L/

Data Mining: Foundation,

Techniqgues and Applications

Lesson 3: Indexing

= NUS
¥

National University
of Singapore

?Q/\ﬂf('g

o
4 RENMIN UNIVERSITY OF CHINA

NS 4

£

School ofCompuiing

Anthony Tung(BRER) Li Cuiping(Z=72-1)
School of Computing School of Information

National University of Singapore Renmin University of China 4

Examples

Apriori K-means ID3

175 rule pattern discovery | clustering CIQSW

structure of z‘bgm{\ association rules clusters decision tree
or pattern /

score f%mﬁm support, conﬁalﬁ-%ce< square error accuracy,
Information gain

search /| op Hmization | breadth first with gradient ecedy

meth pruning descent

lf’“/l;” management Our focus in the next two
echnigue

lectures

i Overview

= Introduction

= Spatial Indexing
= R-Tree
« Finding K-nearest Neighbors
= The Reverse Nearest Neighbors

= String Indexing
= Inverted Files

= Suffix Tree/Array
= Signhature Files

iTree-Structured Indexing

= Tree-structured indexing technigues support
both and

= Index file may still be quite large. But we
can apply the idea repeatedly!

o o o

Data

pages

iB* Tree: The Most Widely Used Index

= Insert/delete at log - N cost (F = fanout, N = #
leaf pages);

= Minimum 50% occupancy (except for root).

= Each node contains d <= m <= 2d entries. The
parameter d is called the order of the tree.

= next-leaf-pointer’ to chain up the leaf nodes.
= Data entries at leaf are sorted.

‘_h Example B+ Tree

= Each node can hold 4 entries (order = 2)

ROON
17
5 13 24 30
4 N 2 N

5

7

8 14

16

19

20

22

24

27

29

33

34

38

39

i)de structure

s Non-leaf nodes

index entry
I

Po | K| Pyl Ko|P,

T

Leaf nodes

Po | K| Pyl Ko|P,

m| , Next leaf

node

R

‘_Eearching In B+ Tree

= Search begins at root, and key comparisons
direct it to a leaf

s Search for 5, 15, all data entries >= 24 ...

Root \

39

ilnserting a Data Entry into a B+ Tree

s Find correct leaf L.

= Put data entry onto L.
= If L has enough space, done!

= Else, must L (into L and a new node L2)
« Redistribute entries evenly, middle key.
= Insert index entry pointing to L2 into parent of L.

= This can happen recursively

. , redistribute entries evenly, but
middle key. (Contrast with leaf splits.)

= Splits “grow” tree; root split increases height.
= Tree growth: gets or

‘_hlnserting [& 8 Into Example B+ Tree
Root \

= Observe how minimum
occupancy Is

5 13 17 24 30
guaranteed in both leaf /
and index pg splits. o

10

i Overview

= Introduction

= Spatial Indexing
= R-Tree
« Finding K-nearest Neighbors
= The Reverse Nearest Neighbors

= String Indexing
= Inverted Files

= Suffix Tree/Array
= Signhature Files

11

:h?—Tree Index Structure

= A spatial database consists of a collection
of objects representing spatial objects,
where each object has a unique identifier,
which can be used to retrieve lIt.

= An R-tree Is a height-balanced tree similar
to a B-tree, with index records In its leaf
nodes containing pointers to data objects.

= Nodes correspond to disk pages If the
iIndex Is disk-resident.

12

R-tree:Structure(l)

[R8 Re Ri0|[R11|R12] |R13[R14] Hl_liﬁ[lﬂ] 1[R17[R18[R19|
v+ vy v v v v v v v

To Data Tuples
(a)
:FR_I____:_R__‘__________R_:I_.: _____ :
wm || s |
li : E; SRRt We will transverse
I ' [R1o | - :: _
o) B :m:: thro_ugh the R-Tree
L b===2 L L to give some Iidea of
' ! ' 1 ____JII __________ .
®OTTTT T T T e ey ! its structure
| : Iy _'|: g
:__,'r_____L _____ : -*:'Rl'i' ::
VRS | [RiB ol T © "
ho : : l !
:E I_.-___!_________'ﬂ:.-"_'—_ ______ ! : ::
iiﬂlﬁ ! E Ei
:.!___.__T_T..._...T.._______-______I_-_____—__-_-_-_-—-_- _____ _.: 13

R-tree:Structure(ll)

(_./

[Ra Ri0|[R11[R12| |[R13]R14] |IR1s 1& R17|R18|R19
v+ vy v v I ¥ AR I

To Data Tuples

(a)

We first move to the
first layer of the R-
tree which consist of
the two nodes R1
and R2.

14

i R-tree:Structure(lll) _____—
R3 R4 [RS | R8 R7 | |
tﬂshulﬂjﬂllhl Risre]] ED
10||R11 [R12 R13|R14 15|R18 RL17 |R18|R19
v v v v

(a)

Then we move to
the second layer
under node R1 which
consist of node R3,
R4 and R5

15

m
R-tree:Structure(lll) _____—
Emm

tRB tﬂf FR@‘R IJR 2| T\;{-I |R15 [R186 R17 [R18[R19
v v v v w_]%

To Date Tupleu

L S

(a)

Then we move to
the third layer under
node R3 which
consist of node R8,
R9 and R10

16

R-tree:Searching(l)

e oo o] rifriz] | Rralka] | Rislie FTgs
vy ov v v v v I)
To Data Tuples
(a)
BORe TR :
Wt [e |
ii - E; s Assuming we want
)) :mii to find all objects
= == ; i | lying within the
R R R query box Q1
| | ii
T FALEE

B e e et Iy S S - 17

Ry Jr2 []
i R-tree:Search(ll) —

[Ra Ri0|[R11[R12| |[R13]R14] |IR1s 1& R17|R18|R19
v+ vy v v I ¥ AR I

To Data Tuples

(a)

We first move to the
first layer of the R-
tree and observe
that the Q1 intercept
both R1 and R2.

18

R-tree:Search(l11) —

RUR2 |

\

RS
=~

[R8 [Re Ri0|[R11|R12| |Ri3lri4] |Ris[rie] |[Ri7[Ri8[R19]
v v v v v v

v oy v ow

To Data Tuples

v v
(a)

Then we move to

the second layer of
both R1 and R2 and
observe that the

guery box only
Intercept node R3,

R4 and R5. Thus we
will not access the
children of R6 and
RY. 19

Rl |
(_./
TR AN
_Hl_l:iﬁ |14E|| |[R17 |R18 IIjj:LEII

(a)

i R-tree:Search(1V)

To Data Tuples

-
)

Then we move to
the third layer under
R3, R4, R5 and find
the only R10,R11,
R12, R13 and R14
Intercept . Thus
we will only
access the data
objects under
these five nodes

‘.L\/Iaintenance of R-tree

= Very much like the maintenance of B+ Tree.

Take average O(log n) to search, insert and
delete.

= Concern when splitting nodes: Need to
ensure that the bounding box have the
smallest area

_— e — — — el Gl - o ww =— g

21

i NN Search Problem

= Glven a point p, find its nearest neighbor
from all points of database.

s EQ:

Sale
SMale

-1NC

t
t
t

ne nearest hotel to some theater
ne nearest star to some space point

ne most similar picture to some given

nicture

22

i Naive Algorithm

= Compare point by point
= Min =
= Pick a random point g from the data set,
return the distance between them

« If the distance Is less than min, update min

= Obviously, not efficient

23

‘_h Improved algorithm

s Construct a index such as R-tree for the
data

= To prune off those MBRs which can never
contain a nearest neighbor.

24

= First problem to be solve:

= Given a query point p and a
minimum bounding rectangle
(MBR), find an
and for the
distance r such that there

= To facilitate some form of
ranking to prune off
uninteresting MBRs

= Eg. we can prune off MBR3 and
MBRA4.

distance

AN

AN

-tree: Finding Nearest Neighbor

MBR

|

1L

MBR1

MBR2

v

MBR3 MBR4
25

ﬁ R-tree: Finding Lower Bound(MINDIST)

MINDIST (p,R) = > | p; -1, [
i=1

S.

.S If p<s;;

. p;, otherwise;

Note: p is located at

(p..p,) i.e p, and p, are
the x-y coordinates!

mindist

mindist

26

& R-tree: Finding Upper Bound(l)

I Find 0
the point in MBR which is
furthest away maxdit
s But we can do better t,
with a certain
observation! s,

27

*-tree: Finding Upper Bound(I1)

= Important observation: Every face of any
MBR should contains at least one point in
the DB.

assuming this is the
leftmost point

then left border can
be shifted here

28

i-tree: Finding Upper Bound(l1)

= Important observation: Every face of any
MBR should contains at least one point in

the DB. assuming this is the
leftmost point

29

i—tree: Finding Upper Bound(111)

= We can now find a better upper

bound based on this property.

We know that there

IS at least one point,

g, along this face.
How do we obtain
the maximum

distance between p

and q ?

Answer: Assume ¢ IS

here

30

i R-tree: Finding Upper Bound(1V)

= Find the upper bound MINMAXDIST by
performing the following steps:
= For each face of the MBR, pick the location g

that is furthest away from p and insert
dist(p,q) into a set QSET

= Pick the minimum out of QSET to be
MINMAXDIST, the upper bound for r such
that there exist at least one point g from the
MBR such that dist(p,q)<=r

31

ﬁActual Calculation of MINMAXDIST

mi ipk—rmi2+ Zip —rMii2 D
1<k<n izk

|
i
|
|
i
i
i
|
1<k<n A @
i

rm, =s, —if : p, < & Ztk) | 2

rm, =t, —otherwise
(8 +t)

M. =s. —if :p. >

minimum of this
two distance

rM. =t. —otherwise

| (t,+5,)/2

32

R-tree. Example

MBER

MER
MINMBXDIST

e, MINDIST =0

e n e nmnnan e ans i Query Peoint

MINDIST T IS £ 5 1 22 5= i Y
ol MINMANDIST [0 T e .
Ly N MINMAXDIST

‘_L Overview

= Introduction

= Spatial Indexing
= R-Tree
» Finding K-nearest Neighbors
= The Reverse Nearest Neighbors

= String Indexing
= Inverted Files

= Suffix Tree/Array
= Signhature Files

34

‘.L 1-NN Algorithm for R-tree(l)

= Search ordering:
= MINDIST: optimistic
= MINMAXDIST: pessimistic.

= Search pruning:
= Downward pruning: An MBR R is discarded if there exists
another R’ such that
MINDIST(P,R) > MINMAXDIST(P,R’)

= Downward pruning: An object O is discarded if there exists an R
such that
ACTUAL-DIST(P,0) > MINIMAXDIST(P,R)

« Upward pruning: An MBR R is discarded if an object O is found
such that
MINDIST(P,R)>ACTUAL_DIST(P,0O)

35

i 1-NN Algorithm for R-tree(ll)

s best first traversal of the nodes In the
R-tree.

= A heap Is maintained for storing every
MBR

= The algorithm maintains a variable Best
which is initially set to == and are updated
later

36

i k-Nearest Neighbors

= Definition: Given a gquery point p, and a distance
function dist(), let g, be a point in the database

such that

count({q| dist(p,q) < dist(p,q,), g €D}) = k-1
The k-nearest neighbors of p are all points g such
that dist(p,q) <= dist(p,q,)

k=10

37

= First problem to be solve:

= Given a query point p and a
minimum bounding rectangle
(MBR), find an
and for the
distance r such that there

= To facilitate some form of
ranking to prune off
uninteresting MBRs

= Eg. If k=2, we can prune off
MBR4.

distance

AN

AN

R-tree: Finding k-Nearest Neighbors

MBR

1

|

MBR1

MBR2

v

MBR3 MBR4
38

i K-NN Algorithm

= Keep a sorted buffer of at most k current
nearest neighbors

= Pruning is done according to the distance
of the furthest nearest neighbor In this
buffer

39

‘_L Overview

= Introduction

= Spatial Indexing
= R-Tree
« Finding K-nearest Neighbors
= The Reverse Nearest Neighbors

= String Indexing
= Inverted Files

= Suffix Tree/Array
= Signhature Files

40

‘_hReverse Nearest Neighbors

= The reverse nearest neighbors of a point p, RNN(p) are
those points which have p as their 1-nearest neighbor

= Example: RNN(p)={r,t}, RNN(s)={p} i.e. s is the
nearest neighbor of p, RNN(u)={s}

41

‘.L RNN: Potential Applications

= FedEx Drop-off Points: Who are the customers who
have a particular FedEx drop-off point as their
nearest drop-off point.

= Competitors Analysis: Does my video shop have a
lot of reverse neighbors ?

= Data Mining: Spatial reasoning

= Which location in the data space have the most RNN ?
=> most dense point

= What does it mean if NN(p) is not in RNN(p) ? What
does it mean if NN(p) is in RNN(p) ?

42

‘_h Overview

= Introduction

= Spatial Indexing
= R-Tree
« Finding K-nearest Neighbors
= The Reverse Nearest Neighbors

= String Indexing
= Inverted Files

= Suffix Tree/Array
= Signhature Files

43

i Introduction(l)

= On-line text searching(=sequential
searching)

= Involves finding the occurrences of a pattern
In a text when the text is not preprocessed.

= IS appropriate when the text is small

= IS the only choice If the text collection Is very
volatile (i.e. undergoes modifications very
frequently), or the index space overhead
cannot be afforded.

44

Introduction(l1)

= Indexed searching

= builds data structures over the text(called indices) to
speed up the search.
= IS appropriate when the text collection is large and

semi-static

= Semi-static collection : is updated at reasonably regular
Intervals but are not deemed to support thousands of
Insertion of single words per second.

= Indexing techniques
= Inverted files, suffix arrays, and signature files

= Consider search cost, space overhead, and cost of
building and updating indexing structures

45

i Introduction(l11)

= Indexing technique

= Inverted files
= Word oriented mechanism for indexing a text collection
= Composed of vocabulary and occurrences
=« are currently the best choice for most application.

= Suffix arrays

= are faster for phrase searches and other less common
gueries.

= are harder to build and maintain.
= Signature files

=« Word oriented index structures based on hashing
= were popular in the 1980s

46

‘.h Introduction(1V)

= Indexed structure

= Trie

= sorted arrays, binary search tree, B-tree, hash table, etc.
= Notations

= N: the size of the text database

= M: pattern length
= M: amount of main memory available

= Stop Words
= a list of words considered to have no indexing value
= EX. a, an, any, the, to, with , from , for , of , that, who

47

‘.L Trie

= The term trie comes from the word "retrieval”.
= |s pronounced, "tree."

= Tries were introduced in the 1960's by Fredkin.

48

i Structure of a trie

= Atrie is a k-ary position tree.

= It is constructed from input strings, i.e. the input Is a
set of n strings called S1,52,...,Sn, where each Si
consists of symbols from a finite alphabet and has a
unique terminal symbol which we call $.

49

‘.h Kinds of tries

1 Non compact tries.

2 Compact tries.

3 "PATRICIA" Tries: even more compact.
4 Suffix tries.

5 Suffix trees.

50

‘.h Non compact tries

= every edge of the underlying

tree represents a symbol
= construct the trie

from: the

following 5

strings:

= BIG,

= BIGGER,

= BILL,

= GOOD,

= GOSH.
= Look for:

= GOOD

= BAD

BIGGERS%

BILL%

LEAVES ARE GREEN.

THE SYMBOL "$" TERMINATES EACH
WORD,

i Compact tries

Trim away all chains which lead to leaves

g =
O

$

AP

52

i Compact tries

Non compact trie compact trie

BILLY) @oony GOSHS

$ LEAVES ARE GREEN.

BRIGGERS% %I‘{I:}Eﬁ%mBDL "$" TERMINATES EACH

53

i Overview

= Introduction

= Spatial Indexing
= R-Tree
« Finding K-nearest Neighbors
= The Reverse Nearest Neighbors

= String Indexing
» Inverted Files

= Suffix Tree/Array
= Signhature Files

54

i Inverted Files(l)

= Definition

= A word-oriented mechanism for indexing a
text collection in order to speed up the
searching task.

= TWO elements

= Vocabulary
= The set of all different words in the text.

= Occurrence

= For each word a list of all the text positions where
the word appears.

55

Inverted Files(l1)

= A sample text and an inverted index built

on It

1 6 911 1719 24 28

33

60

This is a text. A text has many words. Words are made from letters

Vocabulary Occurrence
letters 60...
made 50...
many 28...
text 11, 19...
words 33, 40...

text

inverted index

56

i Inverted Files(l11)

= Required space

= The space required for the vocabulary is rather small.
= The occurrences demand much more space.

= Block addressing
= reduces space reguirements.

= The text is divided in blocks, and the occurrences point to
the blocks where the word appears(instead of the exact
position).

= Block division

The division into blocks of fixed size improves efficiency at
retrieval time.

The division using natural cuts(files, documents, web pages)
may eliminate the need for online traversal.

57

‘.h Inverted Files(1V)

= The sample text split into four blocks

block 1

block 2

block3

block 4

This is a text.

A text has many

words. Words are

made from letters

text

Vocabulary Occurrence
letters 4...
made 4...
many 2...
text 1,2...
words 3...

inverted index

58

Inverted Files(V)

m Sizes of an inverted file:

Index Small collection | Medium collection | Large collection
(1 Mb) (200 Mb) (2 Gb)

Addressing

words 45% 73% 36% 64% 35% 63%
Addressing
documents 19% 26% 18% 32% 26% 47%
Addressing
64K blocks 27% 41% 18% 32% 5% 9%
Addressing
256 blocks 18% 25% 1.7% 24% | 0.5% | 0.7%

59

i Searching(l)

= Three General search steps

= Vocabulary search

= The words and patterns present in the query are isolated
and searched in the vocabulary.

= Retrieval of occurrences

= The lists of the occurrences of all the words found are
retrieved.

= Manipulation of occurrences

= The occurrences are processed to solve phrases, proximity,
or Boolean operations.

« If block addressing is used, it may be necessary to directly
search the text to find the information missing from the
occurrences.

60

i Searching(ll)

= Single-word queries
= Be searched using any suitable data structure to
speed up the search, such as hashing, tries O(/m), or

B-trees.
« Prefix and range queries can be solved with binary search,
tries, or B-trees, but not with hashing.

= Context queries

= Each element of query must be searched separately
and a list generated for each one.

= The lists of all elements are traversed to find places
where all the words appear in sequence(for a
phrase) or appear close enough(for proximity).

61

i Searching(l11)

= Block addressing

= It IS necessary to traverse the blocks for
these queries, since the position information
IS needed.

= |t IS better to intersect the lists to obtain the
blocks which contain all the searched words
and then sequentially search the context
guery in those blocks.

62

‘.h Construction(l)

= Building an inverted index for the sample
text (Fig 8.3)

1 6 911 1719 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters

letters: 60

ay ‘d’ 4 made: 50
[7 m ‘a, <
U/

n’~ many: 28
text: 11,19

words: 33,40

63

‘.h Construction(l1)

» Merging of the partial indices
— Merge the sorted vocabularies
— Merge both lists of occurrences if a word appears in

both Indices

| -1..8 | Level 4
H) final index
7) { ’
| '14 ----|.-_ §,,8 Level 3

4] [1-56][1-7.8] Level2

—4] [-5|1-6] I-7|[l-8] Level1

(initial dumps) 64

i Other Indices for Text

= Suffix trees and suffix arrays

= Suffix tree is a trie data structure built over all the
suffixes of the text (a string that goes from one text
position to the end of the text)

= Suffix arrays are a space efficient implementation of
suffix trees
= Signature file
= Word-oriented index structures based on hashing
= Low space overhead, search complexity is linear
= Problem: false drop

65

‘_h Overview

= Introduction

= Spatial Indexing
= R-Tree
« Finding K-nearest Neighbors
= The Reverse Nearest Neighbors

= String Indexing
= Inverted Files

» Suffix Tree/Array
= Signhature Files

66

i Suffix Trees and Suffix Arrays

m Suffix

= Each position in the text is considered as a text suffix.

= A string that does from that text position_to the end to the
text

= Each suffix is uniquely identified by its position

= Advantage
= They answer efficiently more complex queries.

= Drawback
= Costly construction process
= The text must be readily available at query time

= The results are not delivered in text position order,
but in a lexicographical order

67

i Suffix tree

s Structure

— The suffix tree is a trie structure built over all the
suffixes of the text

e Points to text are stored at the leaf nodes

— The suffix tree is implemented as a Patricia tree (or
PAT tree), I.e., a compact suffix tree

e Unary paths (where each node has just one child)
are compressed

e An indication of next character (or bit) position to check are
stored at the internal nodes

— Each node takes 12 to 24 bytes
— A space overhead of 120%~240% over the text size

68

i Tries called "PATRICIA"

= The compact trie can be even more compacted.

= Tries called "PATRICIA"

= "PATRICIA" stands for "practical algorithm to
retrieve information coded in alphanumeric".

« different from the previous trie, an edge can
be labeled with more than one character.

= Hence, all the unary nodes will be collapsed.

69

i Tries called "PATRICIA"

= Collapsing process

B % B%

70

i Tries called "PATRICIA"

compact trie PATRICIA trie

71

i Suffix trie

= The idea behind suffix
TRIE Is:

= assign to each symbol in a
text an index
corresponding to its
position in the text.

0
= For example: .
TEXT: GOOGOLS L.
POSITION: 1 23 4567 $
« To build the suffix TRIE we 1 3 ks
use these indices instead ¢ @

of the actual object. $®

12

‘.h Suffix tree

= The suffix tree is created by TRIMMING (compacting +
collapsing every unary node) of the suffix TRIE

Suffix trie

Suffix tree
GDDGDLE root

root

= search "GO, return: GOOGOL$,GOLS$
x Search “OR?”, return NIL

‘.h Suffix tree

= The suffix trie and suffix tree for the
sample text

1 6 911 1719 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters

suffix trie suffix tree

position of the next
character to check

60

50

19

111
40
=33

one pointer storedifor 74
each indexed suffix

T e 40
‘d /_\ ‘S’ K
AN

<33

i Suffix array

sort the suffizes & store i1n a takle all the 1ndices.

GOLE
GOOGOLE
L¥

O GOLE
OLE

QO GOLE

E

NOT 5TOEED

S

> TOEED

o) B) [(Y [S] Focy () O

Search Igorithm can use a log,n, to find
word place in the table.

For example, if "GOOD" is in the text then it
Is between 4 and 1. Looking up the string
corresponding to suffixes 4 and 1 in the text
we see that "GOOD" is not in it.

75

i Suffix Arrays

« Basic ldeas

— Provide the same functionality as suffix tress with
much less space requirements

— The leaves of the suffix tree are traversed In left-to-
right (or top-to-down) order, I.e. lexicographical order,
to put the points to the suffixes in the array

- The space requirements the same as inverted files
— Binary search performed on the array
. SlDW When array |5 |E“.gIE Q(n), nis The size of Indices

Il f6 Y1718 04 DR 33 40 46 50 55 60
This 1s a text. A text has many words. Words are made from letters.

4

one pointer stored for each
Suffix array 60(50 | 28|19 11| 40|33} Indexedsuffix

(~40% overhead over the text size)

i Suffix Arrays: Supra indices

« Divide the array into blocks (may with variable
length) and make a sampling of each block
— Use the first k suffix characters

— Use the first word of suffix changes (e.g., “text " (19)
In the next example for nonuniformly sampling)

« Act as a first step of search to reduce external
accesses (supra indices kept in memory!)

1 6 911 1719 24 28 33 40 46 50 55 60
This 1s a text. A text has manv words. Words are made from letters.
= e —

The first 4 suffix characters et - . . word first k suffix characters *
are indexec | -
re indexed v e J Supra-Index
Suffixes sampled at 60|50 | 28119 11 (40133 .
fixed intervals . » Suffix Array

b suffix array indices

‘.h Suffix Arrays: Supra indices

« Compare word (vocabulary) supra-index with

inverted list
1 A a0 e foAsEng 6 iy 33 40 46 50 55 60
This 1s a text. A text has many words. Words are made from letters.
letter| |made| |many| |text | |word | | Vocabulary
;s = Supra-Index
¥ » .#"f a j.--"";
GOl 5028|119 11] 40|33 Suffix Array
60| 50| 2811 | 19] 33|40 Inverted List

i . -
— Word occurrences Iin suffix array are sorted
major) lexicographically

differene in i |
~"T= Word occurrences in inverted list are sorted by text
. positions

‘_h Overview

= Introduction

= Spatial Indexing
= R-Tree
« Finding K-nearest Neighbors
= The Reverse Nearest Neighbors

= String Indexing
= Inverted Files

= Suffix Tree/Array
= Sighature Files

79

i Signature files(l)

- Basic Ideas
— Word-oriented index structures based on hashing

» A hash function (signature) maps words to bit
masks of B bits

— Divide the text into blocks of b words each

» A bit mask of B bits is assigned to each block by
bitwise ORIng the signatures of all the words in the
text block

— A word Is presented in a text block If all bits set in its
signature are also set in the bit mask of the text block

80

Signature files(l1)

Block 1 Block 2 Block 3 Block 4

This 1s a text| A text has many|words. Words are|made from letters.

. . - A ‘\ / / Text
size b

e T, g

000101 110101 100100 101101 Text Signature
Signature functions Stop word list
h(text) = 000101 this
h(many) = 110000 'j
h{iwords) = 100100 has
h(made) = 001100 are
from
h(lettersy = 100001 | | ...
—_—
size B

» The text signhature contains
— Seqguences of bit masks
— Pointers to blocks 81

‘.h Signature files(111)

+ False Drops or False Alarms

— All the corresponding bits are set in the bit mask of a
text block, but the query word Is not there

— E.g., a false drop for the index “letters” in block 2

 Goals of the design of signature files
_~— Ensure the probability of a false drop Is low enough

. Keep the signature file as short as possible

82

‘.h Signature files(1V)

- Single word queries
— Hash each word to a bit mask W

— Compare the bit mask B; of all text block (linear
search) if they contain the word (W & B,==W ?)

- Overhead: online traverse candidate blocks to
verify If the word is actually there
- Phrase or Proximity queries

— The bitwise OR of all the query (word) masks Is
searched

— The candidate blocks should have the same bits
presented “1" as that in the composite query mask

— Block boundaries should be taken care of
» For phrases/proximities across two blocks 83

‘.h Signature files(V)

« Construction

— Text Is cut In blocks, and for each block an entry of
the signature file is generated

« Bitwise OR of the signatures of all the words In it
— Adding text and deleting text are easy

84

i Essential Reading

= A. Guttman, "R-Trees: A Dynamic Index
Structure for Spatial Searching." SIGMOD
Conference 1984: 47-57

= Nick Roussopoulos, Steve Kelley, and F.
Vincent. “Nearest Neighbor Queries”. Proc. of
ACM-SIGMOQOD, pages 71--79, May 1995.

= [Baez+99] R. Baeza-Yates, et al, Modern
Information Retrieval (Acm Press Series),
1999, Chapter 8.1-8.3.

85

i&ddltlonal Reading

~. Korn and S. Muthukrishnan. Influence sets
oased on reverse nearest neighbor queries. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2000.

86

