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Graph, Graph, Everywhere
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Types of Graphs
Single large graph vs multiple smaller graphs
Mostly symbolic but can contain numerical 
values as well. Most have repeated values.
Direct vs Undirected
Ordered vs Unordered
Hypergraph

An edge can join multiple nodes
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Maximum Common Subgraph

Problems:
To compare objects represented as graphs 
and to determine the degree and 
composition of the similarity between the 
objects

Applications:
Chemistry, biology, computer vision and 
image recognition, etc.
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Definition & Terminology
Isomorphic

Two graphs are said to be isomorphic if there 
is a one-to-one correspondence between 
their vertices and an edge exists between 
two vertices in one graph if an edge exists 
between the two corresponding vertices in 
the other graph.



12/3/2007 Data Mining: Foundation, Techniques and Applications 8

Definition & Terminology

Induced Subgraph
A set S of vertices of a graph G and those 
edges of G with both endpoints in S.

Common Induced Subgraph
A graph G12 is a common induced subgraph of 
graph G1 and G2 if G12 is isomorphic to 
induced subgraphs of G1 and G2
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Definitions & Terminology
Maximum Common Induced Subgraph (MCIS)

Subgraph consists of a graph G12 with the largest 
number of vertices meeting those property

Maximum Common Edge Subgraph (MCES)
Subgraph consists of the largest number of edges 
common to both G1 and G2



12/3/2007 Data Mining: Foundation, Techniques and Applications 10

Definitions & Terminology
Connected MCS

Each vertex is connected to every other 
vertex by at least one path in the graph

Disconnected MCS
Comprised of two or more
subgraph components
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MCES to MCIS
An edge isomorphism between two 
graphs, G1 and G2 induces a vertex 
isomorphism provided that a ΔY exchange 
does not occur.
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Algorithms
For comparison between a pair of 
chemical graphs consisting of m and n 
atoms respectively, the maximum number 
of possible atom-by-atom comparison 
necessary to determine all common 
subgraphs consisting of k atoms is 
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Classification
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Algorithms
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Maximum clique-based algorithm
Backtracking Algorithms
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Approximate Algorithm
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Combinatorial Optimization
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Adhoc Procedures
3D specific Algorithm
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Maximum clique-based algorithm

Clique – subset of vertices in the graph such 
that each pair of vertices in the subset is 
connected by an edge in the graph G
Maximum Clique – largest such subset 
present in the graph
MCIS problem is reduced to maximum clique 
problem by constructing a compatibility graph 
using adjacency properties of the graphs 
being compared (ie, the MCIS factor graphs)
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Maximum clique-based algorithm
The MCIS between graphs being 
compared is equivalent to a maximum 
clique in the compatibility graph
It is also the modular product graph in 
mathematics
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Modular Product
Modular product of two graphs G1 and G2 is 
defined on the vertex set V(G1)xV(G2) with two 
vertices (ui, vi) and (uj, vj) being adjacent 
whenever

ui and uj are adjacent in G1 and vi and vj are adjacent 
in G2

OR
ui and uj are not adjacent in G1 and vi and vj are not 

adjacent in G2
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Modular Product
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Backtracking Algorithm
By McGregor and Wong
Attempt to reduce the number of 
backtrack instances necessary by 
inspecting the set of possible solutions 
remaining at some point in the depth-first 
search.
Then determine whether it is necessary to 
extend the current solution
The set of possible solutions is evaluated 
by enforcing a connectivity relation with 
the currently detected solution
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Dynamic Programming
Calculate the connected MCES from a set 
of factor graphs.
Almost tree of bounded degree is a graph 
G such that |E(B)| ≤ |V(B)| + K holds for 
every biconnected component B of G, 
where K is a constant.
Biconnected component – maximal edge 
induced subgraph in a connected graph 
such that the subgraph cannot be 
disconnected by eliminating a vertex
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Dynamic Programming
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Genetic Algorithm

Survival of the fittest based on a fitness 
function
For chemical graphs,

F = N –V – (T1 + T2 - 2)
N = total number of bonds in the two structures that participate
in a bond matching
V = how many bonds are involved in the situation where two 
adjacent bonds in the other structure.
T1, T2 = the number of unconnected subgraphs in the two 
graphs, respectively
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Combinatorial Optimization
By Funabiki and Kitamichi
2DOM (2-stage Discrete Optimization 
Method)
Stage 1: Problem Construction Stage

Greedy matching between the graphs being 
compared

Stage 2: Refinement stage
Uses a randomized, discrete descent method to 
minimize an objective function consisting of the 
number of unmatched edges in the factor graph 
with the fewest edges
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Fragment Storage
Feasible only with database searching
The database to be searched is stored in a 
multi-level tree where each bifurcation 
point in the tree corresponds to particular 
chemical substructure.
Increasing a level in the tree to a lower 
bifurcation point, corresponds to adding a 
specific chemical substructure fragment to 
the substructure represented by the 
preceding bifurcation point.



12/3/2007 Data Mining: Foundation, Techniques and Applications 26

Fragment Storage
Using the multi-leveled database structure, it is 
then possible to perform rapid similarity 
searching of pre-processed databases.
Using the query compound as a template, the 
fragment tree is traversed until a bifurcation 
point is reached where it is not possible to 
continue.
The substructure represented by this bifurcation 
point corresponds to an approximation of the 
MCES between the query compound and all of 
the database compounds located lower in the 
search tree.
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Ad hoc Procedures
Graph Walking procedure

Determine connected substructure
Involves ‘growing’ a currently detected 
subgraph by adding a vertex and all edges 
incident between the current subgraph and 
the newly selected vertex
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Problem Reduction
A graph is an abstract concept and the 
vertices and edges do not necessarily 
have to correlate directly with atoms, 
bonds, and distance ranges in chemical 
structure
Simplified graph to represent nodes and 
edges
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Problem Reduction
Advantages:-
1. If the modified graph contains gewer
nodes and edges, it may significantly 
increase the efficiency of MCS comparison
2. It may reflect a more desirable 
understanding of the similarity between 
the structures being compared
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Problem Reduction

Examples:
Superatoms

Vertices can be one of a predefined number of 
ring system, functional groups or alkyl chains
An edge exists if pair of superatoms are 
adjacent in the molecular structure.

Feature trees
Chemical graph is reduced to tree graph (graph 
without rings or cycles)
Use split search and match search
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Screening Procedures
If a user specifies a lower-bound for a 
particular similarity comparison, then an 
effective upper-bound estimate based on 
the MCS concept can provide a means of 
screening comparisons that cannot 
potentially result in an MCS exceeding the 
specified lower bound.
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Screening Procedures
Asymmetric similarity co-efficient, Slb = 
Nc/Nq

Nc = number of bond pairs in common 
between a query and database graph
Nq = number of edges in the query structure

If it is found prior to graph matching that 
Nc < Slb Nq after specifying a minimum 
acceptable value of Slb, then it is not 
necessary to proceed to a rigorous graph 
matching
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Screening Procedures

Two levels of screening
Similarity coefficient,

|G1| and |G2| = number of vertices and 
edges in graph G1 and G2

G12 = upper bound estimate given for the 
MCS between G1 and G2
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Kernel Function

Inner product of two feature vectors
This paper defines a kernel function between 
graphs
Previous methods:

Decompose graph into substructures
Feature vector is composed of the counts of these 
substructures
Limit dimensionality of vectors by setting threshold 
on substructure length or frequency
Use methods from dynamic programming
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Kernel function

In this paper:
Is defined on infinite dimensional path count 
vectors
Each label path is produced by random walks 
on graph
Is defined as the inner product of the count 
vectors averaged over all possible label paths

Marginalized Kernels
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Marginalized Kernels

h and h’ are the hidden variables (sequence of vertex 
indices) obtained by random walks on graph x and x’
respectively
Kz is a joint kernel between the sequences of vertex and 
edge labels traversed in the random walk
K (x, x’) is the marginalized kernel between graph x and 
x’, defined as the expectation of Kz over all possible 
values of h and h’
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Definition

|G| = the number of vertices in graph G
Let                 denote the label of vertex i
Let                 denote the label of the edges 
from i to j
The task is to define K (G, G’) between two 
labeled graphs G and G’
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Random Walks on Graph, p(h|G)
h = (h1, … , hl) is a sequence of vertex 
indices obtained by a random walk on graph 
G 

h1 h2 hi-1 hi hl

• pq (i) is the probability that the random walk 
ends at vertex i

1

i
|G|

.

.

.
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Joint Kernel, Kz

When random walk is done as described in h, 
the traversed labels are:

Joint kernel between two label paths z and z’
z = vh1 eh1h2 vh2 eh2h3 vh3 …vhl
z’ = v’h’1 e’h’1h’2 v’h’2 e’h’2h’3 v’h’3 …v’h’l
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Marginalized Kernel, K(G,G’)

The expectation of Kz over all possible (values 
and length of) h and h’:

Plug in:
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Marginalized Kernel, K(G,G’)

Where
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Marginalized Kernel, K(G,G’)
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Marginalized Kernel, K (G, G’)

Where
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Recursive Relationships
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Marginalized Kernel, K(G,G’)
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Marginalized Kernel Equilibrium
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Marginalized Kernel
Linear Simultaneous Equation

Solve:

Substitute to:

|G||G’| x |G||G’| coefficient matrix
Sparse Graph
Iterate till convergence
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Marginalized Kernel

If the termination probabilities are constant (   ) 
over all vertices, 
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Experimental Results
Compare with Pattern Discovery Algorithm
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Summary

Using random walks to compute 
marginalized kernel 
Takes into account all possible label paths 
without computing feature values 
explicitly
Can be used for sequences, trees, DAGs
Implicit parameter is required (the 
termination probability of random walks)
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Graph Pattern Mining
Frequent subgraphs

A (sub)graph is frequent if its support
(occurrence frequency) in a given dataset is 
no less than a minimum support threshold

Applications of graph pattern mining
Mining biochemical structures
Program control flow analysis
Mining XML structures or Web communities
Building blocks for graph classification, 
clustering, compression, comparison, and 
correlation analysis
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Example: Frequent Subgraphs
GRAPH DATASET

FREQUENT PATTERNS
(MIN SUPPORT IS 2)

S

OH

O

O

O

N

O

N

HO

ON

O

N

(A) (B) (C)

ON
N

O

N(1) (2)
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EXAMPLE (II)

1

3

4

5

2
1: makepat
2: esc
3: addstr
4: getccl
5: dodash
6: in_set_2
7: stclose

(1)

1

3

4

5

2

1

3

4

5

2

6

7

(2) (3)

1

3

4

5

2

(1)

3

4

5

2

(2)

GRAPH DATASET

FREQUENT PATTERNS
(MIN SUPPORT IS 2)
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Graph Mining Algorithms
Incomplete beam search – Greedy 
(Subdue)
Inductive logic programming (WARMR)
Graph theory-based approaches

Apriori-based approach
Pattern-growth approach
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SUBDUE (Holder et al. KDD’94)
Start with single vertices
Expand best substructures with a new edge
Limit the number of best substructures

Substructures are evaluated based on their 
ability to compress input graphs
Using minimum description length (DL)
Best substructure S in graph G minimizes: 
DL(S) + DL(G\S)

Terminate until no new substructure is 
discovered
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WARMR (Dehaspe et al. KDD’98)
Graphs are represented by Datalog facts

atomel(C, A1, c), bond (C, A1, A2, BT), 
atomel(C, A2, c) : a carbon atom bound to a 
carbon atom with bond type BT

WARMR: the first general purpose ILP 
system
Level-wise search
Simulate Apriori for frequent pattern 
discovery
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Frequent Subgraph Mining Approaches

Apriori-based approach
AGM/AcGM: Inokuchi, et al. (PKDD’00)
FSG: Kuramochi and Karypis (ICDM’01)
PATH#: Vanetik and Gudes (ICDM’02, ICDM’04)
FFSM: Huan, et al. (ICDM’03)

Pattern growth approach
MoFa, Borgelt and Berthold (ICDM’02)
gSpan: Yan and Han (ICDM’02)
Gaston: Nijssen and Kok (KDD’04)



12/3/2007 Data Mining: Foundation, Techniques and Applications 60

Properties of Graph Mining Algorithms

Search order
breadth vs. depth

Generation of candidate subgraphs
apriori vs. pattern growth

Elimination of duplicate subgraphs
passive vs. active

Support calculation
embedding store or not

Discover order of patterns
path tree graph
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Apriori-Based Approach

…

G
G1

G2

Gn

k-edge
(k+1)-edge

G’

G’’

JOIN
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Apriori-Based, Breadth-First Search

AGM (Inokuchi, et al. PKDD’00) 
generates new graphs with one more node

+

Methodology: breadth-search, joining two graphs 

FSG (Kuramochi and Karypis ICDM’01)
generates new graphs with one more edge

+
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PATH (Vanetik and Gudes ICDM’02, ’04)

Apriori-based approach
Building blocks: edge-disjoint path

A graph with 3 edge-disjoint 
paths

• construct frequent paths
• construct frequent graphs with 

2 edge-disjoint paths
• construct graphs with k+1 

edge-disjoint paths from 
graphs with k edge-disjoint 
paths

• repeat
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FFSM (Huan, et al. ICDM’03)

Represent graphs using canonical adjacency matrix 
(CAM)
Join two CAMs or extend a CAM to generate a new 
graph
Store the embeddings of CAMs

All of the embeddings of a pattern in the 
database
Can derive the embeddings of newly generated 
CAMs
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Pattern Growth Method

…
G

G1

G2

Gn

k-edge

(k+1)-edge

…

(k+2)-edge

…

duplicate 
graph
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MoFa (Borgelt and Berthold ICDM’02)

Extend graphs by adding a new edge
Store embeddings of discovered frequent 
graphs

Fast support calculation
Also used in other later developed algorithms 
such as FFSM and GASTON
Expensive Memory usage

Local structural pruning
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GSPAN (Yan and Han ICDM’02)

Right-Most Extension

Theorem: Completeness

The Enumeration of Graphs 
using Right-most Extension is 

COMPLETE
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DFS Code

Flatten a graph into a sequence using 
depth first search

0

1

2

3
4

e0: (0,1)

e1: (1,2)

e2: (2,0)

e3: (2,3)

e4: (3,1)

e5: (2,4)
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DFS Lexicographic Order
Let Z be the set of DFS codes of all graphs.  
Two DFS codes a and b have the relation 
a<=b (DFS Lexicographic Order in Z) if and 
only if one of the following conditions is true.  
Let  a = (x0, x1, …, xn) and b = (y0, y1, …, yn),

(i) if there exists t, 0<= t <= min(m,n), 
xk=yk for all k, s.t. k<t, and xt < yt

(ii) xk=yk for all k, s.t.  0<= k<= m and 
m <= n.



12/3/2007 Data Mining: Foundation, Techniques and Applications 70

DFS Code Extension
Let a be the minimum DFS code of a graph G 
and b be a non-minimum DFS code of G.  
For any DFS code d generated from b by one 
right-most extension,

(i) d is not a minimum DFS code,
(ii) min_dfs(d) cannot be extended from b, and
(iii) min_dfs(d) is either less than a or can be 

extended from a.

THEOREM [ RIGHT-EXTENSION ]
The DFS code of a graph extended from a 
Non-minimum DFS code is NOT MINIMUM
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GASTON (Nijssen and Kok KDD’04)

Extend graphs directly
Store embeddings
Separate the discovery of different types 
of graphs

path tree graph
Simple structures are easier to mine and 
duplication detection is much simpler
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Graph Pattern Explosion Problem

If a graph is frequent, all of its subgraphs
are frequent ─ the Apriori property
An n-edge frequent graph may have 2n

subgraphs
Among 422 chemical compounds which 
are confirmed to be active in an AIDS 
antiviral screen dataset, there are 
1,000,000 frequent graph patterns if the 
minimum support is 5%
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Closed Frequent Graphs
Motivation:Handling graph pattern explosion 
problem
Closed frequent graph

A frequent graph G is closed if there exists no 
supergraph of G that carries the same support as 
G

If some of G’s subgraphs have the same 
support, it is unnecessary to output these 
subgraphs (nonclosed graphs)
Lossless compression: still ensures that the 
mining result is complete
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CLOSEGRAPH (Yan & Han, KDD’03)

…

A Pattern-Growth Approach

G

G1

G2

Gn

k-edge

(k+1)-edge

At what condition, can we
stop searching their children

i.e., early termination?

If G and G’ are frequent, G is a 
subgraph of G’.  If in any part 
of the graph in the dataset 
where G occurs, G’ also 
occurs, then we need not grow 
G, since none of G’s children will 
be closed except those of G’.
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Handling Tricky Exception Cases

(graph 1)

a

c

b

d

(pattern 2)

(pattern 1)

(graph 2)

a

c

b

d

a b

a

c d
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Do the Odds Beat the Curse of Complexity?

Potentially exponential number of frequent patterns
The worst case complexty vs. the expected probability
Ex.: Suppose Walmart has 104 kinds of products 

The chance to pick up one product 10-4

The chance to pick up a particular set of 10 products: 
10-40

What is the chance this particular set of 10 products to 
be frequent 103 times in 109 transactions?

Have we solved the NP-hard problem of subgraph 
isomorphism testing?

No.  But the real graphs in bio/chemistry is not so bad
A carbon has only 4 bounds and most proteins in a 
network have distinct labels  
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Constrained Patterns

Density

Diameter

Connectivity

Degree

Min, Max, Avg
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Constraint-Based Graph Pattern Mining
Highly connected subgraphs in a large 
graph usually are not artifacts (group, 
functionality)

Recurrent patterns discovered in multiple 
graphs are more robust than the patterns 
mined from a single graph
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No Downward Closure Property

Given two graphs G and G’, if G is a 
subgraph of  G’, it does not imply that the 
connectivity of G is less than that of G’, and 
vice versa.

G G’
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Minimum Degree Constraint
Let G be a frequent graph and X be the set
of edges which can be added to G such that
G U e (e ε X) is connected and frequent. 
Graph G U X is the maximal graph that can be 
Extended (one step) from the vertices belong to G

G G U X 
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Pattern-Growth Approach
Find a small frequent candidate graph

Remove vertices (shadow graph) whose 
degree is less than the connectivity
Decompose it to extract the subgraphs
satisfying the connectivity constraint
Stop decomposing when the subgraph has 
been checked before

Extend this candidate graph by adding 
new vertices and edges
Repeat
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Pattern-Reduction Approach
Decompose the relational graphs (note: 
no repeat nodes) according to the 
connectivity constraint
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Pattern-Reduction Approach (cont.)

Intersect them and decompose the 
resulting subgraphs

intersect

intersect

final result



12/3/2007 Data Mining: Foundation, Techniques and Applications 84

Outline
Introduction
Foundation

Graph Similarity Function
Graph Kernels

Technique
Graph Pattern Mining

Applications
Graph Indexing
Graph Summarization for Keyword Search



12/3/2007 Data Mining: Foundation, Techniques and Applications 85

Graph Search
Querying graph databases: 

Given a graph database and a query 
graph, find all the graphs containing 
this query graph

NN

OH
O

N

O

N

OH

O

N N +
NH

N

ONHO

N

N

S

OH

S

HO O

O N

N

O

O

query graph graph database
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Scalability Issue
Sequential scan

Disk I/Os

Subgraph isomorphism testing

An indexing mechanism is needed
DayLight:  Daylight.com (commercial)

GraphGrep: Dennis Shasha, et al. PODS'02

Grace: Srinath Srinivasa, et al. ICDE'03
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Indexing Strategy

Graph (G)

Substructure

Query graph (Q)

If graph G contains query 
graph Q, G should contain 
any substructure of Q

Remarks
Index substructures of a query graph 
to prune graphs that do not contain 
these substructures
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Indexing Framework

Two steps in processing graph queriesStep 1. Index Construction
Enumerate structures in the graph 
database, build an inverted index 
between structures and graphs

Step 2. Query Processing
Enumerate structures in the query 
graph 
Calculate the candidate graphs 
containing these structures
Prune the false positive answers by 
performing subgraph isomorphism test



12/3/2007 Data Mining: Foundation, Techniques and Applications 89

Cost Analysis
QUERY RESPONSE TIME

( )testingmisomorphisioqindex TTCT _+×+

REMARK: make |Cq| as small as possible

fetch index number of candidates
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Path-based Approach

OHO

N

N+

NH

N

O

N

HO

ON

O

N N

N

S

OH

S

HO
O

O

N

N

O

O

GRAPH DATABASE

PATHS

0-length: C, O, N, S
1-length: C-C, C-O, C-N, C-S, N-N, S-O
2-length: C-C-C, C-O-C, C-N-C, ...
3-length: ...

(a) (b) (c)

Built an inverted index between paths and graphs
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Path-based Approach (cont.)

NN

QUERY GRAPH

0-edge: SC={a, b, c}, SN={a, b, c}
1-edge: SC-C={a, b, c}, SC-N={a, b, c}
2-edge: SC-N-C = {a, b}, …
…

Intersect these sets, we obtain the candidate 
answers - graph (a) and graph (b) - which may 
contain this query graph.
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Problems: Path-based Approach
GRAPH DATABASE

(a) (b) (c)
QUERY GRAPH

Only graph (c) contains this query 
graph. However, if we only index 
paths: C, C-C, C-C-C, C-C-C-C, we 
cannot prune graph (a) and (b).
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gIndex: Indexing Graphs by Data 
Mining

Our methodology on graph index:

Identify frequent structures in the 
database, the frequent structures are 
subgraphs that appear quite often in the 
graph database

Prune redundant frequent structures to 
maintain a small set of discriminative 
structures

Create an inverted index between 
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IDEAS: Indexing with Two Constraints

structure (>106)

frequent (~105)

discriminative (~103)
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Why Discriminative Subgraphs?

All graphs contain structures: C, C-C, C-C-C
Why bother indexing these redundant 
frequent structures?

Only index structures that provide more 
information than existing structures

OHO

N

N+

NH

N

O

N

HO

ON

O

N N

N

S

OH

S

HO
O

O

N

N

O

O

Sample database

(a) (b) (c)
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Discriminative Structures
Pinpoint the most useful frequent structures

Given a set of structures                 and a new 
structure    , we measure the extra indexing 
power provided by    ,

When     is small enough,     is a discriminative 
structure and should be included in the index

Index discriminative frequent structures only
Reduce the index size by an order of magnitude

( ) .,,, 21 xffffxP in ⊂K

x
nfff K,, 21

x

xP
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Why Frequent Structures?
We cannot index (or even search) all of 
substructures
Large structures will likely be indexed well 
by their substructures
Size-increasing support threshold

size

su
p
p
o
rt

minimum
support threshold
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Graph Mining
Methods for Mining Frequent Subgraphs

Mining Variant and Constrained 
Substructure Patterns

Applications:

Classification and Clustering 

Graph Indexing

Similarity Search

Summary
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Structure Similarity Search

(a) caffeine (b) diurobromine (c) viagra

• CHEMICAL COMPOUNDS

• QUERY GRAPH
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Some “Straightforward” Methods
Method1: Directly compute the similarity 
between the graphs in the DB and the query 
graph

Sequential scan
Subgraph similarity computation

Method 2: Form a set of subgraph queries from 
the original query graph and use the exact 
subgraph search 

Costly: If we allow 3 edges to be missed in a 
20-edge query graph, it may generate 1,140 
subgraphs
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Substructure Similarity Measure
Query relaxation measure
The number of edges that can be relabeled or 
missed; but the position of these edges are not 
fixed  

QUERY GRAPH

…
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Substructure Similarity Measure
Feature-based similarity measure

Each graph is represented as a feature 
vector X = {x1, x2, …, xn}
Similarity is defined by the distance of 
their corresponding vectors
Advantages

Easy to index
Fast
Rough measure
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Intuition: Feature-Based Similarity Search

Graph (G1)

Substructure

Query (Q)

If graph G contains 
the major part of a query 
graph Q, G should share 
a number of common 
features with Q

Given a relaxation ratio, 
calculate the maximal 
number of features that 
can be missed !

At least one of them 
should be contained

Graph (G2)
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Feature-Graph Matrix

G1 G2 G3 G4 G5
f1 0 1 0

0
1

f4 1 0 0 0 1
f5 0 0 1 1 0

f2 0 1
11

f3 1 0
0 1

11

Assume a query graph has 5 features and at 
most 2 features to miss due to the 
relaxation threshold

graphs in database
fe

a
tu

re
s
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Edge Relaxation—Feature Misses

If we allow k edges to be relaxed,  J is 
the maximum number of features to be 
hit by k edges—it becomes the 
maximum coverage problem

NP-complete 

A greedy algorithm exists

We design a heuristic to refine the 
bound of feature misses

J
k

J
k

⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−≥

111greedy
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Query Processing Framework
Three steps in processing approximate 
graph queries

Step 1. Index Construction
Select small structures as 
features in a graph database, and 
build the feature-graph matrix
between the features and the 
graphs in the database
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Framework (cont.)

Step 2. Feature Miss Estimation
Determine the indexed features 
belonging to the query graph
Calculate the upper bound of the 
number of features that can be 
missed for an approximate 
matching, denoted by J

On the query graph, not the graph 
database
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Framework (cont.)

Step 3. Query Processing

Use the feature-graph matrix to 
calculate the difference in the 
number of features between 
graph G and query Q, FG – FQ

If FG – FQ > J, discard G. The 
remaining graphs constitute a 
candidate answer set
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Outline
Introduction
Foundation

Graph Similarity Function
Graph Kernels

Technique
Graph Pattern Mining

Applications
Graph Indexing
Graph Summarization for Keyword Search
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Motivation
Keyword search is pervasive

For webpages, textual documents, …
For relational DBs, XMLs

Data sources are pervasive
Millions of Deep Web databases
GoogleBase, Flickr, …

Need to support keyword search over 
distributed DBs

Source Selection
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Background 1:
Keyword search over relational DBs

The results are trees of joined tuples that 
contain all the query keywords

Graph search problem

The search/result space is huge
Need good ranking method
Top-K processing

Existing proposals
DISCOVER, BANKS, DBXplorer, …
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Example – keyword search in 
relational DB

pId title year

1 2004

2 Computing frames along a 
trajectory

1989 1

3 A Temporal Query 
Language For A 
Conceptual Model

1993 2

jId

Almost rotation-
minimizing rational 
parametrization of canal 
surfaces

1

pId aId

1

1 2

1 3

2 4

3 5

3 6

1

pId1 pId2

1 2

Papers

Author_of

Citations

jId name

1 Computer Aided 
Geometric Design

2 Advanced Database 
Systems

Journals

aId name

1

2 Song-Hwa Kwon 

3 Nam-Sook Wee

4 H. Guggenheimer

5 Ramez Elmasri

6 Vram Kouramajian

Hyeong In Choi

Authors

[Ramez, Vram, Database]



12/3/2007 Data Mining: Foundation, Techniques and Applications 113

DISCOVER [VLDB 2002, VLDB 2003]

Exploits schema
Use FK (foreign key) references between tables

Search steps
Find all tuple sets (TSs), subsets of tuples of native 
tables containing keywords 
Find CNs (Candidate Networks)

Join expressions connecting TSs and native tables
Generate potential results
Discovered based on schema

Evaluate CNs
Top-K processing
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DISCOVER [VLDB 2002, VLDB 2003]

Ranking
Score of a result T = (t1, t2, …, tn)
score(T) = ∑ score(ti) / size(T)

Scores of individual tuples are based on 
DBMS’s IR search
score(t) = ∑a∈tscore(a, t)
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BANKS [ICDE 2002, VLDB 2005]

Model the database as a graph
Nodes are tuples, edges are references

Find top-K minimal Steiner trees
Leaves are nodes containing query keywords

Search heuristics
Backward search
Bidirectional search

Ranking
Combination of node weights and edge weights
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Background2: Distributed Search Over 
Community Databases

. . .

summaries

Query Dispatcher 

Database Selector

Results Merger

Keyword query Interface
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Compare to Present Integrated 
Approach

Just-In-Time: No pre-integration needed at 
a central server
Advantages= Whatever advantages that 
distributed approach have over centralized 
approach
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Build summaries for text documents
List keywords and their frequency statistics

Eg. #documents containing a keyword 
GLOSS

May also include some inter-collection statistics
Eg. ICF (Inverse Collection Frequency), #sources 
containing a keyword 
CORI

Inadequate for structured database
Cannot capture semantics hidden behind the 
structure
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Example – keyword list summary 
over RDB 

t2

t1

id

IntellicorpMay198718Connections Perspective 
and Reformation

Abarbanel
1987

temporal
annote

Aug198823Historical Multimedia
Databases

Adiba1986
monthyearprocIDtitleinprocID

t2

t1

id

IntellicorpMay198718Connections Perspective 
and Reformation

Abarbanel
1987

temporal
annote

Aug198823Historical Multimedia
Databases

Adiba1986
monthyearprocIDtitleinprocID

Inproceedings

t4

t3

id

ACM SIGMOD Conf. on the 
Management of Data

18

the Conference on Very Large 
Databases (VLDB) 

23
ConferenceprocID

t4

t3

id

ACM SIGMOD Conf. on the 
Management of Data

18

the Conference on Very Large 
Databases (VLDB) 

23
ConferenceprocID

Conferences

DB1

Keyword list summary:

Query: [multimedia, database, VLDB]

Multimedia 1

database 2

VLDB 1

DB1
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Example – keyword list summary 
over RDB

t4

t3

t2

t1

id

Liu92bActivity Model: A Declarative 
Approach for Capturing 
Communication Behaviour in 
Object-Oriented Database

Burl94aManaging Distributed Databases

Mey93aA Multimedia Component Kit

Acke94aDirect Manipulation of Temporal 
Structures in a Multimedia 
Application Framework

citKeytitle

t4

t3

t2

t1

id

Liu92bActivity Model: A Declarative 
Approach for Capturing 
Communication Behaviour in 
Object-Oriented Database

Burl94aManaging Distributed Databases

Mey93aA Multimedia Component Kit

Acke94aDirect Manipulation of Temporal 
Structures in a Multimedia 
Application Framework

citKeytitle

t16

t15

id
306Proceedings ACM 

Multimedia '93
279Proceedings of the 

18th VLDB 
Conference

bkTitleIdbkTitleNm

t16

t15

id
306Proceedings ACM 

Multimedia '93
279Proceedings of the 

18th VLDB 
Conference

bkTitleIdbkTitleNm

t14

t13

t12

id

7olit
302databases

2binder
keyWdIdword

t14

t13

t12

id

7olit
302databases

2binder
keyWdIdwordtitles

booktitle

keywords

t9

t8

t7

t6

t5

id

2Liu92b
302Burl94a

2Acke94a

7Mey93a
2Mey93a
keyWdIdcitKey

t9

t8

t7

t6

t5

id

2Liu92b
302Burl94a

2Acke94a

7Mey93a
2Mey93a
keyWdIdcitKey

citKeywd

t11

t10

id

306Mey93a
279Liu92b

bkTitleIdcitKey

t11

t10

id

306Mey93a
279Liu92b

bkTitleIdcitKey
citBkTitle

DB2 Query: [multimedia, database, VLDB]

Keyword list summary:

multimedia 3

database 3

VLDB 1

DB2
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Example – DB selection with keyword list 
summary

Query: [multimedia, database, VLDB]

Keyword list 
summary of DB1

Keyword list 
summary of DB2

Choose DB2 over DB1

Multimedia 1

database 2

VLDB 1

DB1
Multimedia 3

database 3

VLDB 1

DB2
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Example – keyword-based selection 
of relational DBs

DB1
Query: [multimedia, database, VLDB]

t2

t1

id

IntellicorpMay198718Connections Perspective 
and Reformation

Abarbanel
1987

temporal
annote

Aug198823Historical Multimedia
Databases

Adiba1986
monthyearprocIDtitleinprocID

t2

t1

id

IntellicorpMay198718Connections Perspective 
and Reformation

Abarbanel
1987

temporal
annote

Aug198823Historical Multimedia
Databases

Adiba1986
monthyearprocIDtitleinprocID

Inproceedings

t4

t3

id

ACM SIGMOD Conf. on the 
Management of Data

18

the Conference on Very Large 
Databases (VLDB) 

23
ConferenceprocID

t4

t3

id

ACM SIGMOD Conf. on the 
Management of Data

18

the Conference on Very Large 
Databases (VLDB) 

23
ConferenceprocID

Conferences
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Example – keyword-based 
selection of relational DBs

Query: [multimedia, database, VLDB]

t4

t3

t2

t1

id

Liu92bActivity Model: A Declarative 
Approach for Capturing 
Communication Behaviour in 
Object-Oriented Database

Burl94aManaging Distributed Databases

Mey93aA Multimedia Component Kit

Acke94aDirect Manipulation of Temporal 
Structures in a Multimedia 
Application Framework

citKeytitle

t4

t3

t2

t1

id

Liu92bActivity Model: A Declarative 
Approach for Capturing 
Communication Behaviour in 
Object-Oriented Database

Burl94aManaging Distributed Databases

Mey93aA Multimedia Component Kit

Acke94aDirect Manipulation of Temporal 
Structures in a Multimedia 
Application Framework

citKeytitle

t16

t15

id
306Proceedings ACM 

Multimedia '93
279Proceedings of the 

18th VLDB 
Conference

bkTitleIdbkTitleNm

t16

t15

id
306Proceedings ACM 

Multimedia '93
279Proceedings of the 

18th VLDB 
Conference

bkTitleIdbkTitleNm

t14

t13

t12

id

7olit
302databases

2binder
keyWdIdword

t14

t13

t12

id

7olit
302databases

2binder
keyWdIdwordtitles

booktitle

keywords

t9

t8

t7

t6

t5

id

2Liu92b
302Burl94a

2Acke94a

7Mey93a
2Mey93a
keyWdIdcitKey

t9

t8

t7

t6

t5

id

2Liu92b
302Burl94a

2Acke94a

7Mey93a
2Mey93a
keyWdIdcitKey

citKeywd

t11

t10

id

306Mey93a
279Liu92b

bkTitleIdcitKey

t11

t10

id

306Mey93a
279Liu92b

bkTitleIdcitKey
citBkTitle

DB2
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Summarizing Keyword 
Relationship for RDB

Capture relationship between pairs of 
keywords

Based on connections of tuples
Two factors

Distance d
Length of joining sequence to include two 
keywords

Frequency ωd(ki, kj)
#combinations of joining sequences at distance d



12/3/2007 Data Mining: Foundation, Techniques and Applications 125

Example – distance and 
frequency of joining sequences

(mulimedia, binder)

d = 2, freq = 2

d = 4, freq = 1

t4

t3

t2

t1

id

Liu92bActivity Model: A Declarative 
Approach for Capturing 
Communication Behaviour in 
Object-Oriented Database

Burl94aManaging Distributed Databases

Mey93aA Multimedia Component Kit

Acke94aDirect Manipulation of Temporal 
Structures in a Multimedia 
Application Framework

citKeytitle

t4

t3

t2

t1

id

Liu92bActivity Model: A Declarative 
Approach for Capturing 
Communication Behaviour in 
Object-Oriented Database

Burl94aManaging Distributed Databases

Mey93aA Multimedia Component Kit

Acke94aDirect Manipulation of Temporal 
Structures in a Multimedia 
Application Framework

citKeytitle

t16

t15

id
306Proceedings ACM 

Multimedia '93
279Proceedings of the 

18th VLDB 
Conference

bkTitleIdbkTitleNm

t16

t15

id
306Proceedings ACM 

Multimedia '93
279Proceedings of the 

18th VLDB 
Conference

bkTitleIdbkTitleNm

t14

t13

t12

id

7olit
302databases

2binder
keyWdIdword

t14

t13

t12

id

7olit
302databases

2binder
keyWdIdwordtitles

booktitle

keywords

t9

t8

t7

t6

t5

id

2Liu92b
302Burl94a

2Acke94a

7Mey93a
2Mey93a
keyWdIdcitKey

t9

t8

t7

t6

t5

id

2Liu92b
302Burl94a

2Acke94a

7Mey93a
2Mey93a
keyWdIdcitKey

citKeywd

t11

t10

id

306Mey93a
279Liu92b

bkTitleIdcitKey

t11

t10

id

306Mey93a
279Liu92b

bkTitleIdcitKey
citBkTitle
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KRM: Keyword Relationship Matrix
Models the relationship between every pair of 
keywords in a DB

R(i, j) measure the goodness of top-K results given 
any two keywords ki and kj

when

otherwise

proximity factor

frequency 
factor

allowed 
maximum 
distance the minimum 

distance within which 
there are more than 
K join combinations
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Computation of KRM

Model the content and structure of DB

keywords

tuples

tuples

tuples
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Computation of KRM (cnt.)
d-distance tuple relationship matrix Td

Records whether there is shortest path with d hops 
between two tuples (1 or 0)

T = T1

Td can be derived inductively
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Computation of KRM (cnt.)
Derive ωd(ki, kj) from D and Td

KR-summary
List of keyword pairs & relationship scores 
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Example – keyword relationship 
summary

t2

t1

id

IntellicorpMay198718Connections Perspective 
and Reformation

Abarbanel
1987

temporal
annote

Aug198823Historical Multimedia
Databases

Adiba1986
monthyearprocIDtitleinprocID

t2

t1

id

IntellicorpMay198718Connections Perspective 
and Reformation

Abarbanel
1987

temporal
annote

Aug198823Historical Multimedia
Databases

Adiba1986
monthyearprocIDtitleinprocID

Inproceedings

t4

t3

id

ACM SIGMOD Conf. on the 
Management of Data

18

the Conference on Very Large 
Databases (VLDB) 

23
ConferenceprocID

t4

t3

id

ACM SIGMOD Conf. on the 
Management of Data

18

the Conference on Very Large 
Databases (VLDB) 

23
ConferenceprocID

Conferences

DB1
Query: [multimedia, database, VLDB]

Keyword pair d=0 d=1 d=2 d=3 d=4

database:multimedia 1 1 - - -

multimedia:VLDB 0 1 - - -

database:VLDB 1 1 - - -

Frequencies of keyword pairs at difference distances
Keyword pair score

database:multimedia 1.5

multimedia:VLDB 0.5

database:VLDB 1.5
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Example – keyword relationship 
summary

t4

t3

t2

t1

id

Liu92bActivity Model: A Declarative 
Approach for Capturing 
Communication Behaviour in 
Object-Oriented Database

Burl94aManaging Distributed Databases

Mey93aA Multimedia Component Kit

Acke94aDirect Manipulation of Temporal 
Structures in a Multimedia 
Application Framework

citKeytitle

t4

t3

t2

t1

id

Liu92bActivity Model: A Declarative 
Approach for Capturing 
Communication Behaviour in 
Object-Oriented Database

Burl94aManaging Distributed Databases

Mey93aA Multimedia Component Kit

Acke94aDirect Manipulation of Temporal 
Structures in a Multimedia 
Application Framework

citKeytitle

t16

t15

id
306Proceedings ACM 

Multimedia '93
279Proceedings of the 

18th VLDB 
Conference

bkTitleIdbkTitleNm

t16

t15

id
306Proceedings ACM 

Multimedia '93
279Proceedings of the 

18th VLDB 
Conference

bkTitleIdbkTitleNm

t14

t13

t12

id

7olit
302databases

2binder
keyWdIdword

t14

t13

t12

id

7olit
302databases

2binder
keyWdIdwordtitles

booktitle

keywords

t9

t8

t7

t6

t5

id

2Liu92b
302Burl94a

2Acke94a

7Mey93a
2Mey93a
keyWdIdcitKey

t9

t8

t7

t6

t5

id

2Liu92b
302Burl94a

2Acke94a

7Mey93a
2Mey93a
keyWdIdcitKey

citKeywd

t11

t10

id

306Mey93a
279Liu92b

bkTitleIdcitKey

t11

t10

id

306Mey93a
279Liu92b

bkTitleIdcitKey
citBkTitle

DB2 Query: [multimedia, database, VLDB]

Keyword pair d=0 d=1 d=2 d=3 d=4

database:multimedia 0 0 0 0 2

multimedia:VLDB 0 0 0 0 0

database:VLDB 0 0 1 0 0

Frequencies of keyword pairs at difference distances
Keyword pair score

database:multimedia 0.4

multimedia:VLDB 0

database:VLDB 0.33
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DB Selection with KR-summary
Estimate relationship of multiple keywords from 
every keyword pair’s score, rel(Q, DB)

If any pair’s score is 0, rel(Q, DB) = 0
Four estimations
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Example – DB selection with KR-
summary

Query: [multimedia, database, VLDB]

Keyword pair score

database:multimedia 1.5

multimedia:VLDB 0.5

database:VLDB 1.5

Summary of DB1

Keyword pair score

database:multimedia 0.4

multimedia:VLDB 0

database:VLDB 0.33

Summary of DB2

Choose DB1 over DB2
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Indexing KR-Summaries
Global index

Inverted lists

Decentralized index – P2P
DHT,  …
Each peer store a subset of inverted lists
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Summary
Propose to tackle the problem of 
structured data source selection based on 
keywords
Introduce a novel summary technique for 
relational DB
Propose methods for selection of 
relational DBs given keyword queries
Can more sophisticated data mining 
method do better?
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