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Machine Learning

How to construct computer programs that 
automatically improve with experience
Formal definition
A computer program is said to learn from 
experience E w.r.t some classes of tasks T and 
performance P, if its performance at tasks in T, as 
measured by P, improves with experience E.
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Machine Learning vs Data Mining(I)

Since data mining is essentially the use of historical 
data to improve decisions, we can see this as trying 
to learn from previous experience. Machine learning 
can provide many useful tools and techniques for 
this purpose
Machine learning on the other hand does not need to 
worry about the interpretability of the knowledge 
being learned or discovered

Machine 
Learning

data
perform 
task Data

Mining
data

perform 
task

knowledge
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Machine Learning vs Data Mining(II)

Data mining also need to deal with the tasks of 
handling massive datasets which mean techniques 
from database research must be brought in
Generally, we can say that machine learning deal 
with the effectiveness aspect of data mining while 
database research deal with the efficiency aspect
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A Generalized View of ML(Or DM)

1. The task the algorithm is used to address (e.g. classification, 
clustering, etc.)

2. The structure of the model or pattern we are fitting to the data 
(e.g. a linear regression model)

3. The score function used to judge the quality of the fitted models or 
patterns (e.g. accuracy, BIC, etc.)

4. The search or optimization method used to search over parameters 
and structures (e.g. steepest descent, MCMC, etc.)

5. The data management technique used for storing, indexing, and 
retrieving data (critical when data too large to reside in memory)
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Outline

Introduction 
Models/Patterns
Score Function
Optimization and Search
Conclusion
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Models vs Patterns
Models

Global summary of the dataset
Example: Fitting the line equation Y=aX+c to all the data points

Patterns
Local feature of the dataset. Limited to a subset of rows and 
attributes. Can be cause by concept drift.
Example: A small portion of the data above does not conform to 
Y=aX2+c but instead conform to Y=aX+c

Boundary between models and patterns is not always 
clear
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Types of Models
Prediction Model 

In a predictive model, one of the variable Y should be predicted from 
the other variables X1,...,Xp

Also called supervised learning
If Y is numerical, we call it regression
If Y is categorical, we call it classification

Descriptive Model
Aim is to produce a summary or description of the data
Also called unsupervised learning
Example: Clustering, data cubes

Models for Structure Data
To model situations in which data items affect one another
Example: time series, sequences, spatial data



11/30/2007 Data Mining: Foundation, Techniques and Applications 9

Predictive Model: Regression
Models

Predictive Descriptive Structured 
Data

•Linear regression

•Piecewise linear

∑
=

+=
p

j
jj XaaY

1
0

∑
=

+=
p

j
jjj XfaaY

1
0 )(



11/30/2007 Data Mining: Foundation, Techniques and Applications 10

Models

•Linear regression
•Piecewise linear

•Non-parametric 
regression

Predictive Model:Non-parametric Regression

Predictive
Descriptive

Structured Data

• Try to compute the value of a point based on the 
influences of all its neighbors

• Weight function:  Use to model the fact that 
neighbors which are near have more influence 
while those which are far have less influence

•Related to nearest neighbor methods
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Examples of kernel function K()
K((x-xi)/h)

(x-xi)/h
K((x-xi)/h)

(x-xi)/h
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Models

• Linear regression
• Piecewise linear
• Nonparametric regression
• Stochastic Components

• A perfect functional relationship 
between the predictor variables X1,..., 
Xp and the predicted variable Y is 
generally hard to find
• Introduce a random component into 
the model  y = g(x;θ)+ e

Predictive Descriptive Structured 
Data

Predictive Model:Classification
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Models

•Linear regression
•Piecewise linear
•Nonparametric regression
•Stochastic Components
•Classification

Logistic Regression

Naïve bayes/Bayesian networks

Nearest Neighbors

Support vector machines

Trees

Predictive Descriptive Structured 
Data

Predictive Model:Classification



11/30/2007 Data Mining: Foundation, Techniques and Applications 15

piecewise decision boundary for classification
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Descriptive Models
Models

Descriptive Structured Data

• For estimation of probability 
distribution and density 
distribution

• Example: Summarize the data 
in the diagram into two oval 
shape (represented as a density 
distribution) x

y
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Descriptive Models: Parametric

Models

Descriptive

• Parametric models

• Mixture of Parametric Models

Gaussian Distribution

mean

deviation
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Descriptive Model: Categorical Data

Models

Descriptive

• Parametric models
• Mixture of Parametric Models

• Categorical data

Dementia
None Mild Severe

Smoker No 426 66 132

Yes 284 44 88

contingency table

Categorical data can’t be represented 
spatially. If small value of p (i.e. small no. of 
dimensions) and small number of attribute 
values, represent them as contingency table.
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Descriptive Model: High Dimensional(I)

Dimensionality is a fundamental challenge in 
density and distribution estimation. Model 
complexity tend to grow exponentially 
with dimensions.
Factorization and Independence

Assume  independence of all variables

eg: if prob(smoker_yes)=50%,
prob(demential_no)=20% and 
prob(smoker_yes, demential_no)=10%, then 
we need NOT store prob(smoker_yes, 
demential_no).

Models

Descriptive

• Parametric models
• Mixture of Parametric Models
• Categorical data

• Graphical Markov models 
(categorical, continuous, mixed)
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Descriptive Model: High Dimensional(II)

But in real life, assuming independence of all variables means a
very inaccurate model. A tradeoff is needed

Markov chain assumption
Assume that the variable xk is only dependent on x1,...,xk-1

fully independence (simple 
but inaccurate model)

specified joint probability 
(accurate but complex model)
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Descriptive Model: High Dimensional(III)
Models

Descriptive
• Parametric models
• Mixture of Parametric Models
• Categorical data
• Graphical Markov models (categorical, 
continuous, mixed)
• Curse of Dimensionality

Other ways to deal with dimensionality
Variables selection

also call features selection
given predictor variable Y, find variables that 
are independent of Y
although Y might be independent of a 
variable Xi, it does not mean that Y is 
independent of Xi when Xi is combined with 
other variable (eg, Xj)
rely on heuristic, optimal is difficult

Transformations
Projection Pursuit Regression
Principal Components Analysis

Xi Xj Y=Xi XOR Xj

0 0 0
0 1 1
1 0 1
1 1 0
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Models for Structure Data

Models

Structure Data

Instead of modeling only dependency 
between the variables, we need to model 
the relationship between the attribute 
values of data items
Example: time series, sequences, spatial 
data
Challenge: We have even more 
combinations. How can we try to fit a 
reasonable model to such data without 
blowing up the complexity of the model  ?
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Structure Data: Markov Models

First-order:

First-order 
(stationary):     
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Given that each variable yi have m states, the first equation 
require O(m2T) to store all the conditional probability. The 
second equation need O(m2).
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Structure Data: Markov Models(II)

For real-valued Y, we can have

if we have                         , then we call it first-order 
autoregressive model

Can be extended to kth order of Markov model
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Structure Data: Hidden Markov Models

x1 x2 x3
xT

y1 y2 y3
yT
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Note: to compute p(y1,…,yT) need to sum/integrate over all 
possible state sequences...

Hidden state X is categorical with m states and is first order 
Markov. Having generated state xt at time t (based on the Markov 
chain), generate yt based on p(yt|xt). Similarly to mixture model.
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Score Function

Based on Chapter 7 of Hand, Mannila, & Smyth

David Madigan
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Score Function: Introduction
E.g. how to pick the “best” a and b in Y = aX + b
Usual score in this case is the sum of squared errors
Scores for patterns versus scores for models
Predictive versus descriptive scores
Score function for model of fixed complexity and for 
models of different complexity
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Scoring Pattern
Search for local patterns in data is relatively recent, 
hence far smaller toolbox of techniques for scoring 
patterns (compared to for models)

Reason: Usefulness of a pattern lies in the eye of the 
beholder. One person’s noisy outlier may be another 
person’s Nobel Prize

General approach: Measure degree of interestingness 
compared to some expected values. Example: p(b)=0.25 
and p(b|a)=0.75, then this is interesting knowledge
Coverage of the pattern: The proportion of the data to 
which a pattern applies
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Predictive Model Scores
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•Assume all observations equally important
•Depend on differences rather than values
•Symmetric
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Descriptive Model Scores

∏
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•“Pick the model that assigns highest probability to what 
actually happened”

•Many different scoring rules for non-probabilistic models

•Taking negative log on both side give us the log likelihood 
function
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Descriptive Model Scores :Example
We wish to pick two Gaussian distributions to 
model the following data points, where would 
you pick the mean of the Gaussian distributions ?
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General Concepts in Comparing Models

General technique is based on compression and 
information-theoretic arguments, our score 
function is generally decomposed as:

number of bits to describe the data given the model +        
number of bits to describe the model(and parameters)

Occam Razor:Finding the shortest consistent 
hypothesis.
Also call the Minimum Description Length (MDL) 
Principle where we perform compression by storing 
the model and the error

=),( MSI θ
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MDL Example: Compression with MDL Example: Compression with 
Classification TreesClassification Trees

protocol

http

http

http

ftp

http

ftp

ftp

http

bytes

20K

24K

20K

40K

58K

100K

300K

80K

packets

3

5

8

11

18

24

35

15

Protocol = httpProtocol = ftp

yes no

yes no

Packets > 10

Bytes > 60K

Protocol = http

Outlier: Row 4, protocol=ftp, 
Row 8, protocol =http
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Bias-Variance Tradeoff

High Bias - Low Variance Low Bias - High Variance

“overfitting” - modeling the 
random component

# parameters ↑, estimation 
accuracy ↓

Score function should 
embody the compromise
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Scoring Models with Different Complexities

Bias-variance tradeoff
222 ])ˆ([)]ˆ(ˆ[]ˆ[)( yy yEEyEyEyEXMSE μμ −+−=−=

(MSE=Variance + Bias2)

score(model) = error(model) + penalty-function(model)

AIC: 
where SL is the negative log-likelihood

KkdMSMS kkkLkAIC ,,1,2);ˆ(2)( K=+=    θ
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Bayesian Information Criterion

KkndMSMS kkkLkBIC ,,1,log);ˆ(2)( K=+=    θ

•BIC is an O(1) approximation to p(D|M)

• Error term dominate penalty function as n grow 
larger. Hence make sense to try to reduce error as 
n grow larger.
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Score Functions on External Validation

• Instead of penalizing complexity, look at 
performance by separating dataset into a design part 
and validation part

• Note: even using hold-out data, performance results 
can be optimistically biased

• Need a third data set call test set
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classification performance when data are in fact noise...
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Search and Optimization Methods

Based in part on Chapter 8 of Hand, Mannila, & Smyth

David Madigan
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Search and Optimization: Introduction

This chapter is about finding the models and 
parameters that minimize a general score function S
Often have to conduct a parameter search for each 
visited model
The number of possible structures can be immense. For 
example, there are 3.6 × 1013 undirected graphical 
models with 10 vertices
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State-Space Formulation
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Types of search methodologies
Greedy Search
Systematic Search and Search Heuristics
Branch-and Bound
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Greedy Search

1. Initialize. Chose an initial state Mk

2. Iterate. Evaluate the score function at all adjacent 
states and move to the best one

3. Stopping Criterion. Repeat step 2 until no further 
improvement can be made.

4. Multiple Restarts. Repeat 1-3 from different starting 
points and choose the best solution found.
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Systematic Search and Search Heuristics
Monitor more than one models at the same time in 
the search
Approach of a search tree

Dynamically construct as the search proceed

X1 X2 X3 X4

X1,X2 X3,X4

Breadth First

X1 X2

X1,X2

Depth First
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Branch and Bound
When exploring a search tree, keep track of the best 
score S so far. If it is possible to have an lower bound 
Slow of the score function for a subtree, prune off 
subtree if Slow > S

X1 X2

X1,X2

S(X1)=40

Slow(X1,X2)=50

prune

Slow(X2)=30



11/30/2007 Data Mining: Foundation, Techniques and Applications 46

Parameter Optimization

Finding the parameters θ that minimize a score function S(θ) 
is usually equivalent to the problem of minimizing a 
complicated function in a high-dimensional space

Define the gradient function is S as:

When closed form solutions to ∇S(θ)=0 exist, no need for 
numerical methods.
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Gradient-Based Methods
1. Initialize. Choose an initial value for θ = θ0

2. Iterate. Starting with i=0, let θi+1 = θi +λi vi where v is 
the direction of the next step and lambda is the distance. 
Generally choose v to be a direction that improves the 
score

3. Convergence. Repeat step 2 until S appears to have 
reached a local minimum.

4. Multiple Restarts. Repeat steps 1-3 from different 
initial starting points and choose the best minimum found.
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Univariate Optimization

Let g(θ)=S’(θ). Newton-Raphson proceeds as follows. Suppose 
g(θs)=0. Then:
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1-D Gradient-Descent

)(1 iii g θλθθ −=+

•λ usually chosen to be quite small

•Special case of NR where 1/g’(θi) is replaced 
by a constant
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Multivariate Case

Curse-of-Dimensionality again. For example, suppose S
is defined on a d-dimensional unit hypercube. Suppose 
we know that non of the components of θ are less than 
1/2 at the optimum.

if d=1, have eliminated half the parameter space

if d=2, have eliminated 1/4 of the parameter space

if d=20, have eliminated 1/1,000,000 of the parameter 
space!
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Multivariate Gradient Descent

)(1 iii g θλθθ −=+

• -g(θi) points in the direction of steepest descent

• Guaranteed to converge if λ small enough

• Can replace λ with second-derivative information 
(“quasi-Newton” uses approx).
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Simplex Search Method
1. Evaluates d+1 points arranged in a hyper-tetrahedron

2. For example, with d=2, evaluates S at the vertices of an 
equilateral triangle

3. Reflect the triangle in the side opposite the vertex with 
the highest value

4. Repeat until oscillation occurs, then half the sides of the 
triangle

5. No calculation of derivatives...
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•
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EM with Missing Data(I)
The (Expectation Maximization) EM algorithm is an 
important algorithm for maximizing a likelihood score 
function when some of the data are missing
Special case: Clustering where the class attribute are all 
missing

x y H

1 3

5 7

1 8

.

.

.

6 20
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EM with Missing Data(II)

Challenge: We must now find of set of values 
to maximize l(θ)

The set of parameters θ
The set of values for H

General Approach:Do the following iteratively
Fixed θ, vary H to maximize l(θ)
Fixed H, vary θ to maximize l(θ)
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EM with Missing Data(III)
∑==

H

HDpDpl )|,(log)|(log)( θθθ

Let Q(H) denote a probability distribution for the missing data
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EM (continued)
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Example: K-Means Clustering
Aim: Separate a set of points into k-clusters 
such that sum of square error is minimized.
The model in this case are the k centers of 
the clusters, (c1,...,ck)
The k-means algorithm is implemented in 4 
steps:

Partition objects into k nonempty subsets
Compute seed points is the center (mean point) 
of the cluster.
Assign each object to the cluster with the nearest 
center  
Go back to Step 2, stop when no more new 
assignment.

E-step

M-step



11/30/2007 Data Mining: Foundation, Techniques and Applications 60

EM Normal Mixture Example(I)
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EM Normal Mixture Example(II)
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Summary

In this lecture, we look in details the 
following components in the machine 
learning framework:

Model/Pattern which capture the try to capture 
the underlying structure of the data
Scoring functions for evaluation the models 
and their parameters
Search and optimization techniques for search 
the best models and parameters based on the 
scoring function
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Reference
"Principles of Data Mining", David Hand, 
Heikki Mannila and Padhraic Smyth. 
Chapter 6,7 and 8.
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