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Importance of Trees

Between sequences and graphs
Equivalent to acyclic graph
Represents hierarchal structures
Examples

XML documents
Programs 
RNA structure
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Types of Trees

Is there a root?
Are the nodes labeled?
Are the children of a node ordered?
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Framework
Many data mining problems requires the 
notion of a distance/similarity measure

Clustering
Classification (Nearest Neighbor, SVM)  

How to compute distance between two 
trees?
How to quickly approximate the distance?
Which structures occurs frequently in a 
database of trees?
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Distance Measure

Many ways to define distance
Convert to standard types and adopt the 
distance metric there
How many operations to transform one 
tree to another? (Edit distance) 
Inverse of similarity 
dist(S, T) = maxSim – sim(S,T) 
Relationship between different definitions?
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Operations on Trees

Relabel

Delete

Insert
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Remarks on Edit Distance

Ordered trees are tractable
Approach based on dynamic programming
NP-hard for unordered trees
Approach is to impose restrictions so that DP 
can be used
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Edit Script

Edit script(S, T): sequence of operations 
to transform S to T
Example
1.S=                          

2.Delete c

3. Insert c
Relabel f → a
Relabel e → d
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Edit Distance Mapping
Edit distance mapping(S, T): alternative 
representation of edit operations

relabel: v → w
delete: v → $
insert: $ → w

Mapping corresponding to the script
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Edit Distance for Ordered Trees

Generalize the problem to forests.
C(φ, φ) = 0
C(S, φ) = C(S – v, φ) + cost(v → $) 
C(φ, T) = C(φ, T – w) + cost($ → w) 
C(S, T) = minimum of 
1.C(S – v, T) + cost(v → $) [deleting v]
2.C(S, T – w) + cost($ → w)  [inserting w]
3.C(S – tree(v), T – tree(w)) + 

C(S(v) - v, T(w)) + cost(v → w)[relabel v → w]
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Illustration of Case 3

C(S – tree(v), T – tree(w)) + 
C(S(v), T(w)) + cost(v → w) [relabel v → w]

v w......
S(v) T(w)  

S - tree(v) T - tree(w)  
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Algorithm Complexity

Number of subproblems bounded by 
O(|S|2|T|2)  
Zhang and Shasha, 1989 showed that the 
number of relevant subproblems is 
O(|S||T|min(SD, SL) min(TD, TL)) and 
space is O(|S||T|) 
Further improvements, required 
decomposition of a rooted tree into 
disjoint paths
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Decomposition into Paths

Concept of heavy and light nodes/edges 
(Harel and Tarjan, 1984) 
Root is light, child with max size is heavy
Removal of light edges partitions T into 
disjoint heavy paths
Important property: light depth(v) ≤
log|T| + O(1) 
Complexity can be reduced to 
O(|S|2|T|log|T|) 
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Unordered Edit Distance

NP-hard
Special cases (in P)  

T is a sequence
Number of leaves in T is logarithmic

Impose additional constraints
Disjoint subtrees map to disjoint subtrees
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Tree Inclusion

Is there a sequence of deletion operations 
on S which can transform it to T?
Special case of edit distance which only 
allows deletions
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Complexity of Tree Inclusion

Ordered trees
Concept of embeddings (restriction of 
mappings) 
O(|S||T|) using the algorithm of 
Kilpelainen and Mannila

Unordered trees
NP-complete (what did you expect ?) 
Special cases
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Related Problems on Trees
Tree Alignment (covered in the survey paper) 
Robinson-Fould's Distance for leaf labeled 
trees, where edge = bipartition of leaves
Tree Pattern Matching
Maximum Agreement Subtree
Largest Common Subtree
Smallest Common Supertree
Many are generalizations of problems on 
strings



CS6220: Advance Topics in Data Mining 20

Summary of Tree Distance

Edit distance
Concept of edit mapping
Dynamic programming for ordered trees
Constrained edit distance for unordered trees

Tree inclusion
Special case of edit distance
Specialized algorithms are more efficient
Useful for determining embedded trees
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Kernels for Trees

SVM requires kernel methods
Effective in high dimensional spaces
A measure of the similarity between two 
trees
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Vector Representation of a Tree

VT = [#subtree1(T), #subtree2(T),  ...]
VS • VT = ∑ #subtreei(S) x #subtreei(T)

= ∑ ∑ C(nS, nT)  
C(nS, nT) = ∑ #subtreei rooted at nS x

#subtreei rooted at nT
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Recurrence for Parse Trees

No node shares a label with its siblings
There is a one-to-one correspondence 
between two groups of children
C(nS, nT) = 0 if nS != nT

C(nS, nT) = 1 if nS and nT 
are leaves

C(nS, nT) = ∏ (1 + C(nS
i, nT

i)) 
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Kernel for Labeled Ordered Trees

No direct correspondence between 
children of a node
Luckily nodes are ordered
Use Dynamic Programming to consider all 
possible matchings where order of 
children is preserved
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Recurrence for Ordered Trees

Let D(nS, nT, i, j) be C(nS, nT) where we consider up 
to the ith child of nS and the jth child of nT

C(nS, nT) = D(nS, nT, #child(nS), #child(nT))  
Since all matchings preserve the left-to-right 
ordering of the children, hence
D(nS, nT, i, j) = D(nS, nT, i-1, j) + D(nS, nT, i, j-1)

- D(nS, nT, i-1, j-1) 
+ D(nS, nT, i-1, j-1) x C(nS

i, nT
j)  
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Extension: Label Mutations

Define a mutation score function f(v|w), 
suppose f(A|A) = 1, f(A|D) = 0.5, f(C|B) 
= 0.8 and f(C|C) = 1
Then the “count” of subtreei wrt to T is 
f(A|A) f(A|D) f(C|B) f(C|C) = 0.4



CS6220: Advance Topics in Data Mining 28

Extension: Label Mutations

Only need to modify C(nS, nT) 
C(nS, nT) = M(L(nS), L(nT) x 

D(nS, nT, #child(nS), 
#child(nT))  
M(L(nS), L(nT)) = ∑ f(L(nS)|a) f(L(nT)|a) 
Sum over all possible ways in which the 
labels can be changed
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Extension: Embedding

Allow a subtreei to be embedded in T
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Extension: Embedding
For subtrees

all subtrees rooted at v can be constructed by 
combining subtrees rooted at each of its children

For embedded subtrees
all subtrees rooted at v can be constructed by 
combining subtrees rooted at each of its 
descendants

Allow the possibility of skipping nodes in the 
recurrence
Complexity remains at O(|S||T|) 
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Summary of Kernel Methods

Kernel methods avoid dealing with high 
dimensional vectors
Dot product ~ similarity measure
Dynamic programming to the rescue
Extending the recurrence without 
increasing the complexity
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Similarity Measurement

Edit Operation e; cost γ(e),

a->b b->λ λ->b

Edit Distance EDist(T1, T2)

a a

si(ei1,ei2,…,eik) : T1->T2; cost(si)= ∑j γ(eij)
EDist(T1,T2)=mini(cost(si))  unit cost: EDist(T1,T2)=min(k)

Computational Complexity:
1 2 1 1 2 2(| | | | min( ( ), ( )) min( ( ), ( )))O T T depth T leaves T depth T leaves T× × ×
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Edit Operation Mapping

M(T1,T2)

Edit operations mapping
One-to-one
Preserve sibling order
Preserve ancestor order

T1 T2

a

d b e

d
c d

a

b c d

c d b

e

c
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Observation
Edit operations do not change many sibling 
relationship

b c d e

g h if

a

g

a

b f h i d e

Sibling relation:
(b,c)->(b,f)
(c,d)->(i,d)

c->λ

Node: Varying number of children v.s. at most 2 siblings
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Binary Tree Representation
Binary Tree Representation

Left-child, right sibling
Normalized Binary Tree
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One Edit Operation Effect
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Theorem

1 insertion/deletion incurs at most 5 difference on BBDist
1 rellabeling incurs at most 4 difference on BBDist
T, T’, EDIST(T, T’) = k = ki + kd + kr , 
BDist(T,T’) <= 4kr+5ki+5kd <= 5k;

1/5 1/5 BDistBDist is a lower is a lower 
bound of edit distancebound of edit distance;;
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Positional Binary Branch
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Computational Complexity
D: dataset; |D|: dataset size; 
Vector construction part:

Traverse the data trees for once
Optimistic bound computation:
time: each binary search O(|Ti|+|Tq|), 

totally:

space:
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i
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Generalized Study
Extend the sliding window to q level
The images vector gives multiple level binary 
branch profiles.
BDist_BDist_qq(T,T(T,T’’) <= [4*(q) <= [4*(q--1)+1]*1)+1]*EDist(T,TEDist(T,T’’))
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Query Processing Strategy

Filter-and-refine frameworks
Lower bound distances filter out most objects

The lower bound computation is much succinct
Lower bound distance is a close approximation 
of the real dist

Remaining objects be validated by real 
distance
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Experimental Settings
Compare with histogram methods[KKSS04]

Lower bound: feature vector distance (Leaf 
Distance Height histogram vector, Degree 
histogram vector, Label histogram vector)

Synthetic dataset:  
Tree size, Fanout, Label, Decay factor

Real dataset: dblp XML document
Performance measure:

Percentage of data accessed:

CPU time consumed
Space requirement

|  | |  | 100%
| |

false positive true positive
dataset

+
×
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Sensitivity to the Data Properties
Sensitivity test
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Sensitivity test (cont.)
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Queries with Different Parameters

Range: DBLP
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Pruning Power of Different Level

Data distribution according to distances
Edit distance
Histogram distance
Binary branch distance: 2, 3, 4 level
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Citations on the Paper
Surprisingly, attract citations and questions from software 
engineering! Expect more impact along software mining 
direction soon.
DECKARD: Scalable and Accurate Tree-Based Detection of Code Clones - all 2 
versions »
L Jiang, G Misherghi, Z Su, S Glondu - Proceedings of the 29th International 
Conference on Software …, 2007 - portal.acm.org
Detecting code clones has many software engineering applications. Existing 
approaches either do not scale to large code bases or are not robust against  
minor code modifications. In this paper, we present an efficient ...
Fast Approximate Matching of Programs for Protecting Libre/Open Source 
Software by Using Spatial … - all 2 versions »
AJM Molina, T Shinohara - Source Code Analysis and Manipulation, 2007. SCAM 
2007. …, 2007 - doi.ieeecomputersociety.org
To encourage open source/libre software development, it is desirable to have 
tools that can help to identify open source license violations. This paper 
describes the imple-mentation of a tool that matches open source programs ... 

http://portal.acm.org/citation.cfm?id=1248820.1248843
http://scholar.google.com/scholar?hl=en&lr=&client=firefox-a&cluster=3317240187645557392
http://scholar.google.com/scholar?hl=en&lr=&client=firefox-a&cluster=3317240187645557392
http://doi.ieeecomputersociety.org/10.1109/SCAM.2007.10
http://doi.ieeecomputersociety.org/10.1109/SCAM.2007.10
http://doi.ieeecomputersociety.org/10.1109/SCAM.2007.10
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Mining Complex Structures
Frequent Structure Mining tasks:

Item sets (transactional, unordered data)
Sequences (temporal/positional: text, bioseqs)
Tree patterns (semi-structured/XML data, 
web mining, bioinformatics, etc.)
Graph patterns (bioinformatics, web data)

“Frequent” used broadly:
Maximal or closed patterns in dense data
Correlation, other statistical metrics
Interesting, rare, non-redundant patterns 
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Tree Mining: Motivation
Capture intricate (subspace) patterns
Can be used (as features) to build global models 
(classification, clustering, etc.)
Ideally suited for categorical, high-dimensional, 
complex and massive data
Interesting Applications

XML, semi-structured data: Mine structure + content 
for Classification
Web usage mining: Log mining (user sessions as 
trees)
Bioinformatics: RNA sub-structures, phylogenetic trees
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Contributions
Mining embedded subtrees in rooted, 
ordered, and labeled trees (forest) or a 
single large tree
Notion of node scope
Representing trees as strings
Scope-lists for subtree occurrences
Systematic subtree enumeration
Extensions for mining unlabeled or 
unordered subtrees or sub-forests
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Tree Mining: Definitions
Rooted tree: special node called root
Ordered tree: child order matters
Labeled tree: nodes have labels
Ancestor (embedded child): x ≤l y (l length path x 
to y)
Sibling nodes: two nodes having same parent
Embedded siblings: two nodes having common 
ancestor
Depth-first Numbering: node’s position in a pre-
order traversal of the tree
A node has a number ni and a label l(ni)
Scope of node nl is [l, r], nr is rightmost leaf under 
nl
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Tree Mining: Definitions
Embedded Subtrees: S = (Ns, Bs) is a subtree
of 
T = (N,B) if and only if (iff)

Ns ⊆ N
b = (nx, ny) ∊ Bs iff nx ≤l ny in T (nx ancestor of ny)
Note: in an induced subtree b = (nx, ny) ∊ Bs

iff (nx, ny) ∊ B (nx is parent of ny)
We say S occurs in T if S is a subtree of T
If S has k nodes, we call it a k-subtree

Able to extract patterns hidden (embedded) 
deep within large trees; missed by traditional 
definition of induced subtrees
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Tree Mining Problem
Match labels of S in T

Positions in T where each node of S matches
Match label is unique for each occurrence of S in T

Support: Subtree may occur more than once 
in a tree in D, but count it only once
Weighted Support: Count each occurrence of 
a subtree (e.g., useful when |D| =1)
Given a database (forest) D of trees, find all 
frequent embedded subtrees

Should occur in a minimum number of times
used-defined minimum support (minsup)
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Subtree Example
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Subtree Example
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Example sub-forest (not a subtree)
By definition a subtree is connected
A disconnected pattern is a sub-forest
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Tree Mining: Main Ingredients
Pattern representation

Trees as strings

Candidate generation
No duplicates

Pattern counting
Scope-list based (TreeMiner)
Pattern matching based (PatternMatcher)
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String Representation of Trees

0

1 2

3 2

1 2

0 1 3 1 -1 2 -1 -1 2 -1 -1 2 -1

With N nodes,  M branches, F max fanout

Adjacency Matrix requires: N(F+1) space

Adjacency List requires: 4N-2 space

Tree requires (node, child, sibling): 3N space

String representation requires: 2N-1 space
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Systematic Candidate Generation: 
Equivalence Classes

Two subtrees are in the same class iff they share a common prefix 
string P up to the (k-1)th node

A valid element x attached to only the 
nodes lying on the path from 
root to rightmost leaf in prefix PNot valid position: Prefix 3 4 2 x
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Candidate Generation
Generate new candidates (k+1)-
subtrees from equivalence classes of k-
subtrees
Consider each pair of elements in a 
class, including self-extensions
Up to two new candidates from each 
pair of joined elements
All possible candidates subtrees are 
enumerated
Each subtree is generated only once!
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Candidate Generation (Join operator ⊗)

1

2 4

1

2

3

Equivalence Class
Prefix: 1 2, Elements: (3,1) (4,0) 1

2

3

1

2

3

⊗

1

2

3

1

2

3

3

3

Self Join New Candidates

1

2

3

1

2

3

1

2 4

4

⊗

Join

New Equivalence Class
Prefix: 1 2 3
Elements: (3,1) (3,2) (4,0)
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TreeMiner:Scope List for Trees

[2,2] [3,3]

1

2 3

4

2

1 2

2 4

3

1

3 5

1

2 3

4

2

T0

T1

T2[0,3]

[1,1] [2,3]

[3,3]

[0,5]

[1,3]

[4,4] [5,5]

[0,7]

[1,2]

[2,2]

[3,7]

[4,7]

[5,5]

[6,7]

[7,7]

String Representation
T0: 1 2 -1 3 4 -1 -1
T1: 2 1 2 -1 4 -1 -1 2 -1 3 -1
T2: 1 3 2 -1 -1 5 1 2 -1 3 4 -1 -1 -1 -1

0, [0,3]
1, [1,3]

2, [0,7]
2, [4,7]

0, [1,1]
1, [0,5]
1, [2,2]
1, [4,4]
2, [2,2]
2, [5,5]

0, [2,3]
1, [5,5]
2, [1,2]
2, [6,7]

0,[3,3]
1,[3,3]
2,[7,7]

1 2 3 4

5

Scope-Lists

2, [3,7]
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Frequency Computation: Scope 
List Joins (∩⊗) – In Scope

0, [0,3]
1, [1,3]

0, [1,1]
1, [0,5]
1, [2,2]
1, [4,4]
2, [2,2]
2, [5,5]

0, [2,3]
1, [5,5]
2, [1,2]
2, [6,7]

0,[3,3]
1,[3,3]
2,[7,7]

Equivalence Class: Prefix =∅
Elements: (1,-1) (2,-1) (3,-1) (4,-1)

2, [0,7]
2, [4,7]

1 2 3 4

1

2

2, 0, [2,2]
2, 0, [5,5]
2, 4, [5,5]

0, 0, [1,1]
1, 1, [2,2]

1

4

2, 0, [7,7]
2, 4, [7,7]

0, 0, [3,3]
1, 1, [3,3]

[1,1]

[2,2] [3,3]

1
2 3

4

2
1 2

2 4
3

1
3 5

1
2 3

4

2

T0 T1 T2[0,3]

[2,3]

[3,3]

[0,5]

[1,3]
[4,4] [5,5]

[0,7]

[1,2]

[2,2]

[3,7]

[4,7]

[5,5]

[6,7]

[7,7]

Tree Id, Prefix Match Label, Last Node Scope
0 0 [1,1]

Interval Algebra
[0, 3] ⊃ [1, 1] 

Count = 3

Minsup = 3 (100%)
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Scope List Joins: Out Scope

1

2

2, 0, [2,2]
2, 0, [5,5]
2, 4, [5,5]

0, 0, [1,1]
1, 1, [2,2]

1

4

2, 0, [7,7]
2, 4, [7,7]

0, 0, [3,3]
1, 1, [3,3]

1

2 4

0, 01, [3,3]
1, 12, [3,3]
2, 02, [7,7]
2, 05, [7,7]
2, 45, [7,7]

[2,2] [3,3]

1
2 3

4

2
1 2

2 4
3

1
3 5

1
2 3

4

2

T0 T1 T2[0,3]

[2,3]

[3,3]

[0,5]

[1,3]
[4,4] [5,5]

[0,7]

[1,2]

[2,2]

[3,7]

[4,7]

[5,5]

[6,7]

[7,7]

Interval Algebra
[1, 1] < [3, 3] 
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Pattern Matcher
Level-wise Apriori Style Algorithm
Uses optimized pattern matching

Equivalence classes
3 step matching

Finding matching leafs
Prefix matching
Element matching
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Experimental Results
Machine: 500Mhz PentiumII, 512MB memory, 9GB disk, Linux 6.0
Synthetic Data: Web browsing

Parameters: N = #Labels, M = #Nodes, 
F = Max Fanout, D = Max Depth, T = #Trees 
Create master website tree W

For each node in W, generate #children (0 to F)
Assign probabilities of following each child or to backtrack; adding up to 1
Recursively continue until D is reached

Generate a database of T subtrees of W
Start at root. Recursively at each node generate a random number
(0-1) to decide which child to follow or to backtrack. 

Default parameters: N=100, M=10,000, D=10, F=10, T=100,000
Three Datasets: D10 (all default values), F5 (F=5), T1M (T=106)

Real Data: CSLOGS – 1 month web log files at RPI CS 
Over 13361 pages accessed (#labels)
Obtained 59,691 user browsing trees (#number of trees)
Average string length of 23.3 per tree
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Distribution of Frequent Trees
Sparse Dense
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Experiments (Sparse)

• Relatively short patterns in sparse data
• Level-wise approach able to cope with it
• TreeMiner about 4 times faster 
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Experiments (Dense)

• Long patterns at low support (length=20)
• Level-wise approach suffers
• TreeMiner 20 times faster!
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Scaleup
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Application: Web/XML Mining
LOGML (Log Markup Language) Documents

Log graph of the site in XGMML
Information for log reports

top visiting hosts, top user agents,  top keywords, etc.
User session (subgraph of log graph)

list of edges referring to nodes of log graph with time stamps
Extract user sessions from LOGML db to create User 
Graphs

Session Id (IP or host name)
Path count (# of edges)
Edge Information (source-destination)
Time when an edge is traversed

Form a task-relevant (sets, sequences, trees, etc.) 
database from user graphs
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User Graph

<userSession name=''ppp0-69.ank2.isbank.net.tr'' ...>
<path count=''6''>
<uedge source=''5938'' target=''16470'' utime=''24/Oct/2000:07:53:46''/>
<uedge source=''16470'' target=''24754'' utime=''24/Oct/2000:07:56:13''/>
<uedge source=''16470'' target=''24755'' utime=''24/Oct/2000:07:56:36''/>
<uedge source=''24755'' target=''47387'' utime=''24/Oct/2000:07:57:14''/>
<uedge source=''24755'' target=''47397'' utime=''24/Oct/2000:07:57:28''/>
<uedge source=''16470'' target=''24756'' utime=''24/Oct/2000:07:58:30''/>
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Set Mining
Transaction Format: user name, number of 

nodes
accessed, node list

ppp0-69.ank2.isbank.net.tr 7 5938 16470 24754 24755 47387 47397 
24756

Example from 1 day’s logs at RPI CS dept.
Let Path=http://www.cs.rpi.edu/~sibel/poetry
FREQUENCY=16, NODE IDS = 16395 38699 38700 38698 593

Path/poems/akgun_akova/index.html
Path/poems/akgun_akova/picture.html
Path/poems/akgun_akova/biyografi.html
Path/poems/akgun_akova/contents.html
Path/sair_listesi.html
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Sequence Mining
Format: user name, sequence id, nodes accessed 

(maximal forward paths)
ppp0-69.ank2.isbank.net.tr 1  5938  16470 24754
ppp0-69.ank2.isbank.net.tr 2  5938 16470 24755 47387 
ppp0-69.ank2.isbank.net.tr 3  5938 16470 24755 47397
ppp0-69.ank2.isbank.net.tr 4  5938 16470 24756

Let Path=http://www.cs.rpi.edu/~sibel/poetry
FREQUENCY = 20, NODE IDS =  5938 -> 16395 -> 38698

Path/sair_listesi.html ->
Path/poems/akgun_akova/index.html ->
Path/poems/akgun_akova/contents.html
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Tree Mining
Format: user name, tree string 
ppp0-69.ank2.isbank.net.tr, 5938 16470 24754 -1 24755 47387 -1 

47397 
-1 -1 24756 -1 -1

Let Path=http://www.cs.rpi.edu/~sibel/poetry
Let Akova = Path/poems/akgun_akova
FREQUENCY=59, NODES = 5938 16395 38699 -1 38698 -1 38700

Path/sair_listesi.html

Path/poems/akgun_akova/index.html

Akova/picture.html Akova/contents.html Akova/biyografi.html
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Summary
TreeMiner: Novel tree mining approach

Non-duplicate candidate generation
Scope-list joins for frequency computation

Framework for Tree Mining Tasks
Frequent subtrees in a forest of rooted, labeled, 
ordered trees
Frequent subtrees in a single tree
Unlabeled or unordered trees
Frequent Sub-forests

Outperforms pattern matching approach
Future Work: constraints, maximal subtrees, 
inexact label matching
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Conclusion
How to compute distance between two 
trees?

Edit distance
Kernel method

How to quickly approximate the distance?
L1 metric using vector representation

Which structures occurs frequently in a 
database of trees?

Mining frequent embedded subtrees
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