Data Mining: Foundation, Techniques and Applications

Lesson 1b : A Quick Overview of Data Mining

School of Computing

Li Cuiping(李翠平) School of Information Renmin University of China Anthony Tung(鄧锦浩) School of Computing National University of Singapore

Why a quick overview ?

- Have a look at the general techniques before looking at the foundation.
 - Machine Learning & Statistics
 - Indexing
 - Pre-Computation
- Easier to explain and see how these foundation support the various techniques

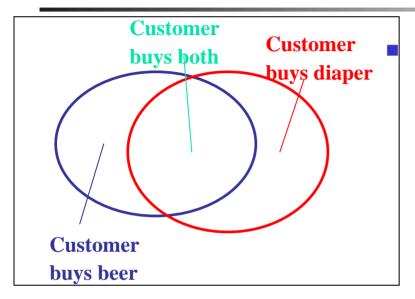
Outline

- Association Rules
 - The Apriori Algorithm
- Clustering
 - Partitioning
 - Density Based
- Classification
 - Decision Trees
- A General Framework for DM

Association Rule: Basic Concepts

- Given: (1) database of transactions, (2) each transaction is a list of items (purchased by a customer in a visit)
- Find: <u>all</u> rules that correlate the presence of one set of items with that of another set of items
 - E.g., 98% of people who purchase tires and auto accessories also get automotive services done
- Applications
 - *** ⇒ Maintenance Agreement (What the store should do to boost Maintenance Agreement sales)
 - Home Electronics ⇒ * (What other products should the store stocks up?)
 - Attached mailing in direct marketing

Rule Measures: Support and Confidence



Find all the rules $X \And Y \Rightarrow Z$ with minimum confidence and support

- support, s, probability that a transaction contains {X ^ Y ^ Z}
- confidence, *c*, conditional probability that a transaction having {X ^ Y} also contains *Z*

Transaction ID	Items Bought
2000	A,B,C
1000	A,C
4000	A,D
5000	B,E,F

Let minimum support 50%, and minimum confidence 50%, we have $A \Rightarrow C$ (50%, 66.6%) $C \Rightarrow A$ (50%, 100%)

Mining Frequent Itemsets: the Key Step

- Find the *frequent itemsets*: the sets of items that have minimum support
 - A subset of a frequent itemset must also be a frequent itemset
 - i.e., if {a b} is a frequent itemset, both {a} and {b} should be a frequent itemset
 - Iteratively find frequent itemsets with cardinality from 1 to k (k-itemset)
- Use the frequent itemsets to generate association rules.

The Apriori Algorithm

- Join Step: C_k is generated by joining L_{k-1}with itself
- Prune Step: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset

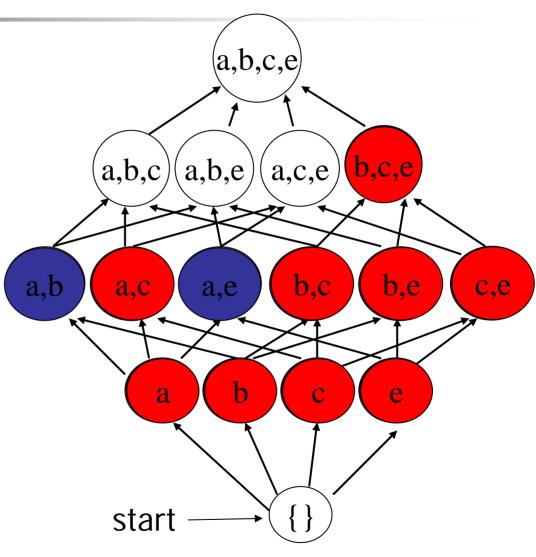
Pseudo-code:

- C_k : Candidate itemset of size k
- L_k : frequent itemset of size k

 $L_{1} = \{ \text{frequent items} \}; \\ \text{for } (k = 1; L_{k} \mid = \emptyset; k++) \text{ do begin} \\ C_{k+1} = \text{candidates generated from } L_{k}; \\ \text{for each transaction } t \text{ in database do} \\ \text{increment the count of all candidates in } C_{k+1} \text{ that are contained in } t \\ L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support} \\ \text{end} \\ \text{return } \cup_{k} L_{k}; \end{cases}$

The Apriori Algorithm

- Bottom-up, breadth first search
- Only read is perform on the databases
- Store candidates in memory to simulate the lattice search
- Iteratively follow the two steps:
 - generate candidates
 - count and get actual frequent items

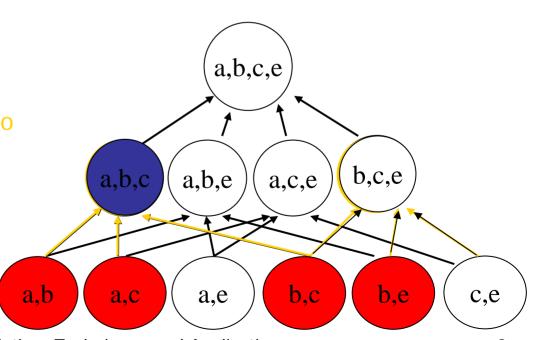


Candidate Generation and Pruning

- Suppose all frequent (k-1) items are in L_{k-1}
- Step 1: Self-joining L_{k-1} insert into C_k select $p.i_1, p.i_2, ..., p.i_{k-1}, q.i_{k-1}$ from $L_{k-1}p, L_{k-1}q$ where $p.i_1 = q.i_1, ..., p.i_{k-2} = q.i_{k-2}$, $p.i_{k-1} < q.i_{k-1}$

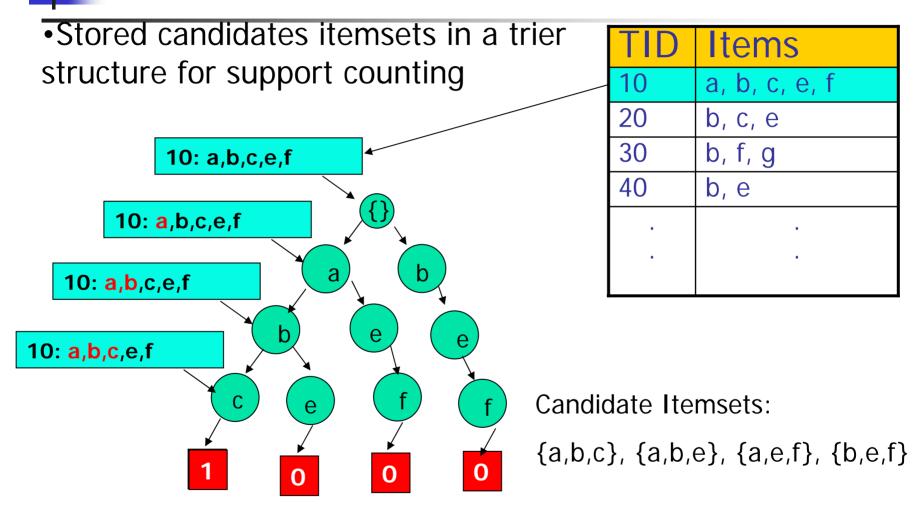
Step 2: pruning

forall *itemsets c in C_k* do forall *(k-1)-subsets s of c* do if *(s is not in L_{k-1})* then delete *c* from C_k

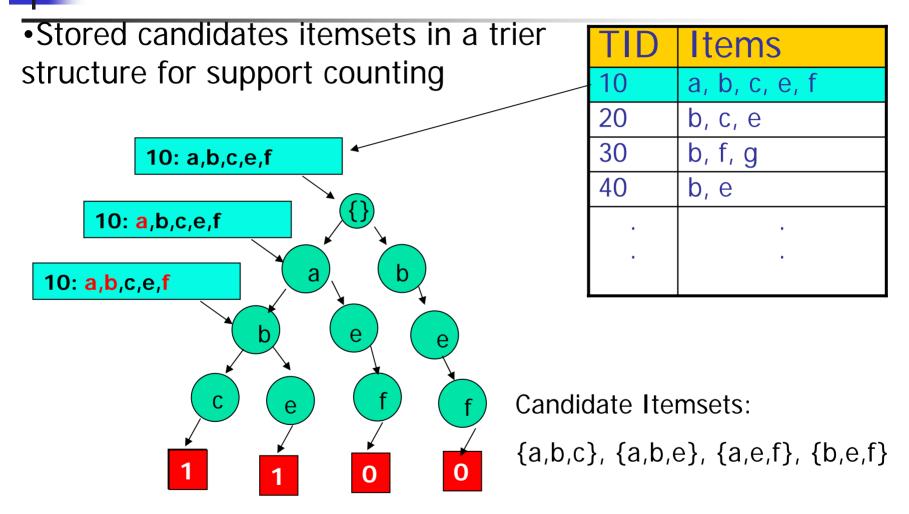


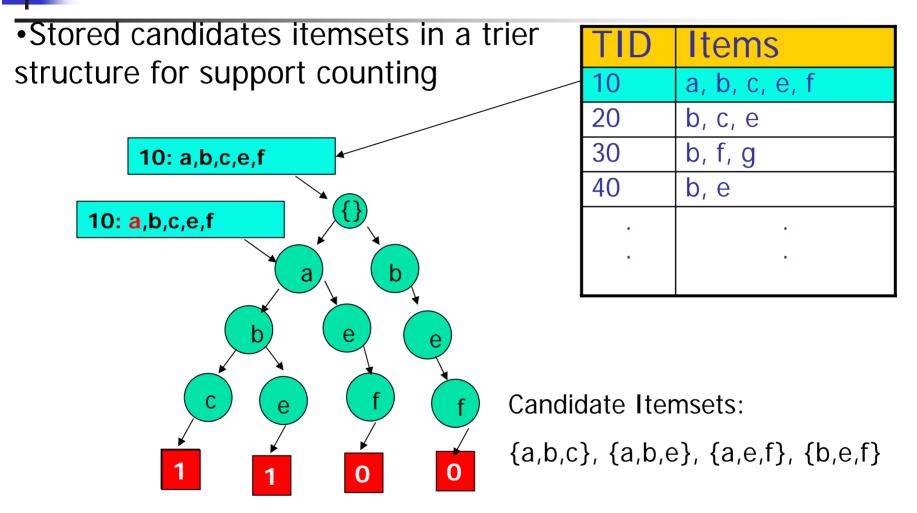
Candidate Generation and Pruning(another example)

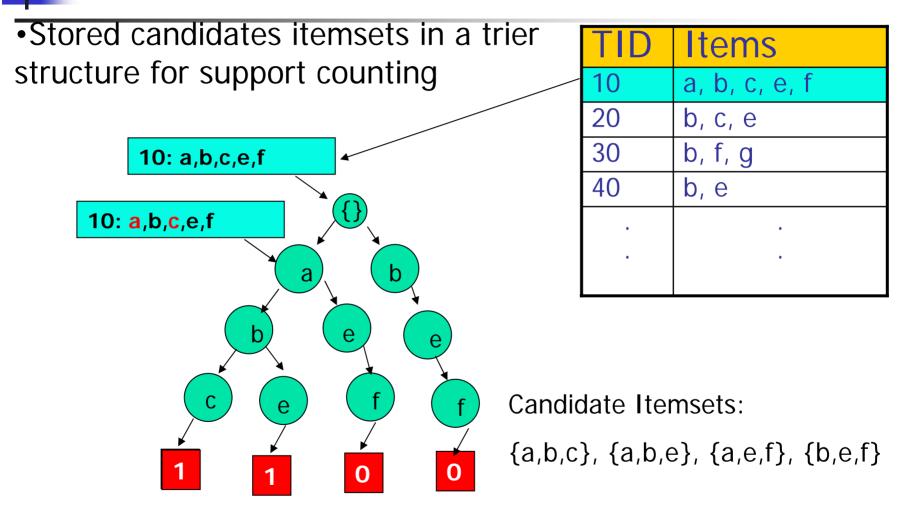


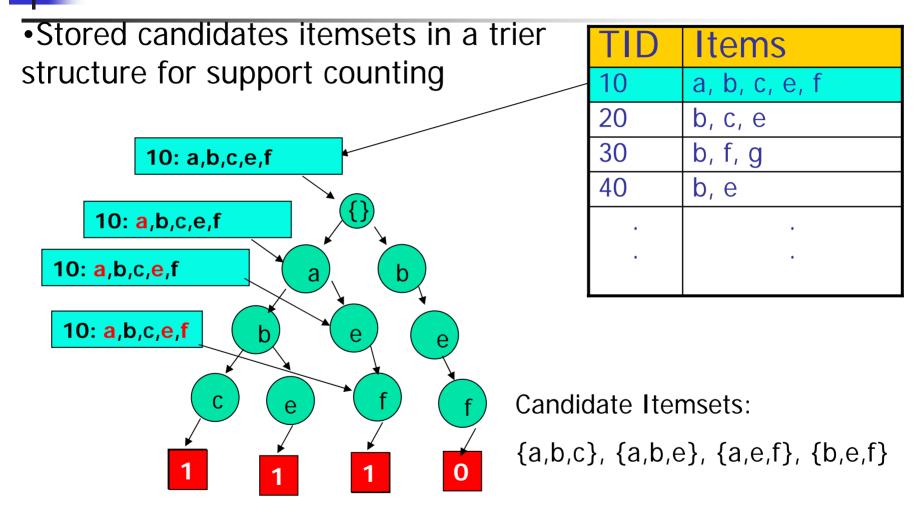










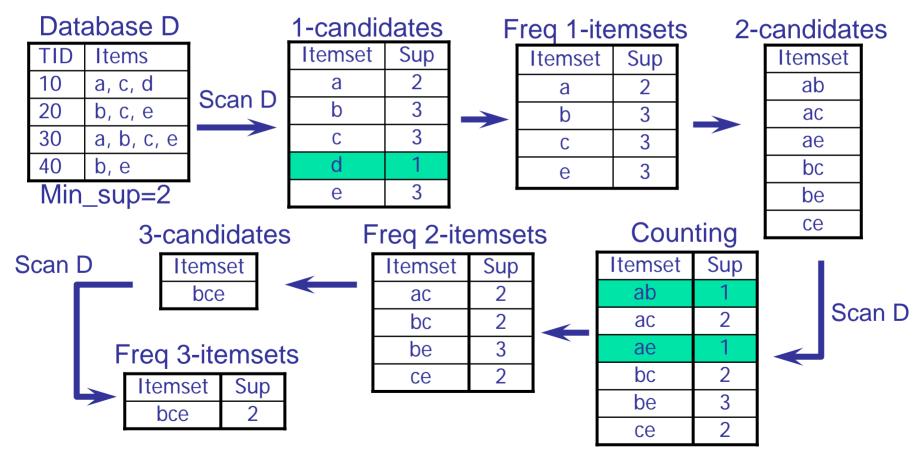


Rules Generation

- Since the support of all the frequent itemsets are known, it is possible to derive all rules that satisfied the MINCONF threshold by making use of the support computed.
- Eg. If supp({a,b,c,d})=20 and supp({a,b})=50 then confidence for the rule {a,b=>c,d} is 20/50 = 40%.

Apriori Algorithm

 A level-wise, candidate-generation-and-test approach (Agrawal & Srikant 1994)



Outline

- Association Rules
 - The Apriori Algorithm
- Clustering
 - Partitioning
 - Density Based
- Classification
 - Decision Trees
- A General Framework for DM

What is Cluster Analysis?

- Cluster: a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Cluster analysis
 - Grouping a set of data objects into clusters
- Clustering is unsupervised classification: no predefined classes
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

What Is Good Clustering?

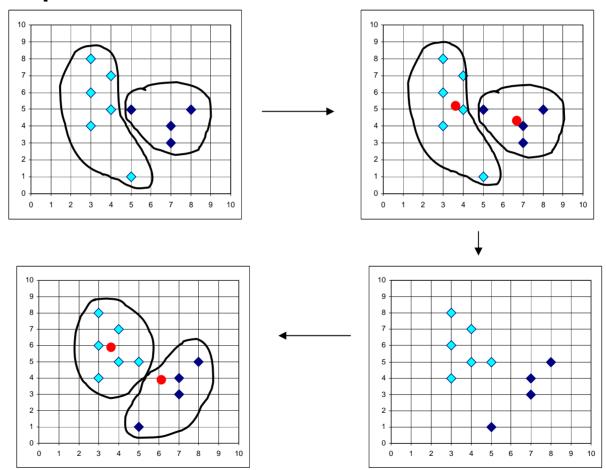
- A good clustering method will produce high quality clusters with
 - high <u>intra-class</u> similarity
 - Iow <u>inter-class</u> similarity
- The <u>quality</u> of a clustering result depends on both the similarity measure used by the method and its implementation.
- The <u>quality</u> of a clustering method is also measured by its ability to discover some or all of the <u>hidden patterns</u>. Techniques and Applications

The K-Means Clustering Method

- Given k, the k-means algorithm is implemented in 4 steps:
 - Partition objects into k nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partition. The centroid is the center (mean point) of the cluster.
 - Assign each object to the cluster with the nearest seed point.
 - Go back to Step 2, stop when no more new assignment.

The K-Means Clustering Method

Example



Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - <u>DBSCAN:</u> Ester, et al. (KDD'96)
 - <u>OPTICS</u>: Ankerst, et al (SIGMOD'99).
 - DENCLUE: Hinneburg & D. Keim (KDD'98)
 - <u>CLIQUE</u>: Agrawal, et al. (SIGMOD'98)

Density-Based Clustering: Background

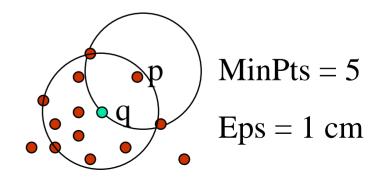
Two parameters:

- *Eps*: Maximum radius of the neighbourhood
- MinPts: Minimum number of points in an Epsneighbourhood of that point

• $N_{Eps}(p)$: {q belongs to D | dist(p,q) <= Eps}

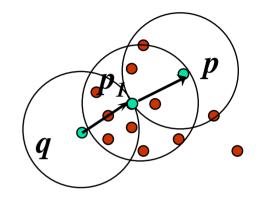
- Directly density-reachable: A point *p* is directly density-reachable from a point *q* wrt. *Eps*, *MinPts* if
 - 1) *p* belongs to *N_{Eps}(q)*
 - 2) core point condition:

$$|N_{Eps}(q)| > = MinPts$$



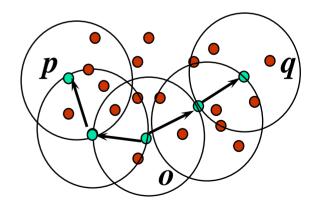
Density-Based Clustering: Background (II)

- Density-reachable:
 - A point *p* is density-reachable from a point *q* wrt. *Eps*, *MinPts* if there is a chain of points *p*₁, ..., *p*_n, *p*₁ = *q*, *p*_n = *p* such that *p*_{i+1} is directly density-reachable from *p*_i



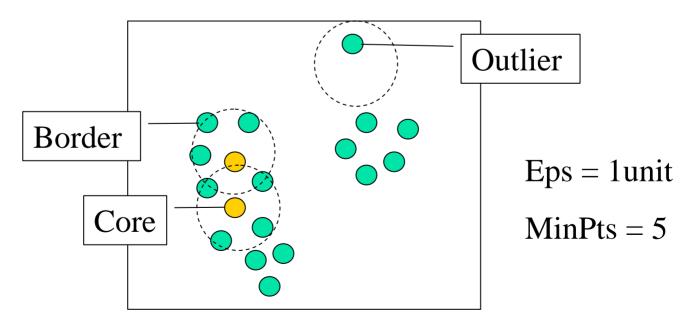
Density-connected

A point *p* is density-connected to a point *q* wrt. *Eps*, *MinPts* if there is a point *o* such that both, *p* and *q* are density-reachable from *o* wrt. *Eps* and *MinPts*.



DBSCAN: Density Based Spatial Clustering of Applications with Noise

- Relies on a *density-based* notion of cluster: A *cluster* is defined as a maximal set of densityconnected points
- Discovers clusters of arbitrary shape in spatial databases with noise



DBSCAN: The Algorithm

- Arbitrary select a point *p*
- Retrieve all points density-reachable from *p* wrt *Eps* and *MinPts*.
- If *p* is a core point, a cluster is formed.
- If *p* is a border point, no points are densityreachable from *p* and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.

Outline

- Association Rules
 - The Apriori Algorithm
- Clustering
 - Partitioning
 - Density Based
- Classification
 - Decision Trees
- A General Framework for DM

What is Classification ?

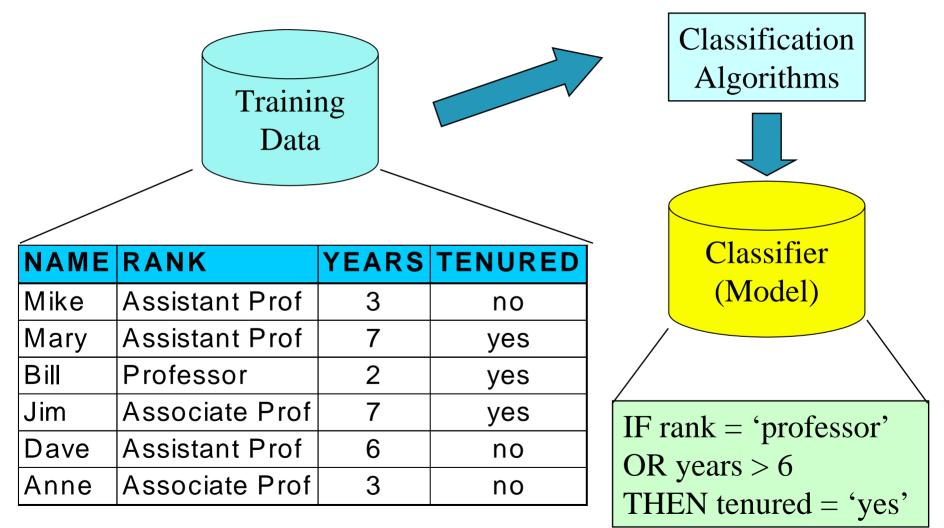
Classification:

- predicts categorical class labels
- classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data
- Typical Applications
 - credit approval
 - target marketing
 - medical diagnosis
 - treatment effectiveness analysis

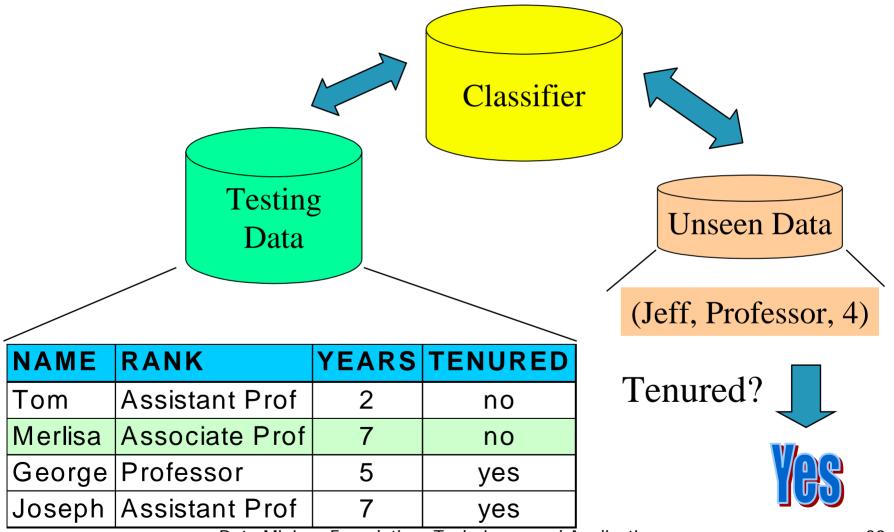
Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction: training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set, otherwise over-fitting will occur

Classification Process (1): Model Construction



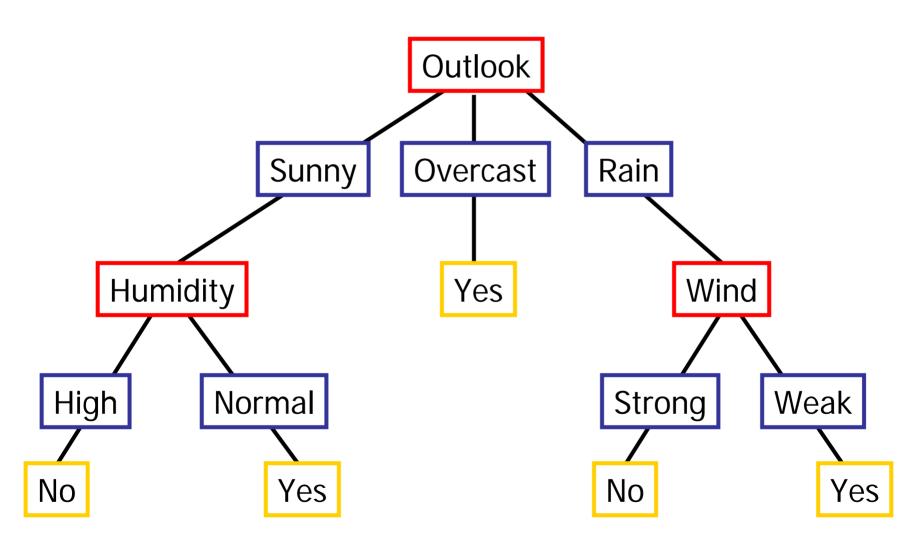
Classification Process (2): Use the Model in Prediction



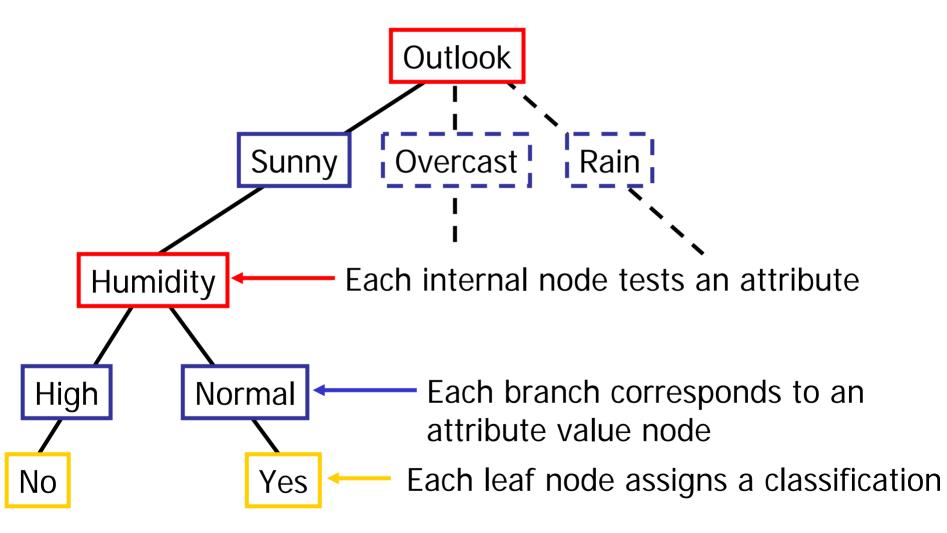
Supervised vs. Unsupervised Learning

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Decision Tree for PlayTennis

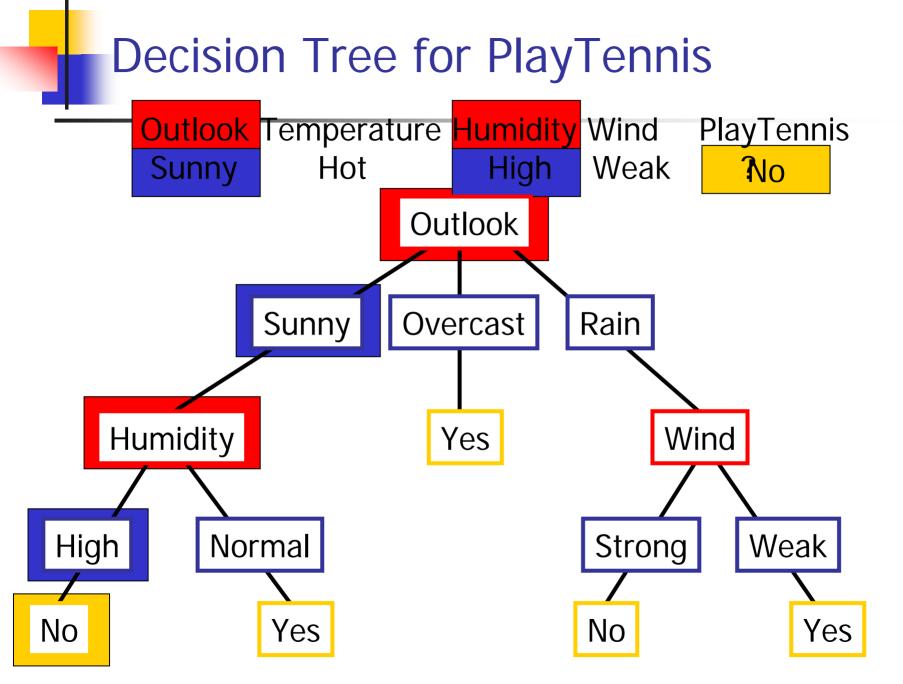


Decision Tree for PlayTennis



Training Dataset

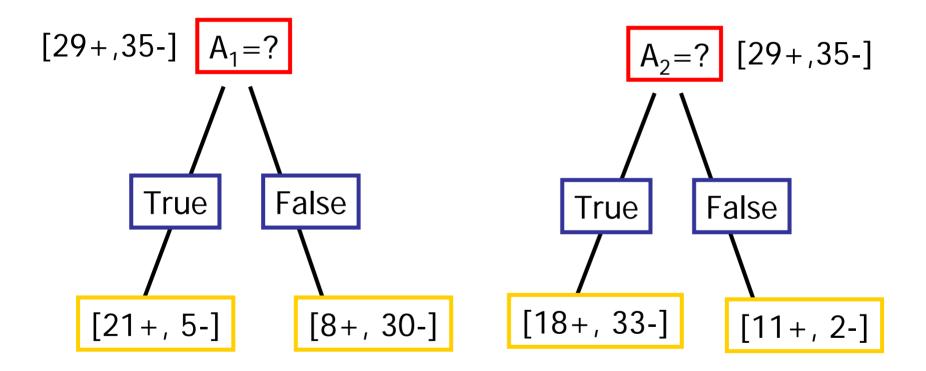
Outlook	Temp	Humid	Wind	PlayTennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

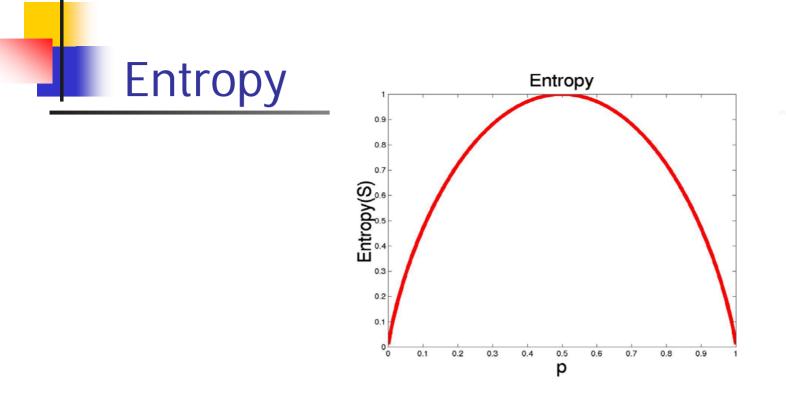


Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

Which Attribute is "best"?





- S is a sample of training examples
- p₊ is the proportion of positive examples
- p_ is the proportion of negative examples
- Entropy measures the impurity of S Entropy(S) = -p₊ log₂ p₊ - p₋ log₂ p₋

Entropy

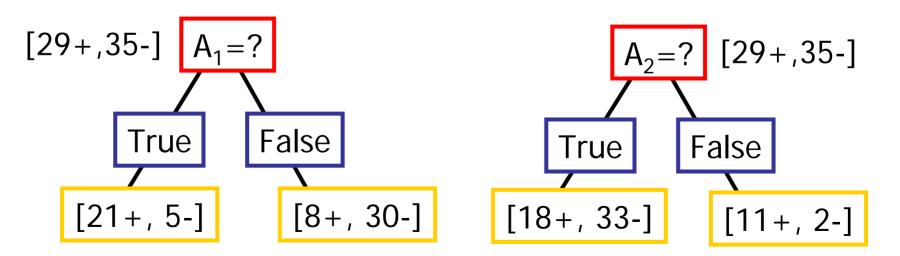
 Entropy(S) = expected number of bits needed to encode class (+ or -) of randomly drawn members of S (under the optimal, shortest length-code)

Why?

- Information theory optimal length code assign
 - -log₂ p bits to messages having probability p.
- So the expected number of bits to encode
 - (+ or -) of random member of S:
 - $\textbf{-p}_{+} \log_2 p_{+} \textbf{-} p_{-} \log_2 p_{-}$

 Gain(S,A): expected reduction in entropy due to sorting S on attribute A

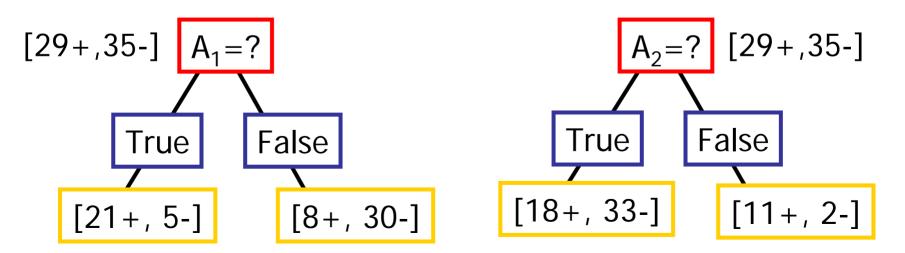
Gain(S,A)=Entropy(S) - $\sum_{v \in values(A)} |S_v|/|S|$ Entropy(S_v) Entropy([29+,35-]) = -29/64 log₂ 29/64 - 35/64 log₂ 35/64 = 0.99



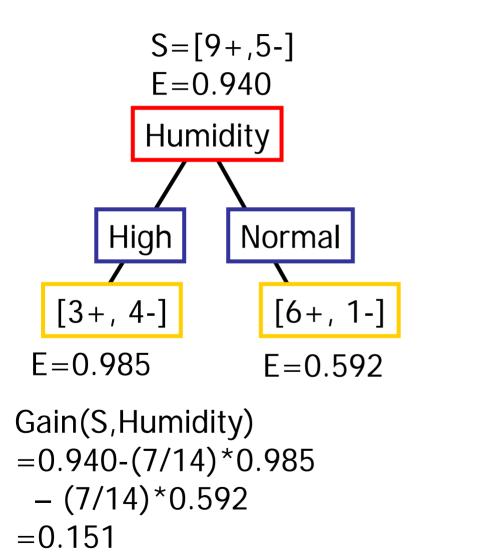
Information Gain

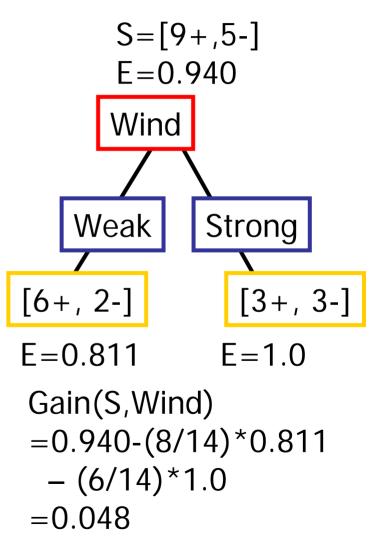
Entropy(
$$[21+,5-]$$
) = 0.71
Entropy($[8+,30-]$) = 0.74
Gain(S,A₁)=Entropy(S)
-26/64*Entropy($[21+,5-]$)
-38/64*Entropy($[8+,30-]$)
=0.27

Entropy([18+,33-]) = 0.94 Entropy([8+,30-]) = 0.62 Gain(S,A₂)=Entropy(S) -51/64*Entropy([18+,33-]) -13/64*Entropy([11+,2-]) =0.12

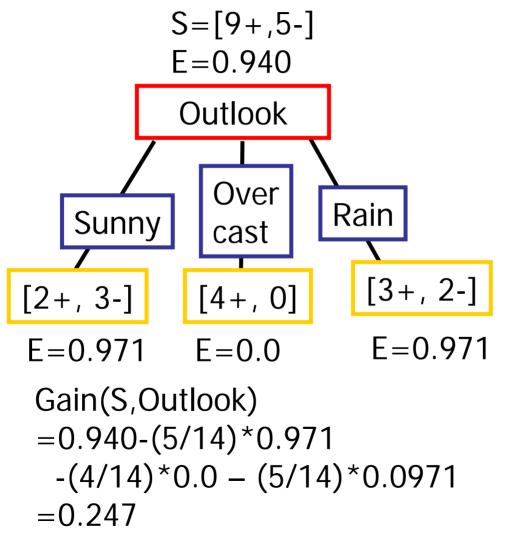


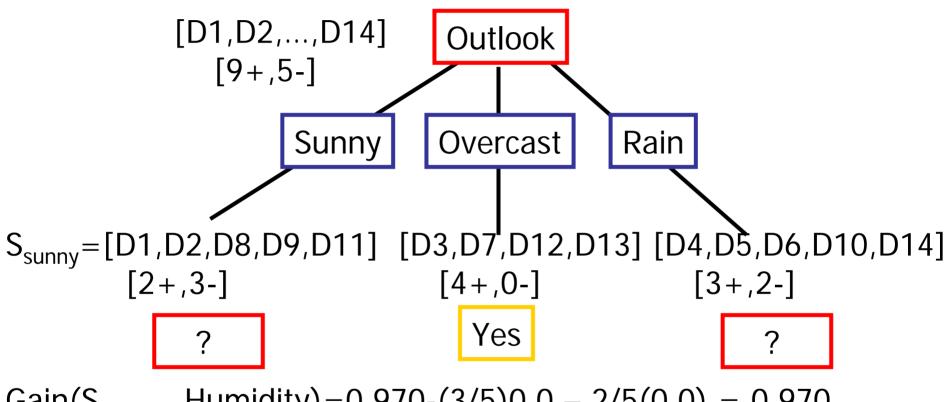
Selecting the Next Attribute



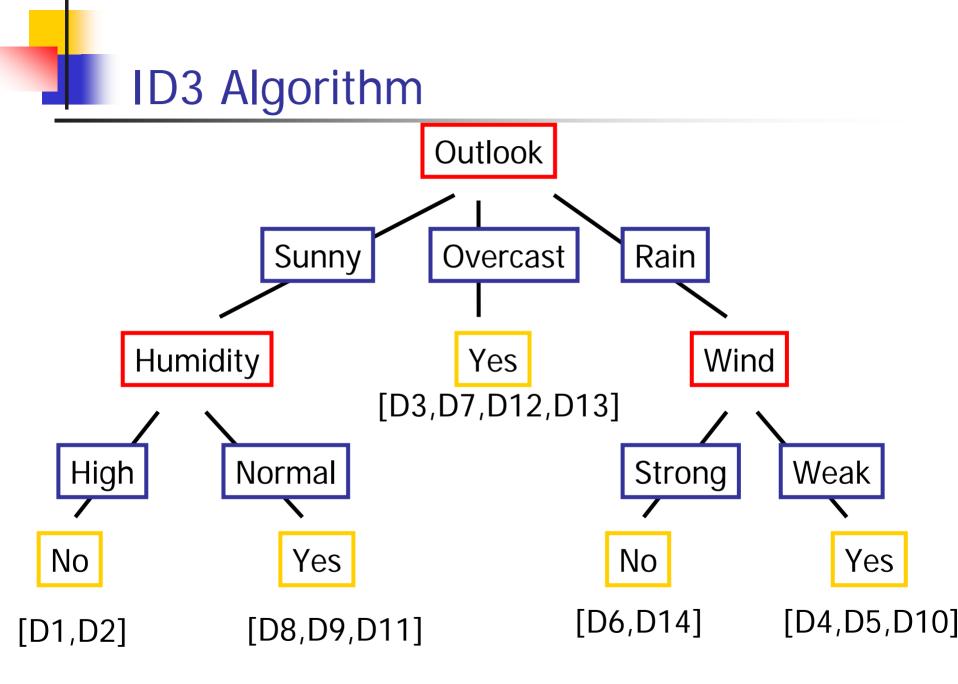


Selecting the Next Attribute





Gain(S_{sunny} , Humidity)=0.970-(3/5)0.0 - 2/5(0.0) = 0.970 Gain(S_{sunny} , Temp.)=0.970-(2/5)0.0 -2/5(1.0)-(1/5)0.0 = 0.570 Gain(S_{sunny} , Wind)=0.970= -(2/5)1.0 - 3/5(0.918) = 0.019



Avoid Overfitting in Classification

- The generated tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Result is in poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree" Data Mining: Foundation, Techniques and Applications

Outline

- Association Rules
 - The Apriori Algorithm
- Clustering
 - Partitioning
 - Density Based
- Classification
 - Decision Trees
- A General Framework for DM

A Generalized View of DM

- 1. The *task* the algorithm is used to address (e.g. classification, clustering, etc.)
- 2. The *structure* of the model or pattern we are fitting to the data (e.g. a linear regression model)
- 3. The *score function* used to judge the quality of the fitted models or patterns (e.g. accuracy, BIC, etc.)
- 4. The *search or optimization method* used to search over parameters and structures (e.g. steepest descent, MCMC, etc.)
- 5. The *data management technique* used for storing, indexing, and retrieving data (critical when data too large to reside in memory)

Can we fit what we learn into the framework?

	Apriori	K-means	ID3		
task	rule pattern discovery	clustering	classification		
structure of the model or pattern	association rules	clusters	decision tree		
search space	lattice of all possible combination of items size= 2 ^m	choice of any k points as center size=infinity	all possible combination of decision tree size= potentially infinity		
score function	support, confidence	square error	accuracy, information gain		
search / optimization method	breadth first with pruning	gradient descent	greedy		
data management technique	TBD Data Mining: Foundation, Techr	TBD niques and Applications	TBD 52		