
8/19/2002 Data Mining: Foundation, Techniques and Applications 1

Data Mining: Foundation,
Techniques and Applications

Lesson 12: Mining and Searching Trees

Anthony Tung(鄧锦浩)
School of Computing

National University of Singapore

Li Cuiping(李翠平)
School of Information

Renmin University of China

CS6220: Advance Topics in Data Mining 2

Outline

Importance of Trees
Distance between Trees
Kernel methods for Trees
Fast Distance Computations
Mining Frequent Subtrees

CS6220: Advance Topics in Data Mining 3

Importance of Trees

Between sequences and graphs
Equivalent to acyclic graph
Represents hierarchal structures
Examples

XML documents
Programs
RNA structure

CS6220: Advance Topics in Data Mining 4

Types of Trees

Is there a root?
Are the nodes labeled?
Are the children of a node ordered?

CS6220: Advance Topics in Data Mining 5

Framework
Many data mining problems requires the
notion of a distance/similarity measure

Clustering
Classification (Nearest Neighbor, SVM)

How to compute distance between two
trees?
How to quickly approximate the distance?
Which structures occurs frequently in a
database of trees?

CS6220: Advance Topics in Data Mining 6

Outline

Importance of Trees
Distance between Trees
Kernel methods for Trees
Fast Distance Computations
Mining Frequent Subtrees

CS6220: Advance Topics in Data Mining 7

Distance Measure

Many ways to define distance
Convert to standard types and adopt the
distance metric there
How many operations to transform one
tree to another? (Edit distance)
Inverse of similarity
dist(S, T) = maxSim – sim(S,T)
Relationship between different definitions?

CS6220: Advance Topics in Data Mining 8

Operations on Trees

Relabel

Delete

Insert

CS6220: Advance Topics in Data Mining 9

Remarks on Edit Distance

Ordered trees are tractable
Approach based on dynamic programming
NP-hard for unordered trees
Approach is to impose restrictions so that DP
can be used

CS6220: Advance Topics in Data Mining 10

Edit Script

Edit script(S, T): sequence of operations
to transform S to T
Example
1.S=

2.Delete c

3. Insert c
Relabel f → a
Relabel e → d

CS6220: Advance Topics in Data Mining 11

Edit Distance Mapping
Edit distance mapping(S, T): alternative
representation of edit operations

relabel: v → w
delete: v → $
insert: $ → w

Mapping corresponding to the script

CS6220: Advance Topics in Data Mining 12

Edit Distance for Ordered Trees

Generalize the problem to forests.
C(φ, φ) = 0
C(S, φ) = C(S – v, φ) + cost(v → $)
C(φ, T) = C(φ, T – w) + cost($ → w)
C(S, T) = minimum of
1.C(S – v, T) + cost(v → $) [deleting v]
2.C(S, T – w) + cost($ → w) [inserting w]
3.C(S – tree(v), T – tree(w)) +

C(S(v) - v, T(w)) + cost(v → w)[relabel v → w]

CS6220: Advance Topics in Data Mining 13

Illustration of Case 3

C(S – tree(v), T – tree(w)) +
C(S(v), T(w)) + cost(v → w) [relabel v → w]

v w......
S(v) T(w)

S - tree(v) T - tree(w)

CS6220: Advance Topics in Data Mining 14

Algorithm Complexity

Number of subproblems bounded by
O(|S|2|T|2)
Zhang and Shasha, 1989 showed that the
number of relevant subproblems is
O(|S||T|min(SD, SL) min(TD, TL)) and
space is O(|S||T|)
Further improvements, required
decomposition of a rooted tree into
disjoint paths

CS6220: Advance Topics in Data Mining 15

Decomposition into Paths

Concept of heavy and light nodes/edges
(Harel and Tarjan, 1984)
Root is light, child with max size is heavy
Removal of light edges partitions T into
disjoint heavy paths
Important property: light depth(v) ≤
log|T| + O(1)
Complexity can be reduced to
O(|S|2|T|log|T|)

CS6220: Advance Topics in Data Mining 16

Unordered Edit Distance

NP-hard
Special cases (in P)

T is a sequence
Number of leaves in T is logarithmic

Impose additional constraints
Disjoint subtrees map to disjoint subtrees

CS6220: Advance Topics in Data Mining 17

Tree Inclusion

Is there a sequence of deletion operations
on S which can transform it to T?
Special case of edit distance which only
allows deletions

CS6220: Advance Topics in Data Mining 18

Complexity of Tree Inclusion

Ordered trees
Concept of embeddings (restriction of
mappings)
O(|S||T|) using the algorithm of
Kilpelainen and Mannila

Unordered trees
NP-complete (what did you expect ?)
Special cases

CS6220: Advance Topics in Data Mining 19

Related Problems on Trees
Tree Alignment (covered in the survey paper)
Robinson-Fould's Distance for leaf labeled
trees, where edge = bipartition of leaves
Tree Pattern Matching
Maximum Agreement Subtree
Largest Common Subtree
Smallest Common Supertree
Many are generalizations of problems on
strings

CS6220: Advance Topics in Data Mining 20

Summary of Tree Distance

Edit distance
Concept of edit mapping
Dynamic programming for ordered trees
Constrained edit distance for unordered trees

Tree inclusion
Special case of edit distance
Specialized algorithms are more efficient
Useful for determining embedded trees

CS6220: Advance Topics in Data Mining 21

Outline

Importance of Trees
Distance between Trees
Kernel methods for Trees
Fast Distance Computations
Mining Frequent Subtrees

CS6220: Advance Topics in Data Mining 22

Kernels for Trees

SVM requires kernel methods
Effective in high dimensional spaces
A measure of the similarity between two
trees

CS6220: Advance Topics in Data Mining 23

Vector Representation of a Tree

VT = [#subtree1(T), #subtree2(T), ...]
VS • VT = ∑ #subtreei(S) x #subtreei(T)

= ∑ ∑ C(nS, nT)
C(nS, nT) = ∑ #subtreei rooted at nS x

#subtreei rooted at nT

CS6220: Advance Topics in Data Mining 24

Recurrence for Parse Trees

No node shares a label with its siblings
There is a one-to-one correspondence
between two groups of children
C(nS, nT) = 0 if nS != nT

C(nS, nT) = 1 if nS and nT
are leaves

C(nS, nT) = ∏ (1 + C(nS
i, nT

i))

CS6220: Advance Topics in Data Mining 25

Kernel for Labeled Ordered Trees

No direct correspondence between
children of a node
Luckily nodes are ordered
Use Dynamic Programming to consider all
possible matchings where order of
children is preserved

CS6220: Advance Topics in Data Mining 26

Recurrence for Ordered Trees

Let D(nS, nT, i, j) be C(nS, nT) where we consider up
to the ith child of nS and the jth child of nT

C(nS, nT) = D(nS, nT, #child(nS), #child(nT))
Since all matchings preserve the left-to-right
ordering of the children, hence
D(nS, nT, i, j) = D(nS, nT, i-1, j) + D(nS, nT, i, j-1)

- D(nS, nT, i-1, j-1)
+ D(nS, nT, i-1, j-1) x C(nS

i, nT
j)

CS6220: Advance Topics in Data Mining 27

Extension: Label Mutations

Define a mutation score function f(v|w),
suppose f(A|A) = 1, f(A|D) = 0.5, f(C|B)
= 0.8 and f(C|C) = 1
Then the “count” of subtreei wrt to T is
f(A|A) f(A|D) f(C|B) f(C|C) = 0.4

CS6220: Advance Topics in Data Mining 28

Extension: Label Mutations

Only need to modify C(nS, nT)
C(nS, nT) = M(L(nS), L(nT) x

D(nS, nT, #child(nS),
#child(nT))
M(L(nS), L(nT)) = ∑ f(L(nS)|a) f(L(nT)|a)
Sum over all possible ways in which the
labels can be changed

CS6220: Advance Topics in Data Mining 29

Extension: Embedding

Allow a subtreei to be embedded in T

CS6220: Advance Topics in Data Mining 30

Extension: Embedding
For subtrees

all subtrees rooted at v can be constructed by
combining subtrees rooted at each of its children

For embedded subtrees
all subtrees rooted at v can be constructed by
combining subtrees rooted at each of its
descendants

Allow the possibility of skipping nodes in the
recurrence
Complexity remains at O(|S||T|)

CS6220: Advance Topics in Data Mining 31

Summary of Kernel Methods

Kernel methods avoid dealing with high
dimensional vectors
Dot product ~ similarity measure
Dynamic programming to the rescue
Extending the recurrence without
increasing the complexity

CS6220: Advance Topics in Data Mining 32

Outline

Importance of Trees
Distance between Trees
Kernel methods for Trees
Fast Distance Computations
Mining Frequent Subtrees

12/3/2007 Data Mining: Foundation, Techniques and Applications 33

Similarity Measurement

Edit Operation e; cost γ(e),

a->b b->λ λ->b

Edit Distance EDist(T1, T2)

a a

si(ei1,ei2,…,eik) : T1->T2; cost(si)= ∑j γ(eij)
EDist(T1,T2)=mini(cost(si)) unit cost: EDist(T1,T2)=min(k)

Computational Complexity:
1 2 1 1 2 2(| | | | min((), ()) min((), ()))O T T depth T leaves T depth T leaves T× × ×

12/3/2007 Data Mining: Foundation, Techniques and Applications 34

Edit Operation Mapping

M(T1,T2)

Edit operations mapping
One-to-one
Preserve sibling order
Preserve ancestor order

T1 T2

a

d b e

d
c d

a

b c d

c d b

e

c

12/3/2007 Data Mining: Foundation, Techniques and Applications 35

Observation
Edit operations do not change many sibling
relationship

b c d e

g h if

a

g

a

b f h i d e

Sibling relation:
(b,c)->(b,f)
(c,d)->(i,d)

c->λ

Node: Varying number of children v.s. at most 2 siblings

12/3/2007 Data Mining: Foundation, Techniques and Applications 36

Binary Tree Representation
Binary Tree Representation

Left-child, right sibling
Normalized Binary Tree

b

a

cc d d

b e

a(1,8)

c(3,1)

ε

ε

b(2,3)

e(8,7)

εε

b(5,6)

εε

ε

d(4,2)
c(6,4)

ε d(7,5)

ε

a
b
ε

…
e
ε

ε

…
b
c
b

…
b
c
c

…
b
c
e

…
b
e
ε

…
c
ε
d

d
ε
b

… …
d
ε
e

…
d
ε

ε

1 … 1…1 …0 …1 … 0 …2 0… …0 … 2

T1

1 … 1…0 …1 …0 … 1 …2 0…
1

…1 … 0

T2

| |

1 2 1 2
1

(,) | | 8i i
i

BBDist T T b b
Γ

=

= − =∑ Triangular Inequality

12/3/2007 Data Mining: Foundation, Techniques and Applications 37

One Edit Operation Effect

v

...
...

......

...

...

v’

......

.........

v’

lw2w1wwl+m+1l+mwlw2w1w w

w l+ml+1w

l+m+1

...

...

...

v

...

......

...

...

v’

...

...

w l+m

w l+2

l+m+1w
w l+1

w l

2w

1w

v’

...

...

l+m+1w

l+mw
l+1w

lw

w2

1w

ε

Each node appears in
at most two binary
branches

12/3/2007 Data Mining: Foundation, Techniques and Applications 38

Theorem

1 insertion/deletion incurs at most 5 difference on BBDist
1 rellabeling incurs at most 4 difference on BBDist
T, T’, EDIST(T, T’) = k = ki + kd + kr ,
BDist(T,T’) <= 4kr+5ki+5kd <= 5k;

1/5 1/5 BDistBDist is a lower is a lower
bound of edit distancebound of edit distance;;

12/3/2007 Data Mining: Foundation, Techniques and Applications 39

Positional Binary Branch

b(5,6)

ε ε

e(8,7)

b(2,3) ε

ε

ε

c(3,1)

a(1,8)

ε

ε

B(T2)B(T1)

e(6,3)

b(2,5)

d(8,7)

c(7,6)

a(1,8)

ε

ε

ε

ε ε

ε

b(5,4)ε

d(4,2)ε

c(3,1)

d(7,5)ε

c(6,4)
d(4,2)

ε

ε

Incurs 0 difference for
BBDist(T1,T2)

T1

T’2

a

d b e

d
d

a

b c d

c d

e

c c
b

a

d ec

T2

PosBiB(T1(e))=(BiB(e,ε,ε),8,7) PosBib(T2(e))=(BiB(e,ε,ε),6,3)

Positional binary branch: Positional binary branch: PosBiB(T(uPosBiB(T(u))))

≠

Positional Binary Branch Distance

12/3/2007 Data Mining: Foundation, Techniques and Applications 40

Computational Complexity
D: dataset; |D|: dataset size;
Vector construction part:

Traverse the data trees for once
Optimistic bound computation:
time: each binary search O(|Ti|+|Tq|),

totally:

space:

| |

1

, : (| |)
D

i
i

time space O T
=
∑

| |

1

((| | | |) log(min(| |,| |)))
D

i q i q
i

O T T T T
=

+∑

| |

1
((| | | |))

D

i q
i

O T T
=

+∑

12/3/2007 Data Mining: Foundation, Techniques and Applications 41

Generalized Study
Extend the sliding window to q level
The images vector gives multiple level binary
branch profiles.
BDist_BDist_qq(T,T(T,T’’) <= [4*(q) <= [4*(q--1)+1]*1)+1]*EDist(T,TEDist(T,T’’))

...

...

...

v

...

......

...

...

v’

...

...

w l+m

w l+2

l+m+1w
w l+1

w l

2w

1w

v’

...

...

l+m+1w

l+mw
l+1w

lw

w2

1w

12/3/2007 Data Mining: Foundation, Techniques and Applications 42

Query Processing Strategy

Filter-and-refine frameworks
Lower bound distances filter out most objects

The lower bound computation is much succinct
Lower bound distance is a close approximation
of the real dist

Remaining objects be validated by real
distance

12/3/2007 Data Mining: Foundation, Techniques and Applications 43

Experimental Settings
Compare with histogram methods[KKSS04]

Lower bound: feature vector distance (Leaf
Distance Height histogram vector, Degree
histogram vector, Label histogram vector)

Synthetic dataset:
Tree size, Fanout, Label, Decay factor

Real dataset: dblp XML document
Performance measure:

Percentage of data accessed:

CPU time consumed
Space requirement

| | | | 100%
| |

false positive true positive
dataset

+
×

12/3/2007 Data Mining: Foundation, Techniques and Applications 44

Sensitivity to the Data Properties
Sensitivity test

Range: N{}N{50,2.0}L8D0.05

0
5

10
15
20
25
30
35

2 4 6 8Fanout

%
 o

f A
cc

es
se

d
D

at
a

0

0.1

0.2

0.3

0.4

0.5

C
P

U
 C

os
t (

S
ec

on
d)

BiBranch % Histo % Result %

BiBranch Sequ

KNN: N{}N{50,2.0}L8D0.05

0
1
2
3
4
5
6
7
8

2 4 6 8
Fanout

%
 o

f A
cc

es
se

d
D

at
a

0

0.1

0.2

0.3

0.4

0.5

C
PU

 C
os

t (
Se

co
nd

)

BiBranch % Histo % BiBranch Sequ

Range: N{4,0,5}N{}L8D0.05

0
10
20
30
40
50
60
70
80

25 50 75 125
Tree Size

%
 o

f A
cc

es
se

d
D

at
a

0

0.5

1
1.5

2

2.5

3

C
P

U
 C

os
t (

S
ec

on
d)

BiBranch % Histo % Result %
BiBranch Sequ

KNN: N{4,0.5}N{}L8D0.05

0

20

40

60

80

100

25 50 75 125
Tree Size

%
 o

f A
cc

es
se

d
D

at
a

0

0.5

1

1.5

2

2.5

3

C
P

U
 C

os
t (

S
ec

on
d)

BiBranch % Histo % BiBranch Sequ

mean(fanout): 2 8;
mean(|T|): 50;
size(label): 8

mean(|T|): 25 125;
mean(fanout): 4;
size(label): 8

12/3/2007 Data Mining: Foundation, Techniques and Applications 45

Sensitivity test (cont.)

Range: N{4,0.5}N{50,2.0}L{}D0.05

0
5

10
15
20
25
30
35

8 16 32 64
Label Number

%
 o

f A
cc

es
se

d
D

at
a

0

0.1

0.2

0.3

0.4

0.5

C
PU

 C
os

t (
Se

co
nd

)

BiBranch % Histo % Result %
BiBranch Sequ

KNN: N{4,0.5}N{50,2.0}L{}D0.05

0

1
2
3
4
5
6
7

8 16 32 64
Label Number

%
 o

f A
cc

es
se

d
D

at
a

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45

C
P

U
 C

os
t (

S
ec

on
d)

BiBranch % Histo % BiBranch Sequ

size(label): 8 64; mean(|T|): 50; mean(fanout): 4

12/3/2007 Data Mining: Foundation, Techniques and Applications 46

Queries with Different Parameters

Range: DBLP

0

20

40

60

80

100

1 2 3 4 5 7 10
Range

%
 o

f A
cc

es
se

d
D

at
a

0

0.05

0.1

0.15
0.2

0.25

0.3

0.35

C
P

U
 C

os
t (

se
co

nd
)

BiBranch % Histo % Result %
BiBranch Sequ

KNN: DBLP

0

1

2

3

4

5

6

5 7 10 12 15 17 20
k

%
 o

f A
cc

es
se

d
D

at
a

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C
P

U
 C

os
t (

se
co

nd
)

BiBranch % Histo % BiBranch Sequ

Dblp data (avg. distance: 5.031)
Range queries
KNN (k:5-20)

12/3/2007 Data Mining: Foundation, Techniques and Applications 47

Pruning Power of Different Level

Data distribution according to distances
Edit distance
Histogram distance
Binary branch distance: 2, 3, 4 level

DBLP

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10 11 12
Distance

D
at

a
D

is
tri

bu
tio

n

Edit Histo BiBranch(2)
BiBranch(3) BiBranch(4)

12/3/2007 Data Mining: Foundation, Techniques and Applications 48

Citations on the Paper
Surprisingly, attract citations and questions from software
engineering! Expect more impact along software mining
direction soon.
DECKARD: Scalable and Accurate Tree-Based Detection of Code Clones - all 2
versions »
L Jiang, G Misherghi, Z Su, S Glondu - Proceedings of the 29th International
Conference on Software …, 2007 - portal.acm.org
Detecting code clones has many software engineering applications. Existing
approaches either do not scale to large code bases or are not robust against
minor code modifications. In this paper, we present an efficient ...
Fast Approximate Matching of Programs for Protecting Libre/Open Source
Software by Using Spatial … - all 2 versions »
AJM Molina, T Shinohara - Source Code Analysis and Manipulation, 2007. SCAM
2007. …, 2007 - doi.ieeecomputersociety.org
To encourage open source/libre software development, it is desirable to have
tools that can help to identify open source license violations. This paper
describes the imple-mentation of a tool that matches open source programs ...

http://portal.acm.org/citation.cfm?id=1248820.1248843
http://scholar.google.com/scholar?hl=en&lr=&client=firefox-a&cluster=3317240187645557392
http://scholar.google.com/scholar?hl=en&lr=&client=firefox-a&cluster=3317240187645557392
http://doi.ieeecomputersociety.org/10.1109/SCAM.2007.10
http://doi.ieeecomputersociety.org/10.1109/SCAM.2007.10
http://doi.ieeecomputersociety.org/10.1109/SCAM.2007.10

CS6220: Advance Topics in Data Mining 49

Outline

Importance of Trees
Distance between Trees
Kernel methods for Trees
Fast Distance Computations
Mining Frequent Subtrees

12/3/2007 Data Mining: Foundation, Techniques and Applications 50

Mining Complex Structures
Frequent Structure Mining tasks:

Item sets (transactional, unordered data)
Sequences (temporal/positional: text, bioseqs)
Tree patterns (semi-structured/XML data,
web mining, bioinformatics, etc.)
Graph patterns (bioinformatics, web data)

“Frequent” used broadly:
Maximal or closed patterns in dense data
Correlation, other statistical metrics
Interesting, rare, non-redundant patterns

12/3/2007 Data Mining: Foundation, Techniques and Applications 51

Tree Mining: Motivation
Capture intricate (subspace) patterns
Can be used (as features) to build global models
(classification, clustering, etc.)
Ideally suited for categorical, high-dimensional,
complex and massive data
Interesting Applications

XML, semi-structured data: Mine structure + content
for Classification
Web usage mining: Log mining (user sessions as
trees)
Bioinformatics: RNA sub-structures, phylogenetic trees

12/3/2007 Data Mining: Foundation, Techniques and Applications 52

Contributions
Mining embedded subtrees in rooted,
ordered, and labeled trees (forest) or a
single large tree
Notion of node scope
Representing trees as strings
Scope-lists for subtree occurrences
Systematic subtree enumeration
Extensions for mining unlabeled or
unordered subtrees or sub-forests

12/3/2007 Data Mining: Foundation, Techniques and Applications 53

Tree Mining: Definitions
Rooted tree: special node called root
Ordered tree: child order matters
Labeled tree: nodes have labels
Ancestor (embedded child): x ≤l y (l length path x
to y)
Sibling nodes: two nodes having same parent
Embedded siblings: two nodes having common
ancestor
Depth-first Numbering: node’s position in a pre-
order traversal of the tree
A node has a number ni and a label l(ni)
Scope of node nl is [l, r], nr is rightmost leaf under
nl

12/3/2007 Data Mining: Foundation, Techniques and Applications 54

Tree Mining: Definitions
Embedded Subtrees: S = (Ns, Bs) is a subtree
of
T = (N,B) if and only if (iff)

Ns ⊆ N
b = (nx, ny) ∊ Bs iff nx ≤l ny in T (nx ancestor of ny)
Note: in an induced subtree b = (nx, ny) ∊ Bs

iff (nx, ny) ∊ B (nx is parent of ny)
We say S occurs in T if S is a subtree of T
If S has k nodes, we call it a k-subtree

Able to extract patterns hidden (embedded)
deep within large trees; missed by traditional
definition of induced subtrees

12/3/2007 Data Mining: Foundation, Techniques and Applications 55

Tree Mining Problem
Match labels of S in T

Positions in T where each node of S matches
Match label is unique for each occurrence of S in T

Support: Subtree may occur more than once
in a tree in D, but count it only once
Weighted Support: Count each occurrence of
a subtree (e.g., useful when |D| =1)
Given a database (forest) D of trees, find all
frequent embedded subtrees

Should occur in a minimum number of times
used-defined minimum support (minsup)

12/3/2007 Data Mining: Foundation, Techniques and Applications 56

Subtree Example

0

1 2

3 2

1 2

0

2 221

n0

n1

n5n2

n6

[0,6]

[1,5]

[2,4]

[3,3]
[4,4]

[5,5]

[6,6]

n4n3

0

4

5

Tree
Subtree

3

6

Match Label: 03456
Support: 1

12/3/2007 Data Mining: Foundation, Techniques and Applications 57

Subtree Example

1

1 2

0

1 2

3 2

1 2

n0

n1

n5n2

n4n3

n6

1

3

4

Tree
Subtree

5

Match Labels:

134

135

Support = 1
Weighted Support = 2

12/3/2007 Data Mining: Foundation, Techniques and Applications 58

Example sub-forest (not a subtree)
By definition a subtree is connected
A disconnected pattern is a sub-forest

0

1 2

3 2

1 2

n0

n1

n4

n5n2

n3

n6

1

3

1

0

2

Tree
Sub-forest

12/3/2007 Data Mining: Foundation, Techniques and Applications 59

Tree Mining: Main Ingredients
Pattern representation

Trees as strings

Candidate generation
No duplicates

Pattern counting
Scope-list based (TreeMiner)
Pattern matching based (PatternMatcher)

12/3/2007 Data Mining: Foundation, Techniques and Applications 60

String Representation of Trees

0

1 2

3 2

1 2

0 1 3 1 -1 2 -1 -1 2 -1 -1 2 -1

With N nodes, M branches, F max fanout

Adjacency Matrix requires: N(F+1) space

Adjacency List requires: 4N-2 space

Tree requires (node, child, sibling): 3N space

String representation requires: 2N-1 space

12/3/2007 Data Mining: Foundation, Techniques and Applications 61

Systematic Candidate Generation:
Equivalence Classes

Two subtrees are in the same class iff they share a common prefix
string P up to the (k-1)th node

A valid element x attached to only the
nodes lying on the path from
root to rightmost leaf in prefix PNot valid position: Prefix 3 4 2 x

12/3/2007 Data Mining: Foundation, Techniques and Applications 62

Candidate Generation
Generate new candidates (k+1)-
subtrees from equivalence classes of k-
subtrees
Consider each pair of elements in a
class, including self-extensions
Up to two new candidates from each
pair of joined elements
All possible candidates subtrees are
enumerated
Each subtree is generated only once!

12/3/2007 Data Mining: Foundation, Techniques and Applications 63

Candidate Generation (Join operator ⊗)

1

2 4

1

2

3

Equivalence Class
Prefix: 1 2, Elements: (3,1) (4,0) 1

2

3

1

2

3

⊗

1

2

3

1

2

3

3

3

Self Join New Candidates

1

2

3

1

2

3

1

2 4

4

⊗

Join

New Equivalence Class
Prefix: 1 2 3
Elements: (3,1) (3,2) (4,0)

12/3/2007 Data Mining: Foundation, Techniques and Applications 64

TreeMiner:Scope List for Trees

[2,2] [3,3]

1

2 3

4

2

1 2

2 4

3

1

3 5

1

2 3

4

2

T0

T1

T2[0,3]

[1,1] [2,3]

[3,3]

[0,5]

[1,3]

[4,4] [5,5]

[0,7]

[1,2]

[2,2]

[3,7]

[4,7]

[5,5]

[6,7]

[7,7]

String Representation
T0: 1 2 -1 3 4 -1 -1
T1: 2 1 2 -1 4 -1 -1 2 -1 3 -1
T2: 1 3 2 -1 -1 5 1 2 -1 3 4 -1 -1 -1 -1

0, [0,3]
1, [1,3]

2, [0,7]
2, [4,7]

0, [1,1]
1, [0,5]
1, [2,2]
1, [4,4]
2, [2,2]
2, [5,5]

0, [2,3]
1, [5,5]
2, [1,2]
2, [6,7]

0,[3,3]
1,[3,3]
2,[7,7]

1 2 3 4

5

Scope-Lists

2, [3,7]

12/3/2007 Data Mining: Foundation, Techniques and Applications 65

Frequency Computation: Scope
List Joins (∩⊗) – In Scope

0, [0,3]
1, [1,3]

0, [1,1]
1, [0,5]
1, [2,2]
1, [4,4]
2, [2,2]
2, [5,5]

0, [2,3]
1, [5,5]
2, [1,2]
2, [6,7]

0,[3,3]
1,[3,3]
2,[7,7]

Equivalence Class: Prefix =∅
Elements: (1,-1) (2,-1) (3,-1) (4,-1)

2, [0,7]
2, [4,7]

1 2 3 4

1

2

2, 0, [2,2]
2, 0, [5,5]
2, 4, [5,5]

0, 0, [1,1]
1, 1, [2,2]

1

4

2, 0, [7,7]
2, 4, [7,7]

0, 0, [3,3]
1, 1, [3,3]

[1,1]

[2,2] [3,3]

1
2 3

4

2
1 2

2 4
3

1
3 5

1
2 3

4

2

T0 T1 T2[0,3]

[2,3]

[3,3]

[0,5]

[1,3]
[4,4] [5,5]

[0,7]

[1,2]

[2,2]

[3,7]

[4,7]

[5,5]

[6,7]

[7,7]

Tree Id, Prefix Match Label, Last Node Scope
0 0 [1,1]

Interval Algebra
[0, 3] ⊃ [1, 1]

Count = 3

Minsup = 3 (100%)

12/3/2007 Data Mining: Foundation, Techniques and Applications 66

Scope List Joins: Out Scope

1

2

2, 0, [2,2]
2, 0, [5,5]
2, 4, [5,5]

0, 0, [1,1]
1, 1, [2,2]

1

4

2, 0, [7,7]
2, 4, [7,7]

0, 0, [3,3]
1, 1, [3,3]

1

2 4

0, 01, [3,3]
1, 12, [3,3]
2, 02, [7,7]
2, 05, [7,7]
2, 45, [7,7]

[2,2] [3,3]

1
2 3

4

2
1 2

2 4
3

1
3 5

1
2 3

4

2

T0 T1 T2[0,3]

[2,3]

[3,3]

[0,5]

[1,3]
[4,4] [5,5]

[0,7]

[1,2]

[2,2]

[3,7]

[4,7]

[5,5]

[6,7]

[7,7]

Interval Algebra
[1, 1] < [3, 3]

12/3/2007 Data Mining: Foundation, Techniques and Applications 67

Pattern Matcher
Level-wise Apriori Style Algorithm
Uses optimized pattern matching

Equivalence classes
3 step matching

Finding matching leafs
Prefix matching
Element matching

12/3/2007 Data Mining: Foundation, Techniques and Applications 68

Experimental Results
Machine: 500Mhz PentiumII, 512MB memory, 9GB disk, Linux 6.0
Synthetic Data: Web browsing

Parameters: N = #Labels, M = #Nodes,
F = Max Fanout, D = Max Depth, T = #Trees
Create master website tree W

For each node in W, generate #children (0 to F)
Assign probabilities of following each child or to backtrack; adding up to 1
Recursively continue until D is reached

Generate a database of T subtrees of W
Start at root. Recursively at each node generate a random number
(0-1) to decide which child to follow or to backtrack.

Default parameters: N=100, M=10,000, D=10, F=10, T=100,000
Three Datasets: D10 (all default values), F5 (F=5), T1M (T=106)

Real Data: CSLOGS – 1 month web log files at RPI CS
Over 13361 pages accessed (#labels)
Obtained 59,691 user browsing trees (#number of trees)
Average string length of 23.3 per tree

12/3/2007 Data Mining: Foundation, Techniques and Applications 69

Distribution of Frequent Trees
Sparse Dense

12/3/2007 Data Mining: Foundation, Techniques and Applications 70

Experiments (Sparse)

• Relatively short patterns in sparse data
• Level-wise approach able to cope with it
• TreeMiner about 4 times faster

12/3/2007 Data Mining: Foundation, Techniques and Applications 71

Experiments (Dense)

• Long patterns at low support (length=20)
• Level-wise approach suffers
• TreeMiner 20 times faster!

12/3/2007 Data Mining: Foundation, Techniques and Applications 72

Scaleup

12/3/2007 Data Mining: Foundation, Techniques and Applications 73

Application: Web/XML Mining
LOGML (Log Markup Language) Documents

Log graph of the site in XGMML
Information for log reports

top visiting hosts, top user agents, top keywords, etc.
User session (subgraph of log graph)

list of edges referring to nodes of log graph with time stamps
Extract user sessions from LOGML db to create User
Graphs

Session Id (IP or host name)
Path count (# of edges)
Edge Information (source-destination)
Time when an edge is traversed

Form a task-relevant (sets, sequences, trees, etc.)
database from user graphs

12/3/2007 Data Mining: Foundation, Techniques and Applications 74

User Graph

<userSession name=''ppp0-69.ank2.isbank.net.tr'' ...>
<path count=''6''>
<uedge source=''5938'' target=''16470'' utime=''24/Oct/2000:07:53:46''/>
<uedge source=''16470'' target=''24754'' utime=''24/Oct/2000:07:56:13''/>
<uedge source=''16470'' target=''24755'' utime=''24/Oct/2000:07:56:36''/>
<uedge source=''24755'' target=''47387'' utime=''24/Oct/2000:07:57:14''/>
<uedge source=''24755'' target=''47397'' utime=''24/Oct/2000:07:57:28''/>
<uedge source=''16470'' target=''24756'' utime=''24/Oct/2000:07:58:30''/>

12/3/2007 Data Mining: Foundation, Techniques and Applications 75

Set Mining
Transaction Format: user name, number of

nodes
accessed, node list

ppp0-69.ank2.isbank.net.tr 7 5938 16470 24754 24755 47387 47397
24756

Example from 1 day’s logs at RPI CS dept.
Let Path=http://www.cs.rpi.edu/~sibel/poetry
FREQUENCY=16, NODE IDS = 16395 38699 38700 38698 593

Path/poems/akgun_akova/index.html
Path/poems/akgun_akova/picture.html
Path/poems/akgun_akova/biyografi.html
Path/poems/akgun_akova/contents.html
Path/sair_listesi.html

12/3/2007 Data Mining: Foundation, Techniques and Applications 76

Sequence Mining
Format: user name, sequence id, nodes accessed

(maximal forward paths)
ppp0-69.ank2.isbank.net.tr 1 5938 16470 24754
ppp0-69.ank2.isbank.net.tr 2 5938 16470 24755 47387
ppp0-69.ank2.isbank.net.tr 3 5938 16470 24755 47397
ppp0-69.ank2.isbank.net.tr 4 5938 16470 24756

Let Path=http://www.cs.rpi.edu/~sibel/poetry
FREQUENCY = 20, NODE IDS = 5938 -> 16395 -> 38698

Path/sair_listesi.html ->
Path/poems/akgun_akova/index.html ->
Path/poems/akgun_akova/contents.html

12/3/2007 Data Mining: Foundation, Techniques and Applications 77

Tree Mining
Format: user name, tree string
ppp0-69.ank2.isbank.net.tr, 5938 16470 24754 -1 24755 47387 -1

47397
-1 -1 24756 -1 -1

Let Path=http://www.cs.rpi.edu/~sibel/poetry
Let Akova = Path/poems/akgun_akova
FREQUENCY=59, NODES = 5938 16395 38699 -1 38698 -1 38700

Path/sair_listesi.html

Path/poems/akgun_akova/index.html

Akova/picture.html Akova/contents.html Akova/biyografi.html

12/3/2007 Data Mining: Foundation, Techniques and Applications 78

Summary
TreeMiner: Novel tree mining approach

Non-duplicate candidate generation
Scope-list joins for frequency computation

Framework for Tree Mining Tasks
Frequent subtrees in a forest of rooted, labeled,
ordered trees
Frequent subtrees in a single tree
Unlabeled or unordered trees
Frequent Sub-forests

Outperforms pattern matching approach
Future Work: constraints, maximal subtrees,
inexact label matching

12/3/2007

Conclusion
How to compute distance between two
trees?

Edit distance
Kernel method

How to quickly approximate the distance?
L1 metric using vector representation

Which structures occurs frequently in a
database of trees?

Mining frequent embedded subtrees

12/3/2007

References

Philip Bille . A survey on tree edit distance and related problems.
Theoretical Computer Science. Volume 337 , Issue 1-3 (June 2005)
Rui Yang, Panos Kalnis, Anthony K. H. Tung: Similarity Evaluation on
Tree-structured Data. SIGMOD 2005.
Hisashi Kashima Teruo Koyanagi. Kernels for Semi-Structured Data.
Proceedings of the Nineteenth International Conference on Machine
Learning. 291-298. 2002.
Mohammed J. Zaki. "Efficiently mining frequent trees in a forest".
Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining. Pg. 71-80. 2002

Optional References:
JP Vert. "A tree kernel to analyze phylogenetic profiles" - Bioinformatics,
2002 - Oxford Univ Press

http://grfia.dlsi.ua.es/ml/algorithms/references/editsurvey_bille.pdf
http://www.comp.nus.edu.sg/~atung/publication/treematch.pdf
http://www.comp.nus.edu.sg/~atung/publication/treematch.pdf
http://www.comp.nus.edu.sg/~atung/publication/treematch.pdf
http://delivery.acm.org/10.1145/780000/775058/p71-zaki.pdf?key1=775058&key2=3159646811&coll=GUIDE&dl=GUIDE&CFID=26075598&CFTOKEN=94056771
http://bioinformatics.oxfordjournals.org/cgi/reprint/18/suppl_1/S276.pdf

	Data Mining: Foundation, Techniques and Applications
	Outline
	Importance of Trees
	Types of Trees
	Framework
	Outline
	Distance Measure
	Operations on Trees
	Remarks on Edit Distance
	Edit Script
	Edit Distance Mapping
	Edit Distance for Ordered Trees
	Illustration of Case 3
	Algorithm Complexity
	Decomposition into Paths
	Unordered Edit Distance
	Tree Inclusion
	Complexity of Tree Inclusion
	Related Problems on Trees
	Summary of Tree Distance
	Outline
	Kernels for Trees
	Vector Representation of a Tree
	Recurrence for Parse Trees
	Kernel for Labeled Ordered Trees
	Recurrence for Ordered Trees
	Extension: Label Mutations
	Extension: Label Mutations
	Extension: Embedding
	Extension: Embedding
	Summary of Kernel Methods
	Outline
	Similarity Measurement
	Edit Operation Mapping
	Observation
	Binary Tree Representation
	One Edit Operation Effect
	Theorem
	Positional Binary Branch
	Computational Complexity
	Generalized Study
	Query Processing Strategy
	Experimental Settings
	Sensitivity to the Data Properties
	Sensitivity test (cont.)
	Queries with Different Parameters
	Pruning Power of Different Level
	Citations on the Paper
	Outline
	Mining Complex Structures
	Tree Mining: Motivation
	Contributions
	Tree Mining: Definitions
	Tree Mining: Definitions
	Tree Mining Problem
	Subtree Example
	Subtree Example
	Example sub-forest (not a subtree)
	Tree Mining: Main Ingredients
	String Representation of Trees
	Systematic Candidate Generation: Equivalence Classes
	Candidate Generation
	Candidate Generation (Join operator ⊗)
	TreeMiner:Scope List for Trees
	Frequency Computation: Scope List Joins (∩⊗) – In Scope
	Scope List Joins: Out Scope
	Pattern Matcher
	Experimental Results
	Distribution of Frequent Trees
	Experiments (Sparse)
	Experiments (Dense)
	Scaleup
	Application: Web/XML Mining
	User Graph
	Set Mining
	Sequence Mining
	Tree Mining
	Summary
	Conclusion
	References

