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Types of sequences
� Symbolic vs Numeric

� We only touch discrete symbols here. Sequences of number are 
called time series and is a huge topic by itself!

� Single dimension vs multi-dimensional
� Example: Yueguo Chen, Shouxu Jiang, Beng Chin Ooi, Anthony K. H. Tung. 

"Querying Complex Spatial-Temporal Sequences in Human Motion 
Databases" accepted and to appear in 24th IEEE International Conference 
on Data Engineering (ICDE) 2008

� Single long sequence vs multiple sequences 

http://www.comp.nus.edu.sg/~chenyueg
http://www.comp.nus.edu.sg/~atung/publication/complexseq_icde08.pdf
http://www.comp.nus.edu.sg/~atung/publication/complexseq_icde08.pdf
http://www.comp.nus.edu.sg/~atung/publication/complexseq_icde08.pdf
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Suffix
� Suffixes of acacag$:

1. acacag$
2. cacag$
3. acag$
4. cag$
5. ag$
6. g$
7. $
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Suffix Trie
E.g. consider the string S = acacag$
Suffix Trie: a ties of 
all possible suffices of S
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Suffix Tree (I)
Suffix tree for S=acacag$: merge nodes with only one child
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Path-label of 
node v is “aca”
Denoted as α(v)

“ca” is an 
edge label

This is a 
leaf edge 
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Suffix Tree (II)
Suffix tree has exactly n leaves and at most n edges
The label of each edge can be represented using 2 indices
Thus, suffix tree can be represented using O(n log n) bits
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Note: The end index of every 
leaf edge should be 7, the 
last index of S. Thus, for leaf 
edges, we only need to store 
the start index.
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Generalized suffix tree
� Build a suffix tree for two or more strings
� E.g. S1 = acgat#, S2 = cgt$
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Straightforward construction of suffix tree

� Consider S = s1s2…sn where sn=$

� Algorithm:
� Initialize the tree we only a root
� For i = n to 1

� Includes S[i..n] into the tree

� Time: O(n2)
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Example of construction
� S=acca$
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Construction of generalized suffix tree

� S’= c#
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Property of suffix tree
� Fact: For any internal node v in the suffix tree, 

if the path label of v is α(v)=ap, then
� there exists another node w in the suffix tree such 

that α(w)=p.

� Proof: Skip the proof.

� Definition of Suffix Link:
� For any internal node v, define its suffix link sl(v) = 

w.
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Suffix Link example
� S=acacag$
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Can we construct a suffix tree in O(n) 
time?

� Yes. We can construct it in O(n) time and O(n) space
� Weiner’s algorithm [1973]

� Linear time for constant size alphabet, but much space
� McGreight’s algorithm [JACM 1976]

� Linear time for constant size alphabet, quadratic space
� Ukkonen’s algorithm [Algorithmica, 1995]

� Online algorithm, linear time for constant size alphabet, less space
� Farach’s algorithm [FOCS 1997]

� Linear time for general alphabet
� Hon,Sadakane, and Sung’s algorithm [FOCS 2003]

� O(n) bit space O(n logen) time for 0<e<1
� O(n) bit space O(n) time for suffix array construction

� But they are all in-memory algorithm that does not 
guarantee locality of processing
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Trellis Algorithm

� A novel disk-based suffix tree construction 
algorithm designed specifically for DNA 
sequences

� Scales gracefully for very large genome 
sequences (i.e. human genome)

� Unlike existing algorithms, 
� Trellis exhibits no data skew problem
� Trellis recovers suffix links quickly
� Trellis has fast construction and query time

� Trellis is a 4-step algorithm
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Trellis: Algorithm Overview

S
R0 R1 Rr-1

Disk

TR1
TR0

TRr-1

TR1,Pm-1
TR0,P0

TPi

1. Variable-length prefixes: e.g. AA, ACA, ACC, …

2. Prefixed Suffix Sub-trees

3. Tree 
Merging

TR0,Pi
TRr-1,Pi

4. Suffix Link Recovery (optional)
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1. Variable-length Prefix Creation
� Goal: Separate the complete suffix tree by prefixes of 

suffixes, such that each subtree can reside entirely in 
the available memory

Frequency of Length-2 Prefixes for 
Human Genome
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Main Idea:
Expand prefixes 
only as needed
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2. Suffix Tree Partitioning

S
R0 R1 Rr-1

Disk

TR1
TR0

TRr-1

TR0,P0
TR1,Pm-1

1. Variable-length prefixes: e.g. AA, ACA, ACC, …

2. Prefixed Suffix Sub-trees
• Use Ukkonen’s method because 
of Its efficiency: O(n) time &space
• Discard suffix links when store the      
subtrees on disk
• Store enough information so that a
subtree can be rebuilt quickly, e.g. edge 
starting index, edge length, node parent, 
etc.
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3. Suffix Tree Merging

S
R0 R1 Rr-1

Disk

TR1
TR0

TRr-1

TR1,Pm-1
TR0,P0

TPi

1. Variable-length prefixes: e.g. AA, ACA, ACC, …

2. Prefixed Suffix Sub-trees

3. Tree 
Merging

TR0,Pi
TRr-1,Pi
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T1 T2

A C G T

Case 1: No common prefix

Merge Algorithm
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T1 T2

A C G
T

Case 1: No common prefix

Merge Algorithm
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Merge Algorithm

T1 T2

A C G
T

Case 1: No common prefix

A CAAT

T1

CAGGC

Case 2: Has common prefix

T2
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Merge Algorithm

T1 T2

A C G
T

Case 1: No common prefix

A

T1

GGC

Case 2: Has common prefix

T2CA
AT
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4. Suffix Link Recovery
� Some internal nodes have suffix links from the 

Ukkonen’s algorithm in Step #1
� Some internal nodes are created in the merging 

step and do not have suffix links
� Discard all suffix link information from step #1 

and stored suffix trees on disk (does not help 
speed this step up, so discard to simplify)

� Should suffix links are required, use the suffix 
link recovery algorithm to rebuild them
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4. Suffix Link Recovery (cont.
� For each prefixed suffix tree, recursively call this 

function from the tree’s root.
� x: an internal node
� L: be edge label between x and parent(x)

RECOVER(x, L)
if (x == root)  sl(x) Å x; 
else { 

1. p = parent(x);
2. q = sl(p); //get suffix link of p, and load the prefix tree 

for q from disk if not in memory 
3. Skip/count using L to locate sl(x) under q; } 

for (each internal child y of x)
RECOVER(y, edge-label(x,y));
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Experimental Results

Construction Time 
Trellis vs TOP-Q and DynaCluster
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• Memory: 512 MB
• TOP-Q and DynaCluster parameters were 
set as recommended in their papers 

• Memory: 512MB

Trellis
• Without 
links: 4.2hr
• With links: 
5.9hr 

TDD: 12.8hr

Human genome suffix tree
(size ~3Gbp, using 2GB of memory)
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Experimental Results (cont.)
� Disk Space Usage

Disk-based Suffix Tree Size 
Trellis vs TDD
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On average, Trellis uses about 
27 bytes per character indexed while
TDD uses about 9.7 bytes.

For the human genome, TDD uses 
about 19.3 bytes/char because it 
requires 64-bit environment to index
larger sequences.

Trellis remains at 27 bytes/char for 
the human genome.

Disk-space vs query time tradeoff 
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Experimental Results (cont.)
� Query time (without suffix links)

Trellis vs TDD 
Query Times on the Human Genome Suffix Tree
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TDD
• smaller suffix trees
• edge length must be determined 

by examining all children nodes
• each internal node only has a 

pointer to its first child, i.e. children 
must be linearly scanned during 
a query search

Trellis
• larger suffix trees
• edge length stored locally with its 

respective node
• all children locations stored locally,

so each child can be accessed in a 
constant time, i.e. no linear scan 
needed

Hence, faster query time!
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v sf(v)

αxα

GA
CA

A G

S[150]

xαG C

• Uses suffix links to move 
across the tree to search for 
the next query
• Mimics the behavior of 
exact match anchor search 
during a genome alignment

Query length = 100

Experimental Results (cont.)
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Experiment Results (cont.)

� Query time (with suffix links)
Trellis: Without Suffix Links vs With Suffix Links
Query Times on the Human Genome Suffix Tree
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Summary
� Trellis builds a disk-based suffix tree based on

� A partitioning method via variable-length prefixes
� A suffix subtree merging algorithm

� Trellis is both time and space efficient
� Trellis quickly recovers suffix links
� Faster than existing leading methods in both 

construction and query time
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Future Work
� Input sequence larger than the human genome 

(more than 3Gbp)
� Wider range of alphabets, e.g. protein alphabet 

and English text
� Parallelize Trellis

Question?



12/3/2007 Data Mining: Foundation, Techniques and Applications 34

Outline
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� Foundation

� Full matching: Building a disk based suffix tree
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� Technique & Application
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Example 1: a movie database

Star Title Year Genre
The Matrix 1999

2005

1984

Samuel Jackson Goodfellas 1990 Drama

…

Star Wars: Episode III - Revenge 
of the Sith

Sci-Fi

Sci-Fi

Sci-FiThe Terminator

……

Keanu Reeves

Samuel Jackson

Schwarzenegger

…

Tom

Find movies starred Samuel Jackson
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How about Schwarrzenger?

Star Title Year Genre
The Matrix 1999

2005

1984

Samuel Jackson Goodfellas 1990 Drama

…

Star Wars: Episode III - Revenge 
of the Sith

Sci-Fi

Sci-Fi

Sci-FiThe Terminator

……

Keanu Reeves

Samuel Jackson

Schwarzenegger

…

The user doesn’t know the exact spelling!
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Relax Condition

Star Title Year Genre
The Matrix 1999

2005

1984

Samuel Jackson Goodfellas 1990 Drama

…

Star Wars: Episode III - Revenge 
of the Sith

Sci-Fi

Sci-Fi

Sci-FiThe Terminator

……

Keanu Reeves

Samuel Jackson

Schwarzenegger

…

Find movies with a star “similar to” Schwarrzenger.
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Edit Distance
� Given two strings A and B, edit A to B with the 

minimum number of edit operations:
� Replace a letter with another letter
� Insert a letter
� Delete a letter

� E.g.
� A = interestings _i__nterestings
B = bioinformatics   bioinformatic_s

101101101100110
� Edit distance = 9
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Edit Distance Computation
� Instead of minimizing the number of edge operations, 

we can associate a cost function to the operations and 
minimize the total cost. Such cost is called edit distance. 

� For the previous example, the cost function is as follows:
� A= _i__nterestings
B= bioinformatic_s

101101101100110
� Edit distance = 9 _ A C G T

_ 1 1 1 1

A 1 0 1 1 1

C 1 1 0 1 1

G 1 1 1 0 1

T 1 1 1 1 0
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Needleman-Wunsch algorithm (I)
� Consider two strings S[1..n] and T[1..m].
� Define V(i, j) be the score of the optimal 

alignment between S[1..i] and T[1..j]
� Basis:

� V(0, 0) = 0
� V(0, j) = V(0, j-1) + δ(_, T[j])

� Insert j times

� V(i, 0) = V(i-1, 0) + δ(S[i], _)
� Delete i times
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Needleman-Wunsch algorithm (II)
� Recurrence: For i>0, j>0

�

� In the alignment, the last pair must be either 
match/mismatch, delete, insert.

⎪
⎩

⎪
⎨

⎧

+−
+−
+−−

=
])[(_,)1,(

_)],[(),1(
])[],[()1,1(

max),(
jTjiV

iSjiV
jTiSjiV

jiV
δ
δ
δ Match/mismatch

Delete

Insert

xxx…xx      xxx…xx    xxx…x_
|           |         |

xxx…yy yyy…y_    yyy…yy
match/mismatch           delete               insert
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Example (I)
_ A G C A T G C

_ 0 -1 -2 -3 -4 -5 -6 -7
A -1
C -2
A -3
A -4
T -5
C -6
C -7
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Example (II)
_ A G C A T G C

_ 0 -1 -2 -3 -4 -5 -6 -7
A -1 2 1 0 -1 -2 -3 -4
C -2 1 1 ?
A -3
A -4
T -5
C -6
C -7

3 2
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Example (III)
_ A G C A T G C

_ 0 -1 -2 -3 -4 -5 -6 -7
A -1 2 1 0 -1 -2 -3 -4
C -2 1 1 3 2 1 0 -1
A -3 0 0 2 5 4 3 2
A -4 -1 -1 1 4 4 3 2
T -5 -2 -2 0 3 6 5 4
C -6 -3 -3 0 2 5 5 7
C -7 -4 -4 -1 1 4 4 7
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“q-grams” of strings

u n i v e r s a l

2-grams



12/3/2007 Data Mining: Foundation, Techniques and Applications 46

q-gram inverted lists

id     strings
0
1
2
3
4

rich
stick
stich
stuck
static

4

2 3
0
1 4

2-grams

at
ch
ck
ic
ri
st
ta
ti
tu
uc

20

1 3
0 1 2 4

4
1 2 4
3
3
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# of common grams >= 3

� Query: “shtick”, ED(shtick, ?)≤1

id     strings
0
1
2
3
4

rich
stick
stich
stuck
static

Searching using inverted lists

2-grams

at
ch
ck
ic
ri
st
ta
ti
tu
uc

4

2 3
0
1 4

20

1 3
0 1 2 4

4
1 2 4
3
3

ti ic cksh    ht    ti     ic    ck
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# of common grams >= 1

2-grams -> 3-grams?
� Query: “shtick”, ED(shtick, ?)≤1

id     strings
0
1
2
3
4

rich
stick
stich
stuck
static

3-grams

ati
ich
ick
ric
sta
sti
stu
tat
tic
tuc
uck

tic icksht    hti    tic     ick
4

2
4
1

20

1
0

3
4
1
3

42

3

id     strings
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2
3
4

rich
stick
stich
stuck
static

id     strings
0
1
2
3
4

rich
stick
stich
stuck
static
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Observation 1: dilemma of choosing “q”
� Increasing “q” causing:

� Longer grams Æ Shorter lists 
� Smaller # of common grams of similar strings

id     strings
0
1
2
3
4

rich
stick
stich
stuck
static

4

2 3
0
1 4

2-grams

at
ch
ck
ic
ri
st
ta
ti
tu
uc

20
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0 1 2 4

4
1 2 4
3
3
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Observation 2: skew distributions of 
gram frequencies

� DBLP: 276,699 article titles

� Popular 5-grams: ation (>114K times), tions, ystem, catio
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VGRAM: Main idea
� Grams with variable lengths (between 

qmin and qmax)
� zebra

� ze(123)

� corrasion
� co(5213), cor(859), corr(171)

� Advantages
� Reduce index size ☺
� Reducing running time ☺
� Adoptable by many algorithms ☺
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Challenges
� Generating variable-length grams?
� Constructing a high-quality gram dictionary?
� Relationship between string similarity and their 

gram-set similarity?
� Adopting VGRAM in existing algorithms?
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Challenge 1: String Æ Variable-length grams?
� Fixed-length 2-grams

� Variable-length grams

u n i v e r s a l

ni
ivr
sal
uni
vers

[2,4]-gram dictionary
u n i v e r s a l
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Representing gram dictionary 
as a trie

ni
ivr
sal
uni
vers
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Challenge 2: Constructing gram 
dictionary

st Æ 0, 1, 3
stiÆ 0, 1
stuÆ3
sticÆ 0, 1
stucÆ3

Step 1: Collecting frequencies of grams with length in 
[qmin, qmax]

Gram trie with frequencies
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Step 2: selecting grams
� Pruning trie using a frequency threshold T

(e.g., 2)
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Step 2: selecting grams (cont)

Threshold T = 2
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Final gram dictionary

[2,4]-grams
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Challenge 3: Edit operation’s effect on grams

k operations could affect k * q grams

u n i v e r s a l
Fixed length: q
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Deletion affects variable-length grams

i-qmax+1 i+qmax- 1
Deletio

n

Not 
affected

Not 
affected

Affected

i
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Grams affected by a deletion

ni
ivr
sal
uni
vers

[2,4]-grams

u n i v e r s a l

i-qmax+1 i+qmax- 1
Deletion

i

Affected?

Deletion

Affected?
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Grams affected by a deletion (cont)

i-qmax+1 i+qmax- 1
Deletio

n

i

Affected?

Trie of grams Trie of reversed 
grams
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# of grams affected by each operation

_ u _ n _ i _ v _ e _ r _ s _ a _ l _

0 1 1 1 1 2 1 2 2 2 1 1 1 2 1 1 1 1 0

Deletion/substituti
on

Insertion
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Max # of grams affected by k operations

Vector of s = <2,4,6,8,9>

With 2 edit operations, at most 4 grams can be 
affected

� Called NAG vector (# of affected grams)
� Precomputed and stored
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Summary of VGRAM index
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Challenge 4: adopting VGRAM
Easily adoptable by many algorithms

Basic interfaces:
� String s Æ grams
� String s1, s2 such that ed(s1,s2) <= k Æ

min # of their common grams
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Lower bound on # of common grams

If ed(s1,s2) <= k, then their # of common 
grams >=:

(|s1|- q + 1) – k * q

u n i v e r s a l

Fixed length 
(q)

Variable lengths: # of grams of s1 – NAG(s1,k)
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Example: algorithm using inverted lists
� Query: “shtick”, ED(shtick, ?)≤1

1 2 4

1 2
1
0 4

3
…
ck
ic
…
ti
…

Lower bound = 3

sh    ht      tick

Lower bound = 1

2 4
1

4
0

1
1

2

3
…
ck
ic
ich
…
tic
tick
…

2-4 grams2-grams
tick

id     strings
0
1
2
3
4

rich
stick
stich
stuck
static

id     strings
0
1
2
3
4

rich
stick
stich
stuck
static

id     strings
0
1
2
3
4

rich
stick
stich
stuck
static
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PartEnum + VGRAM
PartEnum, fixed q-grams:

ed(s1,s2) <= k 
Î hamming(grams(s1),grams(s2)) <= k * q

VGRAM:
ed(s1,s2) <= k 

Î hamming(VG (s1),VG(s2)) <= NAG(s1,k) + NAG(s2,k)
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PartEnum + VGRAM (naïve)

Bm(R) = max(NAG(r,k))

R

Bm(S) = max(NAG(s,k))

S

• Both are using the same gram dictionary.
• Use Bm(R) + Bm(S) as the new hamming bound.
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PartEnum + VGRAM (optimization)
R

Bm(S) = max(NAG(s,k))

S

• Group R based on the NAG(r,k) values
• Join(R1,S) using Bm(R1) + Bm(S)
• Similarly, Join(R2,S), Join(R3,S)
• Local bounds tighterÆ better signatures generated
• Grouping S also possible.

R1 with Bm(R1)

R2 with Bm(R2)

R3 with Bm(R3)
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Data sets

� Data set 1: Texas Real Estate Commission. 
� 151K person names, average length = 33.

� Data set 2: English dictionary from the 
Aspell spellchecker for Cygwin. 
� 149,165 words, average length = 8.

� Data set 3: DBLP Bibliography.
� 277K titles, average length = 62.
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VGRAM overhead (index size)

Dataset 3: DBLP titles
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VGRAM overhead (construction time)

Dataset 3: DBLP titles
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Benefits over fixed-length grams 
(index)

Dataset 1: Person names
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Benefits over fixed-length 
grams (running time)

Dataset 1: Person names
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Effect of qmax

Dataset 1: Person names
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Effect of frequency threshold T

Dataset 1: Person name
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Improving algorithm ProbeCount

Dataset 1: Person name



12/3/2007 Data Mining: Foundation, Techniques and Applications 80

Improving algorithm ProbeCluster

Dataset 1: Person name
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Improving algorithm PartEnum

Dataset 1: Person name
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Discussions

� Dynamic maintenance
� Edit distance variants

� Approximate substring queries
� Block moves

� Using VGRAM in DBMS
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Outline
� Types of sequences
� Foundation

� Full matching: Building a disk based suffix tree
� Approximate matching Using vgrams

� Technique & Application
� Finding global partial order in sequence
� Finding motif in sequence
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Motivation
� Can we describe the data using model?
� More specifically, can we describe the 

sequence data by few representative 
sequence?

� Existing work like Hidden Markov Model 
can provide useful information but not an 
understandable global view
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� Sequence data
� “a b c d” – 100 times
� “a c b d” – 100 times

� Note : sequence data is ordered 
data, such as web page traversal

� Representative of the above 
sequence data
� “a => c => d” and “a => b => d”

Example
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� Trivial pattern =>
� Lost ordering information
� Too generic

� Specific patter =>           a => b => c => d
� Too specific
� Might represent only a part of data

� Partial Order =>             a => {c,b} => d
� A combined approach
� Partially represent the data by two order

Representative type

a

c

b

d



12/3/2007 Data Mining: Foundation, Techniques and Applications 87

Partial order
� To understand the partial order, an informal 

definition is,

p is a partial order of s, 
if p is substring of s

partial order p1 is compatible with
partial order p2, 

if p2 is substring of p1
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Problem Definition
� Find one or more partial order M, 

Which describes many sequences as well as 
maintained ordering information

Or

� Find M, so the probability of generating 
all sequences from S is maximum     

max { P(S|M)  }
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Problem solution

� Assumption
� Same event will not be repeated in the 

single sequence
� “ a b c a ” will be considered as “ a b c ”

� Partial order must be in form of series 
parallel tree

� Explained later

� = a set of all complete extension 
of M
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Series Parallel tree
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Generating various order

Deletion Point
Insertion Point
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Mixture model
� Single partial order can not generate the 

all sequences

� We need a mixture of various partial 
order

� Mixture model – weighed combination of 
the various partial order
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Sequence Data :-
“ a b c d ” – 100 times
“ a c b d ” – 100 times
“ d b c a ” – 5 times

Mixture Model = 
{ d Æ b Æ c Æ a with weight 0.025,
a Æ {b,c} Æ d with weight 0.975 }

Example
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Algorithm
� Step 1: Start from trivial partial order

� Step2 : Apply the operation to current 
best model and try to increase likelihood 
of the partial order

� Repeat step 2, until no improvement
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Example
� Given sequences

� abc – 100 times
� bac – 100 times

� Step 1: Start from trivial order

a

c

b
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Continue…
= Max { Pro(a Æ b),Pro(aÆ c),Pro(b Æ

c),Pro(b Æ a)}

Select either one : Pro(aÆ c),Pro(b Æ c),

Say “a Æ c” is selected  => 

Step 2: Iterate the same…
a

c

b
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Outline
� Types of sequences
� Foundation

� Full matching: Building a disk based suffix tree
� Approximate matching Using vgrams

� Technique & Application
� Finding global partial order in sequence
� Finding motif in sequence
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Promoter and Enhancers

� Promoter necessary to start transcription
� Enhancers can affect transcription from afar
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Regulation of Genes

GeneRegulatory Element

RNA polymerase
(Protein)

Transcription Factor
(Protein)

DNA
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Regulation of Genes

Gene

RNA polymerase

Transcription Factor
(Protein)

Regulatory Element

DNA
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Regulation of Genes

Gene

RNA 
polymeraseTranscription Factor

Regulatory Element

DNA

New protein
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Finding Regulatory Motifs

Given a collection of genes with 
common expression,

Find the TF-binding motif in common

.

.

.
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Problem Definition

Probabilistic

Motif: Mij; 1 ≤ i ≤ W
1 ≤ j ≤ 4

Mij = Prob[ letter j, pos i ]

Find best M, and positions p1,…, 
pN in sequences

Combinatorial

Motif M: m1…mW

Some of the mi’s blank

Find M that occurs in all si with ≤
k differences

Given a collection of promoter sequences 
s1,…, sN of genes with common expression
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Algorithms

� Probabilistic
1. Expectation Maximization:

MEME

2. Gibbs Sampling: 
AlignACE,  BioProspector

� Combinatorial
CONSENSUS, TEIRESIAS, SP-STAR, others
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Expectation Maximization

The MM algorithm, part of MEME package uses 
Expectation Maximization

Algorithm (sketch):
1. Given genomic sequences find all K-long words
2. Assume each word is motif or background
3. Find likeliest

Motif Model
Background Model
Classification of words into either Motif or Background
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Expectation Maximization

� Given sequences x1, …, xN,
� Find all k-long words X1,…, Xn

� Define motif model: 
M = (M1,…, MK)
Mi = (Mi1,…, Mi4) (assume {A, C, G, T})

where Mij = Prob[ letter j occurs in motif position i ]
� Define background model:

B = B1, …, B4

Bi = Prob[ letter j in background sequence ]
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Expectation Maximization
� Define 

Zi1 = { 1, if Xi is motif;
0, otherwise }

Zi2 = { 0, if Xi is motif;
1, otherwise }

� Given a word Xi = x[1]…x[k],

P[ Xi, Zi1=1 ] = λ M1x[1]…Mkx[k] 

P[ Xi, Zi2=1 ] = (1 - λ) Bx[1]…Bx[K]

Let λ1 = λ; λ2 = (1- λ)
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Expectation Maximization
Define:
Parameter space θ = (M,B)
θ1: Motif; θ2: Background

Objective:

Maximize  log likelihood of model:

∑ ∑∑∑
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Expectation Maximization
� Maximize expected likelihood, in iteration of two steps:

Expectation:
Find expected value of log likelihood:

Maximization:
Maximize expected value over θ, λ

)],|,...([log 1 λθZXXPE n
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Expectation:
Find expected value of log likelihood:

∑ ∑∑∑
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Expectation Maximization: E-step
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Maximization:
Maximize expected value over θ and λ
independently

For λ, this is easy:

∑ ∑
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Expectation Maximization: M-step
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� For θ = (M, B), define

cjk = E[ # times letter k appears in motif position j]
c0k = E[ # times letter k appears in background]

� cij values are calculated easily from E[Z] values

It easily follows:
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to not allow any 0’s, add pseudocounts

Expectation Maximization: M-step
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Initial Parameters Matter!

Consider the following “artificial” example:

x1, …, xN contain:
� 212 patterns on {A, T}: A…A,   A…AT,……,  T… T
� 212 patterns on {C, G}: C…C , C…CG,…… , G…G
� D << 212 occurrences of 12-mer ACTGACTGACTG

Some local maxima:

λ ≈ ½;   B = ½C, ½G;   Mi = ½A, ½T, i = 1,…, 12

λ ≈ D/2k+1;   B = ¼A,¼C,¼G,¼T; 
M1 = 100% A, M2= 100% C, M3 = 100% T, etc.
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Overview of EM Algorithm

1. Initialize parameters θ = (M, B), λ:
� Try different values of λ from N-1/2 up to 1/(2K)

2. Repeat:
a. Expectation
b. Maximization

3. Until change in θ = (M, B), λ falls below ε
4. Report results for several “good” λ



12/3/2007 Data Mining: Foundation, Techniques and Applications 115

Overview of EM Algorithm
� One iteration running time: O(NK)

� Usually need < N iterations for convergence, and < 
N starting points.

� Overall complexity: unclear – typically O(N2K) -
O(N3K) 

� EM is a local optimization method
� Initial parameters matter

MEME: Bailey and Elkan, ISMB 1994.
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Gibbs Sampling
� Given: 

� x1, …, xN, 
� motif length K,
� background B,

� Find:
� Model M
� Locations a1,…, aN in x1, …, xN

Maximizing log-odds likelihood ratio:
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Gibbs Sampling
� AlignACE: first statistical motif finder
� BioProspector: improved version of AlignACE

Algorithm (sketch):
1. Initialization:

a. Select random locations in sequences x1, …, xN

b. Compute an initial model M from these locations
2. Sampling Iterations:

a. Remove one sequence xi

b. Recalculate model
c. Pick a new location of motif in xi according to 

probability the location is a motif occurrence
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Gibbs Sampling
Running Gibbs Sampling:

1. Initialize
2. Run until convergence
3. Repeat 1,2 several times, report 

common motifs
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Advantages / Disadvantages
� Very similar to EM

Advantages:
� Easier to implement
� Less dependent on initial parameters
� More versatile, easier to enhance with heuristics

Disadvantages:
� More dependent on all sequences to exhibit the motif
� Less systematic search of initial parameter space



12/3/2007 Data Mining: Foundation, Techniques and Applications 120

References
� Benjarath Phoophakdee, Mohammed J. Zaki: "Genome-scale disk-based suffix tree 

indexing". SIGMOD Conference 2007: 833-844 
� Chen Li, Bin Wang, and Xiaochun Yang . "VGRAM: Improving Performance of 

Approximate Queries on String Collections Using Variable-Length Grams". In VLDB 
2007.

� Heikki Mannila, Christopher Meek: Global partial orders from sequential data. KDD 
2000: 161-168

� T.L. Bailey and Elkan C. Fitting a mixture model by expectation maximization to 
discover motifs in biopolymers. In Proc. Int. Conf. Intell. Syst. Mol. Biol., volume 2, 
pages 28--36. 1994 

Optional References:
• U. Keich and P. Pevzner. Subtle motifs: defining the limits of motif finding 

algorithms. Bioinformatics, in press, 2002.
• B Ma, J Tromp, M Li. PatternHunter: faster and more sensitive homology search -

Bioinformatics, 2002 - Oxford Univ Press
• Xia Cao, Shuai Cheng Li, Anthony K. H. Tung. "Indexing DNA Sequences Using q-

grams". Best Paper Award. To appear in DASFAA 2005. 

http://www.cs.rpi.edu/~zaki/PS/SIGMOD07.pdf
http://www.cs.rpi.edu/~zaki/PS/SIGMOD07.pdf
http://www.cs.rpi.edu/~zaki/PS/SIGMOD07.pdf
http://www.comp.nus.edu.sg/~atung/vgram.pdf
http://delivery.acm.org/10.1145/350000/347122/p161-mannila.pdf?key1=347122&key2=5965646811&coll=&dl=ACM&CFID=15151515&CFTOKEN=6184618
http://tahoe.inesc-id.pt/drupal/files/MEME.pdf
http://tahoe.inesc-id.pt/drupal/files/MEME.pdf
http://tahoe.inesc-id.pt/drupal/files/MEME.pdf
http://bioinformatics.oxfordjournals.org/cgi/reprint/18/10/1382
http://bioinformatics.oxfordjournals.org/cgi/reprint/18/10/1382
http://www.comp.nus.edu.sg/~atung/publication/qgram_edit.pdf
http://www.comp.nus.edu.sg/~atung/publication/qgram_edit.pdf
http://www.comp.nus.edu.sg/~atung/publication/qgram_edit.pdf


12/3/2007 Data Mining: Foundation, Techniques and Applications 121

Acknowledgements
� Ken Sung
� Mohammad Zaki
� Chen Li


	Data Mining: Foundation, Techniques and Applications
	Outline
	Types of sequences
	Outline
	Suffix
	Suffix Trie
	Suffix Tree (I)
	Suffix Tree (II)
	Generalized suffix tree
	Straightforward construction of suffix tree
	Example of construction
	Construction of generalized suffix tree
	Property of suffix tree
	Suffix Link example
	Can we construct a suffix tree in O(n) time?
	Trellis Algorithm
	Trellis: Algorithm Overview
	1. Variable-length Prefix Creation
	2. Suffix Tree Partitioning
	3. Suffix Tree Merging
	Merge Algorithm
	Merge Algorithm
	Merge Algorithm
	Merge Algorithm
	4. Suffix Link Recovery
	4. Suffix Link Recovery (cont.)
	Experimental Results
	Experimental Results (cont.)
	Experimental Results (cont.)
	Experimental Results (cont.)
	Experiment Results (cont.)
	Summary
	Future Work
	Outline
	Example 1: a movie database
	How about Schwarrzenger?
	Relax Condition
	Edit Distance
	Edit Distance Computation
	Needleman-Wunsch algorithm (I)
	Needleman-Wunsch algorithm (II)
	Example (I)
	Example (II)
	Example (III)
	“q-grams” of strings
	q-gram inverted lists
	Searching using inverted lists
	2-grams -> 3-grams?
	Observation 1: dilemma of choosing “q”
	Observation 2: skew distributions of gram frequencies
	VGRAM: Main idea
	Challenges
	Challenge 1: String  Variable-length grams?
	Representing gram dictionary as a trie
	Challenge 2: Constructing gram dictionary
	Step 2: selecting grams
	Step 2: selecting grams (cont)
	Final gram dictionary
	Challenge 3: Edit operation’s effect on grams
	Deletion affects variable-length grams
	Grams affected by a deletion
	Grams affected by a deletion (cont)
	# of grams affected by each operation
	Max # of grams affected by k operations
	Summary of VGRAM index
	Challenge 4: adopting VGRAM
	Lower bound on # of common grams
	Example: algorithm using inverted lists
	PartEnum + VGRAM
	PartEnum + VGRAM (naïve)
	PartEnum + VGRAM (optimization)
	Data sets
	VGRAM overhead (index size)
	VGRAM overhead (construction time)
	Benefits over fixed-length grams (index)
	Benefits over fixed-length grams (running time)
	Effect of qmax
	Effect of frequency threshold T
	Improving algorithm ProbeCount
	Improving algorithm ProbeCluster
	Improving algorithm PartEnum
	Discussions
	Outline
	Motivation
	Example
	Representative type
	Partial order
	Problem Definition
	Problem solution
	Series Parallel tree
	Generating various order
	Mixture model
	Example
	Algorithm
	Example
	Continue…
	Outline
	Promoter and Enhancers
	Regulation of Genes
	Regulation of Genes
	Regulation of Genes
	Finding Regulatory Motifs
	Problem Definition
	Algorithms
	Expectation Maximization
	Expectation Maximization
	Expectation Maximization
	Expectation Maximization
	Expectation Maximization
	Expectation Maximization: E-step
	Expectation Maximization: M-step
	Expectation Maximization: M-step
	Initial Parameters Matter!
	Overview of EM Algorithm
	Overview of EM Algorithm
	Gibbs Sampling
	Gibbs Sampling
	Gibbs Sampling
	Advantages / Disadvantages
	References
	Acknowledgements

