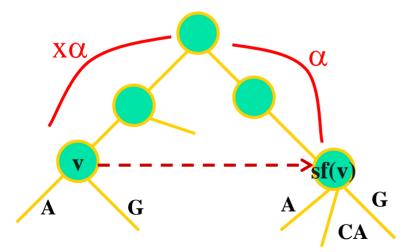
Trellis

- larger suffix trees
- edge length stored *locally* with its respective node
- all children locations stored *locally*, so each child can be accessed in a constant time, i.e. no linear scan needed

12/3/2007

Experimental Results (cont.)

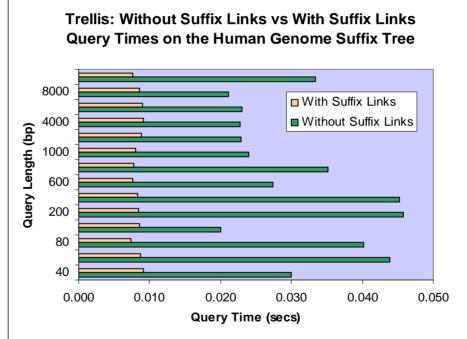




- Uses suffix links to move across the tree to search for the next query
- Mimics the behavior of exact match anchor search during a genome alignment

Experiment Results (cont.)

Query time (with suffix links)



Summary

- Trellis builds a disk-based suffix tree based on
 - A partitioning method via variable-length prefixes
 - A suffix subtree merging algorithm
- Trellis is both time and space efficient
- Trellis quickly recovers suffix links
- Faster than existing leading methods in both construction and query time

Future Work

- Input sequence larger than the human genome (more than 3Gbp)
- Wider range of alphabets, e.g. protein alphabet and English text
- Parallelize Trellis

Question?

Outline

- Types of sequences
- Foundation
 - Full matching: Building a disk based suffix tree
 - Approximate matching Using vgrams
- Technique & Application
 - Finding global partial order in sequence
 - Finding motif in sequence

Example 1: a movie database

Find movies starred Samuel Jackson

Star	Title	Year	Genre
Keanu Reeves	The Matrix	1999	Sci-Fi
Samuel Jackson	Star Wars: Episode III - Revenge of the Sith	2005	Sci-Fi
Schwarzenegger	The Terminator	1984	Sci-Fi
Samuel Jackson	Goodfellas	1990	Drama

How about Schwarrzenger?

The user doesn't know the exact spelling!

Star	Title	Year	Genre
Keanu Reeves	The Matrix	1999	Sci-Fi
Samuel Jackson	Star Wars: Episode III - Revenge of the Sith	2005	Sci-Fi
Schwarzenegger	The Terminator	1984	Sci-Fi
Samuel Jackson	Goodfellas	1990	Drama

Relax Condition

Find movies with a star "similar to" Schwarrzenger.

Star	Title	Year	Genre
Keanu Reeves	The Matrix	1999	Sci-Fi
Samuel Jackson	Star Wars: Episode III - Revenge of the Sith	2005	Sci-Fi
Schwarzenegger	The Terminator	1984	Sci-Fi
Samuel Jackson	Goodfellas	1990	Drama

Edit Distance

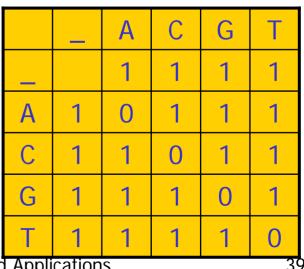
- Given two strings A and B, edit A to B with the minimum number of edit operations:
 - Replace a letter with another letter
 - Insert a letter
 - Delete a letter
- E.g.
 - A = interestings
 - B = bioinformatics

_i__nterestings bioinformatic_s 101101101100110

Edit distance = 9

Edit Distance Computation

- Instead of minimizing the number of edge operations, we can associate a cost function to the operations and minimize the total cost. Such cost is called edit distance.
- For the previous example, the cost function is as follows:
 - A= _i __nterestings B= bioinformatic_s 101101101100110
 - Edit distance = 9



Needleman-Wunsch algorithm (I)

- Consider two strings S[1..n] and T[1..m].
- Define V(i, j) be the score of the optimal alignment between S[1..i] and T[1..j]
- Basis:
 - V(0, 0) = 0
 - $V(0, j) = V(0, j-1) + \delta(_, T[j])$
 - Insert j times
 - $V(i, 0) = V(i-1, 0) + \delta(S[i], _)$
 - Delete i times

Needleman-Wunsch algorithm (II)

Recurrence: For i>0, j>0

$$V(i, j) = \max \begin{cases} V(i-1, j-1) + \delta(S[i], T[j]) & \text{Match/mismatch} \\ V(i-1, j) + \delta(S[i], _) & \text{Delete} \\ V(i, j-1) + \delta(_, T[j]) & \text{Insert} \end{cases}$$

In the alignment, the last pair must be either match/mismatch, delete, insert.

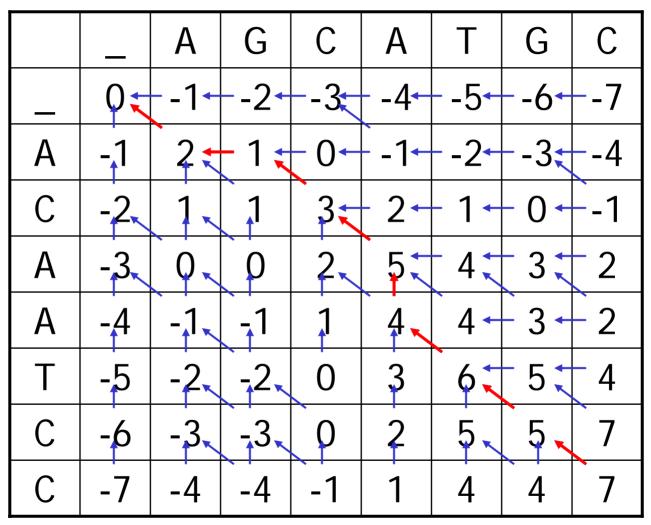
Example (I)

		Α	G	С	Α	Т	G	С
_	0	-1	-2	-3	-4	-5	-6	-7
A	-1							
С	-2							
A	-3							
A	-4							
Т	-5							
С	-6							
С	-7							

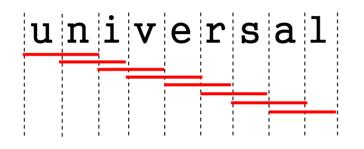
Example (II)

		Α	G	С	Α	Т	G	С
_	0	-1	-2	-3	-4	-5	-6	-7
A	-1	2	1	0	-1	-2	-3	-4
С	-2	1	1	3	2			
A	-3							
A	-4							
Т	-5							
С	-6							
С	-7							

Example (III)



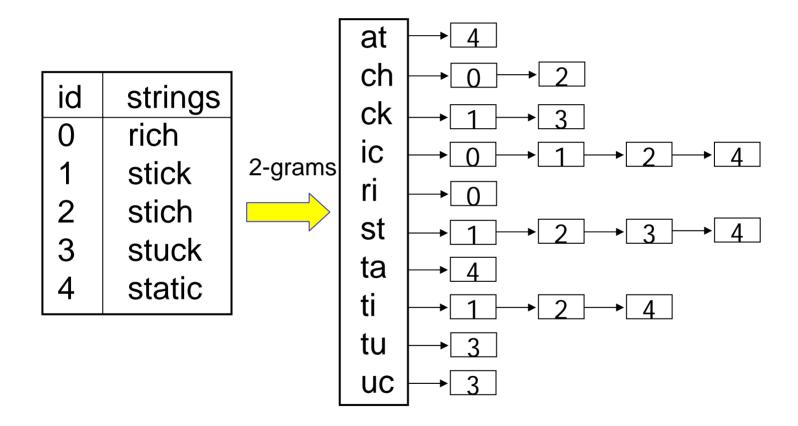
"q-grams" of strings



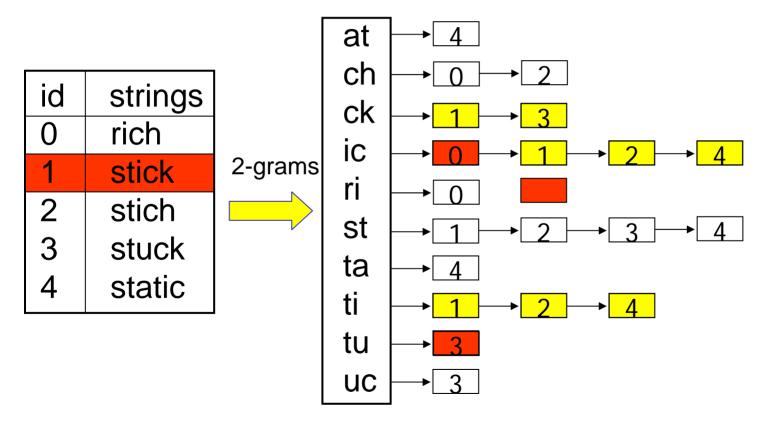
2-grams

12/3/2007

q-gram inverted lists



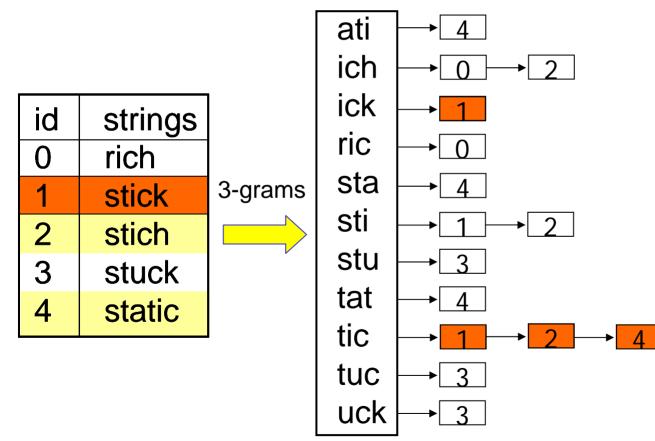
Searching using inverted lists Query: "shtick", ED(shtick, ?) <1 sh ht ti ic ck # of common grams >= 3



2-grams -> 3-grams?

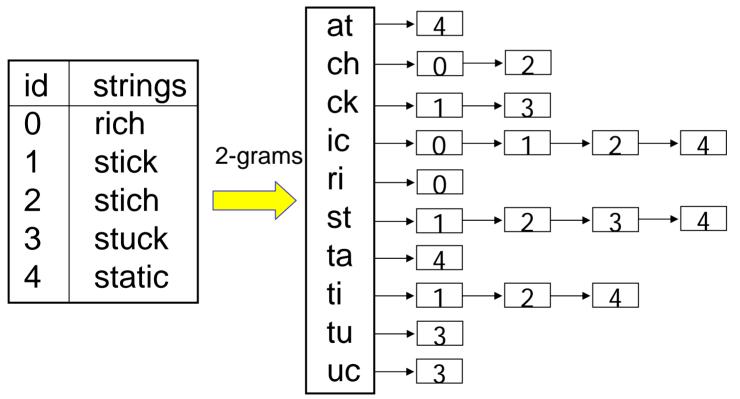
Query: "shtick", ED(shtick, ?) <1 sht hti tic ick

of common grams >= 1



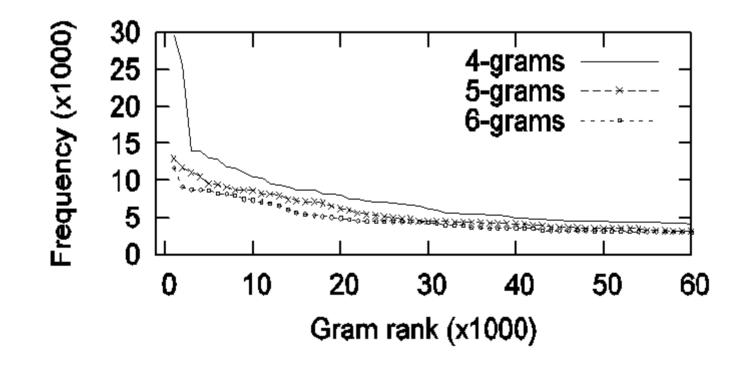
Observation 1: dilemma of choosing "q"

- Increasing "q" causing:
 - Longer grams → Shorter lists
 - Smaller # of common grams of similar strings



Observation 2: skew distributions of gram frequencies

- DBLP: 276,699 article titles
- Popular 5-grams: ation (>114K times), tions, ystem, catio



VGRAM: Main idea

- Grams with variable lengths (between *q*_{min} and q_{max})
 - zebra
 - ze(123)
 - corrasion
 - co(5213), cor(859), corr(171)
- Advantages
 - Reduce index size ③
 - Reducing running time ③
 - Adoptable by many algorithms ③

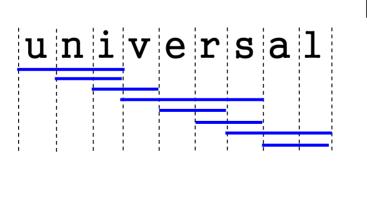
Challenges

- Generating variable-length grams?
- Constructing a high-quality gram dictionary?
- Relationship between string similarity and their gram-set similarity?
- Adopting VGRAM in existing algorithms?

Challenge 1: String \rightarrow Variable-length grams?

Fixed-length 2-grams

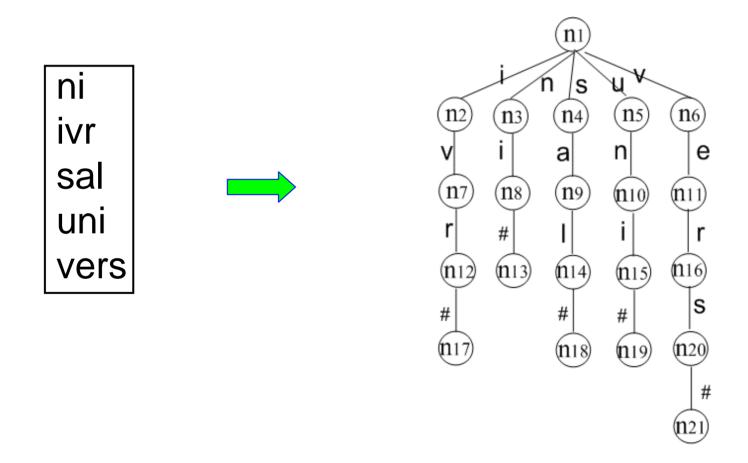
Variable-length grams



universal

[2,4]-gram dictionary

Representing gram dictionary as a trie



Challenge 2: Constructing gram dictionary

Step 1: Collecting frequencies of grams with length in [qmin, qmax] 15 $\overline{n_1}$

st \rightarrow 0, 1, 3

 $sti \rightarrow 0, 1$

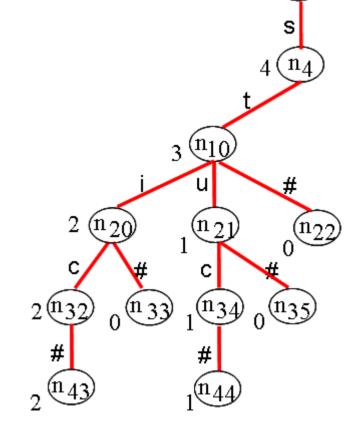
stic \rightarrow 0, 1

stu→3

 $stuc \rightarrow 3$

id	string
0	stick
1	stich
2	such
3	stuck

(a) strings

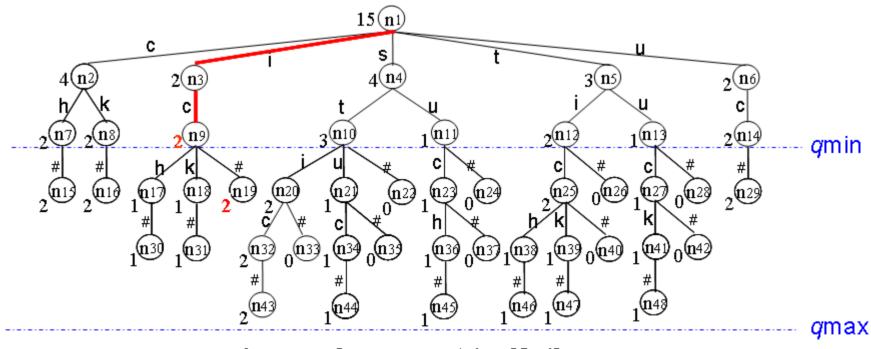


Gram trie with frequencies

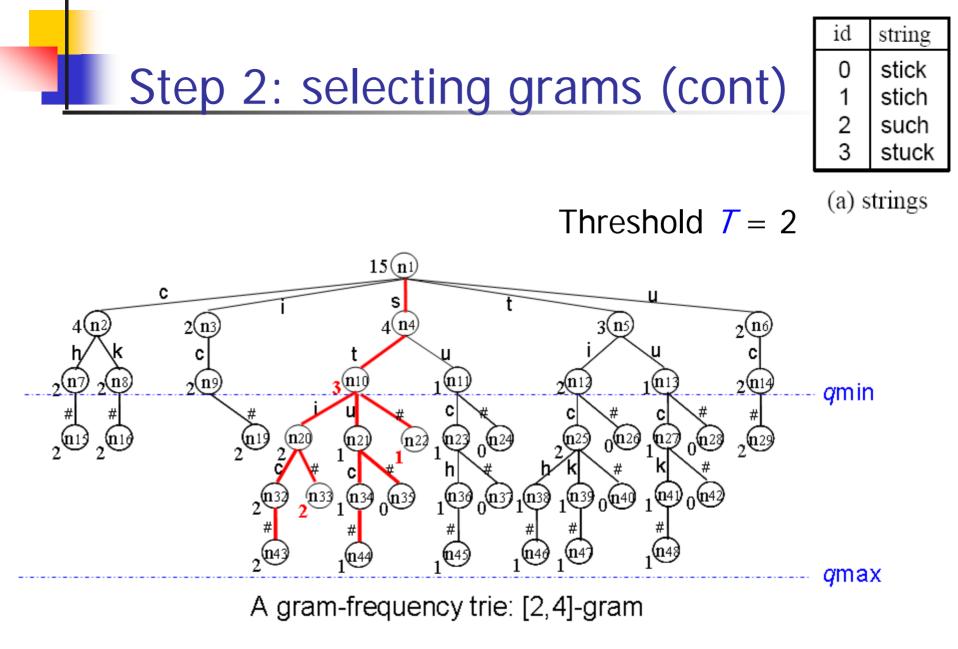
Step 2: selecting grams

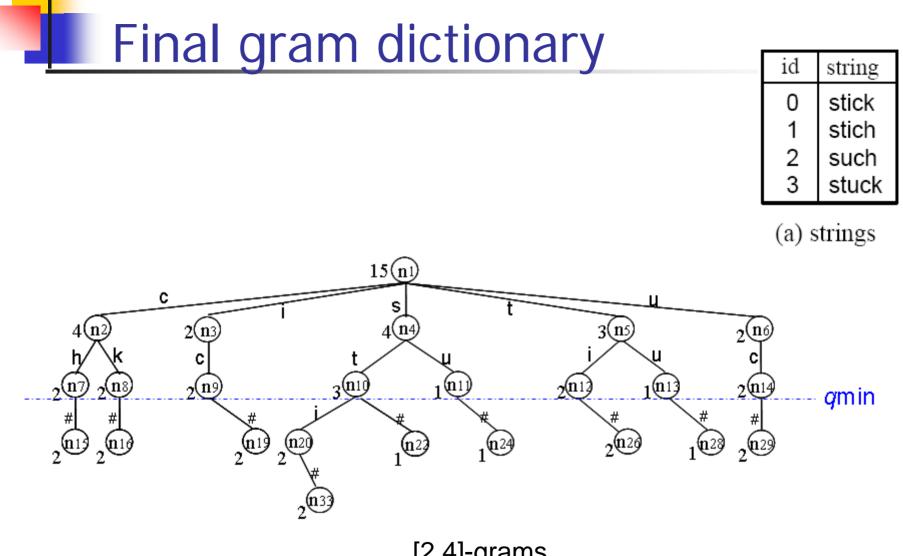
Pruning trie using a frequency threshold *T* (e.g., 2)

id	string
0	stick
1	stich
2	such
3	stuck



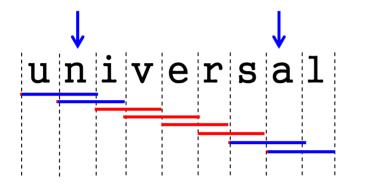
A gram-frequency trie: [2,4]-gram





[2,4]-grams

Challenge 3: Edit operation's effect on grams

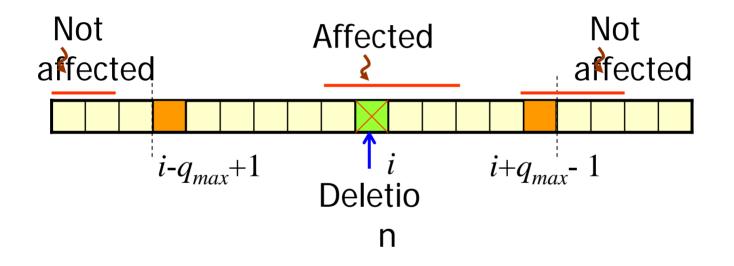


Fixed length: q

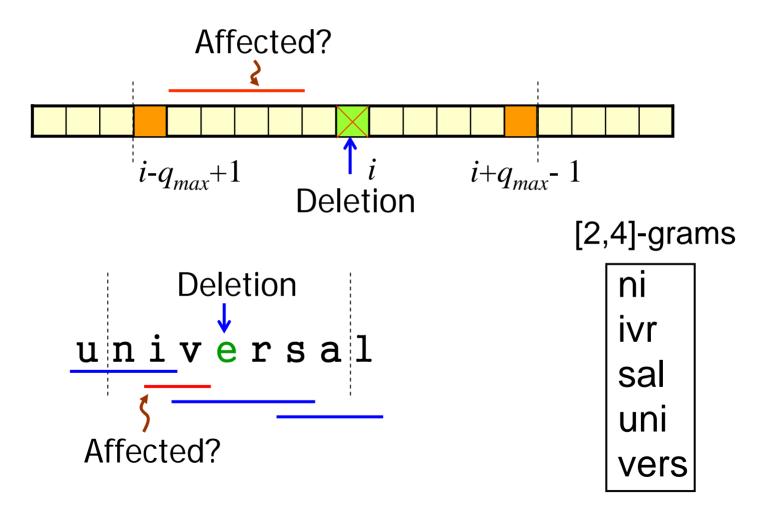
k operations could affect *k* * *q* grams

12/3/2007

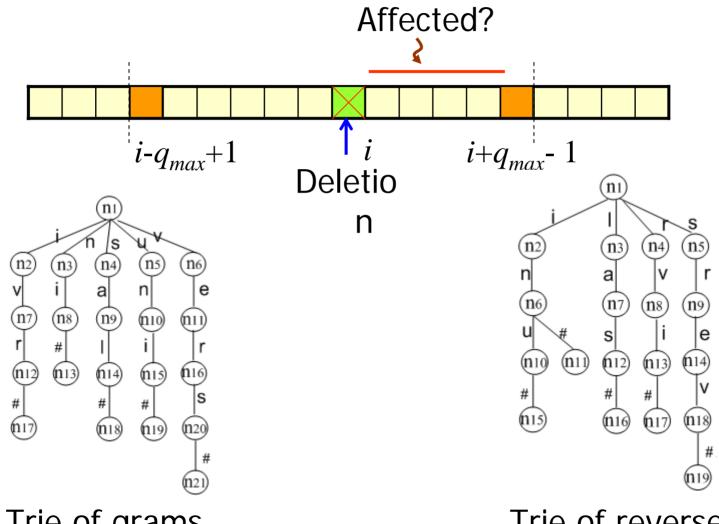
Deletion affects variable-length grams



Grams affected by a deletion



Grams affected by a deletion (cont)



12/3/200 Trie of grams Data Mining: Foundation, Techniques and Applications or arams

of grams affected by each operation

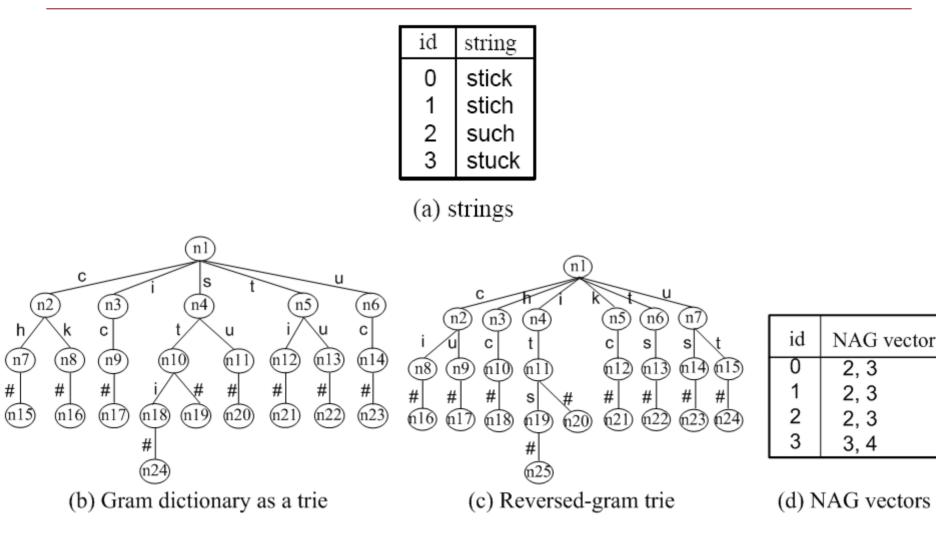
Max # of grams affected by k operations

Vector of
$$s = \langle 2, 4, 6, 8, 9 \rangle$$

S
With 2 edit operations, at most 4 grams can be
affected

- Called NAG vector (# of affected grams)
- Precomputed and stored

Summary of VGRAM index



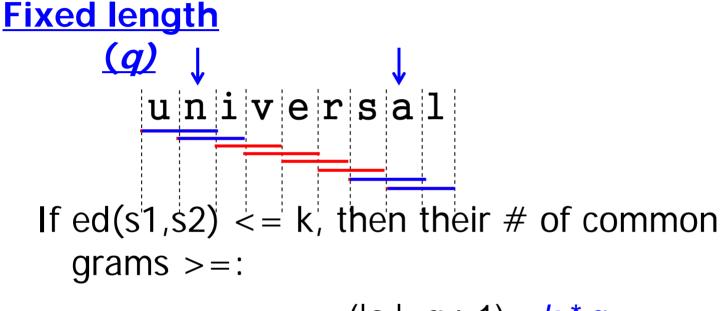
Challenge 4: adopting VGRAM

Easily adoptable by many algorithms

Basic interfaces:

- String s \rightarrow grams
- String s1, s2 such that ed(s1,s2) < = k → min # of their common grams

Lower bound on # of common grams

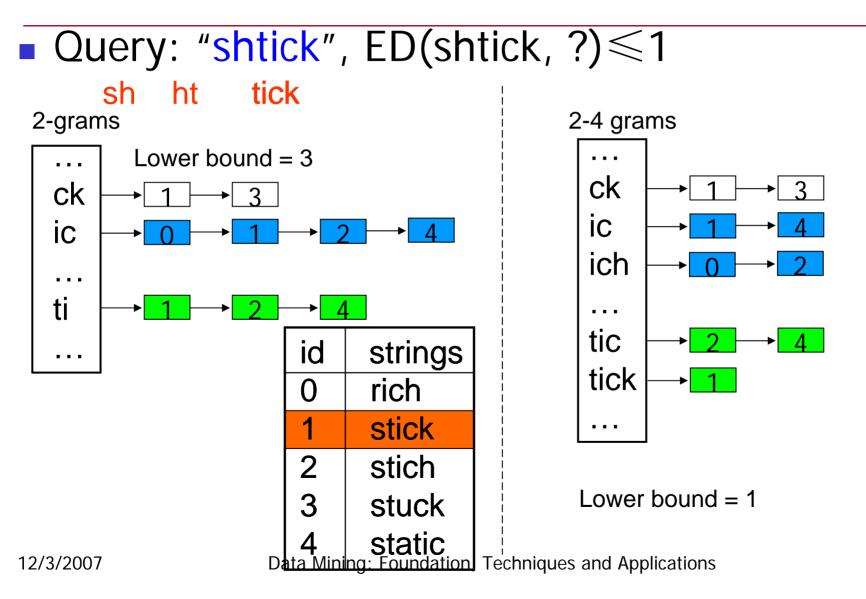


$$(|s_1| - q + 1) - k * q$$

Variable lengths: # of grams of s1 – NAG(s1,k)

12/3/2007

Example: algorithm using inverted lists



PartEnum + VGRAM

PartEnum, fixed q-grams:

ed(s1,s2) <= k

→ hamming(grams(s1),grams(s2)) <= k * q</p>

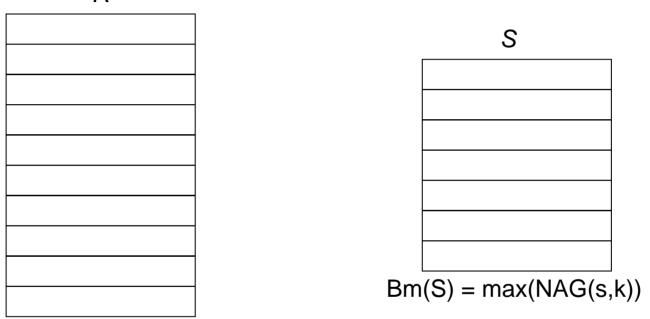
VGRAM:

ed(s1,s2) <= k

 \rightarrow hamming(VG (s1),VG(s2)) <= NAG(s1,k) + NAG(s2,k)

PartEnum + VGRAM (naïve)

R



Bm(R) = max(NAG(r,k))

- Both are using the same gram dictionary.
- Use Bm(R) + Bm(S) as the new hamming bound.

12/3/2007

PartEnum + VGRAM (optimization)

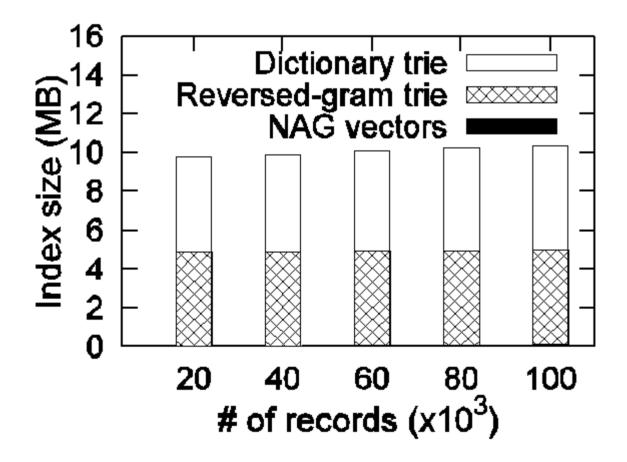


- Group R based on the NAG(r,k) values
- Join(R1,S) using Bm(R1) + Bm(S)
- Similarly, Join(R2,S), Join(R3,S)
- Local bounds tighter → better signatures generated
- Grouping S also possible. 12/3/2007 Data Mining: Foundation, Techniques and Applications

Data sets

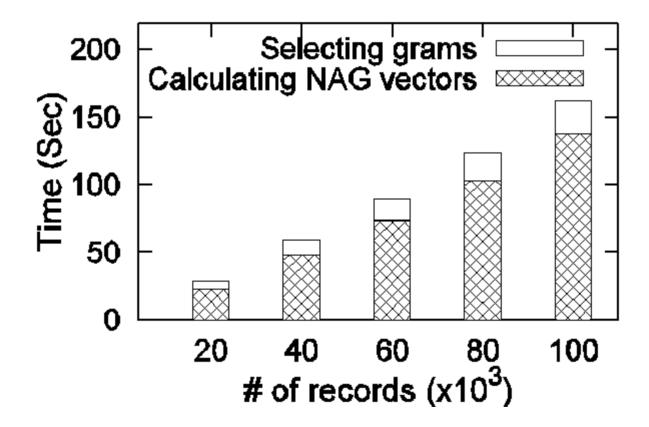
- Data set 1: Texas Real Estate Commission.
 - 151K person names, average length = 33.
- Data set 2: English dictionary from the Aspell spellchecker for Cygwin.
 - 149,165 words, average length = 8.
- Data set 3: DBLP Bibliography.
 - 277K titles, average length = 62.

VGRAM overhead (index size)



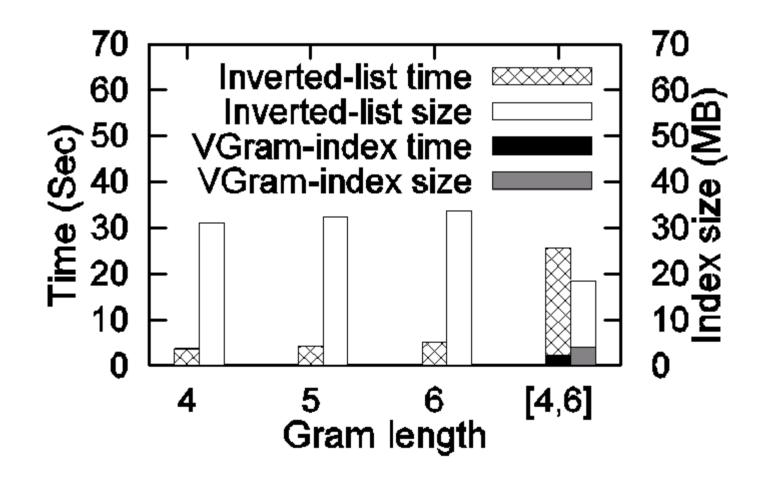
Data Prata Set addition, Been Printed and Applications

VGRAM overhead (construction time)

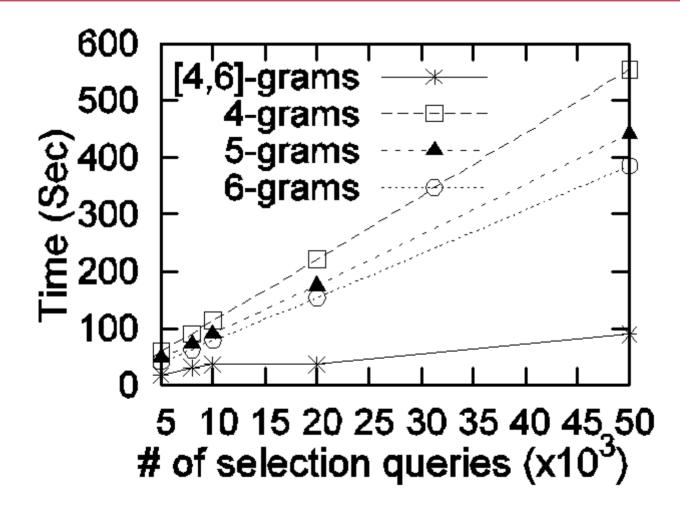


Data Prata Set addition, Been Printed and Applications

Benefits over fixed-length grams (index)

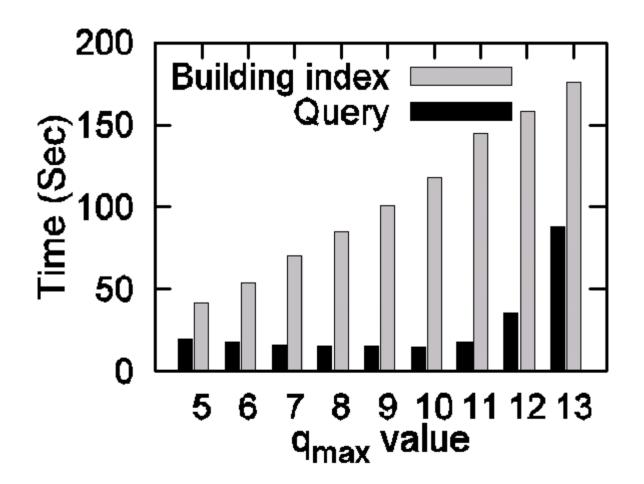


Benefits over fixed-length grams (running time)

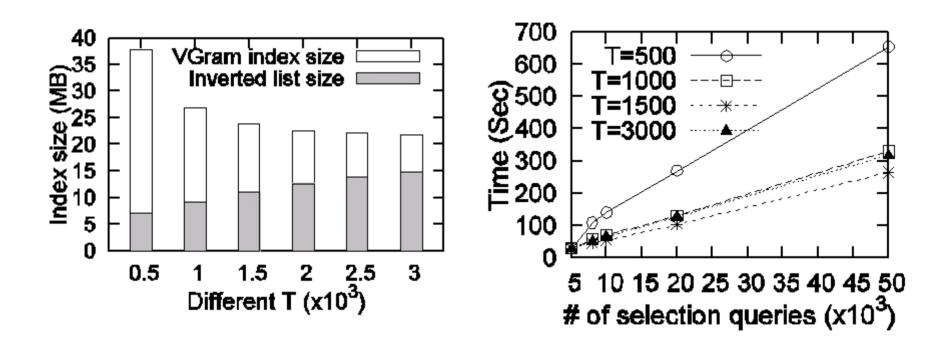


Data set olndation, semigrames plications

Effect of qmax



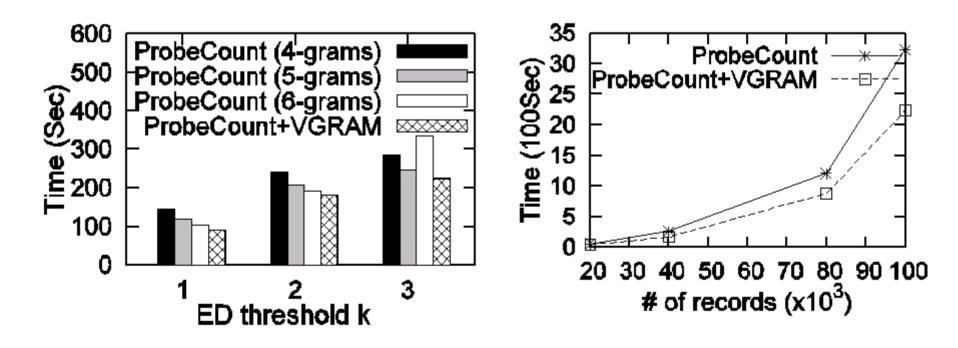
Effect of frequency threshold T



12/3/2007

Dataset oundation semigrame Applications

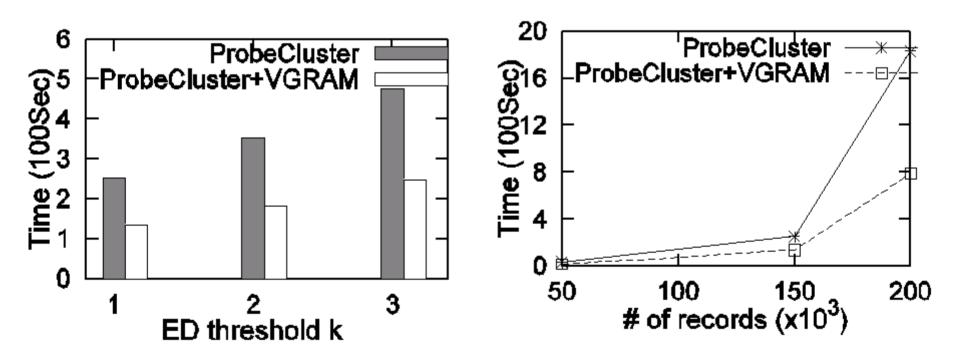
Improving algorithm ProbeCount



12/3/2007

Dataset olndation semigrame Applications

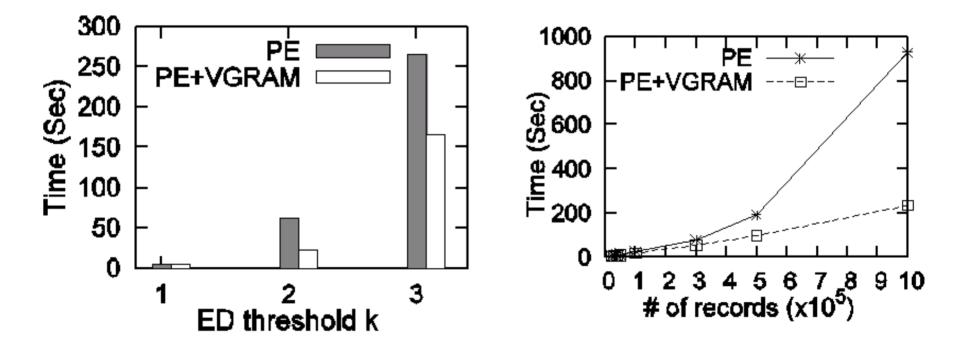
Improving algorithm ProbeCluster



12/3/2007

Dataset olndation semigrame Applications

Improving algorithm PartEnum



12/3/2007

Dataset olndation semigrame Applications

Discussions

- Dynamic maintenance
- Edit distance variants
 - Approximate substring queries
 - Block moves
- Using VGRAM in DBMS

Outline

- Types of sequences
- Foundation
 - Full matching: Building a disk based suffix tree
 - Approximate matching Using vgrams
- Technique & Application
 - Finding global partial order in sequence
 - Finding motif in sequence

Motivation

- Can we describe the data using model?
- More specifically, can we describe the sequence data by few representative sequence?
- Existing work like Hidden Markov Model can provide useful information but not an understandable global view

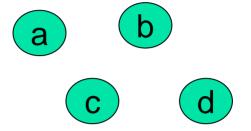
Example

- Sequence data
 - "a b c d" 100 times
 - "a c b d" 100 times
- Note : sequence data is ordered data, such as web page traversal
- Representative of the above sequence data

• "a => c => d" and "a => b => d"

Representative type

- Trivial pattern =>
 - Lost ordering information
 - Too generic



Specific patter =>

- Too specific
- Might represent only a part of data
- Partial Order => a => {c,b} => d
 - A combined approach
 - Partially represent the data by two order

Partial order

To understand the partial order, an informal definition is,

p is a partial order of s, if p is substring of s

partial order p1 is compatible with partial order p2, if p2 is substring of p1

Problem Definition

 Find one or more partial order M, Which describes many sequences as well as maintained ordering information

Or

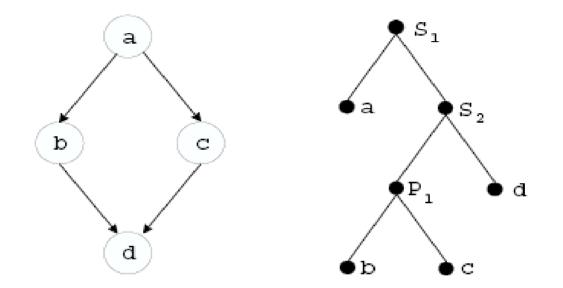
Find M, so the probability of generating all sequences from S is maximum max { P(S|M) }

Problem solution

- Assumption
 - Same event will not be repeated in the single sequence
 - " a b c a " will be considered as " a b c "
 - Partial order must be in form of series parallel tree
 - Explained later

\$\alpha(M)\$ = a set of all complete extension of M

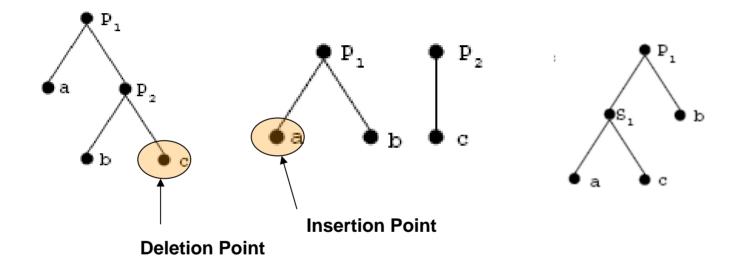
Series Parallel tree



$$\begin{aligned} \alpha(v) &= 1\\ \alpha(S(M_1, M_2)) &= \alpha(M_1) \times \alpha(M_2);\\ \alpha(P(M_1, M_2)) &= \frac{(n(M_1) + n(M_2))!}{n(M_1)!n(M_2)!} \times \alpha(M_1) \times \alpha(M_2); \end{aligned}$$

12/3/2007

Generating various order



Mixture model

- Single partial order can not generate the all sequences
- We need a mixture of various partial order
- Mixture model weighed combination of the various partial order

Example

Sequence Data :-

- " a b c d " 100 times
- " a c b d " 100 times
- " d b c a " 5 times

Mixture Model = { $d \rightarrow b \rightarrow c \rightarrow a$ with weight 0.025, $a \rightarrow \{b,c\} \rightarrow d$ with weight 0.975 }

Algorithm

Step 1: Start from trivial partial order

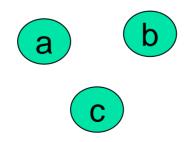
Step2 : Apply the operation to current best model and try to increase likelihood of the partial order

Repeat step 2, until no improvement

Example

- Given sequences
 - abc 100 times
 - bac 100 times

Step 1: Start from trivial order



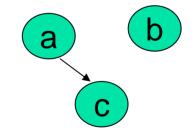
Continue...

= Max { Pro(a → b), Pro(a → c), Pro(b → c), Pro(b → a) }

Select either one : $Pro(a \rightarrow c)$, $Pro(b \rightarrow c)$,

Say "a \rightarrow c" is selected =>

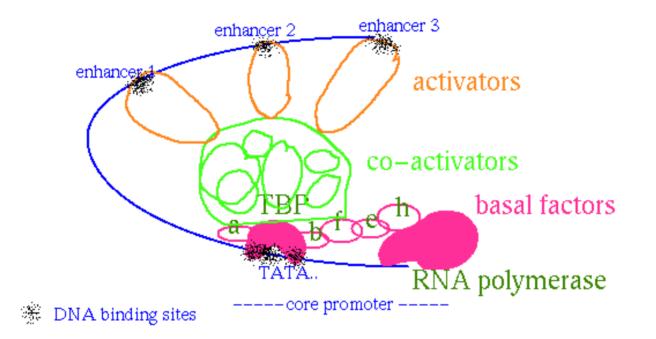
Step 2: Iterate the same ...



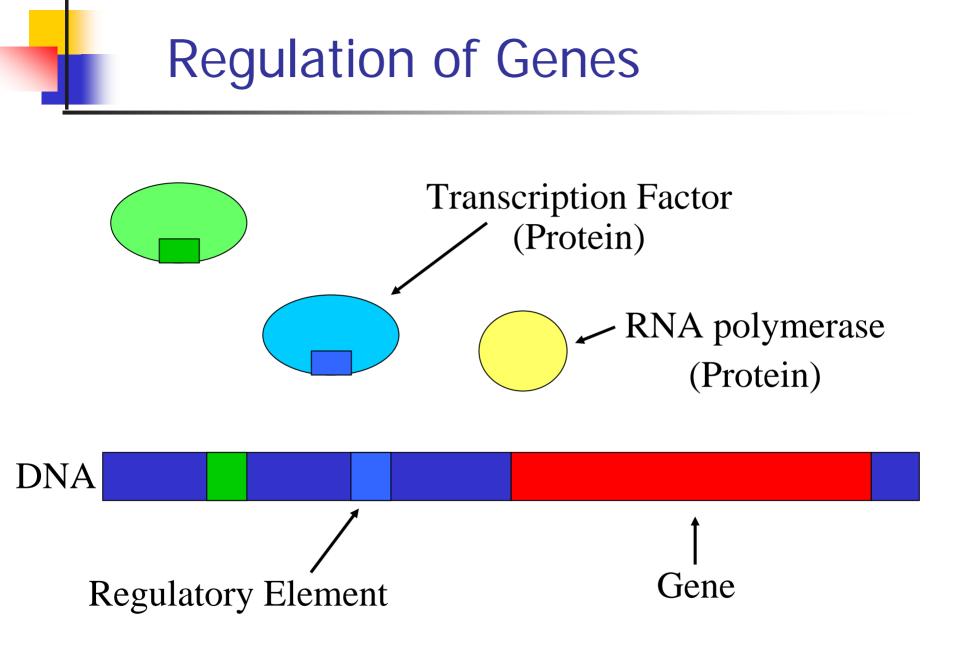
Outline

- Types of sequences
- Foundation
 - Full matching: Building a disk based suffix tree
 - Approximate matching Using vgrams
- Technique & Application
 - Finding global partial order in sequence
 - Finding motif in sequence

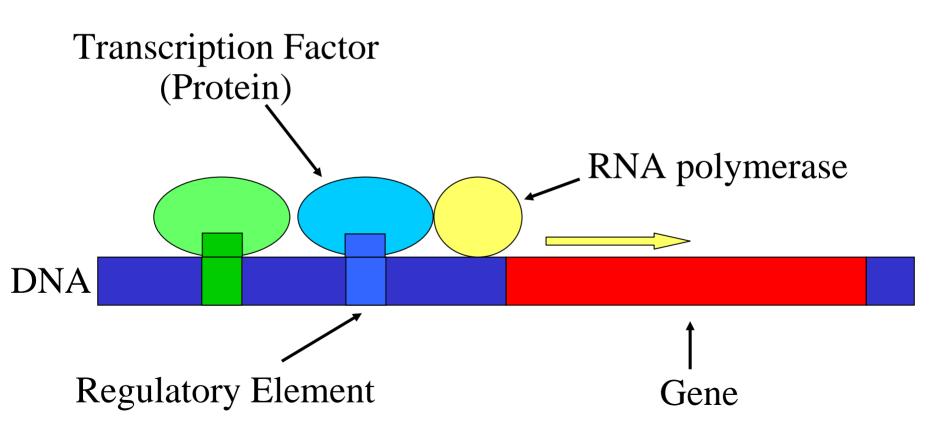
Promoter and Enhancers



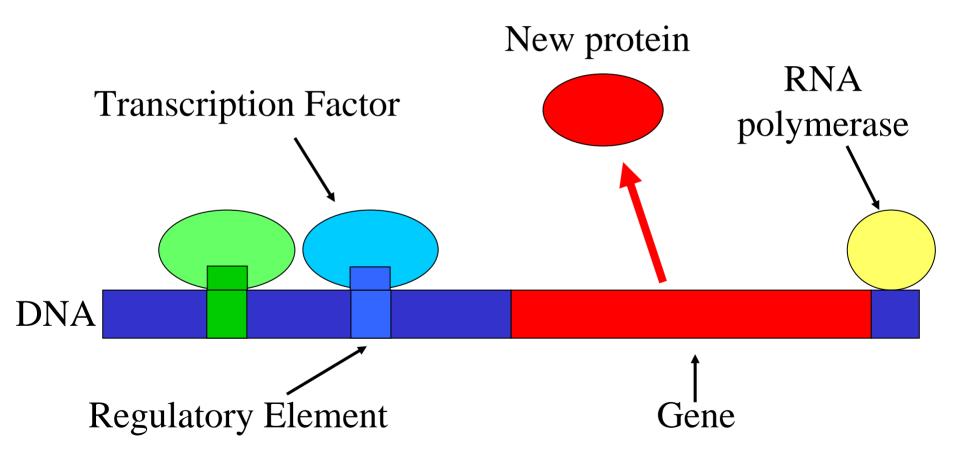
Promoter necessary to start transcription Enhancers can affect transcription from afar



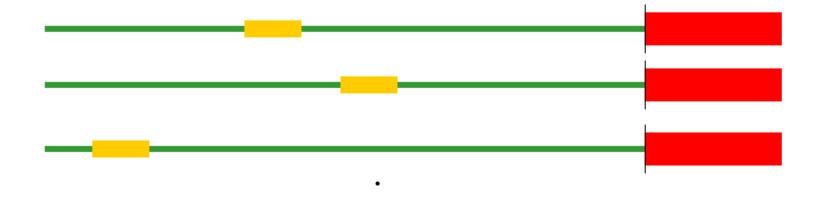
12/3/2007



Regulation of Genes



Finding Regulatory Motifs



Given a collection of genes with common expression,

Find the TF-binding motif in common

Problem Definition

Given a collection of promoter sequences $s_1, ..., s_N$ of genes with common expression

Probabilistic	Combinatorial
Motif: M_{ij} ; $1 \le i \le W$ $1 \le j \le 4$	Motif M: m ₁ m _W
M _{ij} = Prob[letter j, pos i]	Some of the m _i 's blank
Find best M, and positions p_1, \dots, p_N in sequences	Find M that occurs in all s _i with ≤ k differences

Algorithms

- Probabilistic
 - Expectation Maximization: MEME
 - 2. Gibbs Sampling: AlignACE, BioProspector
- Combinatorial CONSENSUS, TEIRESIAS, SP-STAR, others

The MM algorithm, part of MEME package uses Expectation Maximization

Algorithm (sketch):

- 1. Given genomic sequences find all K-long words
- 2. Assume each word is motif or background
- 3. Find likeliest
 - Motif Model
 - Background Model

Classification of words into either Motif or Background

- Given sequences x¹, ..., x^N,
- Find all k-long words X₁,..., X_n
- Define motif model:

where M_{ij} = Prob[letter j occurs in motif position i]
Define background model:

 $B = B_1, ..., B_4$ $B_i = Prob[letter j in background sequence]$

 Define
 Z_{i1} = { 1, if X_i is motif;
 0, otherwise }
 Z_{i2} = { 0, if X_i is motif;
 1, otherwise }
 Given a word X_i = x[1]...x[k],
 P[X_i, Z_{i1}=1] = λ M_{1x[1]}...M_{kx[k]}

P[
$$X_{i}, Z_{i2}=1$$
] = (1 - λ) $B_{x[1]}...B_{x[K]}$
Let $\lambda_1 = \lambda; \lambda_2 = (1 - \lambda)$

Define:

Parameter space $\theta = (M,B)$

 θ_1 : Motif; θ_2 : Background

<u>Objective</u>:

Maximize log likelihood of model: $\log P(X_1...X_n, Z \mid \theta, \lambda) = \sum_{i=1}^n \sum_{j=1}^2 Z_{ij} \log(\lambda_j P(X_i \mid \theta_j))$ $= \sum_{i=1}^n \sum_{j=1}^2 Z_{ij} \log P(X_i \mid \theta_j) + \sum_{i=1}^n \sum_{j=1}^2 Z_{ij} \log \lambda_j$

12/3/2007

Expectation Maximization

Maximize expected likelihood, in iteration of two steps:

Expectation:

Find expected value of log likelihood:

$$E[\log P(X_1...X_n, Z | \theta, \lambda)]$$

Maximization:

Maximize expected value over $\theta,\,\lambda$

Expectation Maximization: E-step

Expectation:

Find expected value of log likelihood:

$$E[\log P(X_1...X_n, Z \mid \theta, \lambda)] =$$

$$\sum_{i=1}^n \sum_{j=1}^2 E[Z_{ij}] \log P(X_i \mid \theta_j) + \sum_{i=1}^n \sum_{j=1}^2 E[Z_{ij}] \log \lambda_j$$

where expected values of Z can be computed as follows:

$$E[Z_{ij}] = \frac{\lambda_j P(X_i \mid \theta_j)}{\sum_{k=1}^2 \lambda_k P(X_i \mid \theta_k)}$$

Expectation Maximization: M-step

Maximization:

Maximize expected value over θ and λ independently

For
$$\lambda$$
, this is easy:
 $\lambda_{j}^{NEW} = \arg \max_{\lambda_{j}} x \sum_{i=1}^{n} E[\mathbf{Z}_{ij}] \log \lambda_{j} = \sum_{i=1}^{n} \frac{Z_{ij}}{n}$

Expectation Maximization: M-step

• For $\theta = (M, B)$, define

c_{jk} = E[# times letter k appears in motif position j]
c_{0k} = E[# times letter k appears in background]
c_{ij} values are calculated easily from E[Z] values

It easily follows:

 $M_{jk}^{NEW} = \frac{c_{jk}}{\sum_{k=1}^{4} c_{jk}} \qquad B_{k}^{NEW} = \frac{c_{0k}}{\sum_{k=1}^{4} c_{0k}}$

to not allow any 0's, add pseudocounts

12/3/2007

Initial Parameters Matter!

Consider the following "artificial" example:

 x^1 , ..., x^N contain:

- 2¹² patterns on {A, T}: A...A, A...AT,...., T... T
- 2¹² patterns on {C, G}: C...C , C...CG,....., G...G
- D << 2¹² occurrences of 12-mer ACTGACTGACTG

Some local maxima:

$$\lambda \approx \frac{1}{2}; B = \frac{1}{2}C, \frac{1}{2}G; M_i = \frac{1}{2}A, \frac{1}{2}T, i = 1, ..., 12$$

$$\lambda \approx D/2^{k+1}$$
; B = $\frac{1}{4}A$, $\frac{1}{4}C$, $\frac{1}{4}G$, $\frac{1}{4}T$;
M₁ = 100% A, M₂ = 100% C, M₃ = 100% T, etc.

12/3/2007

Overview of EM Algorithm

- 1. Initialize parameters $\theta = (M, B), \lambda$:
 - Try different values of λ from N^{-1/2} up to 1/(2K)
- 2. Repeat:
 - a. Expectation
 - b. Maximization
- 3. Until change in $\theta = (M, B)$, λ falls below ε
- 4. Report results for several "good" λ

Overview of EM Algorithm

- One iteration running time: O(NK)
 - Usually need < N iterations for convergence, and < N starting points.
 - Overall complexity: unclear typically O(N²K) O(N³K)
- EM is a local optimization method
- Initial parameters matter

MEME: Bailey and Elkan, ISMB 1994.

Gibbs Sampling

- Given:
 - X¹, ..., X^N,
 - motif length K,
 - background B,
- Find:
 - Model M
 - Locations a_1, \dots, a_N in x^1, \dots, x^N

Maximizing log-odds likelihood ratio:

$$\sum_{i=1}^{N} \sum_{k=1}^{K} \log \frac{M(k, x_{a_i+k}^i)}{B(x_{a_i+k}^i)}$$

Gibbs Sampling

- AlignACE: first statistical motif finder
- BioProspector: improved version of AlignACE

Algorithm (sketch):

1. Initialization:

- a. Select random locations in sequences $x^1, ..., x^N$
- b. Compute an initial model M from these locations

2. <u>Sampling Iterations</u>:

- a. Remove one sequence xⁱ
- b. Recalculate model
- c. Pick a new location of motif in xⁱ according to probability the location is a motif occurrence

Gibbs Sampling

Running Gibbs Sampling:

- 1. Initialize
- 2. Run until convergence
- 3. Repeat 1,2 several times, report common motifs

Advantages / Disadvantages

• Very similar to EM

Advantages:

- Easier to implement
- Less dependent on initial parameters
- More versatile, easier to enhance with heuristics

Disadvantages:

- More dependent on all sequences to exhibit the motif
- Less systematic search of initial parameter space

References

- Benjarath Phoophakdee, Mohammed J. Zaki: "<u>Genome-scale disk-based suffix tree</u> <u>indexing</u>". SIGMOD Conference 2007: 833-844
- Chen Li, Bin Wang, and Xiaochun Yang. "VGRAM: Improving Performance of Approximate Queries on String Collections Using Variable-Length Grams". In VLDB 2007.
- Heikki Mannila, Christopher Meek: <u>Global partial orders from sequential data</u>. KDD 2000: 161-168
- T.L. Bailey and Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In Proc. Int. Conf. Intell. Syst. Mol. Biol., volume 2, pages 28--36. 1994

Optional References:

- U. Keich and P. Pevzner. <u>Subtle motifs: defining the limits of motif finding</u> <u>algorithms</u>. Bioinformatics, in press, 2002.
- B Ma, J Tromp, M Li. <u>PatternHunter: faster and more sensitive homology search</u> Bioinformatics, 2002 - Oxford Univ Press
- Xia Cao, Shuai Cheng Li, Anthony K. H. Tung. "<u>Indexing DNA Sequences Using q-grams</u>". Best Paper Award. To appear in DASFAA 2005.

12/3/2007

Acknowledgements

Ken Sung

- Mohammad Zaki
- Chen Li