
8/19/2002 Data Mining: Foundation, Techniques and Applications 1

Data Mining: Foundation,
Techniques and Applications

Lesson 11: Mining and Search Sequences

Anthony Tung(鄧锦浩)
School of Computing

National University of Singapore

Li Cuiping(李翠平)
School of Information

Renmin University of China

12/3/2007 Data Mining: Foundation, Techniques and Applications 2

Outline
� Types of sequences
� Foundation

� Full matching: Building a disk based suffix tree
� Approximate matching Using vgrams

� Technique & Application
� Finding global partial order in sequence
� Finding motif in sequence

12/3/2007 Data Mining: Foundation, Techniques and Applications 3

Types of sequences
� Symbolic vs Numeric

� We only touch discrete symbols here. Sequences of number are
called time series and is a huge topic by itself!

� Single dimension vs multi-dimensional
� Example: Yueguo Chen, Shouxu Jiang, Beng Chin Ooi, Anthony K. H. Tung.

"Querying Complex Spatial-Temporal Sequences in Human Motion
Databases" accepted and to appear in 24th IEEE International Conference
on Data Engineering (ICDE) 2008

� Single long sequence vs multiple sequences

http://www.comp.nus.edu.sg/~chenyueg
http://www.comp.nus.edu.sg/~atung/publication/complexseq_icde08.pdf
http://www.comp.nus.edu.sg/~atung/publication/complexseq_icde08.pdf
http://www.comp.nus.edu.sg/~atung/publication/complexseq_icde08.pdf

12/3/2007 Data Mining: Foundation, Techniques and Applications 4

Outline
� Types of sequences
� Foundation

� Full matching: Building a disk based suffix tree
� Approximate matching Using vgrams

� Technique & Application
� Finding global partial order in sequence
� Finding motif in sequence

12/3/2007 Data Mining: Foundation, Techniques and Applications 5

Suffix
� Suffixes of acacag$:

1. acacag$
2. cacag$
3. acag$
4. cag$
5. ag$
6. g$
7. $

12/3/2007 Data Mining: Foundation, Techniques and Applications 6

Suffix Trie
E.g. consider the string S = acacag$
Suffix Trie: a ties of
all possible suffices of S

$ a c

a

g

c

a

g

c g

7

c g

1

3

5

2

4

6

a

gg

a

$7
g$6
ag$5
cag$4
acag$3
cacag$2
acacag$1
Suffix

$

$

$ $

$

$

12/3/2007 Data Mining: Foundation, Techniques and Applications 7

Suffix Tree (I)
Suffix tree for S=acacag$: merge nodes with only one child

1 2 3 4 5 6 7

a c a c a g $S=

v

$ a c
a

g

ca
g

c
g

c g

7

1 3

5

2 4

6

a
g

g
$ $

$

$

$$a

Path-label of
node v is “aca”
Denoted as α(v)

“ca” is an
edge label

This is a
leaf edge

12/3/2007 Data Mining: Foundation, Techniques and Applications 8

Suffix Tree (II)
Suffix tree has exactly n leaves and at most n edges
The label of each edge can be represented using 2 indices
Thus, suffix tree can be represented using O(n log n) bits

1 2 3 4 5 6 7

a c a c a g $S=$ a c
a

g

ca
g

c
g

c g

7

1 3

5

2 4

6

ag
g

$ $

$

$

$$

6,7

6,7
6,7

6,7 4,7

4,7

a

7,7
1,1

2,3 2,3

Note: The end index of every
leaf edge should be 7, the
last index of S. Thus, for leaf
edges, we only need to store
the start index.

12/3/2007 Data Mining: Foundation, Techniques and Applications 9

Generalized suffix tree
� Build a suffix tree for two or more strings
� E.g. S1 = acgat#, S2 = cgt$

a c gg t

a
t t a t

c

41 2 1 3 2 3

ta
t $ $$

#

g t
#

5

#
#

46
$

#

12/3/2007 Data Mining: Foundation, Techniques and Applications 10

Straightforward construction of suffix tree

� Consider S = s1s2…sn where sn=$

� Algorithm:
� Initialize the tree we only a root
� For i = n to 1

� Includes S[i..n] into the tree

� Time: O(n2)

12/3/2007 Data Mining: Foundation, Techniques and Applications 11

Example of construction
� S=acca$

ÆÆ

Init For-loop

$

5

I5

a

4

I4

5

$ $Æ
a

4

I3

5

$ $

3

a
$

c

I2

c

ca a

3 2

a

45

$ $
$ $

Æ

I1

c

ca a

3 25

$
$ $

c
c

a

a

4 1

$
$

12/3/2007 Data Mining: Foundation, Techniques and Applications 12

Construction of generalized suffix tree

� S’= c#

Æ

I1

c

ca a

3 25

$
$ $

c
c

a

a

4 1

$
$

Init For-loop

J2

c

ca a

3 25

$
$ $

c
c

a

a

4 1

$
$

2

Æ

J1

c

ca a

3 25

$
$ $

c
c

a

a

4 1

$
$

2

#
#

1

12/3/2007 Data Mining: Foundation, Techniques and Applications 13

Property of suffix tree
� Fact: For any internal node v in the suffix tree,

if the path label of v is α(v)=ap, then
� there exists another node w in the suffix tree such

that α(w)=p.

� Proof: Skip the proof.

� Definition of Suffix Link:
� For any internal node v, define its suffix link sl(v) =

w.

12/3/2007 Data Mining: Foundation, Techniques and Applications 14

Suffix Link example
� S=acacag$

$ a c
a

g

ca
g

c
g

c g

7

1 3

5

2 4

6

a
g

g
$ $

$

$

$$a

12/3/2007 Data Mining: Foundation, Techniques and Applications 15

Can we construct a suffix tree in O(n)
time?

� Yes. We can construct it in O(n) time and O(n) space
� Weiner’s algorithm [1973]

� Linear time for constant size alphabet, but much space
� McGreight’s algorithm [JACM 1976]

� Linear time for constant size alphabet, quadratic space
� Ukkonen’s algorithm [Algorithmica, 1995]

� Online algorithm, linear time for constant size alphabet, less space
� Farach’s algorithm [FOCS 1997]

� Linear time for general alphabet
� Hon,Sadakane, and Sung’s algorithm [FOCS 2003]

� O(n) bit space O(n logen) time for 0<e<1
� O(n) bit space O(n) time for suffix array construction

� But they are all in-memory algorithm that does not
guarantee locality of processing

12/3/2007 Data Mining: Foundation, Techniques and Applications 16

Trellis Algorithm

� A novel disk-based suffix tree construction
algorithm designed specifically for DNA
sequences

� Scales gracefully for very large genome
sequences (i.e. human genome)

� Unlike existing algorithms,
� Trellis exhibits no data skew problem
� Trellis recovers suffix links quickly
� Trellis has fast construction and query time

� Trellis is a 4-step algorithm

12/3/2007 Data Mining: Foundation, Techniques and Applications 17

Trellis: Algorithm Overview

S
R0 R1 Rr-1

Disk

TR1
TR0

TRr-1

TR1,Pm-1
TR0,P0

TPi

1. Variable-length prefixes: e.g. AA, ACA, ACC, …

2. Prefixed Suffix Sub-trees

3. Tree
Merging

TR0,Pi
TRr-1,Pi

4. Suffix Link Recovery (optional)

12/3/2007 Data Mining: Foundation, Techniques and Applications 18

1. Variable-length Prefix Creation
� Goal: Separate the complete suffix tree by prefixes of

suffixes, such that each subtree can reside entirely in
the available memory

Frequency of Length-2 Prefixes for
Human Genome

AA

AC

AG
AT CA

CC

CG

CT
GA

GC
GGGT

TA TC
TG

TT

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

0 5 10 15 20

Prefixes

Fr
eq

ue
nc

y

Main Idea:
Expand prefixes
only as needed

12/3/2007 Data Mining: Foundation, Techniques and Applications 19

2. Suffix Tree Partitioning

S
R0 R1 Rr-1

Disk

TR1
TR0

TRr-1

TR0,P0
TR1,Pm-1

1. Variable-length prefixes: e.g. AA, ACA, ACC, …

2. Prefixed Suffix Sub-trees
• Use Ukkonen’s method because
of Its efficiency: O(n) time &space
• Discard suffix links when store the
subtrees on disk
• Store enough information so that a
subtree can be rebuilt quickly, e.g. edge
starting index, edge length, node parent,
etc.

12/3/2007 Data Mining: Foundation, Techniques and Applications 20

3. Suffix Tree Merging

S
R0 R1 Rr-1

Disk

TR1
TR0

TRr-1

TR1,Pm-1
TR0,P0

TPi

1. Variable-length prefixes: e.g. AA, ACA, ACC, …

2. Prefixed Suffix Sub-trees

3. Tree
Merging

TR0,Pi
TRr-1,Pi

12/3/2007 Data Mining: Foundation, Techniques and Applications 21

T1 T2

A C G T

Case 1: No common prefix

Merge Algorithm

12/3/2007 Data Mining: Foundation, Techniques and Applications 22

T1 T2

A C G
T

Case 1: No common prefix

Merge Algorithm

12/3/2007 Data Mining: Foundation, Techniques and Applications 23

Merge Algorithm

T1 T2

A C G
T

Case 1: No common prefix

A CAAT

T1

CAGGC

Case 2: Has common prefix

T2

12/3/2007 Data Mining: Foundation, Techniques and Applications 24

Merge Algorithm

T1 T2

A C G
T

Case 1: No common prefix

A

T1

GGC

Case 2: Has common prefix

T2CA
AT

12/3/2007 Data Mining: Foundation, Techniques and Applications 25

4. Suffix Link Recovery
� Some internal nodes have suffix links from the

Ukkonen’s algorithm in Step #1
� Some internal nodes are created in the merging

step and do not have suffix links
� Discard all suffix link information from step #1

and stored suffix trees on disk (does not help
speed this step up, so discard to simplify)

� Should suffix links are required, use the suffix
link recovery algorithm to rebuild them

12/3/2007 Data Mining: Foundation, Techniques and Applications 26

4. Suffix Link Recovery (cont.
� For each prefixed suffix tree, recursively call this

function from the tree’s root.
� x: an internal node
� L: be edge label between x and parent(x)

RECOVER(x, L)
if (x == root) sl(x) Å x;
else {

1. p = parent(x);
2. q = sl(p); //get suffix link of p, and load the prefix tree

for q from disk if not in memory
3. Skip/count using L to locate sl(x) under q; }

for (each internal child y of x)
RECOVER(y, edge-label(x,y));

12/3/2007 Data Mining: Foundation, Techniques and Applications 27

Experimental Results

Construction Time
Trellis vs TOP-Q and DynaCluster

1

10

100

1000

0 20 40 60 80 100 120

Sequence Length (Mbp)

Ti
m

e
(m

in
s)

TOP-Q (mins) DynaCluster (mins) Trellis (mins)

Construction and Link Recovery Time
Trellis vs TDD

0
100
200
300
400

200 400 600 800 1000

Sequence Length (Mbp)

Ti
m

e
(m

in
s)

TDD Trellis Link Recovery Total Trellis

• Memory: 512 MB
• TOP-Q and DynaCluster parameters were
set as recommended in their papers

• Memory: 512MB

Trellis
• Without
links: 4.2hr
• With links:
5.9hr

TDD: 12.8hr

Human genome suffix tree
(size ~3Gbp, using 2GB of memory)

12/3/2007 Data Mining: Foundation, Techniques and Applications 28

Experimental Results (cont.)
� Disk Space Usage

Disk-based Suffix Tree Size
Trellis vs TDD

0

10

20

30

200 400 600 800 1000

Sequence Length (Mbp)

Si
ze

 (G
B

)

Trellis TDD

Human Genome
Trellis TDD
72GB 54GB

On average, Trellis uses about
27 bytes per character indexed while
TDD uses about 9.7 bytes.

For the human genome, TDD uses
about 19.3 bytes/char because it
requires 64-bit environment to index
larger sequences.

Trellis remains at 27 bytes/char for
the human genome.

Disk-space vs query time tradeoff

12/3/2007 Data Mining: Foundation, Techniques and Applications 29

Experimental Results (cont.)
� Query time (without suffix links)

Trellis vs TDD
Query Times on the Human Genome Suffix Tree

0.000 0.050 0.100 0.150 0.200

40

80

200

600

1000

4000

8000

Q
ue

ry
 L

en
gt

h
(b

p)

Query Time (secs)

Trellis
TDD

TDD
• smaller suffix trees
• edge length must be determined

by examining all children nodes
• each internal node only has a

pointer to its first child, i.e. children
must be linearly scanned during
a query search

Trellis
• larger suffix trees
• edge length stored locally with its

respective node
• all children locations stored locally,

so each child can be accessed in a
constant time, i.e. no linear scan
needed

Hence, faster query time!

12/3/2007 Data Mining: Foundation, Techniques and Applications 30

v sf(v)

αxα

GA
CA

A G

S[150]

xαG C

• Uses suffix links to move
across the tree to search for
the next query
• Mimics the behavior of
exact match anchor search
during a genome alignment

Query length = 100

Experimental Results (cont.)

12/3/2007 Data Mining: Foundation, Techniques and Applications 31

Experiment Results (cont.)

� Query time (with suffix links)
Trellis: Without Suffix Links vs With Suffix Links
Query Times on the Human Genome Suffix Tree

0.000 0.010 0.020 0.030 0.040 0.050

40

80

200

600

1000

4000

8000
Q

ue
ry

 L
en

gt
h

(b
p)

Query Time (secs)

With Suffix Links
Without Suffix Links

12/3/2007 Data Mining: Foundation, Techniques and Applications 32

Summary
� Trellis builds a disk-based suffix tree based on

� A partitioning method via variable-length prefixes
� A suffix subtree merging algorithm

� Trellis is both time and space efficient
� Trellis quickly recovers suffix links
� Faster than existing leading methods in both

construction and query time

12/3/2007 Data Mining: Foundation, Techniques and Applications 33

Future Work
� Input sequence larger than the human genome

(more than 3Gbp)
� Wider range of alphabets, e.g. protein alphabet

and English text
� Parallelize Trellis

Question?

12/3/2007 Data Mining: Foundation, Techniques and Applications 34

Outline
� Types of sequences
� Foundation

� Full matching: Building a disk based suffix tree
� Approximate matching Using vgrams

� Technique & Application
� Finding global partial order in sequence
� Finding motif in sequence

12/3/2007 Data Mining: Foundation, Techniques and Applications 35

Example 1: a movie database

Star Title Year Genre
The Matrix 1999

2005

1984

Samuel Jackson Goodfellas 1990 Drama

…

Star Wars: Episode III - Revenge
of the Sith

Sci-Fi

Sci-Fi

Sci-FiThe Terminator

……

Keanu Reeves

Samuel Jackson

Schwarzenegger

…

Tom

Find movies starred Samuel Jackson

12/3/2007 Data Mining: Foundation, Techniques and Applications 36

How about Schwarrzenger?

Star Title Year Genre
The Matrix 1999

2005

1984

Samuel Jackson Goodfellas 1990 Drama

…

Star Wars: Episode III - Revenge
of the Sith

Sci-Fi

Sci-Fi

Sci-FiThe Terminator

……

Keanu Reeves

Samuel Jackson

Schwarzenegger

…

The user doesn’t know the exact spelling!

12/3/2007 Data Mining: Foundation, Techniques and Applications 37

Relax Condition

Star Title Year Genre
The Matrix 1999

2005

1984

Samuel Jackson Goodfellas 1990 Drama

…

Star Wars: Episode III - Revenge
of the Sith

Sci-Fi

Sci-Fi

Sci-FiThe Terminator

……

Keanu Reeves

Samuel Jackson

Schwarzenegger

…

Find movies with a star “similar to” Schwarrzenger.

12/3/2007 Data Mining: Foundation, Techniques and Applications 38

Edit Distance
� Given two strings A and B, edit A to B with the

minimum number of edit operations:
� Replace a letter with another letter
� Insert a letter
� Delete a letter

� E.g.
� A = interestings _i__nterestings
B = bioinformatics bioinformatic_s

101101101100110
� Edit distance = 9

12/3/2007 Data Mining: Foundation, Techniques and Applications 39

Edit Distance Computation
� Instead of minimizing the number of edge operations,

we can associate a cost function to the operations and
minimize the total cost. Such cost is called edit distance.

� For the previous example, the cost function is as follows:
� A= _i__nterestings
B= bioinformatic_s

101101101100110
� Edit distance = 9 _ A C G T

_ 1 1 1 1

A 1 0 1 1 1

C 1 1 0 1 1

G 1 1 1 0 1

T 1 1 1 1 0

12/3/2007 Data Mining: Foundation, Techniques and Applications 40

Needleman-Wunsch algorithm (I)
� Consider two strings S[1..n] and T[1..m].
� Define V(i, j) be the score of the optimal

alignment between S[1..i] and T[1..j]
� Basis:

� V(0, 0) = 0
� V(0, j) = V(0, j-1) + δ(_, T[j])

� Insert j times

� V(i, 0) = V(i-1, 0) + δ(S[i], _)
� Delete i times

12/3/2007 Data Mining: Foundation, Techniques and Applications 41

Needleman-Wunsch algorithm (II)
� Recurrence: For i>0, j>0

�

� In the alignment, the last pair must be either
match/mismatch, delete, insert.

⎪
⎩

⎪
⎨

⎧

+−
+−
+−−

=
])[(_,)1,(

_)],[(),1(
])[],[()1,1(

max),(
jTjiV

iSjiV
jTiSjiV

jiV
δ
δ
δ Match/mismatch

Delete

Insert

xxx…xx xxx…xx xxx…x_
| | |

xxx…yy yyy…y_ yyy…yy
match/mismatch delete insert

12/3/2007 Data Mining: Foundation, Techniques and Applications 42

Example (I)
_ A G C A T G C

_ 0 -1 -2 -3 -4 -5 -6 -7
A -1
C -2
A -3
A -4
T -5
C -6
C -7

12/3/2007 Data Mining: Foundation, Techniques and Applications 43

Example (II)
_ A G C A T G C

_ 0 -1 -2 -3 -4 -5 -6 -7
A -1 2 1 0 -1 -2 -3 -4
C -2 1 1 ?
A -3
A -4
T -5
C -6
C -7

3 2

12/3/2007 Data Mining: Foundation, Techniques and Applications 44

Example (III)
_ A G C A T G C

_ 0 -1 -2 -3 -4 -5 -6 -7
A -1 2 1 0 -1 -2 -3 -4
C -2 1 1 3 2 1 0 -1
A -3 0 0 2 5 4 3 2
A -4 -1 -1 1 4 4 3 2
T -5 -2 -2 0 3 6 5 4
C -6 -3 -3 0 2 5 5 7
C -7 -4 -4 -1 1 4 4 7

12/3/2007 Data Mining: Foundation, Techniques and Applications 45

“q-grams” of strings

u n i v e r s a l

2-grams

12/3/2007 Data Mining: Foundation, Techniques and Applications 46

q-gram inverted lists

id strings
0
1
2
3
4

rich
stick
stich
stuck
static

4

2 3
0
1 4

2-grams

at
ch
ck
ic
ri
st
ta
ti
tu
uc

20

1 3
0 1 2 4

4
1 2 4
3
3

12/3/2007 Data Mining: Foundation, Techniques and Applications 47

of common grams >= 3

� Query: “shtick”, ED(shtick, ?)≤1

id strings
0
1
2
3
4

rich
stick
stich
stuck
static

Searching using inverted lists

2-grams

at
ch
ck
ic
ri
st
ta
ti
tu
uc

4

2 3
0
1 4

20

1 3
0 1 2 4

4
1 2 4
3
3

ti ic cksh ht ti ic ck

12/3/2007 Data Mining: Foundation, Techniques and Applications 48

of common grams >= 1

2-grams -> 3-grams?
� Query: “shtick”, ED(shtick, ?)≤1

id strings
0
1
2
3
4

rich
stick
stich
stuck
static

3-grams

ati
ich
ick
ric
sta
sti
stu
tat
tic
tuc
uck

tic icksht hti tic ick
4

2
4
1

20

1
0

3
4
1
3

42

3

id strings
0
1
2
3
4

rich
stick
stich
stuck
static

id strings
0
1
2
3
4

rich
stick
stich
stuck
static

12/3/2007 Data Mining: Foundation, Techniques and Applications 49

Observation 1: dilemma of choosing “q”
� Increasing “q” causing:

� Longer grams Æ Shorter lists
� Smaller # of common grams of similar strings

id strings
0
1
2
3
4

rich
stick
stich
stuck
static

4

2 3
0
1 4

2-grams

at
ch
ck
ic
ri
st
ta
ti
tu
uc

20

1 3
0 1 2 4

4
1 2 4
3
3

12/3/2007 Data Mining: Foundation, Techniques and Applications 50

Observation 2: skew distributions of
gram frequencies

� DBLP: 276,699 article titles

� Popular 5-grams: ation (>114K times), tions, ystem, catio

12/3/2007 Data Mining: Foundation, Techniques and Applications 51

VGRAM: Main idea
� Grams with variable lengths (between

qmin and qmax)
� zebra

� ze(123)

� corrasion
� co(5213), cor(859), corr(171)

� Advantages
� Reduce index size ☺
� Reducing running time ☺
� Adoptable by many algorithms ☺

12/3/2007 Data Mining: Foundation, Techniques and Applications 52

Challenges
� Generating variable-length grams?
� Constructing a high-quality gram dictionary?
� Relationship between string similarity and their

gram-set similarity?
� Adopting VGRAM in existing algorithms?

12/3/2007 Data Mining: Foundation, Techniques and Applications 53

Challenge 1: String Æ Variable-length grams?
� Fixed-length 2-grams

� Variable-length grams

u n i v e r s a l

ni
ivr
sal
uni
vers

[2,4]-gram dictionary
u n i v e r s a l

12/3/2007 Data Mining: Foundation, Techniques and Applications 54

Representing gram dictionary
as a trie

ni
ivr
sal
uni
vers

12/3/2007 Data Mining: Foundation, Techniques and Applications 55

Challenge 2: Constructing gram
dictionary

st Æ 0, 1, 3
stiÆ 0, 1
stuÆ3
sticÆ 0, 1
stucÆ3

Step 1: Collecting frequencies of grams with length in
[qmin, qmax]

Gram trie with frequencies

12/3/2007 Data Mining: Foundation, Techniques and Applications 56

Step 2: selecting grams
� Pruning trie using a frequency threshold T

(e.g., 2)

12/3/2007 Data Mining: Foundation, Techniques and Applications 57

Step 2: selecting grams (cont)

Threshold T = 2

12/3/2007 Data Mining: Foundation, Techniques and Applications 58

Final gram dictionary

[2,4]-grams

12/3/2007 Data Mining: Foundation, Techniques and Applications 59

Challenge 3: Edit operation’s effect on grams

k operations could affect k * q grams

u n i v e r s a l
Fixed length: q

12/3/2007 Data Mining: Foundation, Techniques and Applications 60

Deletion affects variable-length grams

i-qmax+1 i+qmax- 1
Deletio

n

Not
affected

Not
affected

Affected

i

12/3/2007 Data Mining: Foundation, Techniques and Applications 61

Grams affected by a deletion

ni
ivr
sal
uni
vers

[2,4]-grams

u n i v e r s a l

i-qmax+1 i+qmax- 1
Deletion

i

Affected?

Deletion

Affected?

12/3/2007 Data Mining: Foundation, Techniques and Applications 62

Grams affected by a deletion (cont)

i-qmax+1 i+qmax- 1
Deletio

n

i

Affected?

Trie of grams Trie of reversed
grams

12/3/2007 Data Mining: Foundation, Techniques and Applications 63

of grams affected by each operation

_ u _ n _ i _ v _ e _ r _ s _ a _ l _

0 1 1 1 1 2 1 2 2 2 1 1 1 2 1 1 1 1 0

Deletion/substituti
on

Insertion

12/3/2007 Data Mining: Foundation, Techniques and Applications 64

Max # of grams affected by k operations

Vector of s = <2,4,6,8,9>

With 2 edit operations, at most 4 grams can be
affected

� Called NAG vector (# of affected grams)
� Precomputed and stored

12/3/2007 Data Mining: Foundation, Techniques and Applications 65

Summary of VGRAM index

12/3/2007 Data Mining: Foundation, Techniques and Applications 66

Challenge 4: adopting VGRAM
Easily adoptable by many algorithms

Basic interfaces:
� String s Æ grams
� String s1, s2 such that ed(s1,s2) <= k Æ

min # of their common grams

12/3/2007 Data Mining: Foundation, Techniques and Applications 67

Lower bound on # of common grams

If ed(s1,s2) <= k, then their # of common
grams >=:

(|s1|- q + 1) – k * q

u n i v e r s a l

Fixed length
(q)

Variable lengths: # of grams of s1 – NAG(s1,k)

12/3/2007 Data Mining: Foundation, Techniques and Applications 68

Example: algorithm using inverted lists
� Query: “shtick”, ED(shtick, ?)≤1

1 2 4

1 2
1
0 4

3
…
ck
ic
…
ti
…

Lower bound = 3

sh ht tick

Lower bound = 1

2 4
1

4
0

1
1

2

3
…
ck
ic
ich
…
tic
tick
…

2-4 grams2-grams
tick

id strings
0
1
2
3
4

rich
stick
stich
stuck
static

id strings
0
1
2
3
4

rich
stick
stich
stuck
static

id strings
0
1
2
3
4

rich
stick
stich
stuck
static

12/3/2007 Data Mining: Foundation, Techniques and Applications 69

PartEnum + VGRAM
PartEnum, fixed q-grams:

ed(s1,s2) <= k
Î hamming(grams(s1),grams(s2)) <= k * q

VGRAM:
ed(s1,s2) <= k

Î hamming(VG (s1),VG(s2)) <= NAG(s1,k) + NAG(s2,k)

12/3/2007 Data Mining: Foundation, Techniques and Applications 70

PartEnum + VGRAM (naïve)

Bm(R) = max(NAG(r,k))

R

Bm(S) = max(NAG(s,k))

S

• Both are using the same gram dictionary.
• Use Bm(R) + Bm(S) as the new hamming bound.

12/3/2007 Data Mining: Foundation, Techniques and Applications 71

PartEnum + VGRAM (optimization)
R

Bm(S) = max(NAG(s,k))

S

• Group R based on the NAG(r,k) values
• Join(R1,S) using Bm(R1) + Bm(S)
• Similarly, Join(R2,S), Join(R3,S)
• Local bounds tighterÆ better signatures generated
• Grouping S also possible.

R1 with Bm(R1)

R2 with Bm(R2)

R3 with Bm(R3)

12/3/2007 Data Mining: Foundation, Techniques and Applications 72

Data sets

� Data set 1: Texas Real Estate Commission.
� 151K person names, average length = 33.

� Data set 2: English dictionary from the
Aspell spellchecker for Cygwin.
� 149,165 words, average length = 8.

� Data set 3: DBLP Bibliography.
� 277K titles, average length = 62.

12/3/2007 Data Mining: Foundation, Techniques and Applications 73

VGRAM overhead (index size)

Dataset 3: DBLP titles

12/3/2007 Data Mining: Foundation, Techniques and Applications 74

VGRAM overhead (construction time)

Dataset 3: DBLP titles

12/3/2007 Data Mining: Foundation, Techniques and Applications 75

Benefits over fixed-length grams
(index)

Dataset 1: Person names

12/3/2007 Data Mining: Foundation, Techniques and Applications 76

Benefits over fixed-length
grams (running time)

Dataset 1: Person names

12/3/2007 Data Mining: Foundation, Techniques and Applications 77

Effect of qmax

Dataset 1: Person names

12/3/2007 Data Mining: Foundation, Techniques and Applications 78

Effect of frequency threshold T

Dataset 1: Person name

12/3/2007 Data Mining: Foundation, Techniques and Applications 79

Improving algorithm ProbeCount

Dataset 1: Person name

12/3/2007 Data Mining: Foundation, Techniques and Applications 80

Improving algorithm ProbeCluster

Dataset 1: Person name

12/3/2007 Data Mining: Foundation, Techniques and Applications 81

Improving algorithm PartEnum

Dataset 1: Person name

12/3/2007 Data Mining: Foundation, Techniques and Applications 82

Discussions

� Dynamic maintenance
� Edit distance variants

� Approximate substring queries
� Block moves

� Using VGRAM in DBMS

12/3/2007 Data Mining: Foundation, Techniques and Applications 83

Outline
� Types of sequences
� Foundation

� Full matching: Building a disk based suffix tree
� Approximate matching Using vgrams

� Technique & Application
� Finding global partial order in sequence
� Finding motif in sequence

12/3/2007 Data Mining: Foundation, Techniques and Applications 84

Motivation
� Can we describe the data using model?
� More specifically, can we describe the

sequence data by few representative
sequence?

� Existing work like Hidden Markov Model
can provide useful information but not an
understandable global view

12/3/2007 Data Mining: Foundation, Techniques and Applications 85

� Sequence data
� “a b c d” – 100 times
� “a c b d” – 100 times

� Note : sequence data is ordered
data, such as web page traversal

� Representative of the above
sequence data
� “a => c => d” and “a => b => d”

Example

12/3/2007 Data Mining: Foundation, Techniques and Applications 86

� Trivial pattern =>
� Lost ordering information
� Too generic

� Specific patter => a => b => c => d
� Too specific
� Might represent only a part of data

� Partial Order => a => {c,b} => d
� A combined approach
� Partially represent the data by two order

Representative type

a

c

b

d

12/3/2007 Data Mining: Foundation, Techniques and Applications 87

Partial order
� To understand the partial order, an informal

definition is,

p is a partial order of s,
if p is substring of s

partial order p1 is compatible with
partial order p2,

if p2 is substring of p1

12/3/2007 Data Mining: Foundation, Techniques and Applications 88

Problem Definition
� Find one or more partial order M,

Which describes many sequences as well as
maintained ordering information

Or

� Find M, so the probability of generating
all sequences from S is maximum

max { P(S|M) }

12/3/2007 Data Mining: Foundation, Techniques and Applications 89

Problem solution

� Assumption
� Same event will not be repeated in the

single sequence
� “ a b c a ” will be considered as “ a b c ”

� Partial order must be in form of series
parallel tree

� Explained later

� = a set of all complete extension
of M

12/3/2007 Data Mining: Foundation, Techniques and Applications 90

Series Parallel tree

12/3/2007 Data Mining: Foundation, Techniques and Applications 91

Generating various order

Deletion Point
Insertion Point

12/3/2007 Data Mining: Foundation, Techniques and Applications 92

Mixture model
� Single partial order can not generate the

all sequences

� We need a mixture of various partial
order

� Mixture model – weighed combination of
the various partial order

12/3/2007 Data Mining: Foundation, Techniques and Applications 93

Sequence Data :-
“ a b c d ” – 100 times
“ a c b d ” – 100 times
“ d b c a ” – 5 times

Mixture Model =
{ d Æ b Æ c Æ a with weight 0.025,
a Æ {b,c} Æ d with weight 0.975 }

Example

12/3/2007 Data Mining: Foundation, Techniques and Applications 94

Algorithm
� Step 1: Start from trivial partial order

� Step2 : Apply the operation to current
best model and try to increase likelihood
of the partial order

� Repeat step 2, until no improvement

12/3/2007 Data Mining: Foundation, Techniques and Applications 95

Example
� Given sequences

� abc – 100 times
� bac – 100 times

� Step 1: Start from trivial order

a

c

b

12/3/2007 Data Mining: Foundation, Techniques and Applications 96

Continue…
= Max { Pro(a Æ b),Pro(aÆ c),Pro(b Æ

c),Pro(b Æ a)}

Select either one : Pro(aÆ c),Pro(b Æ c),

Say “a Æ c” is selected =>

Step 2: Iterate the same…
a

c

b

12/3/2007 Data Mining: Foundation, Techniques and Applications 97

Outline
� Types of sequences
� Foundation

� Full matching: Building a disk based suffix tree
� Approximate matching Using vgrams

� Technique & Application
� Finding global partial order in sequence
� Finding motif in sequence

12/3/2007 Data Mining: Foundation, Techniques and Applications 98

Promoter and Enhancers

� Promoter necessary to start transcription
� Enhancers can affect transcription from afar

12/3/2007 Data Mining: Foundation, Techniques and Applications 99

Regulation of Genes

GeneRegulatory Element

RNA polymerase
(Protein)

Transcription Factor
(Protein)

DNA

12/3/2007 Data Mining: Foundation, Techniques and Applications 100

Regulation of Genes

Gene

RNA polymerase

Transcription Factor
(Protein)

Regulatory Element

DNA

12/3/2007 Data Mining: Foundation, Techniques and Applications 101

Regulation of Genes

Gene

RNA
polymeraseTranscription Factor

Regulatory Element

DNA

New protein

12/3/2007 Data Mining: Foundation, Techniques and Applications 102

Finding Regulatory Motifs

Given a collection of genes with
common expression,

Find the TF-binding motif in common

.

.

.

12/3/2007 Data Mining: Foundation, Techniques and Applications 103

Problem Definition

Probabilistic

Motif: Mij; 1 ≤ i ≤ W
1 ≤ j ≤ 4

Mij = Prob[letter j, pos i]

Find best M, and positions p1,…,
pN in sequences

Combinatorial

Motif M: m1…mW

Some of the mi’s blank

Find M that occurs in all si with ≤
k differences

Given a collection of promoter sequences
s1,…, sN of genes with common expression

12/3/2007 Data Mining: Foundation, Techniques and Applications 104

Algorithms

� Probabilistic
1. Expectation Maximization:

MEME

2. Gibbs Sampling:
AlignACE, BioProspector

� Combinatorial
CONSENSUS, TEIRESIAS, SP-STAR, others

12/3/2007 Data Mining: Foundation, Techniques and Applications 105

Expectation Maximization

The MM algorithm, part of MEME package uses
Expectation Maximization

Algorithm (sketch):
1. Given genomic sequences find all K-long words
2. Assume each word is motif or background
3. Find likeliest

Motif Model
Background Model
Classification of words into either Motif or Background

12/3/2007 Data Mining: Foundation, Techniques and Applications 106

Expectation Maximization

� Given sequences x1, …, xN,
� Find all k-long words X1,…, Xn

� Define motif model:
M = (M1,…, MK)
Mi = (Mi1,…, Mi4) (assume {A, C, G, T})

where Mij = Prob[letter j occurs in motif position i]
� Define background model:

B = B1, …, B4

Bi = Prob[letter j in background sequence]

12/3/2007 Data Mining: Foundation, Techniques and Applications 107

Expectation Maximization
� Define

Zi1 = { 1, if Xi is motif;
0, otherwise }

Zi2 = { 0, if Xi is motif;
1, otherwise }

� Given a word Xi = x[1]…x[k],

P[Xi, Zi1=1] = λ M1x[1]…Mkx[k]

P[Xi, Zi2=1] = (1 - λ) Bx[1]…Bx[K]

Let λ1 = λ; λ2 = (1- λ)

12/3/2007 Data Mining: Foundation, Techniques and Applications 108

Expectation Maximization
Define:
Parameter space θ = (M,B)
θ1: Motif; θ2: Background

Objective:

Maximize log likelihood of model:

∑ ∑∑∑

∑∑

= ===

= =

+=

=

2

1

2

111

1

2

1
1

log)|(log

))|(log(),|,...(log

j j
jij

n

i
jiij

n

i

n

i j
jijijn

ZZ

Z

XP

XPZXXP

λθ

θλλθ

12/3/2007 Data Mining: Foundation, Techniques and Applications 109

Expectation Maximization
� Maximize expected likelihood, in iteration of two steps:

Expectation:
Find expected value of log likelihood:

Maximization:
Maximize expected value over θ, λ

)],|,...([log 1 λθZXXPE n

12/3/2007 Data Mining: Foundation, Techniques and Applications 110

Expectation:
Find expected value of log likelihood:

∑ ∑∑∑
= ===

+

=
2

1

2

111

1

log][)|(log][

)],|,...([log

j j
jij

n

i
jiij

n

i

n

ZZ EXPE

ZXXPE

λθ

λθ

where expected values of Z can be computed as follows:

∑ =

= 2

1
)|(

)|(
][

k kik

jij
ij

XP

XP
ZE

θλ

θλ

Expectation Maximization: E-step

12/3/2007 Data Mining: Foundation, Techniques and Applications 111

Maximization:
Maximize expected value over θ and λ
independently

For λ, this is easy:

∑ ∑
= =

==
n

i

n

i

ij
jij

NEW
j n

Z
Exam Z

j 1 1
log][arg λλ

λ

Expectation Maximization: M-step

12/3/2007 Data Mining: Foundation, Techniques and Applications 112

� For θ = (M, B), define

cjk = E[# times letter k appears in motif position j]
c0k = E[# times letter k appears in background]

� cij values are calculated easily from E[Z] values

It easily follows:

∑ =

= 4

1k jk

jkNEW
jk

c

c
M

∑ =

= 4

1 0

0

k k

kNEW
k

c
cB

to not allow any 0’s, add pseudocounts

Expectation Maximization: M-step

12/3/2007 Data Mining: Foundation, Techniques and Applications 113

Initial Parameters Matter!

Consider the following “artificial” example:

x1, …, xN contain:
� 212 patterns on {A, T}: A…A, A…AT,……, T… T
� 212 patterns on {C, G}: C…C , C…CG,…… , G…G
� D << 212 occurrences of 12-mer ACTGACTGACTG

Some local maxima:

λ ≈ ½; B = ½C, ½G; Mi = ½A, ½T, i = 1,…, 12

λ ≈ D/2k+1; B = ¼A,¼C,¼G,¼T;
M1 = 100% A, M2= 100% C, M3 = 100% T, etc.

12/3/2007 Data Mining: Foundation, Techniques and Applications 114

Overview of EM Algorithm

1. Initialize parameters θ = (M, B), λ:
� Try different values of λ from N-1/2 up to 1/(2K)

2. Repeat:
a. Expectation
b. Maximization

3. Until change in θ = (M, B), λ falls below ε
4. Report results for several “good” λ

12/3/2007 Data Mining: Foundation, Techniques and Applications 115

Overview of EM Algorithm
� One iteration running time: O(NK)

� Usually need < N iterations for convergence, and <
N starting points.

� Overall complexity: unclear – typically O(N2K) -
O(N3K)

� EM is a local optimization method
� Initial parameters matter

MEME: Bailey and Elkan, ISMB 1994.

12/3/2007 Data Mining: Foundation, Techniques and Applications 116

Gibbs Sampling
� Given:

� x1, …, xN,
� motif length K,
� background B,

� Find:
� Model M
� Locations a1,…, aN in x1, …, xN

Maximizing log-odds likelihood ratio:

∑∑
= = +

+
N

i

K

k
i

ka

i
ka

i

i

xB
xkM

1 1)(
),(

log

12/3/2007 Data Mining: Foundation, Techniques and Applications 117

Gibbs Sampling
� AlignACE: first statistical motif finder
� BioProspector: improved version of AlignACE

Algorithm (sketch):
1. Initialization:

a. Select random locations in sequences x1, …, xN

b. Compute an initial model M from these locations
2. Sampling Iterations:

a. Remove one sequence xi

b. Recalculate model
c. Pick a new location of motif in xi according to

probability the location is a motif occurrence

12/3/2007 Data Mining: Foundation, Techniques and Applications 118

Gibbs Sampling
Running Gibbs Sampling:

1. Initialize
2. Run until convergence
3. Repeat 1,2 several times, report

common motifs

12/3/2007 Data Mining: Foundation, Techniques and Applications 119

Advantages / Disadvantages
� Very similar to EM

Advantages:
� Easier to implement
� Less dependent on initial parameters
� More versatile, easier to enhance with heuristics

Disadvantages:
� More dependent on all sequences to exhibit the motif
� Less systematic search of initial parameter space

12/3/2007 Data Mining: Foundation, Techniques and Applications 120

References
� Benjarath Phoophakdee, Mohammed J. Zaki: "Genome-scale disk-based suffix tree

indexing". SIGMOD Conference 2007: 833-844
� Chen Li, Bin Wang, and Xiaochun Yang . "VGRAM: Improving Performance of

Approximate Queries on String Collections Using Variable-Length Grams". In VLDB
2007.

� Heikki Mannila, Christopher Meek: Global partial orders from sequential data. KDD
2000: 161-168

� T.L. Bailey and Elkan C. Fitting a mixture model by expectation maximization to
discover motifs in biopolymers. In Proc. Int. Conf. Intell. Syst. Mol. Biol., volume 2,
pages 28--36. 1994

Optional References:
• U. Keich and P. Pevzner. Subtle motifs: defining the limits of motif finding

algorithms. Bioinformatics, in press, 2002.
• B Ma, J Tromp, M Li. PatternHunter: faster and more sensitive homology search -

Bioinformatics, 2002 - Oxford Univ Press
• Xia Cao, Shuai Cheng Li, Anthony K. H. Tung. "Indexing DNA Sequences Using q-

grams". Best Paper Award. To appear in DASFAA 2005.

http://www.cs.rpi.edu/~zaki/PS/SIGMOD07.pdf
http://www.cs.rpi.edu/~zaki/PS/SIGMOD07.pdf
http://www.cs.rpi.edu/~zaki/PS/SIGMOD07.pdf
http://www.comp.nus.edu.sg/~atung/vgram.pdf
http://delivery.acm.org/10.1145/350000/347122/p161-mannila.pdf?key1=347122&key2=5965646811&coll=&dl=ACM&CFID=15151515&CFTOKEN=6184618
http://tahoe.inesc-id.pt/drupal/files/MEME.pdf
http://tahoe.inesc-id.pt/drupal/files/MEME.pdf
http://tahoe.inesc-id.pt/drupal/files/MEME.pdf
http://bioinformatics.oxfordjournals.org/cgi/reprint/18/10/1382
http://bioinformatics.oxfordjournals.org/cgi/reprint/18/10/1382
http://www.comp.nus.edu.sg/~atung/publication/qgram_edit.pdf
http://www.comp.nus.edu.sg/~atung/publication/qgram_edit.pdf
http://www.comp.nus.edu.sg/~atung/publication/qgram_edit.pdf

12/3/2007 Data Mining: Foundation, Techniques and Applications 121

Acknowledgements
� Ken Sung
� Mohammad Zaki
� Chen Li

	Data Mining: Foundation, Techniques and Applications
	Outline
	Types of sequences
	Outline
	Suffix
	Suffix Trie
	Suffix Tree (I)
	Suffix Tree (II)
	Generalized suffix tree
	Straightforward construction of suffix tree
	Example of construction
	Construction of generalized suffix tree
	Property of suffix tree
	Suffix Link example
	Can we construct a suffix tree in O(n) time?
	Trellis Algorithm
	Trellis: Algorithm Overview
	1. Variable-length Prefix Creation
	2. Suffix Tree Partitioning
	3. Suffix Tree Merging
	Merge Algorithm
	Merge Algorithm
	Merge Algorithm
	Merge Algorithm
	4. Suffix Link Recovery
	4. Suffix Link Recovery (cont.)
	Experimental Results
	Experimental Results (cont.)
	Experimental Results (cont.)
	Experimental Results (cont.)
	Experiment Results (cont.)
	Summary
	Future Work
	Outline
	Example 1: a movie database
	How about Schwarrzenger?
	Relax Condition
	Edit Distance
	Edit Distance Computation
	Needleman-Wunsch algorithm (I)
	Needleman-Wunsch algorithm (II)
	Example (I)
	Example (II)
	Example (III)
	“q-grams” of strings
	q-gram inverted lists
	Searching using inverted lists
	2-grams -> 3-grams?
	Observation 1: dilemma of choosing “q”
	Observation 2: skew distributions of gram frequencies
	VGRAM: Main idea
	Challenges
	Challenge 1: String Variable-length grams?
	Representing gram dictionary as a trie
	Challenge 2: Constructing gram dictionary
	Step 2: selecting grams
	Step 2: selecting grams (cont)
	Final gram dictionary
	Challenge 3: Edit operation’s effect on grams
	Deletion affects variable-length grams
	Grams affected by a deletion
	Grams affected by a deletion (cont)
	# of grams affected by each operation
	Max # of grams affected by k operations
	Summary of VGRAM index
	Challenge 4: adopting VGRAM
	Lower bound on # of common grams
	Example: algorithm using inverted lists
	PartEnum + VGRAM
	PartEnum + VGRAM (naïve)
	PartEnum + VGRAM (optimization)
	Data sets
	VGRAM overhead (index size)
	VGRAM overhead (construction time)
	Benefits over fixed-length grams (index)
	Benefits over fixed-length grams (running time)
	Effect of qmax
	Effect of frequency threshold T
	Improving algorithm ProbeCount
	Improving algorithm ProbeCluster
	Improving algorithm PartEnum
	Discussions
	Outline
	Motivation
	Example
	Representative type
	Partial order
	Problem Definition
	Problem solution
	Series Parallel tree
	Generating various order
	Mixture model
	Example
	Algorithm
	Example
	Continue…
	Outline
	Promoter and Enhancers
	Regulation of Genes
	Regulation of Genes
	Regulation of Genes
	Finding Regulatory Motifs
	Problem Definition
	Algorithms
	Expectation Maximization
	Expectation Maximization
	Expectation Maximization
	Expectation Maximization
	Expectation Maximization
	Expectation Maximization: E-step
	Expectation Maximization: M-step
	Expectation Maximization: M-step
	Initial Parameters Matter!
	Overview of EM Algorithm
	Overview of EM Algorithm
	Gibbs Sampling
	Gibbs Sampling
	Gibbs Sampling
	Advantages / Disadvantages
	References
	Acknowledgements

