Data Mining: Foundation,
Techniques and Applications

!'_ Lesson 13: Mining and Searching Graphs

FEINUS
AP A Ao K%

\&=%/ RENMIN UNIVERSITY OF CHINA School Of Computing

Li Cuiping(Z=>2-F) Anthony Tung (&l 4 )
School of Information School of Computing
Renmin University of China National University of Singapore

8/19/2002 Data Mining: Foundation, Techniques and Applications



i Outline

s Introduction

= Foundation
« Graph Similarity Function
« Graph Kernels
= Technique
=« Graph Pattern Mining
= Applications
= Graph Indexing
« Graph Summarization for Keyword Search

12/3/2007 Data Mining: Foundation, Techniques and Applications



‘.h Graph, Graph, Everywhere

Aspirin

12/3/2007 Internetpata Mining:

-
L]
3

as
Py o b
1
¥

_.
-
v et

_ Co-author network
Foundation, Techniques and Applications

from H. Jeong et al Nature 411, 41 (2001)



i Types of Graphs

= Single large graph vs multiple smaller graphs

= Mostly symbolic but can contain numerical
values as well. Most have repeated values.

s Direct vs Undirected
s Ordered vs Unordered

= Hypergraph
= An edge can join multiple nodes
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i Maximum Common Subgraph

= Problems:

= 10 compare objects represented as graphs
and to determine the degree and
composition of the similarity between the
objects

= Applications:

« Chemistry, biology, computer vision and
Image recognition, etc.
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i Definition & Terminology

= Isomorphic

= TWO graphs are said to be isomorphic if there
IS @ one-to-one correspondence between
their vertices and an edge exists between
two vertices in one graph if an edge exists
between the two corresponding vertices in
the other graph.

Graph H
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between G and H
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i Definition & Terminology

= Induced Subgraph

= A set S of vertices of a graph G and those
edges of G with both endpoints in S.

= Common Induced Subgraph
= A graph Gy, is a common induced subgraph of
graph G; and G, if Gy, is isomorphic to
induced subgraphs of G, and G,
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i Definitions & Terminology

= Maximum Common Induced Subgraph (MCIS)

= Subgraph consists of a graph G;, with the largest
number of vertices meeting those property

= Maximum Common Edge Subgraph (MCES)

= Subgraph consists of the largest number of edges
common to both G; and G,
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‘_L Definitions & Terminology

s Connected MCS

= Each vertex is connected to every other
vertex by at least one path in the graph

s Disconnected MCS NN
»
= Comprised of two or more J‘:Iy ”Jﬁ[”

subgraph components
J;“LI? Nleﬁ

NOpve

Figure 2. a) Connected MCES. b) Disconnected MCES
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i MCES to MCIS

= An edge isomorphism between two
graphs, G, and G, induces a vertex
isomorphism provided that a AY exchange
does not occur. =

e
=] £ .
R g ' =
G]zl‘:ﬁ {J]_I{LF- e 3 2
E-l

=

b) €
L(G,) ii L(Gy) i ‘j
€ & €3 e

Figure 3. AY exchange
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i Algorithms

= For comparison between a pair of
chemical graphs consisting of m and n
atoms respectively, the maximum number
of possible atom-by-atom comparison
necessary to determine all common
subgraphs consisting of k atoms is

mlnt
(m — k)i — k!
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i Classification
|

MCS
algorithm

approximate exact

unconnected connected unconnacted connected

Figure 4. MCS5 algonthm classification
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i Algorithms

= Exact Algorithm
=« Maximum clique-based algorithm
» Backtracking Algorithms
= Dynamic Programming

= Approximate Algorithm
= Genetic Algorithm
= Combinatorial Optimization
»« Fragment Storage
= Adhoc Procedures
= 3D specific Algorithm
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iMaximum cliqgue-based algorithm

= Cligue — subset of vertices in the graph such
that each pair of vertices in the subset is
connected by an edge in the graph G

= Maximum Clique — largest such subset
present in the graph

= MCIS problem is reduced to maximum clique
problem by constructing a compatibility graph
using adjacency properties of the graphs
being compared (ie, the MCIS factor graphs)
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iMaximum cliqgue-based algorithm

= The MCIS between graphs being
compared is equivalent to a maximum
cligue in the compatibility graph

= It is also the modular product graph in
mathematics
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i Modular Product

= Modular product of two graphs G, and G
defined on the vertex set V(Gl)x\}(Gz) w&h two

vertices (u;, v;) and (u;, v;) being adjacent
whenever

(i) € e(Gy)and (v;, v;) € E(Ga), or

(wjuj) & e(Gr)and (vi, v;) € E(G2).

u. an(csl u; are adjacent in G; and v; and v; are adjacent
in G,

OR
u; and u; are not adjacent in G1 and v; and v; are not

adJacént in G,
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‘_h Modular Product
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i Backtracking Algorithm

= By McGregor and Wong

= Attempt to reduce the number of
backtrack instances necessary by
inspecting the set of possible solutions
remaining at some point in the depth-first

search.

= Then determine whether it is necessary to
extend the current solution

= The set of possible solutions is evaluated
by enforcing a connectivity relation with
the currently detected solution
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i Dynamic Programming

= Calculate the connected MCES from a set
of factor graphs.

= Almost tree of bounded degree is a graph
G such that |E(B)| < [V(B)| + K holds for
every biconnected component B of G,
where K is a constant.

= Biconnected component — maximal edge
induced subgraph in a connected graph
such that the subgraph cannot be
disconnected by eliminating a vertex
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‘_h Dynamic Programming

Figure 6. Biconnected components
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i Algorithms

= Approximate Algorithm
= Genetic Algorithm
= Combinatorial Optimization
= Fragment Storage
=« Adhoc Procedures
= 3D specific Algorithm
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i Genetic Algorithm

= Survival of the fittest based on a fithess
function

= For chemical graphs, 1] Y\
F=N-V—(T,+T,-2) °

N = total number of bonds in the two structures that participate
in @ bond matching

V = how many bonds are involved in the situation where two
adjacent bonds in the other structure.

T,, T, = the number of unconnected subgraphs in the two
graphs, respectively

o[os]-|o
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i Combinatorial Optimization

= By Funabiki and Kitamichi

= 2DOM (2-stage Discrete Optimization
Method)

= Stage 1: Problem Construction Stage

=« Greedy matching between the graphs being
compared

= Stage 2: Refinement stage

= Uses a randomized, discrete descent method to
minimize an objective function consisting of the
number of unmatched edges in the factor graph
with the fewest edges
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i Fragment Storage

= Feasible only with database searching

= [he database to be searched is stored in a
multi-level tree where each bifurcation
point in the tree corresponds to particular
chemical substructure.

= Increasing a level in the tree to a lower
bifurcation point, corresponds to adding a
specific chemical substructure fragment to
the substructure represented by the
preceding bifurcation point.
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i Fragment Storage

= Using the multi-leveled database structure, it is
then possible to perform rapid similarity
searching of pre-processed databases.

= Using the query compound as a template, the
fragment tree is traversed until a bifurcation
point is reached where it is not possible to

continue.

= The substructure represented by this bifurcation

point corresponds to an a
MCES between the query
the database compounds
search tree.

pproximation of the
compound and all of

ocated lower in the
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i Ad hoc Procedures

= Graph Walking procedure
= Determine connected substructure

= Involves ‘growing’ a currently detected
subgraph by adding a vertex and all edges
incident between the current subgraph and
the newly selected vertex
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i Problem Reduction

= A graph is an abstract concept and the
vertices and edges do not necessarily
have to correlate directly with atoms,
bonds, and distance ranges in chemical
structure

= Simplified graph to represent nodes and

edges
a o
s O
; |
SAe
/
Figure 8 Chemically similar?
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i Problem Reduction

= Advantages:-

= 1. If the modified graph contains gewer
nodes and edges, it may significantly
increase the efficiency of MCS comparison

= 2. It may reflect a more desirable
understanding of the similarity between
the structures being compared
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i Problem Reduction

= Examples:

= Superatoms
= Vertices can be one of a predefined number of
ring system, functional groups or alkyl chains
= An edge exists if pair of superatoms are
adjacent in the molecular structure.

= Feature trees
= Chemical graph is reduced to tree graph (graph
without rings or cycles)
» Use split search and match search

12/3/2007 Data Mining: Foundation, Techniques and Applications
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i Screening Procedures

= If a user specifies a lower-bound for a
particular similarity comparison, then an
effective upper-bound estimate based on
the MCS concept can provide a means of
screening comparisons that cannot
potentially result in an MCS exceeding the
specified lower bound.

12/3/2007 Data Mining: Foundation, Techniques and Applications 31



i Screening Procedures

s Asymmetric similarity co-efficient, S,, =
No/N,
N. = number of bond pairs in common

between a query and database graph
N, = number of edges in the query structure

« If it is found prior to graph matching that
N. <5, - Ny after specifying @ minimum
acceptable value of S,,, then it is not
necessary to proceed to a rigorous graph
matching
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i Screening Procedures

= Two levels of screening
= Similarity coefficient,

G 12
|G| |Gy

bk —

|G,| and |G,| = number of vertices and
edges in graph G, and G,

G,, = upper bound estimate given for the
MCS between G, and G,
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i Kernel Function

= Inner product of two feature vectors

= This paper defines a kernel function between
graphs
= Previous methods:

= Decompose graph into substructures

= Feature vector is composed of the counts of these
substructures

= Limit dimensionality of vectors by setting threshold
on substructure length or frequency

=« Use methods from dynamic programming

12/3/2007 Data Mining: Foundation, Techniques and Applications
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i Kernel function

In this paper:
= Is defined on infinite dimensional path count
vectors

» Each label path is produced by random walks
on graph

= Is defined as the inner product of the count
vectors averaged over all possible label paths

Marginalized Kernels
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‘_L Marginalized Kernels

K(z.a') @&0 )<hw>p<Dw’.

= h and h’ are the hidden variables (sequence of vertex
indices) obtained by random walks on graph x and x’
respectively

= K, is a joint kernel between the sequences of vertex and
edge labels traversed in the random walk

s K (X, X') is the marginalized kernel/ between graph x and
X', defined as the expectation of K, over all possible
values of h and h’
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i Definition

= |G| = the number of vertices in graph G
s Let vi € 2, denote the label of vertex 7/

= Let ¢;; € ¥ denote the label of the edges
from /to j

= The task is to define K (G, G") between two
labeled graphs G and G’
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‘_L Random Walks on Graph, p(h|G)

= h=(hy, ..., hi) is a sequence of vertex
indices obtained by a random walk on graph

G
QO—Q-> - Q———Q@ > )
h1 h2 hi-1 ) hi he
p(h|G) = po(ha) | [ pe(hilhiz1)pg(Re)
=2

* pq (i) is the probability that the random walk
ends at vertex i

o1 G
Oi<©|c:3| Zp*(ji) +pgli) = 1.

J=1
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i Joint Kernel, K,

= When random walk is done as described in h,
the traversed labels are:

Uh1€h1hoUVhe€hohyVhg **°

= Joint kernel between two label paths z and z’

Z = Vi1 €h1h2 Vh2 €n2n3 Vhs -+ Vi
r __ /4 /4 /4 /4 4 14
Z = V1€ Vh2€hon3 Vs Vi

(0 (£# )
K. (Z, Z’r) = { K (/Ufu ) “U;l,:l) H-a’:Q K (ehi—lhi? e;;,;__lh,;) X KK (Ufl-w t"’};;)
(= 0)
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‘_h Marginalized Kernel, K(G,G")

= The expectation of K, over all possible (values
and length of) h and h’

G ZZLB (z,2")p(h|G)p(h'

)

=1 h |
= Plug in:
¢
p(h|G) = ps(hy) Hpt(h,..zv_\h..i_l)pq(h.g)
i=2
(0 (CF£1)
- ¢ -
K.(z,2') =4 K (1,?;11,_1;;11) [1—s K(en,_ h,- e;li._ﬂli)x
K (vn,, v} ) (= 0)
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‘_h Marginalized Kernel, K(G,G")

K(G,G")

|G| G|
Zh " Zhl 1 Zhgzl
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‘_h Marginalized Kernel, K(G,G")

ha,h4

L

K(G,G") = Lh_l}l;? y: s(hy, h}) x (5)
f,:l hl._hi

, :

(Z t(ho, hy, hy, hY) t(hs, hy, ho, hl) X

oy hoa, by Yg(he, hy)

he /

q(he, hy) :7/ Py (h,-g)]); (hy) 1)pe(hilhi_y) x

ry (hl:. hj_ ) (Uh; s (Uh,;_)[\ (€h; _1h;> eh;_lhg)

12/3/2007
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‘_h Marginalized Kernel, K (G, G")

K(G, —LIIIII Z Z (hy, h)re(hy, Y,

=1 hq, hl

Where
i, i) = qlh, hh)

= | D t(ha by ha BY) [ t(ha, bl ha, h)

ha.hf hs,h}

Z t(he, Ry hev, hy_y)q(he, hy)

!
he,hy,
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‘_h Recursive Relationships

re(hy, hY)

= | > t(ha, by ha By) [ Y t(ha, by, ho, )

ha, kb ha,hj

o Z t(hy, h,%?_ ho_1, h,-z_l)Q(h,g? h,.%)

!
he,h,

N (i b B (i)

1.7
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Marginalized Kernel, K(G,G")

12/3/2007

K(G,G" Llimxﬁ)”)} s(hi, hy)re(hy, BY),
11 11

L

= D s(hahy) lim y re(hy,hy)

L—oc

}11?}13 {7:]_

- Z s(hy,hy) lim Rp(hy, hy),

L— o
hi,h
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‘_h Marginalized Kernel Equilibrium

Ryr(hy,RY)

ri(hy, hy) +Zt (2,7, h1, h))Rr_1(i,7)
i.J

R (hy,h)) = ri(hy, hY) Z (4, J, ha, ) R (4, 7)

12/3/2007
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Marginalized Kernel
Linear Simultaneous Equation

Solve:
R (h1,h}) = ri(hy,hY) + Z t(i,j,hi,h])Ra(i,])
P
Substitute to:
K(G,G") = Z s(hy, hy) Lh_{]j; Ry (hy,hy)

!
hl‘_hl

|G||G’| x |G]|G’| coefficient matrix
Sparse Graph
Iterate till convergence

12/3/2007 Data Mining: Foundation, Techniques and Applications
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‘_h Marginalized Kernel

If the termination probabilities are constant (7)
over all vertices,

limy . Rp(hy,hY) converges if

K(v,v")K(e,e') <

12/3/2007 Data Mining: Foundation, Techniques and Applications

49



‘_h Experimental Results

= Compare with Pattern Discovery Algorithm

Table 2. Classification accuracies (%) of the pattern dis-
covery method. "MinSup’ shows the ratio of the minimum
support parameter to the number of compounds m/n.

MinSup MM FM MR FR  Mutrac

0.5% 60.1 57.6 61.3  66.7 88.3
1% 61.0 61.0 62.8 63.2 87.8 Table 3. Classification accuracies (%) of our graph kernel.
3 % 383 55.9 6(_]2 63~2 89-9 The parameter v is the termination probability of random
5 7%; 6(;)- ( rﬁf’ 57 3 63-0 862 walks, which controls the effect of the length of label paths.
10 % H8.9 H8.7 57.8 60.1 84.6
20% 61.0 553 56.1 61.3 83.5

~ MM  FM MR FR  MuTtac

0.1 62.2 593 57.0 621 84.3

0.2 622 61.0 5H7.0 624 83.5

0.3 64.0 61.3 56.7 62.1 85.1

0.4 64.3 61.9 5H6.1 63.0 85.1

0.5 64.0 61.3 5H6.1 644 83.5

0.6 _62.8 61.9 54.4 658 83.0

().7*@ 1 625 541 63.2 81.9

0.8 3.4 63.4 549 64.1 79.8

0.9 628 61.6 584 66.1 78.7

_g—

o)
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i Summary

= Using random walks to compute
marginalized kernel

= Takes into account all possible label paths
without computing feature values
explicitly

= Can be used for sequences, trees, DAGs

= Implicit parameter is required (the
termination probability of random walks)
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i Graph Pattern Mining

s Frequent subgraphs
= A (sub)graph is frequentif its support
(occurrence frequency) in a given dataset is
no less than a minimum support threshold

= Applications of graph pattern mining
= Mining biochemical structures
= Program control flow analysis
= Mining XML structures or Web communities
= Building blocks for graph classification,
clustering, compression, comparison, and
correlation analysis
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‘_h Example: Frequent Subgraphs

GRAPH DATASET

Y. %I TY%

FREQUENT PATTERNS
(MIN SUPPORT IS 2)

" @ d
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‘_EEXAMPLE (1)

GRAPH DATASET

1. makepat
2. e

3. addstr
4: getccl
5. dodash
6:in set 2
7. stclose

FREQUENT PATTERNS
(MIN SUPPORT IS 2)

1) 2
12/3/2007 Data Mining: Foundation, Techniques and Applications
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i Graph Mining Algorithms

= Incomplete beam search — Greedy
(Subdue)

= Inductive logic programming (WARMR)

= Graph theory-based approaches
= Apriori-based approach
« Pattern-growth approach

12/3/2007 Data Mining: Foundation, Techniques and Applications
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i SUBDUE (Holder et al. KDD94)

= Start with single vertices
= EXpand best substructures with a new edge

= Limit the number of best substructures
= Substructures are evaluated based on their
ability to compress input graphs
= Using minimum description length (DL)
= Best substructure Sin graph G minimizes:
DL(S) + DL(G\S)
= [erminate until no new substructure is
discovered
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iWARMR (Dehaspe et al. KDD98)

= Graphs are represented by Datalog facts
« gtomel(C, A1, c), bond (C Al, A2, BT),
atomel(C, A2, c) : a carbon atom bound to a
carbon atom with bond type BT

= WARMR: the first general purpose ILP
system

= Level-wise search

= Simulate Apriori for frequent pattern
discovery
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i Frequent Subgraph Mining Approaches

= Apriori-based approach
= AGM/AcGM: Inokuchi, et al. (PKDD’00)
« FSG: Kuramochi and Karypis (ICDM'01)
= PATH#: Vanetik and Gudes (ICDM'02, ICDM'04)
=« FFSM: Huan, et al. (ICDM'03)

= Pattern growth approach
= MoFa, Borgelt and Berthold (ICDM'02)
= gSpan: Yan and Han (ICDM'02)
= Gaston: Nijssen and Kok (KDD'04)
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i Properties of Graph Mining Algorithms

= Search order
« breadth vs. depth

= Generation of candidate subgraphs
= apriori vs. pattern growth

= Elimination of duplicate subgraphs
= passive vs. active

= Support calculation
= embedding store or not

= Discover order of patterns
=« path - tree - graph

12/3/2007 Data Mining: Foundation, Techniques and Applications 60



‘.h Apriori-Based Approach

(k+1)-edge

12/3/2007 Data Mining: Foundation, Techniques and Appl ications



‘_L Apriori-Based, Breadth-First Search
= Methodology: breadth-search, joining two graphs

ale@RESS

= AGM (Inokuchi, et al. PKDD'00)
= generates new graphs with one more node

Sy

= FSG (Kuramochi and Karypis ICDM'01)
= generates new graphs with one more edge
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i}ATH (Vanetik and Gudes ICDM'02, 04)

= Apriori-based approach

= Building blocks: edge-disjoint path

N e construct frequent paths

| e construct frequent graphs with
: 2 edge-disjoint paths
)

\

e construct graphs with k+1
edge-disjoint paths from
graphs with k edge-disjoint

A graph with 3 edge-disjoint paths
paths e repeat
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i':FSIVI (Huan, et al. ICDM'03)

2

Y

2

Y

1

bt

1

bt

21

T "

1

Z

1

Z

T11]Z

= Represent graphs using canonica

(CAM)

adjacency matrix

= Join two CAMs or extend a CAM to generate a new

graph

= Store the embeddings of CAMs

= All of the embeddings of a pattern in the

database

=« Can derive the embeddings of newly generated
CAMs

12/3/2007
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‘_h Pattern Growth Method

(k+2)-edge

(k+1)-edge 8 .

/@ o |
k—edge/@ duplicate

graph
\ 0
O
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i MoFa (Borgelt and Berthold ICDM’02)

= Extend graphs by adding a new edge

= Store embeddings of discovered frequent
graphs
» Fast support calculation

= Also used in other later developed algorithms
such as FFSM and GASTON

= EXpensive Memory usage
= Local structural pruning
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‘_h GSPAN (Yan and Han ICDM'02)

Right-Most Extension

O O
O O
Q/ O Q/ O

Theorem: Completeness

4 N

The Enumeration of Graphs
using Right-most Extension Is

COMPLETE
- J
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i DFS Code

= Flatten a graph into a sequence using

depth first search
el

el

e2
e3

e4
eb

12/3/2007 Data Mining: Foundation, Techniques and Applications
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: (3,1)
1 (2,4)
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‘_L DFS Lexicographic Order

= Let Z be the set of DFS codes of all graphs.
Two DFS codes a and b have the relation
a<=Db (DFS Lexicographic Order in Z) if and
only if one of the following conditions is true.

Llet a = (XOI Xiy «eny Xn) and b = (YOI Yir - Yn)l

(i) if there exists t, 0<=t <= min(m,n),
x, =Y, for all k, s.t. k<t, and x, <y

(i) x.=y,forall k, s.t. 0<=k<=m and
m <= n.

12/3/2007 Data Mining: Foundation, Techniques and Applications
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‘_h DFS Code Extension

= Let a be the minimum DFS code of a graph G
and b be a non-minimum DFS code of G.
For any DFS code d generated from b by one
right-most extension,

(i) dis not a minimum DFS code,
(i) min_dfs(d) cannot be extended from b, and

(iii) min_dfs(d) is either less than a or can be
extended from a.

4 )
THEOREM [ RIGHT-EXTENSION ]

The DFS code of a graph extended from a

\Non—minimum DFS code i1s NOT MINII\/IUI\/IJ
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i GASTON (Nijssen and Kok KDD’04)

= Extend graphs directly
= Store embeddings

= Separate the discovery of different types
of graphs
« path - tree - graph

= Simple structures are easier to mine and
duplication detection is much simpler
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i Graph Pattern Explosion Problem

= If a gra
are frec

dh is frequent, all of its subgraphs
uent — the Apriori property

= An n-edge frequent graph may have 2"
subgraphs

= Among

422 chemical compounds which

are confirmed to be active in an AIDS
antiviral screen dataset, there are
1,000,000 frequent graph patterns if the
minimum support is 5%

12/3/2007
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i Closed Frequent Graphs

= Motivation:Handling graph pattern explosion
problem

= Closed frequent graph
= A frequent graph G is closed if there exists no

supergraph of G that carries the same support as
G

= If some of G's subgraphs have the same
support, it is unnecessary to output these
subgraphs (nonclosed graphs)

n Lossless compression. still ensures that the
mining result is complete
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i CLOSEGRAPH (Yan & Han, KDD'03)

A Pattern-Growth Approach

(k+1)-edge ~N
At what condition, can we
stop searching their children

I.e., early termination?
\_ J

If G and G’ are frequent, G is a
subgraph of G'. If in any part
of the graph in the dataset
where G occurs, G’ also
occurs, then we need not grow
G, since none of G’s children will
be closed except those of G'.
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‘.h Handling Tricky Exception Cases

o2ele
(pattern 1)

(pattern 2)

12/3/2007 Data Mining: Foundation, Techniques and Applications
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i Do the Odds Beat the Curse of Complexity?

= Potentially exponential number of frequent patterns
= The worst case complexty vs. the expected probability
= EX.: Suppose Walmart has 10% kinds of products
= The chance to pick up one product 104
= The chance to pick up a particular set of 10 products:
10-40
= What is the chance this particular set of 10 products to
be frequent 103 times in 10° transactions?

= Have we solved the NP-hard problem of subgraph

isomorphism testing?

= No. But the real graphs in bio/chemistry is not so bad

= A carbon has only 4 bounds and most proteins in a
network have distinct labels
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‘_h Constrained Patterns

= Density

= Diameter

= Connectivity
= Degree

= Min, Max, Avg

12/3/2007 Data Mining: Foundation, Techniques and Applications
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i Constraint-Based Graph Pattern Mining

= Highly connected subgraphs in a large
graph usually are not artifacts (group,
functionality)

O D

= Recurrent patterns discovered in multiple
graphs are more robust than the patterns
mined from a single graph
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‘_h No Downward Closure Property

/Given two graphs Gand G, if Gis a
subgraph of G’, it does not imply that the

Q/ice versa.

~

connectivity of G is less than that of G’, and

J

>

G G

12/3/2007 Data Mining: Foundation, Techniques and Applications
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‘_h Minimum Degree Constraint

7I_et G be a frequent graph and X be the set

of edges which can be added to G such that
G U e (e € X) is connected and frequent.
Graph G U X is the maximal graph that can be

\Extended (one step) from the vertices belong to G/

~

12/3/2007 Data Mining: Foundation, Techniques and Applications
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i Pattern-Growth Approach

= Find a small frequent candidate graph
= Remove vertices (shadow graph) whose
degree is less than the connectivity
= Decompose it to extract the subgraphs
satisfying the connectivity constraint
= Stop decomposing when the subgraph has
been checked before

= Extend this candidate graph by adding
new vertices and edges
= Repeat
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‘.L Pattern-Reduction Approach

= Decompose the relational graphs (note:

no repeat nodes) according to the
connectivity constraint

SRR

12/3/2007 Data Mining: Foundation, Techniques and Applications
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‘.iattern-Reduction Approach (cont.)

= Intersect them and decompose the
resulting subgraphs

final result

12/3/2007 Data Mining: Foundation, Techniques and Applications
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i Outline

= Introduction

= Foundation
« Graph Similarity Function
« Graph Kernels
= Technique
=« Graph Pattern Mining
= Applications
= Graph Indexing
« Graph Summarization for Keyword Search
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i Graph Search

12/3/2007

this query

N R

N N

~_

guery graph

= Querying graph databases:

= Given a graph ¢
graph, find all t

NN

atabase and a query
ne graphs containing

i -

—

N \<
NP
N
o

Oy,
N—

Y

N
W N

T/OW/\W ”O\C\[/

le
e

0

==
%

__—

graph database
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i Scalability Issue

= Sequential scan
= Disk I/Os
= Subgraph isomorphism testing

= An indexing mechanism is needed

« DayLight: Daylight.com (commercial)
» GraphGrep: Dennis Shasha, et al. PODS'02
= Grace: Srinath Srinivasa, et al. ICDE'03

12/3/2007 Data Mining: Foundation, Techniques and Applications
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‘.h Indexing Strategy

Query graph (Q) Graph (G)

bl

W ./I\' e
Substructure

Remarks

If graph G contains query
graph Q, G should contain

any substructure of Q
N

~

/

= Index substructures of a query graph
to prune graphs that do not contain
these substructures
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‘_hndexing Framework

w¥lnan CTrriicriLirac aNna aranncg
QAAV\IEE®IYACAVIYYIAY ™ E®IE\" \—MAH 1)
/Step 2. Query Processing

12/3/2007

’§te| pi if. Tntggxs Eo‘ I:FSI’EI‘:U:C%SIOSHH g graphrqueries

=« Enumerate structures in the graph
database, build an inverted index

J

-

=« Enumerate structures in the query
graph

= Calculate the candidate graphs
containing these structures

Data.Mining: Foundation, Tegchniques and Applications
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performing subgraph 1somorphism test
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i Cost Analysis

QUERY RESPONSE TIME

T

Isomorphis m _ testing )

+‘Cq‘x(Tio +T

index

fetch iIndex number of candidates

REMARK: make |C/| as small as possible
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‘_h Path-based Approach

GRAPH DATABASE

Ty o< OV
(a) (b) (c)

PATHS

O-length: C, O, N, S

1-length: C-C, C-0O, C-N, C-S, N-N, S-O
2-length: C-C-C, C-O-C, C-N-C, ...
3-length: ...

Built an inverted index between paths and graphs
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‘_hath-based Approach (cont.)

QUERY GRAPH

B

N N

~_

0-edge: S-={a, b, c}, Sy={a, b, c}
1-edge: S-.-={a, b, c}, Scy={a, b, ¢}
2-edge: S\ = {a, b}, ...

N

Intersect these sets, we obtain the candidate
answers - graph (a) and graph (b) - which may
contain this query graph.

J

12/3/2007
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i Problems: Path-based Approach

GRAPH DATABASE

C C C C IS_C\C_G TMG\C_C CHT
. e \ O
(a) (b) (c)

QUERY GRAPH

graph. However, if we only index
paths: C, C-C, C-C-C, C-C-C-C, we
cannot prune graph (a) and (b).

c\ /G Only graph (c) contains this query
G0
C C

12/3/2007 Data Mining: Foundation, Techniques and Applications
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glndex: Indexing Graphs by Data
Mining

= Our methodology on graph index:

» Identify frequent structures in the
database, the frequent structures are
subgraphs that appear quite often in the
graph database

= Prune redundant frequent structures to
maintain a small set of discriminative
structures

ugoCreate arvemyeroedion Tameelween %3



iIDEAS: Indexing with Two Constraints

‘ discriminative (~1o3)I

frequent (-10v)

structure (=10°9)
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i Why Discriminative Subgraphs?

Sample database

B —/< e S, N

Ne NL o B / N / O Q 7/

vy O @ff?!o
(a) (b) (c)

= All graphs contain structures: C, C-C, C-C-C
= Why bother indexing these redundant

frequent structures?

= Only index structures that provide more
information than existing structures
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i Discriminative Structures

= Pinpoint the most useful frequent structures
= Given a set of structures f,,f,,...f, and a new
structure X, we measure the extra indexing
power provided by X,

P(x\ f,f,,... ) fcx

When P is small enough, X is a discriminative
structure and should be included in the index
= Index discriminative frequent structures only
= Reduce the index size by an order of magnitude
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i Why Frequent Structures?

= We cannot index (or even search) all of
substructures

= Large structures will likely be indexed well
by their substructures

= Size-increasing support threshold

A

minimum
support threshold

_

size
12/3/2007 Data Mining: Foundation, Techniques and Applications 97
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i Graph Mining
= Methods for Mining Frequent Subgraphs

= Mining Variant and Constrained

Substructure Patterns
= Applications:
= Classification and Clustering
= Graph Indexing
—

= Similarity Search
= Summary

12/3/2007 Data Mining: Foundation, Techniques and Applications
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i Structure Similarity Search

« CHEMICAL COMPOUNDS

! —
CUX | [0 r
I 1

(a) caffeine (b) diurobromine (c) viagra

M
* QUERY GRAPH <V

12/3/2007 Data Mining: Foundation, Techniques and Applications
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iSome “Straightforward” Methods

= Method1l: Directly compute the similarity
between the graphs in the DB and th@ qu
graph yT/
= Sequential scan
= Subgraph similarity computation o
= Method 2: Form a set of subgraph queries from
the original query graph and use the exact
subgraph search
= Costly: If we allow 3 edges to be missed in a
20-edge query graph, it may generate 1,140
subgraphs
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‘_hubstructure Similarity Measure

= Query relaxation measure
= The number of edges that can be relabeled or

missed; but the position of these edges-are not
fixed v
QUERY GRAPH {]i“/(
(1T 7
~ 01
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i Substructure Similarity Measure

= Feature-based similarity measure

= Each graph is represented as a feature
vector X = {Xy, Xy, ..., X}

= Similarity is defined by the distance of
their corresponding vectors

= Advantages
= Easy to index
= Fast
= Rough measure
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i Intuition: Feature-Based Similarity Search

Graph (G,)

/> Given a relaxation ratio,
— calculate the maximal

|
Stibstructure number of features that

can be missed !

At least one of them

{should be contained J \_

~

Graph (G,) /> If graph G contains A
: the major part of a query
— j:) graph Q, G should share
| a number of common
| features with Q
! /

12/3/2007

Data Mining: Foundation, Techniques and Applications

103



i Feature-Graph Matrix

graphs in database

G, |G, |G; |G, |G,
s If 10 1 0o |1 |1
- |0 1 |0 |0 |1
2 |fp (1 o 1 |1 |1
& [f,_ 11 o o o |1

f. [0 0 1 J1 10
< X X

Assume a query graph has 5 features and at
most 2 features to miss due to the
12/3'2@I’a X atlon thlaé'g‘nh:mdjation, Techniques and Applications 104



idge Relaxation—Feature Misses

= If we allow k edges to be relaxed, Jis
the maximum number of features to be
hit by k edges—it becomes the
maximum coverage problem

1 k
= NP-complete I grecy 2[1—(17j j'J
= A greedy algorithm exists

= We design a heuristic to refine the
1232000 pounch-efi-feature BrisSSes Arrlications 105



‘.h Query Processing Framework

= [hree steps in processing approximate
graph queries

(. N

Step 1. Index Construction

= Select small structures as
features in a graph database, and
build the feature-graph matrix

\__between the features and the
graphs in the database

12/3/2007 Data Mining: Foundation, Techniques and Applications 106



‘.h Framework (cont.)

12/3/2007

éep 2. Feature Miss Estimation

= Determine the indexed features
belonging to the query graph

= Calculate the upper bound of the
number of features that can be
missed for an approximate

data IBaQa%ﬁ\ing: Foundation, Techniques and Applications

~

| matching, denoted by J )
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‘.h Framework (cont.)

Step 3. Query Processing

= Use the feature-graph matrix to
calculate the difference in the
number of features between
graph G and query Q, Fg— Fg

= If Fg— Fy > J, discard G. The

K remaining graphs constitute a

~

/

12/3/2007 Ca nd Id @t@.@ﬁ&\%@ﬁ TSC@\Eues and Applications
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i Outline

= Introduction

= Foundation
« Graph Similarity Function
« Graph Kernels
= Technique
=« Graph Pattern Mining
= Applications
= Graph Indexing
« Graph Summarization for Keyword Search
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i Motivation

= Keyword search is pervasive

=« For webpages, textual documents, ...
= For relational DBs, XMLs

= Data sources are pervasive
= Millions of Deep Web databases
= GoogleBase, Flickr, ...

= Need to support keyword search over
distributed DBs

= Source Selection
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i Background 1:
Keyword search over relational DBs

= The results are trees of joined tuples that
contain all the query keywords

= Graph search problem

= The search/result space is huge
= Need good ranking method
= Top-K processing

= EXisting proposals
= DISCOVER, BANKS, DBXplorer, ...
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Example — Kkeyword search In
relational DB

Papers Journals
o jid
pld | title year | jld J name
: 1 Computer Aided
1 Almost rotation- 2004 |1 Geometric Design
minimizing rational
parametrization of canal 2 Advanced Database
surfaces
2 Computing frames alonga | 1989 | 1 Authors
trajectory ald | name
3 A Temporal Query 1993 |2 Author of )
Language For A = 1 Hyeong In Choi
Conceptual Model pld | ald 2 Song-Hwa Kwon
A A 1 1
1 . 5 3 Nam-Sook Wee
Cifations 4 H. Guggenheimer
pldl | p1d2 1 |3 .
5 Elmasri
1 5 2 4
3 c 6 Kouramajian
3 6
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i DISCOVER [vipB 2002, viDB 2003]

= EXploits schema
=« Use FK (foreign key) references between tables

= Search steps

= Find all (TSs), subsets of tuples of native
tables containing keywords
= Find (Candidate Networks)
= Join expressions connecting TSs and native tables
= Generate potential results
= Discovered based on schema
= Evaluate CNs
= Top-K processing
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i DISCOVER (vios 2002, vi0B 2003]

= Ranking
= Scoreofaresult 7=(¢, &, ..., £)

score(T) = 3 ' score(t) | siz&(T)

= Scores of individual tuples are based on
DBMS'’s IR search

score(t) = 2, _,score(a, t)
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i BANKS (1coe 2002, vi08 2005,

= Model the database as a graph
= Nodes are tuples, edges are references

= Find top-A"minimal Steiner trees
= Leaves are nodes containing query keywords

= Search heuristics
= Backward search
= Bidirectional search

= Ranking
= Combination of node weights and edge weights

12/3/2007 Data Mining: Foundation, Techniques and Applications
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i Background?2: Distributed Search Over
Community Databases

summaries
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Compare to Present Integrated
Approach

= Just-In-Time: No pre-integration needed at
a central server

= Advantages= Whatever advantages that
distributed approach have over centralized
approach
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i Build summaries for text documents

= List keywords and their frequency statistics
»« Eg. #documents containing a keyword
= GLOSS
= May also include some inter-collection statistics

= Eg. ICF (Inverse Collection Frequency), #sources
containing a keyword

= CORI

= Inadequate for structured database

= Cannot capture semantics hidden behind the
structure
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Example — keyword list summary
over RDB

DB1
Inproceedings Conferences
id | inprocID | title proclD | year | month | annote id | procID | Conference
t, | Adibal986 | Historical Multimedia | 23 1988 | Aug | temporal Jts |23 the Conference on Very Large
Databases Databases (VLDB)
t, | Abarbanel | Connections Perspective | 18 1987 | May | Intellicorp Jt, |18 ACM SIGMOD Conf. on the
1987 and Reformation Management of Data

Keyword list summary:

DBlMultimedia

database

VLDB
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Example — keyword list summary

over RDB

citkeywd _____
DB2 id | citkey | keywdld | - keywords
titles t, |Meyo3a |2 id | word keywdld
id | title citKey 4 ty Mey93a |7 \ t, binder 2
t, | A Multimedia Component Kit Mey93a t |Burlgda |302 t,, | olit 7
t, | Managing Distributed Databases | Burl94a t | Liugzb |2 t,, | databases |302
8
t, | Activity Model: A Declarative Liu92b t | Acke94a |2
Approach for Capturing - .
Communication Behaviour in booktitle
Object-Oriented Database CitBKTitle id | bkTitleNm bkTitleld
t, | Direct Manipulation of Temporal | Acke94a . , : t,c | Proceedings ACM | 306
Structures in a Multimedia d_| citkey ma“mm’// Multimedia '93
Application Framework i | Mey93a | 306 t,; | Proceedings of the | 279
t, | Liug2b | 279 —1 " | 18th VLDB
Conference

12/3

Keyword list summary:

DB2
multimedia 3
database 3
VLDB 1

\_/_’

Data Mining: Foundation, Techniques and Applications
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Example — DB selection with keyword list

summary
Keyword list
summary of DB1
DB1
Multimedia 1
database 2
VLDB 1

12/3/2007

\_/_’

Keyword list
summary of DB2
DB2
Multimedia 3
database 3
VLDB 1

\_/_’

Choose DBZ over DB1

Data Mining: Foundation, Techniques and Applications
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Example — keyword-based selection
of relational DBs

DB1
Inproceedings Conferences
id | inprocID | title proclD | year | month | annote id | procID | Conference
t, | Adibal986 | Historical Multimedia | 23 1988 | Aug | temporal t; |23 the Conference on Very Large
Databases Databases (VLDB)
t, | Abarbanel | Connections Perspective | 18 1987 | May | Intellicorp t, |18 ACM SIGMOD Conf. on the
1987 and Reformation Management of Data
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Example — keyword-based
selection of relational DBs

DB2
citKeywd
_ id [ citkey | keywdid | keywords
tl_tles_ _ t. | Mey93a |2 Ny id |word keywdld
id | title citKey t, |Mey93a |7 t,, | binder 2
t, | A Multimedia Component Kit Mey93a t, |Burloda | 302 t,, | olit 7
t, | Managing Distributed Databases | Burl94a t, | Liug2b |2 t,, | databases | 302
t, | Activity Model: A Declarative Liu92b t | Acke94a |2
Approach for Capturing 2 .
Communication Behaviour in booktitle
Object-Oriented Database CitBkTitle id | bkTitleNm bkTitleld
t, | Direct Manipulation of Temporal | Acke94a ; - - t,c | Proceedings ACM | 306
Structures in a Multimedia \ id | citkey | bkTitleld / Multimedia '93
Application Framework L | Mey93a | 306 t,; | Proceedings of the | 279
t,, |Liu92b |279 —1 | 18th VLDB
Conference

12/3/2007
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Summarizing Keyword
Relationship for RDB

= Capture relationship between pairs of
keywords

= Based on connections of tuples

= [wo factors

= Distance d

= Length of joining sequence to include two
keywords

= Frequency « k; k;)

= #combinations of joining sequences at distance ¢
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Example — distance and

frequency of joining sequences

citkeywd
_ id | citkey | keywdld |  keywords
titles t, |Mey93a |2 id | word keywdld
id | title citKey ;t t, | Mey93a |7 A t, | binder 2
t; | A Multimedia Component Kit Mey93a t. | Burloda | 302 t,, | olit 7
7
t, | Managing Distributed Databases | Burl94a t | Liug2b |2 t,, | databases |302
8
t, | Activity Model: A Declarative Liu92b t | Acke94a | 2
Approach for Capturing . i
Communication Behaviour in booktitle
Object-Oriented Database CitBKTitle id | bkTitleNm bkTitleld
t, | Direct Manipulation of Temporal | Acke94a . . . t,s | Proceedings ACM | 306
Structures in a Multimedia \ id_| citkey | bkTitleld Multimedia '93
Application Framework tj, | Mey93a | 306 t,; | Proceedings of the | 279
t, | Liug2b | 279 —1 | 18th VLDB
Conference

12/3/2007

d=4,freg=1
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‘.L KRM: Keyword Relationship Matrix

= Models the relationship between every pair of
keywords in a DB

= R(/ j) measure the goodness of top-K'results given
any two keywords £;and k;

S0 walks k) < K

when s P T
Rli,j] = rij = Y pa *walki, k;)
d=0
otherwise
§'—1 s —1
Rli,j] = rij = Y paxwalki, ky)+os (K= wal(ks, kj))
d=0 d=0
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‘.h Computation of KRM

= Model the content and structure of DB

t1 to - dn

i 1L 0 -+ 0
D= (d'i-j)?’n)(n =4 & U b ! ¢
K 100 0
( tl 7L2 'f-pz, )

ti 0 1 1
T = (tij)an = 4 b2 I . . 0
th 1 0 0 |
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i Computation of KRM (cnt.)

= d-distance tuple relationship matrix 7,

=« Records whether there is shortest path with @ hops
between two tuples (1 or 0)

n [ = 7-]
= /,can be derived inductively

Tas1]i, j] = 0 if T[i, 4] =1,
d+1 )j 1 ’Zf Td* [’L,j] = 0 and Hr(lfrgn)aTd[’iaT]*Tl[Ta j]:]'

d
1) = \/ Tk
k=1
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‘.h Computation of KRM (cnt.)

= Derive @ ,(k, k)from Dand 7,
Wo =D x D
wolki, ki) = Woli, jl
W, =D x Ty x D'

wa(ki, kj) = Wali, j

= KR-summary
= List of keyword pairs & relationship scores
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Example — keyword relationship

summary

DB1
Inproceedings Conferences
id | inprocID | title proclD | year | month | annote id | procID | Conference
t, | Adibal986 | Historical Multimedia | 23 1988 | Aug | temporal Jts |23 the Conference on Very Large
Databases Databases (VLDB)
t, | Abarbanel | Connections Perspective | 18 1987 | May | Intellicorp Jt, |18 ACM SIGMOD Conf. on the
1987 and Reformation Management of Data

Frequencies of keyword pairs at difference distances

Keyword pair d=0 (d=1 |d=2 | d=3 | d=4
database:multimedia 1 1 - - -
multimedia:VLDB 0 1 - - ,
database:VLDB 1 1 - - ,

12/3/2007

Keyword pair
database:multimedia
multimedia:VLDB
database:VLDB

dabers 15

Data Mining: Foundation, Techniques and Applications
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0.5
1.5

130



Example — keyword relationship
summary

DB2
citKeywd
: id | citkey | keywdid |  keywords
fitles t. | Mey93a |2 id | word keywdld

id | title citKey t, |Meyo3a |7 t,, | binder 2
t; | A Multimedia Component Kit Mey93a

t, | Burl94a | 302 t;; | olit 7
t, | Managing Distributed Databases | Burl94a t, | Liug2b > t,, | databases |302
t; | Activity Model: A Declarative Liu92b t, | Acke94a |2
)

Approach for Capturing
Communication Behaviour in
Object-Oriented Database

t, | Direct Manipulation of Temporal | Acke94a
Structures in a Multimedia
Application Framework

booktitle
CitBKTitle id | bkTitleNm bkTitleld

: : . t,c | Proceedings ACM | 306
id |citkey | bkTitleld / Multimedia ‘93
Mey93a | 306

|

t,; | Proceedings of the | 279
18th VL.DB

t, |Liug2b |279

Keyword pair score
Frequencies of keyword pairs at difference distances database:multimedia 0.4
Keyword pair d=0 |d=1 |d=2 [{d=3 |d=4 multimedia:VLDB 0
database:multimedia 0 0 0 0 2 database:VLDB 0.33
multimedia:VLDB 0 0 0 0 0
database:VLDB 0 0 1 0 0
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‘.h DB Selection with KR-summary

= Estimate relationship of multiple keywords from
every keyword pair’s score, rel Q, DB)
« If any pair’s score is 0, reQ, DB) = 0
= Four estimations

réelmin(Q, DB) = min rel(k:, k;
(@ ) {kik;}CQ.i<g ( 2

relmaz(Q, DB) = max rel(k;, k;
(Q ) {kik;}CQ,1<] ( j)

Telsu"rn(Qg DB) — Z 7‘61(/@3',, kj)

Telp‘r‘od(Q: DB) j— H 7‘€l(k,i, kj)
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Example — DB selection with KR-

summary

Summary of DB1

Summary of DB2

Keyword pair score
database:multimedia 1.5
multimedia:VLDB 0.5
database:VLDB 1.5
\/,

Keyword pair score
database:multimedia 0.4
multimedia:VLDB 0
database:VLDB 0.33

dabens 03

Choose DB1 over DB2
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‘.h Indexing KR-Summaries

s Global index
= Inverted lists

= Decentralized index — P2P
= DHT, ..
= Each peer store a subset of inverted lists
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i Summary

= Propose to tackle the problem of
structured data source selection based on
keywords

= Introduce a novel summary technique for
relational DB

= Propose methods for selection of
relational DBs given keyword queries

= Can more sophisticated data mining
method do better?
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