Data Mining: Foundation, Techniques and Applications

Lesson 13: Mining and Searching Graphs

Li Cuiping(李翠平) School of Information Renmin University of China

Anthony Tung(鄧锦浩) School of Computing National University of Singapore

1

8/19/2002

Outline

Introduction

- Foundation
 - Graph Similarity Function
 - Graph Kernels
- Technique
 - Graph Pattern Mining
- Applications
 - Graph Indexing
 - Graph Summarization for Keyword Search

Graph, Graph, Everywhere

Aspirin

from H. Jeong et al Nature 411, 41 (2001)

Yeast protein interaction network

12/3/2007

Internet_{Data} Mining: Foundation, Techniques and Applications

Types of Graphs

- Single large graph vs multiple smaller graphs
- Mostly symbolic but can contain numerical values as well. Most have repeated values.
- Direct vs Undirected
- Ordered vs Unordered
- Hypergraph
 - An edge can join multiple nodes

Outline

- Introduction
- Foundation
 - Graph Similarity Function
 - Graph Kernels
- Technique
 - Graph Pattern Mining
- Applications
 - Graph Indexing
 - Graph Summarization for Keyword Search

Maximum Common Subgraph

Problems:

- To compare objects represented as graphs and to determine the degree and composition of the <u>similarity</u> between the objects
- Applications:
 - Chemistry, biology, computer vision and image recognition, etc.

Definition & Terminology

Isomorphic

Two graphs are said to be isomorphic if there is a one-to-one correspondence between their vertices and an edge exists between two vertices in one graph if an edge exists between the two corresponding vertices in

the other graph.

Definition & Terminology

Induced Subgraph

- A set S of vertices of a graph G and those edges of G with both endpoints in S.
- Common Induced Subgraph
 - A graph G₁₂ is a common induced subgraph of graph G₁ and G₂ if G₁₂ is isomorphic to induced subgraphs of G₁ and G₂

Definitions & Terminology

Maximum Common Induced Subgraph (MCIS)

- Subgraph consists of a graph G₁₂ with the largest number of vertices meeting those property
- Maximum Common Edge Subgraph (MCES)
 - Subgraph consists of the largest number of edges common to both G₁ and G₂

Definitions & Terminology

Connected MCS

- Each vertex is connected to every other vertex by at least one path in the graph
- Disconnected MCS
 - Comprised of two or more subgraph components

Figure 2. a) Connected MCES. b) Disconnected MCES

MCES to MCIS

 An edge isomorphism between two graphs, G₁ and G₂ induces a vertex isomorphism provided that a ΔY exchange does not occur.

Figure 3. ΔY exchange

12/3/2007

Algorithms

 For comparison between a pair of chemical graphs consisting of m and n atoms respectively, the maximum number of possible atom-by-atom comparison necessary to determine all common subgraphs consisting of k atoms is

 $\frac{m!n!}{(m-k)!(n-k)!k!},$

Classification

Algorithms

Exact Algorithm

- Maximum clique-based algorithm
- Backtracking Algorithms
- Dynamic Programming
- Approximate Algorithm
 - Genetic Algorithm
 - Combinatorial Optimization
 - Fragment Storage
 - Adhoc Procedures
 - 3D specific Algorithm

Maximum clique-based algorithm

- Clique subset of vertices in the graph such that each pair of vertices in the subset is connected by an edge in the graph G
- Maximum Clique largest such subset present in the graph
- MCIS problem is reduced to maximum clique problem by constructing a compatibility graph using adjacency properties of the graphs being compared (ie, the MCIS factor graphs)

Maximum clique-based algorithm

- The MCIS between graphs being compared is equivalent to a maximum clique in the compatibility graph
- It is also the modular product graph in mathematics

Modular Product

 Modular product of two graphs G₁ and G₂ is defined on the vertex set V(G₁)xV(G₂) with two vertices (u_i, v_i) and (u_j, v_j) being adjacent whenever

 $(u_i u_j) \in e(G_1)$ and $(v_i, v_j) \in E(G_2)$, or

 $(u_i u_j) \notin e(G_1)$ and $(v_i, v_j) \notin E(G_2)$.

 u_i and u_j are adjacent in G_1 and v_i and v_j are adjacent in G_2

OR

 u_i and u_j are not adjacent in G1 and v_i and v_j are not adjacent in G_2

Modular Product

Figure 5. Modular product $P_3 \diamondsuit P_3$

Backtracking Algorithm

- By McGregor and Wong
- Attempt to reduce the number of backtrack instances necessary by inspecting the set of possible solutions remaining at some point in the depth-first search.
- Then determine whether it is necessary to extend the current solution
- The set of possible solutions is evaluated by enforcing a connectivity relation with the currently detected solution

12/3/2007

Dynamic Programming

- Calculate the connected MCES from a set of factor graphs.
- Almost tree of bounded degree is a graph G such that |E(B)| ≤ |V(B)| + K holds for every biconnected component B of G, where K is a constant.
- Biconnected component maximal edge induced subgraph in a connected graph such that the subgraph cannot be disconnected by eliminating a vertex

Dynamic Programming

Figure 6. Biconnected components

12/3/2007

Algorithms

Exact Algorithm

- Maximum clique-based algorithm
- Backtracking Algorithms
- Dynamic Programming

Approximate Algorithm

- Genetic Algorithm
- Combinatorial Optimization
- Fragment Storage
- Adhoc Procedures
- 3D specific Algorithm

Genetic Algorithm

 Survival of the fittest based on a fitness function

For chemical graphs,

$$F = N - V - (T_1 + T_2 - 2)$$

$$\begin{array}{c} G_{1} & 1 \\ 4 & 2 \\ 3 \end{array} \begin{array}{c} 2 \\ 3 \end{array} \begin{array}{c} G_{2} \\ 2' \\ 2' \end{array} \begin{array}{c} G_{1} \\ 4' \\ 2 \\ 3 \end{array} \begin{array}{c} G_{1} \\ G_{2} \\ 1 \\ 2' \\ 4' \\ 3 \\ --- \\ 4 \end{array} \begin{array}{c} G_{1} \\ G_{2} \\ 1 \\ 1' \\ 2 \\ 4' \\ 3 \\ --- \\ 4 \end{array} \begin{array}{c} G_{1} \\ G_{2} \\ 1 \\ 1' \\ 2 \\ 4' \\ --- \end{array} \end{array}$$

 $\mathsf{N}=\mathsf{total}$ number of bonds in the two structures that participate in a bond matching

V = how many bonds are involved in the situation where two adjacent bonds in the other structure.

 T_1 , T_2 = the number of unconnected subgraphs in the two graphs, respectively

Combinatorial Optimization

- By Funabiki and Kitamichi
- 2DOM (2-stage Discrete Optimization Method)
- Stage 1: Problem Construction Stage
 - Greedy matching between the graphs being compared
- Stage 2: Refinement stage
 - Uses a randomized, discrete descent method to minimize an objective function consisting of the number of unmatched edges in the factor graph with the fewest edges

Fragment Storage

- Feasible only with database searching
- The database to be searched is stored in a multi-level tree where each bifurcation point in the tree corresponds to particular chemical substructure.
- Increasing a level in the tree to a lower bifurcation point, corresponds to adding a specific chemical substructure fragment to the substructure represented by the preceding bifurcation point.

12/3/2007

Fragment Storage

- Using the multi-leveled database structure, it is then possible to perform rapid similarity searching of pre-processed databases.
- Using the query compound as a template, the fragment tree is traversed until a bifurcation point is reached where it is not possible to continue.
- The substructure represented by this bifurcation point corresponds to an approximation of the MCES between the query compound and all of the database compounds located lower in the search tree.

Ad hoc Procedures

- Graph Walking procedure
 - Determine connected substructure
 - Involves 'growing' a currently detected subgraph by adding a vertex and all edges incident between the current subgraph and the newly selected vertex

Problem Reduction

- A graph is an abstract concept and the vertices and edges do not necessarily have to correlate directly with atoms, bonds, and distance ranges in chemical structure
- Simplified graph to represent nodes and edges

Figure 8. Chemically similar?

Problem Reduction

- Advantages:-
- I. If the modified graph contains gewer nodes and edges, it may significantly increase the efficiency of MCS comparison
- It may reflect a more desirable understanding of the similarity between the structures being compared

Problem Reduction

- Examples:
- Superatoms
 - Vertices can be one of a predefined number of ring system, functional groups or alkyl chains
 - An edge exists if pair of superatoms are adjacent in the molecular structure.
- Feature trees
 - Chemical graph is reduced to tree graph (graph without rings or cycles)
 - Use split search and match search

Screening Procedures

 If a user specifies a lower-bound for a particular similarity comparison, then an effective upper-bound estimate based on the MCS concept can provide a means of screening comparisons that cannot potentially result in an MCS exceeding the specified lower bound.

Screening Procedures

• Asymmetric similarity co-efficient, $S_{lb} = N_c/N_a$

N_c = number of bond pairs in common between a query and database graph N_q = number of edges in the query structure
If it is found prior to graph matching that N_c < S_{lb} · N_q after specifying a minimum acceptable value of S_{lb}, then it is not necessary to proceed to a rigorous graph matching

Screening Procedures

- Two levels of screening
- Similarity coefficient, $S_{ub} = \frac{|G_{12}|^2}{|G_1| \times |G_2|},$

 $|G_1|$ and $|G_2|$ = number of vertices and edges in graph G_1 and G_2

 G_{12} = upper bound estimate given for the MCS between G_1 and G_2

Outline

- Introduction
- Foundation
 - Graph Similarity Function
 - Graph Kernels
- Technique
 - Graph Pattern Mining
- Applications
 - Graph Indexing
 - Graph Summarization for Keyword Search

Kernel Function

- Inner product of two feature vectors
- This paper defines a kernel function between graphs
- Previous methods:
 - Decompose graph into substructures
 - Feature vector is composed of the counts of these substructures
 - Limit dimensionality of vectors by setting threshold on substructure length or frequency
 - Use methods from dynamic programming

Kernel function

In this paper:

- Is defined on infinite dimensional path count vectors
- Each label path is produced by random walks on graph
- Is defined as the inner product of the count vectors averaged over all possible label paths

Marginalized Kernels
Marginalized Kernels

$$K(\boldsymbol{x}, \boldsymbol{x}') = \sum_{\boldsymbol{h}} \sum_{\boldsymbol{h}} K_z(\boldsymbol{z}, \boldsymbol{z}) p(\boldsymbol{h} | \boldsymbol{x}) p(\boldsymbol{h}' | \boldsymbol{x}').$$

- h and h' are the hidden variables (sequence of vertex indices) obtained by random walks on graph x and x' respectively
- K_z is a joint kernel between the sequences of vertex and edge labels traversed in the random walk
- K (x, x') is the marginalized kernel between graph x and x', defined as the expectation of K_z over all possible values of h and h'

Definition

- |G| = the number of vertices in graph G
- Let $v_i \in \Sigma_v$ denote the label of vertex *i*
- Let $e_{ij} \in \Sigma_E$ denote the label of the edges from *i* to *j*
- The task is to define K (G, G') between two labeled graphs G and G'

Random Walks on Graph, p(h|G)

 h = (h₁, ..., h_l) is a sequence of vertex indices obtained by a random walk on graph G

 p_q (i) is the probability that the random walk ends at vertex i

$$\sum_{i=1}^{|G|} p_t(j|i) + p_q(i) = 1.$$

12/3/2007

Joint Kernel, K_z

 When random walk is done as described in h, the traversed labels are:

 $v_{h_1}e_{h_1h_2}v_{h_2}e_{h_2h_3}v_{h_3}\cdots$

• Joint kernel between two label paths z and z' $z = v_{h1} e_{h1h2} v_{h2} e_{h2h3} v_{h3} ... v_{h\ell}$ $z' = v'_{h'1} e'_{h'1h'2} v'_{h'2} e'_{h'2h'3} v'_{h'3} ... v'_{h'\ell}$ $K_z(z, z') = \begin{cases} 0 & (\ell \neq \ell') \\ K(v_{h_1}, v'_{h'_1}) \prod_{i=2}^{\ell} K(e_{h_{i-1}h_i}, e'_{h'_{i-1}h'_i}) \times K(v_{h_i}, v'_{h'_i}) \\ (\ell = \ell') \end{cases}$

12/3/2007

The expectation of K_z over all possible (values and length of) h and h':

$$K(G,G') = \sum_{\ell=1}^{\infty} \sum_{\boldsymbol{h}} \sum_{\boldsymbol{k}} \sum_{\boldsymbol{k}} K_{\boldsymbol{z}}(\boldsymbol{z},\boldsymbol{z}') p(\boldsymbol{h}|G) p(\boldsymbol{h}'|G')$$

Plug in:

$$p(\mathbf{h}|G) = p_s(h_1) \prod_{i=2}^{\ell} p_t(h_i|h_{i-1}) p_q(h_\ell)$$

$$K_{z}(\boldsymbol{z}, \boldsymbol{z}') = \begin{cases} 0 & (\ell \neq \ell') \\ K(v_{h_{1}}, v'_{h'_{1}}) \prod_{i=2}^{\ell} K(e_{h_{i-1}h_{i}}, e'_{h'_{i-1}h'_{i}}) \times \\ K(v_{h_{i}}, v'_{h'_{i}}) & (\ell = \ell') \end{cases}$$

12/3/2007

$$\sum_{\boldsymbol{h}} := \sum_{h_1=1}^{|G|} \cdots \sum_{h_\ell=1}^{|G|}$$

12/3/2007

12/3/2007

$$K(G,G') = \lim_{L \to \infty} \sum_{\ell=1}^{L} \sum_{h_1,h'_1} s(h_1,h'_1) r_\ell(h_1,h'_1),$$

Where

 $r_1(h_1, h_1') := q(h_1, h_1')$

$$\begin{aligned} r_{\ell}(h_{1},h_{1}') \\ &:= \left(\sum_{h_{2},h_{2}'} t(h_{2},h_{2}',h_{1},h_{1}') \left(\sum_{h_{3},h_{3}'} t(h_{3},h_{3}',h_{2},h_{2}') \times \right) \right) \\ &\left(\cdots \left(\sum_{h_{\ell},h_{\ell}'} t(h_{\ell},h_{\ell}',h_{\ell-1},h_{\ell-1}')q(h_{\ell},h_{\ell}') \right) \right) \cdots \right) \end{aligned}$$

12/3/2007

Recursive Relationships

$$r_{\ell}(h_{1}, h_{1}') = \left(\sum_{h_{2}, h_{2}'} t(h_{2}, h_{2}', h_{1}, h_{1}') \left(\sum_{h_{3}, h_{3}'} t(h_{3}, h_{3}', h_{2}, h_{2}') \times \left(\cdots \left(\sum_{h_{\ell}, h_{\ell}'} t(h_{\ell}, h_{\ell}', h_{\ell-1}, h_{\ell-1}')q(h_{\ell}, h_{\ell}')\right)\right) \cdots\right)$$

$$\sum_{i,j} t(i,j,h_1,h_1')r_{\ell-1}(i,j)$$

12/3/2007

$$K(G,G') = \lim_{L \to \infty} \sum_{\ell=1}^{L} \sum_{h_1,h'_1} s(h_1,h'_1) r_{\ell}(h_1,h'_1),$$

$$= \sum_{h_1,h'_1} s(h_1,h'_1) \lim_{L \to \infty} \sum_{\ell=1}^{L} r_{\ell}(h_1,h'_1)$$

$$= \sum_{h_1,h'_1} s(h_1,h'_1) \lim_{L \to \infty} R_L(h_1,h'_1),$$

12/3/2007

Marginalized Kernel Equilibrium

$$R_{L}(h_{1}, h_{1}') := \sum_{\ell=1}^{L} r_{\ell}(h_{1}, h_{1}')$$

$$= r_{1}(h_{1}, h_{1}') + \sum_{\ell=2}^{T} r_{\ell}(h_{1}, h_{1}')$$

$$= r_{1}(h_{1}, h_{1}') + \sum_{\ell=1}^{T} \sum_{i,j=1}^{T} t(i, j, h_{1}, h_{1}')r_{\ell-1}(i, j)$$

$$= r_{1}(h_{1}, h_{1}') + \sum_{i,j=1}^{T} t(i, j, h_{1}, h_{1}')R_{L-1}(i, j)$$

$$R_{\infty}(h_1, h_1') = r_1(h_1, h_1') + \sum_{i,j} t(i, j, h_1, h_1') R_{\infty}(i, j)$$

12/3/2007

Marginalized Kernel Linear Simultaneous Equation

Solve:

$$R_{\infty}(h_1, h_1') = r_1(h_1, h_1') + \sum_{i,j} t(i, j, h_1, h_1') R_{\infty}(i, j)$$

Substitute to:

$$K(G, G') = \sum_{h_1, h'_1} s(h_1, h'_1) \lim_{L \to \infty} R_L(h_1, h'_1)$$

|G||G'| x |G||G'| coefficient matrix Sparse Graph Iterate till convergence

12/3/2007

Marginalized Kernel

If the termination probabilities are constant (γ) over all vertices,

$$\lim_{L\to\infty} R_L(h_1, h_1')$$
 converges if

$$K(v, v')K(e, e') < \frac{1}{(1 - \gamma)^2}.$$

12/3/2007

Experimental Results

Compare with Pattern Discovery Algorithm

Table 2. Classification accuracies (%) of the pattern discovery method. 'MinSup' shows the ratio of the minimum support parameter to the number of compounds m/n.

MinSup	MM	FM	MR	\mathbf{FR}	Mutag
$egin{array}{cccc} 0.5\% \ 1 \ \% \ 3 \ \% \ 5 \ \% \ 10 \ \% \ 20\% \end{array}$	60.1 61.0 58.3 60.7 58.9 61.0	57.6 61.0 55.9 55.6 58.7 55.3	$\begin{array}{c} 61.3 \\ \textbf{62.8} \\ 60.2 \\ 57.3 \\ 57.8 \\ 56.1 \end{array}$	66.7 63.2 63.2 63.0 60.1 61.3	88.3 87.8 89.9 86.2 84.6 83.5

Table 3. Classification accuracies (%) of our graph kernel. The parameter γ is the termination probability of random walks, which controls the effect of the length of label paths.

γ	MM	FM	MR	\mathbf{FR}	Mutag
0.1	62.2	59.3	57.0	62.1	84.3
0.2	62.2	61.0	57.0	62.4	83.5
0.3	64.0	61.3	56.7	62.1	85.1
0.4	64.3	61.9	56.1	63.0	85.1
0.5	64.0	61.3	56.1	64.4	83.5
0.6	62.8	61.9	54.4	65.8	83.0
0.7	63.1	62.5	54.1	63.2	81.9
0.8	03.4	63.4	54.9	64.1	79.8
0.9	62.8	61.6	58.4	66.1	78.7
		$\mathbf{>}$			

Summary

- Using random walks to compute marginalized kernel
- Takes into account all possible label paths without computing feature values explicitly
- Can be used for sequences, trees, DAGs
- Implicit parameter is required (the termination probability of random walks)

Outline

- Introduction
- Foundation
 - Graph Similarity Function
 - Graph Kernels
- Technique
 - Graph Pattern Mining
- Applications
 - Graph Indexing
 - Graph Summarization for Keyword Search

Graph Pattern Mining

Frequent subgraphs • A (sub)graph is *frequent* if its *support* (occurrence frequency) in a given dataset is no less than a *minimum support* threshold Applications of graph pattern mining Mining biochemical structures Program control flow analysis Mining XML structures or Web communities Building blocks for graph classification, clustering, compression, comparison, and correlation analysis

Example: Frequent Subgraphs

GRAPH DATASET

(A)

FREQUENT PATTERNS (MIN SUPPORT IS 2)

(1)

Ν

12/3/2007

GRAPH DATASET

Graph Mining Algorithms

- Incomplete beam search Greedy (Subdue)
- Inductive logic programming (WARMR)
- Graph theory-based approaches
 - Apriori-based approach
 - Pattern-growth approach

SUBDUE (Holder et al. KDD'94)

- Start with single vertices
- Expand best substructures with a new edge
- Limit the number of best substructures
 - Substructures are evaluated based on their ability to compress input graphs
 - Using minimum description length (DL)
 - Best substructure S in graph G minimizes:
 DL(S) + DL(G\S)
- Terminate until no new substructure is discovered

WARMR (Dehaspe et al. KDD'98)

- Graphs are represented by Datalog facts
 - atomel(C, A1, c), bond (C, A1, A2, BT), atomel(C, A2, c) : a carbon atom bound to a carbon atom with bond type BT
- WARMR: the first general purpose ILP system
- Level-wise search
- Simulate Apriori for frequent pattern discovery

Frequent Subgraph Mining Approaches

Apriori-based approach

- AGM/AcGM: Inokuchi, et al. (PKDD'00)
- FSG: Kuramochi and Karypis (ICDM'01)
- PATH[#]: Vanetik and Gudes (ICDM'02, ICDM'04)
- FFSM: Huan, et al. (ICDM'03)

Pattern growth approach

- MoFa, Borgelt and Berthold (ICDM'02)
- gSpan: Yan and Han (ICDM'02)
- Gaston: Nijssen and Kok (KDD'04)

Properties of Graph Mining Algorithms

- Search order
 - breadth vs. depth
- Generation of candidate subgraphs
 - apriori vs. pattern growth
- Elimination of duplicate subgraphs
 - passive vs. active
- Support calculation
 - embedding store or not
- Discover order of patterns
 - path \rightarrow tree \rightarrow graph

Apriori-Based Approach

Apriori-Based, Breadth-First Search

Methodology: breadth-search, joining two graphs

AGM (Inokuchi, et al. PKDD'00)

+

generates new graphs with one more node

FSG (Kuramochi and Karypis ICDM'01)

generates new graphs with one more edge

PATH (Vanetik and Gudes ICDM'02, '04)

- Apriori-based approach
- Building blocks: edge-disjoint path

A graph with 3 edge-disjoint paths

- construct frequent paths
- construct frequent graphs with 2 edge-disjoint paths
- construct graphs with k+1 edge-disjoint paths from graphs with k edge-disjoint paths
- repeat

FFSM (Huan, et al. ICDM'03)

- Represent graphs using canonical adjacency matrix (CAM)
- Join two CAMs or extend a CAM to generate a new graph
- Store the embeddings of CAMs
 - All of the embeddings of a pattern in the database
 - Can derive the embeddings of newly generated CAMs

12/3/2007

Pattern Growth Method

MoFa (Borgelt and Berthold ICDM'02)

- Extend graphs by adding a new edge
 Store embeddings of discovered frequent graphs
 - Fast support calculation
 - Also used in other later developed algorithms such as FFSM and GASTON
 - Expensive Memory usage
- Local structural pruning

GSPAN (Yan and Han ICDM'02)

Right-Most Extension

Theorem: Completeness

The Enumeration of Graphs using Right-most Extension is COMPLETE

DFS Code

 Flatten a graph into a sequence using depth first search

DFS Lexicographic Order

- Let Z be the set of DFS codes of all graphs. Two DFS codes a and b have the relation a<=b (DFS Lexicographic Order in Z) if and only if one of the following conditions is true. Let a = (x₀, x₁, ..., x_n) and b = (y₀, y₁, ..., y_n),
 - (i) if there exists t, 0<= t <= min(m,n), x_k=y_k for all k, s.t. k<t, and x_t < y_t
 (ii) x_k=y_k for all k, s.t. 0<= k<= m and
 - m <= n.

DFS Code Extension

- Let a be the minimum DFS code of a graph G and b be a non-minimum DFS code of G.
 For any DFS code d generated from b by one right-most extension,
 - (i) **d** is not a minimum DFS code,
 - (ii) min_dfs(d) cannot be extended from **b**, and
 - (iii) min_dfs(d) is either less than a or can be extended from a.

THEOREM [RIGHT-EXTENSION] The DFS code of a graph extended from a Non-minimum DFS code is NOT MINIMUM

GASTON (Nijssen and Kok KDD'04)

- Extend graphs directly
- Store embeddings
- Separate the discovery of different types of graphs
 - path \rightarrow tree \rightarrow graph
 - Simple structures are easier to mine and duplication detection is much simpler

Graph Pattern Explosion Problem

- If a graph is frequent, all of its subgraphs are frequent — the Apriori property
- An n-edge frequent graph may have 2ⁿ subgraphs
- Among 422 chemical compounds which are confirmed to be active in an AIDS antiviral screen dataset, there are 1,000,000 frequent graph patterns if the minimum support is 5%
Closed Frequent Graphs

- Motivation: Handling graph pattern explosion problem
- Closed frequent graph
 - A frequent graph G is *closed* if there exists no supergraph of G that carries the same support as G
- If some of G's subgraphs have the same support, it is unnecessary to output these subgraphs (nonclosed graphs)
- Lossless compression: still ensures that the mining result is complete

A Pattern-Growth Approach

At what condition, can we stop searching their children i.e., early termination?

If G and G' are frequent, G is a subgraph of G'. If **in any part of the graph in the dataset where G occurs, G' also occurs**, then we need not grow G, since none of G's children will be closed except those of G'.

Handling Tricky Exception Cases

Do the Odds Beat the Curse of Complexity?

Potentially exponential number of frequent patterns

- The worst case complexty vs. the expected probability
- Ex.: Suppose Walmart has 10⁴ kinds of products
 - The chance to pick up one product 10⁻⁴
 - The chance to pick up a particular set of 10 products: 10⁻⁴⁰
 - What is the chance this particular set of 10 products to be frequent 10³ times in 10⁹ transactions?
- Have we solved the NP-hard problem of subgraph isomorphism testing?
 - No. But the real graphs in bio/chemistry is not so bad
 - A carbon has only 4 bounds and most proteins in a network have distinct labels

Constrained Patterns

- Density
- Diameter
- Connectivity
- Degree
- Min, Max, Avg

Constraint-Based Graph Pattern Mining

 Highly connected subgraphs in a large graph usually are not artifacts (group, functionality)

 Recurrent patterns discovered in multiple graphs are more robust than the patterns mined from a single graph

No Downward Closure Property

Given two graphs G and G', if G is a subgraph of G', it does not imply that the connectivity of G is less than that of G', and vice versa.

Minimum Degree Constraint

Let G be a frequent graph and X be the set of edges which can be added to G such that G U e (e ε X) is connected and frequent. Graph G U X is the maximal graph that can be Extended (one step) from the vertices belong to G

Pattern-Growth Approach

- Find a small frequent candidate graph
 - Remove vertices (shadow graph) whose degree is less than the connectivity
 - Decompose it to extract the subgraphs satisfying the connectivity constraint
 - Stop decomposing when the subgraph has been checked before
- Extend this candidate graph by adding new vertices and edges
 Repeat

Pattern-Reduction Approach

 Decompose the relational graphs (note: no repeat nodes) according to the connectivity constraint

Pattern-Reduction Approach (cont.)

Intersect them and decompose the resulting subgraphs

Outline

- Introduction
- Foundation
 - Graph Similarity Function
 - Graph Kernels
- Technique
 - Graph Pattern Mining
- Applications
 - Graph Indexing
 - Graph Summarization for Keyword Search

Graph Search

Querying graph databases:

 Given a graph database and a query graph, find all the graphs containing this query graph

Scalability Issue

- Sequential scan
 - Disk I/Os
 - Subgraph isomorphism testing
- An indexing mechanism is needed
 - DayLight: Daylight.com (commercial)
 - GraphGrep: Dennis Shasha, et al. PODS'02
 - Grace: Srinath Srinivasa, et al. ICDE'03

Indexing Strategy

Substructure

Remarks

Index substructures of a query graph to prune graphs that do not contain these substructures

12/3/2007

Indexing Framework

QUERY RESPONSE TIME

$$T_{index} + |C_q| \times (T_{io} + T_{isomorphis \ m_testing})$$
fetch index
number of candidates

REMARK: make $|C_q|$ as small as possible

Path-based Approach

GRAPH DATABASE

PATHS

0-length: C, O, N, S 1-length: C-C, C-O, C-N, C-S, N-N, S-O 2-length: C-C-C, C-O-C, C-N-C, ... 3-length: ...

Built an inverted index between paths and graphs

Path-based Approach (cont.)

QUERY GRAPH

0-edge: $S_C = \{a, b, c\}, S_N = \{a, b, c\}$ 1-edge: $S_{C-C} = \{a, b, c\}, S_{C-N} = \{a, b, c\}$ 2-edge: $S_{C-N-C} = \{a, b\}, ...$

Intersect these sets, we obtain the candidate answers - graph (a) and graph (b) - which may contain this query graph.

Problems: Path-based Approach

GRAPH DATABASE

QUERY GRAPH

Only graph (c) contains this query graph. However, if we only index paths: C, C-C, C-C-C, C-C-C, we cannot prune graph (a) and (b).

gIndex: Indexing Graphs by Data Mining

Our methodology on graph index:

- Identify frequent structures in the database, the frequent structures are subgraphs that appear quite often in the graph database
- Prune redundant frequent structures to maintain a small set of discriminative structures

12/3/200 Create ana inverteed io releves between

IDEAS: Indexing with Two Constraints

Why Discriminative Subgraphs?

Sample database

- All graphs contain structures: C, C-C, C-C-C
 Why bother indexing these redundant frequent structures?
 - Only index structures that provide more information than existing structures

Discriminative Structures

Pinpoint the most useful frequent structures

• Given a set of structures $f_1, f_2, \dots f_n$ and a new structure \mathcal{X} , we measure the extra indexing power provided by \mathcal{X} ,

$$P(x|f_1, f_2, \dots, f_n), f_i \subset x.$$

When P is small enough, x is a discriminative structure and should be included in the index
Index discriminative frequent structures only
Reduce the index size by an order of magnitude

Why Frequent Structures?

- We cannot index (or even search) all of substructures
- Large structures will likely be indexed well by their substructures
- Size-increasing support threshold

Data Mining: Foundation, Techniques and Applications

Graph Mining

- Methods for Mining Frequent Subgraphs
- Mining Variant and Constrained Substructure Patterns
- Applications:
 - Classification and Clustering
 - Graph Indexing
 - Similarity Search

Summary 12/3/2007

Structure Similarity Search

Some "Straightforward" Methods

- Method1: Directly compute the similarity between the graphs in the DB and the query graph
 - Sequential scan
 - Subgraph similarity computation
- Method 2: Form a set of subgraph queries from the original query graph and use the exact subgraph search
 - Costly: If we allow 3 edges to be missed in a 20-edge query graph, it may generate 1,140 subgraphs

Substructure Similarity Measure

Query relaxation measure

 The number of edges that can be relabeled or missed; but the position of these edges are not fixed
 OUERY GRAPH

Substructure Similarity Measure

- Feature-based similarity measure
 - Each graph is represented as a feature vector X = {x₁, x₂, ..., x_n}
 - Similarity is defined by the distance of their corresponding vectors
 - Advantages
 - Easy to index
 - Fast
 - Rough measure

Intuition: Feature-Based Similarity Search

Feature-Graph Matrix

graphs in database

 \times \times \times

Assume a query graph has 5 features and at most 2 features to miss due to the ^{12/3} Peration the ^{12/3} Peration the ^{12/3} Peration the ¹⁰⁴

dge Relaxation—Feature Misses

- If we allow k edges to be relaxed, J is the maximum number of features to be hit by k edges—it becomes the maximum coverage problem NP-complete $J_{\text{greedy}} \ge \left(1 - \left(1 - \frac{1}{k}\right)^k\right) \cdot J$
- A greedy algorithm exists

We design a heuristic to refine the boundatinfeatronie Tenrisses Applications 12/3/2007

Query Processing Framework

 Three steps in processing approximate graph queries

Framework (cont.)

Step 2. Feature Miss Estimation

- Determine the indexed features belonging to the query graph
- Calculate the upper bound of the number of features that can be missed for an approximate matching, denoted by J

On the query graph, not the graph database Data Mining: Foundation, Techniques and Applications

Framework (cont.)

Outline

- Introduction
- Foundation
 - Graph Similarity Function
 - Graph Kernels
- Technique
 - Graph Pattern Mining
- Applications
 - Graph Indexing
 - Graph Summarization for Keyword Search

Motivation

- Keyword search is pervasive
 - For webpages, textual documents, …
 - For relational DBs, XMLs
- Data sources are pervasive
 - Millions of Deep Web databases
 - GoogleBase, Flickr, ...
- Need to support keyword search over distributed DBs
 - Source Selection

Background 1: Keyword search over relational DBs

- The results are trees of joined tuples that contain all the query keywords
 - Graph search problem
- The search/result space is huge
 - Need good ranking method
 - Top-K processing
- Existing proposals
 - DISCOVER, BANKS, DBXplorer, ...

Example – keyword search in relational DB

12/3/2007

DISCOVER [VLDB 2002, VLDB 2003]

- Exploits schema
 - Use FK (foreign key) references between tables
- Search steps
 - Find all tuple sets (TSs), subsets of tuples of native tables containing keywords
 - Find CNs (Candidate Networks)
 - Join expressions connecting TSs and native tables
 - Generate potential results
 - Discovered based on schema
 - Evaluate CNs
 - Top-K processing

DISCOVER [VLDB 2002, VLDB 2003]

Ranking

- Score of a result $T = (t_1, t_2, ..., t_n)$ $score(T) = \sum score(t_i) / size(T)$
- Scores of individual tuples are based on DBMS's IR search

 $score(t) = \sum_{a \in t} score(a, t)$

BANKS [ICDE 2002, VLDB 2005]

- Model the database as a graph
 - Nodes are tuples, edges are references
- Find top-*K* minimal Steiner trees
 - Leaves are nodes containing query keywords
- Search heuristics
 - Backward search
 - Bidirectional search
- Ranking
 - Combination of node weights and edge weights

Background2: Distributed Search Over Community Databases

Compare to Present Integrated Approach

- Just-In-Time: No pre-integration needed at a central server
- Advantages = Whatever advantages that distributed approach have over centralized approach

Build summaries for text documents

- List keywords and their frequency statistics
 - Eg. #documents containing a keyword
 - GLOSS
- May also include some inter-collection statistics
 - Eg. ICF (Inverse Collection Frequency), #sources containing a keyword
 - CORI
- Inadequate for structured database
 - Cannot capture semantics hidden behind the structure

Example – keyword list summary over RDB

Query: [multimedia, database, VLDB]

DB1

Inproceedings						Conferences			
id	inprocID	title	procID	year	month	annote	id	procID	Conference
t ₁	Adiba1986	Historical Multimedia Databases	23	1988	Aug	temporal	 t ₃	23	the Conference on Very Large <mark>Databases</mark> (VLDB)
t ₂	Abarbanel 1987	Connections Perspective and Reformation	18	1987	May	Intellicorp	 t ₄	18	ACM SIGMOD Conf. on the Management of Data

Keyword list summary:

12/3/2007

Example – keyword list summary over RDB

Keyword list summary:

Example – DB selection with keyword list summary

Query: [multimedia, database, VLDB]

Example – keyword-based selection of relational DBs

Query: [multimedia, database, VLDB]

DB1

Inproceedings							_	Conferences			
id	inprocID	title	procID	year	month	annote		id	procID	Conference	
t ₁	Adiba1986	Historical Multimedia Databases	23	1988	Aug	temporal	┝→	t ₃	23	the Conference on Very Large Databases (VLDB)	
t ₂	Abarbanel 1987	Connections Perspective and Reformation	18	1987	May	Intellicorp	╞	t ₄	18	ACM SIGMOD Conf. on the Management of Data	

Example – keyword-based selection of relational DBs

Query: [multimedia, database, VLDB]

DB2

Summarizing Keyword Relationship for RDB

- Capture relationship between pairs of keywords
 - Based on connections of tuples
- Two factors
 - Distance d
 - Length of joining sequence to include two keywords
 - Frequency $\omega_d(k_i, k_j)$
 - #combinations of joining sequences at distance d

Example – distance and frequency of joining sequences

citKeywd keywords **keyWdId** id citKev id word **keyWdId** Mey93a 2 citKev binder 7 t_{12} Mey93a A Multimedia Component Kit Mey93a olit t₁₃ 302 Burl94a t7 Managing Distributed Databases Burl94a databases 2 Liu92b t₈ Liu92b Acke94a 2

d = 4, freq = 1

12/3/2007

titles

id

 t_1

title

2

7

KRM: Keyword Relationship Matrix

- Models the relationship between every pair of keywords in a DB
 - R(i, j) measure the goodness of top-K results given any two keywords k_i and k_j

Computation of KRM

Model the content and structure of DB

12/3/2007

Computation of KRM (cnt.)

- *d*-distance tuple relationship matrix T_d
 - Records whether there is shortest path with *d* hops between two tuples (1 or 0)

$$\bullet T = T_1$$

• T_d can be derived inductively

$$\mathcal{T}_{d+1}[i,j] = \begin{cases} 0 & \text{if } \mathcal{T}_{d}^{*}[i,j] = 1, \\ 1 & \text{if } \mathcal{T}_{d}^{*}[i,j] = 0 \text{ and } \exists r(1 \le r \le n), \mathcal{T}_{d}[i,r] * \mathcal{T}_{1}[r,j] = 1 \end{cases}$$
$$\mathcal{T}_{d}^{*} = \bigvee_{k=1}^{d} \mathcal{T}_{k}$$

12/3/2007

Computation of KRM (cnt.)

• Derive $\omega_d(k_i, k_j)$ from D and T_d

$$\mathcal{W}_0 = \mathcal{D} \times \mathcal{D}^T$$

 $\omega_0(k_i, k_j) = \mathcal{W}_0[i, j]$
 $\mathcal{W}_d = \mathcal{D} \times \mathcal{T}_d \times \mathcal{D}^T$
 $\omega_d(k_i, k_j) = \mathcal{W}_d[i, j]$

- KR-summary
 - List of keyword pairs & relationship scores

12/3/2007

Example – keyword relationship summary

Query: [multimedia, database, VLDB]

DB1

Inpr	Inproceedings						_	Con		
id	inprocID	title	procID	year	month	annote		id	procID	Conference
t ₁	Adiba1986	Historical Multimedia Databases	23	1988	Aug	temporal	,	t ₃	23	the Conference on Very Large Databases (VLDB)
t ₂	Abarbanel 1987	Connections Perspective and Reformation	18	1987	May	Intellicorp	 ,	t ₄	18	ACM SIGMOD Conf. on the Management of Data

Frequencies of keyword pairs at difference distances

Keyword pair	d=0	d=1	d=2	d=3	d=4
database:multimedia	1	1	-	-	-
multimedia:VLDB	0	1	-	-	-
database:VLDB	1	1	-	-	-

Keyword pair	score
database:multimedia	1.5
multimedia:VLDB	0.5
database:VLDB	1.5

Example – keyword relationship summary

Query: [multimedia, database, VLDB] DB2 citKeywd keywords kevWdId citKev id titles id keyWdId word 2 Mev93a t₅ id title citKey binder 2 7 t_{12} Mey93a t₆ A Multimedia Component Kit Mey93a t_1 7 olit 302 t₁₃ Burl94a t_7 Managing Distributed Databases Burl94a t_2 databases 302 t₁₄ Liu92b 2 t₈ Activity Model: A Declarative Liu92b t₂ Acke94a 2 to Approach for Capturing booktitle Communication Behaviour in **Object-Oriented Database** id bkTitleNm bkTitleId citBkTitle Acke94a Direct Manipulation of Temporal t₄ t₁₅ Proceedings ACM 306 bkTitleId id citKev Structures in a Multimedia Multimedia '93 306 Mey93a **Application Framework** t₁₀ 279 Proceedings of the t_{16} Liu92b 279 18th VLDB **Keyword pair** score Frequencies of keyword pairs at difference distances database:multimedia 0.4 d=3**Keyword pair d=0** d=1 d=2 d=4multimedia:VLDB 0 database:multimedia 0 0 0 2 0 database:VLDB 0.33 0 0 multimedia:VLDB 0 0 0 database:VLDB 0 0 1 0 0

DB Selection with KR-summary

- Estimate relationship of multiple keywords from every keyword pair's score, *rel*(Q, DB)
 - If any pair's score is 0, rel(Q, DB) = 0
 - Four estimations

$$rel_{min}(Q, DB) = \min_{\{k_i, k_j\} \subseteq Q, i < j} rel(k_i, k_j)$$
$$rel_{max}(Q, DB) = \max_{\{k_i, k_j\} \subseteq Q, i < j} rel(k_i, k_j)$$
$$rel_{sum}(Q, DB) = \sum_{\{k_i, k_j\} \subseteq Q, i < j} rel(k_i, k_j)$$
$$rel_{prod}(Q, DB) = \prod_{\{k_i, k_j\} \subseteq Q, i < j} rel(k_i, k_j)$$

12/3/2007

Example – DB selection with KRsummary

Query: [multimedia, database, VLDB]

Summary of DB1

Keyword pair	score
database:multimedia	1.5
multimedia:VLDB	0.5
database:VLDB	1.5

Summary of DB2

Keyword pair	score
database:multimedia	0.4
multimedia:VLDB	0
database:VLDB	0.33

Choose DB1 over DB2

Indexing KR-Summaries

- Global index
 - Inverted lists
- Decentralized index P2P
 - DHT, ...
 - Each peer store a subset of inverted lists

Summary

- Propose to tackle the problem of structured data source selection based on keywords
- Introduce a novel summary technique for relational DB
- Propose methods for selection of relational DBs given keyword queries
- Can more sophisticated data mining method do better?

Reference

- Hisashi Kashima, Koji Tsuda, <u>Akihiro Inokuchi</u>: <u>Marginalized Kernels Between Labeled</u> <u>Graphs</u>. ICML 2003: 321-328
- Raymond J. W. Willett P. "<u>Maximum common subgraph isomorphism algorithms for the matching of chemical structures</u>". Journal of Computer-Aided Molecular Design, Volume 16, Number 7, July 2002, pp. 521-533(13)
- Bei Yu, Guoliang Li, Karen Sollins, Anthony K. H. Tung. <u>Effective Keyword-based Selection of</u> <u>Relational Databases</u>. ACM SIGMOD 2007.
- X. Yan and J. Han, "<u>CloseGraph: Mining Closed Frequent Graph Patterns</u>", Proc. 2003 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD'03), Washington, D.C., Aug. 2003..
- X. Yan, P. S. Yu, and J. Han, "<u>Substructure Similarity Search in Graph Databases</u>", in Proc. 2005 ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'05), Baltimore, Maryland, June 2005
- HK06: Chapter 9.1

Optional References:

- H Bunke. On a relation between graph edit distance and maximum common subgraph. Pattern Recognition Letters, 1997
- H Bunke, K Shearer. <u>A graph distance metric based on the maximal common subgraph</u>. Pattern Recognition Letters, 1998 - ece.concordia.ca
- X. Yan, P. S. Yu, and J. Han, "<u>Substructure Similarity Search in Graph Databases</u>", in Proc. 2005 ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'05), Baltimore, Maryland, June 2005.

12/3/2007