
1

Data Mining: Foundation,
Techniques and Applications

Anthony Tung(鄧锦浩)
School of Computing
National University of Singapore

Lesson 3: Indexing

Li Cuiping(李翠平)
School of Information
Renmin University of China

2

Examples

decision treeclustersassociation rulesstructure of the model
or pattern

Our focus in the next two
lectures

data management
technique

greedygradient
descent

breadth first with
pruning

search /optimization
method

accuracy,
information gain

square errorsupport, confidencescore function

classificationclusteringrule pattern discoverytask

ID3K-meansApriori

3

Overview

Introduction
Spatial Indexing

R-Tree
Finding K-nearest Neighbors
The Reverse Nearest Neighbors

String Indexing
Inverted Files
Suffix Tree/Array
Signature Files

4

Tree-Structured Indexing

Tree-structured indexing techniques support
both range searches and equality searches

index file may still be quite large. But we
can apply the idea repeatedly!

Data
pages

5

B+ Tree: The Most Widely Used Index

Height-balanced.
Insert/delete at log F N cost (F = fanout, N = #
leaf pages);

Grow and shrink dynamically.
Minimum 50% occupancy (except for root).

Each node contains d <= m <= 2d entries. The
parameter d is called the order of the tree.

`next-leaf-pointer’ to chain up the leaf nodes.
Data entries at leaf are sorted.

6

Example B+ Tree

Each node can hold 4 entries (order = 2)

2 3

Root

17

24 30

14 16 19 20 22 24 27 29 33 34 38 39

135

75 8

7

Node structure

P0 K 1 P 1 K 2 P 2 K m P m

index entry
Non-leaf nodes

Leaf nodes

P0 K 1 P 1 K 2 P 2 K m P m Next leaf
node

8

Searching in B+ Tree

Search begins at root, and key comparisons
direct it to a leaf
Search for 5, 15, all data entries >= 24 ...

Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2 3 5 14 16 19 20 22 24 27 29 33 34 38 39

13

9

Inserting a Data Entry into a B+ Tree
Find correct leaf L.
Put data entry onto L.

If L has enough space, done!
Else, must split L (into L and a new node L2)

Redistribute entries evenly, copy up middle key.
Insert index entry pointing to L2 into parent of L.

This can happen recursively
To split index node, redistribute entries evenly, but
push up middle key. (Contrast with leaf splits.)

Splits “grow” tree; root split increases height.
Tree growth: gets wider or one level taller at top.

10

Inserting 7 & 8 into Example B+ Tree
Root

2 3 5 7 14 16 19 20 22 24 27 29 33 34 38 39

2 3 5 7 8

5

(Note that 5 is copied up and

continues to appear in the leaf.)

17 24 3013

17 24 3013

Observe how minimum
occupancy is
guaranteed in both leaf
and index pg splits.

11

Overview

Introduction
Spatial Indexing

R-Tree
Finding K-nearest Neighbors
The Reverse Nearest Neighbors

String Indexing
Inverted Files
Suffix Tree/Array
Signature Files

12

R-Tree Index Structure

A spatial database consists of a collection
of objects representing spatial objects,
where each object has a unique identifier,
which can be used to retrieve it.
An R-tree is a height-balanced tree similar
to a B-tree, with index records in its leaf
nodes containing pointers to data objects.
Nodes correspond to disk pages if the
index is disk-resident.

13

We will transverse
through the R-Tree
to give some idea of
its structure

R-tree:Structure(I)

14

R1

We first move to the
first layer of the R-
tree which consist of
the two nodes R1
and R2.

R2

R-tree:Structure(II)

15

R1

Then we move to
the second layer
under node R1 which
consist of node R3,
R4 and R5

R2

R3
R4

R5

R-tree:Structure(III)

16

R1

Then we move to
the third layer under
node R3 which
consist of node R8,
R9 and R10

R2

R3
R4

R5

R-tree:Structure(III)

17

Assuming we want
to find all objects
lying within the
yellow query box Q1

R-tree:Searching(I)

Q1

18

R1

We first move to the
first layer of the R-
tree and observe
that the Q1 intercept
both R1 and R2.

R2

R-tree:Search(II)

Q1

19

R1

Then we move to
the second layer of
both R1 and R2 and
observe that the
query box only
intercept node R3,
R4 and R5. Thus we
will not access the
children of R6 and
R7.

R2

R3
R4

R5

R-tree:Search(III)

Q1

20

R1

Then we move to
the third layer under
R3, R4, R5 and find
the only R10,R11,
R12, R13 and R14
intercept Q1. Thus
we will only
access the data
objects under
these five nodes

R2

R3
R4

R5

R-tree:Search(IV)

Q1

21

Maintenance of R-tree
Very much like the maintenance of B+ Tree.
Take average O(log n) to search, insert and
delete.
Concern when splitting nodes: Need to
ensure that the bounding box have the
smallest area

22

NN Search Problem

Given a point p，find its nearest neighbor
from all points of database.
Eg：

Find the nearest hotel to some theater
Find the nearest star to some space point
Find the most similar picture to some given
picture

23

Naïve Algorithm
Compare point by point

min = ∞
Pick a random point q from the data set,
return the distance between them
If the distance is less than min, update min

Obviously, not efficient

24

Improved algorithm

Construct a index such as R-tree for the
data
To prune off those MBRs which can never
contain a nearest neighbor.

25

R-tree: Finding Nearest Neighbor
First problem to be solve:

Given a query point p and a
minimum bounding rectangle
(MBR), find an upper bound
and lower bound for the
distance r such that there
exists at least one point in
the MBR that is within a
distance of r from p.

Why ?
To facilitate some form of
ranking to prune off
uninteresting MBRs
Eg. we can prune off MBR3 and
MBR4.

MBRp

r

distance

MBR1 MBR3MBR2 MBR4

26

R-tree: Finding Lower Bound(MINDIST)

MBR(R)

p

mindist

p mindist

p

mindist

∑
=

−=
n

i
ii rpRpMINDIST

1

2||),(

=ir {
;iii spifs <

;iii tpift >

;otherwisepi

t1s1

s2

t2

Note: p is located at
(p1,p2) i.e p1 and p2 are
the x-y coordinates!

27

R-tree: Finding Upper Bound(I)

Most trivial solution: Find
the point in MBR which is
furthest away
But we can do better
with a certain
observation!

MBR(R)

p

maxdist

t1s1

s2

t2

28

R-tree: Finding Upper Bound(II)

Important observation: Every face of any
MBR should contains at least one point in
the DB.

MBR(R)

assuming this is the
leftmost point

then left border can
be shifted here

29

R-tree: Finding Upper Bound(II)

Important observation: Every face of any
MBR should contains at least one point in
the DB.

MBR(R)

assuming this is the
leftmost point

30

R-tree: Finding Upper Bound(III)

We can now find a better upper
bound based on this property.

MBR(R)

p

t1s1

We know that there
is at least one point,
q, along this face.
How do we obtain
the maximum
distance between p
and q ?

s2

t2

Answer: Assume q is
here

q

31

R-tree: Finding Upper Bound(IV)

Find the upper bound MINMAXDIST by
performing the following steps:

For each face of the MBR, pick the location q
that is furthest away from p and insert
dist(p,q) into a set QSET
Pick the minimum out of QSET to be
MINMAXDIST, the upper bound for r such
that there exist at least one point q from the
MBR such that dist(p,q)<=r

32

Actual Calculation of MINMAXDIST

otherwisetrM

tspifsrM

otherwisetrm

tspifsrm

rMprmp

ii

ii
iii

kk

kk
kkk

nk
ki

ikkk
nk

−=

+
≥−=

−=

+
≤−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−+− ∑

≤≤
≠≤≤

2
)(:

2
)(:

1

22

1
min

MBR(R)

p

t1s1

s2

t2

minimum of this
two distance

(t1+s1)/2

(t2+s2)/2

i

33

R-tree: Example

34

Overview

Introduction
Spatial Indexing

R-Tree
Finding K-nearest Neighbors
The Reverse Nearest Neighbors

String Indexing
Inverted Files
Suffix Tree/Array
Signature Files

35

Search ordering:
MINDIST: optimistic
MINMAXDIST: pessimistic.

Search pruning:
Downward pruning: An MBR R is discarded if there exists
another R’ such that

MINDIST(P,R) > MINMAXDIST(P,R’)

Downward pruning: An object O is discarded if there exists an R
such that

ACTUAL-DIST(P,O) > MINIMAXDIST(P,R)

Upward pruning: An MBR R is discarded if an object O is found
such that

MINDIST(P,R)>ACTUAL_DIST(P,O)

1-NN Algorithm for R-tree(I)

36

1-NN Algorithm for R-tree(II)
best first traversal of the nodes in the
R-tree.
A heap is maintained for storing every
MBR
The algorithm maintains a variable Best
which is initially set to ∞ and are updated
later

37

k-Nearest Neighbors

Definition: Given a query point p, and a distance
function dist(), let qk be a point in the database
such that

count({q| dist(p,q) < dist(p,qk), q ∈D}) = k-1

The k-nearest neighbors of p are all points q such
that dist(p,q) <= dist(p,qk)

p

qk

k=10

38

R-tree: Finding k-Nearest Neighbors
First problem to be solve:

Given a query point p and a
minimum bounding rectangle
(MBR), find an upper bound
and lower bound for the
distance r such that there
exists at least one point in
the MBR that is within a
distance of r from p.

Why ?
To facilitate some form of
ranking to prune off
uninteresting MBRs
Eg. if k=2, we can prune off
MBR4.

MBRp

r

distance

MBR1 MBR3MBR2 MBR4

39

k-NN Algorithm
Keep a sorted buffer of at most k current
nearest neighbors
Pruning is done according to the distance
of the furthest nearest neighbor in this
buffer

40

Overview

Introduction
Spatial Indexing

R-Tree
Finding K-nearest Neighbors
The Reverse Nearest Neighbors

String Indexing
Inverted Files
Suffix Tree/Array
Signature Files

41

Reverse Nearest Neighbors
The reverse nearest neighbors of a point p, RNN(p) are
those points which have p as their 1-nearest neighbor
Example: RNN(p)={r,t}, RNN(s)={p} i.e. s is the
nearest neighbor of p, RNN(u)={s}

pr
s

t

u

42

RNN: Potential Applications
FedEx Drop-off Points: Who are the customers who
have a particular FedEx drop-off point as their
nearest drop-off point.
Competitors Analysis: Does my video shop have a
lot of reverse neighbors ?
Data Mining: Spatial reasoning

Which location in the data space have the most RNN ?
=> most dense point
What does it mean if NN(p) is not in RNN(p) ? What
does it mean if NN(p) is in RNN(p) ?

43

Overview

Introduction
Spatial Indexing

R-Tree
Finding K-nearest Neighbors
The Reverse Nearest Neighbors

String Indexing
Inverted Files
Suffix Tree/Array
Signature Files

44

Introduction(I)
On-line text searching(=sequential
searching)

involves finding the occurrences of a pattern
in a text when the text is not preprocessed.
is appropriate when the text is small
is the only choice if the text collection is very
volatile (i.e. undergoes modifications very
frequently), or the index space overhead
cannot be afforded.

45

Introduction(II)
Indexed searching

builds data structures over the text(called indices) to
speed up the search.
is appropriate when the text collection is large and
semi-static

Semi-static collection : is updated at reasonably regular
intervals but are not deemed to support thousands of
insertion of single words per second.

Indexing techniques
inverted files, suffix arrays, and signature files
Consider search cost, space overhead, and cost of
building and updating indexing structures

46

Introduction(III)
Indexing technique

Inverted files
Word oriented mechanism for indexing a text collection
Composed of vocabulary and occurrences
are currently the best choice for most application.

Suffix arrays
are faster for phrase searches and other less common
queries.
are harder to build and maintain.

Signature files
Word oriented index structures based on hashing
were popular in the 1980s

47

Introduction(IV)
Indexed structure

Trie
sorted arrays, binary search tree, B-tree, hash table, etc.

Notations
n: the size of the text database
m: pattern length
M: amount of main memory available

Stop Words
a list of words considered to have no indexing value
Ex. a, an, any, the, to , with , from , for , of , that, who

48

Trie
The term trie comes from the word "retrieval".
Is pronounced, "tree."

Tries were introduced in the 1960's by Fredkin.

49

Structure of a trie
A trie is a k-ary position tree.
It is constructed from input strings, i.e. the input is a
set of n strings called S1,S2,...,Sn, where each Si
consists of symbols from a finite alphabet and has a
unique terminal symbol which we call $.

50

Kinds of tries
1 Non compact tries.
2 Compact tries.
3 "PATRICIA" Tries: even more compact.
4 Suffix tries.
5 Suffix trees.

51

Non compact tries
every edge of the underlying
tree represents a symbol
construct the trie
from: the
following 5
strings:

BIG,
BIGGER,
BILL,
GOOD,
GOSH.

Look for:
GOOD
BAD

52

Compact tries

53

Compact tries
Non compact trie compact trie

54

Overview

Introduction
Spatial Indexing

R-Tree
Finding K-nearest Neighbors
The Reverse Nearest Neighbors

String Indexing
Inverted Files
Suffix Tree/Array
Signature Files

55

Inverted Files(I)
Definition

A word-oriented mechanism for indexing a
text collection in order to speed up the
searching task.

Two elements
Vocabulary

The set of all different words in the text.
Occurrence

For each word a list of all the text positions where
the word appears.

56

Inverted Files(II)
A sample text and an inverted index built
on it

This is a text. A text has many words. Words are made from letters
1 6 9 11 17 19 24 28 33 40 46 50 55 60

letters
made
many
text
words

60…
50…
28…
11, 19…
33, 40…

Vocabulary Occurrence

inverted index

text

57

Inverted Files(III)
Required space

The space required for the vocabulary is rather small.
The occurrences demand much more space.
Block addressing

reduces space requirements.
The text is divided in blocks, and the occurrences point to
the blocks where the word appears(instead of the exact
position).
Block division

The division into blocks of fixed size improves efficiency at
retrieval time.
The division using natural cuts(files, documents, web pages)
may eliminate the need for online traversal.

58

Inverted Files(IV)
The sample text split into four blocks

This is a text. A text has many words. Words are made from letters
block 1 block 2 block3 block 4

letters
made
many
text
words

4…
4…
2…
1, 2…
3…

Vocabulary Occurrence

inverted index

text

59

Inverted Files(V)
Sizes of an inverted file:

Addressing
256 blocks

Addressing
64K blocks

Addressing
documents

Addressing
words

Index

18%

27%

19%

45%

Small collection
(1 Mb)

Large collection
(2 Gb)

Medium collection
(200 Mb)

0.7%0.5%2.4%1.7%25%

9%5%32%18%41%

47%26%32%18%26%

63%35%64%36%73%

60

Searching(I)
Three General search steps

Vocabulary search
The words and patterns present in the query are isolated
and searched in the vocabulary.

Retrieval of occurrences
The lists of the occurrences of all the words found are
retrieved.

Manipulation of occurrences
The occurrences are processed to solve phrases, proximity,
or Boolean operations.
If block addressing is used, it may be necessary to directly
search the text to find the information missing from the
occurrences.

61

Searching(II)
Single-word queries

Be searched using any suitable data structure to
speed up the search, such as hashing, tries O(m), or
B-trees.

Prefix and range queries can be solved with binary search,
tries, or B-trees, but not with hashing.

Context queries
Each element of query must be searched separately
and a list generated for each one.
The lists of all elements are traversed to find places
where all the words appear in sequence(for a
phrase) or appear close enough(for proximity).

62

Searching(III)
Block addressing

It is necessary to traverse the blocks for
these queries, since the position information
is needed.
It is better to intersect the lists to obtain the
blocks which contain all the searched words
and then sequentially search the context
query in those blocks.

63

Construction(I)
Building an inverted index for the sample
text (Fig 8.3)

This is a text. A text has many words. Words are made from letters
1 6 9 11 17 19 24 28 33 40 46 50 55 60

letters: 60
made: 50

many: 28
text: 11,19

words: 33,40

‘l’
‘m’ ‘a’

‘d’

‘n’‘t’

‘w’

64

Construction(II)

65

Other Indices for Text
Suffix trees and suffix arrays

Suffix tree is a trie data structure built over all the
suffixes of the text (a string that goes from one text
position to the end of the text)
Suffix arrays are a space efficient implementation of
suffix trees

Signature file
Word-oriented index structures based on hashing
Low space overhead, search complexity is linear
Problem: false drop

66

Overview

Introduction
Spatial Indexing

R-Tree
Finding K-nearest Neighbors
The Reverse Nearest Neighbors

String Indexing
Inverted Files
Suffix Tree/Array
Signature Files

67

Suffix Trees and Suffix Arrays
Suffix

Each position in the text is considered as a text suffix.
A string that does from that text position to the end to the
text
Each suffix is uniquely identified by its position

Advantage
They answer efficiently more complex queries.

Drawback
Costly construction process
The text must be readily available at query time
The results are not delivered in text position order,
but in a lexicographical order

68

Suffix tree
Structure
– The suffix tree is a trie structure built over all the
suffixes of the text

• Points to text are stored at the leaf nodes
– The suffix tree is implemented as a Patricia tree (or
PAT tree), i.e., a compact suffix tree

• Unary paths (where each node has just one child)
are compressed
• An indication of next character (or bit) position to check are
stored at the internal nodes

– Each node takes 12 to 24 bytes
– A space overhead of 120%~240% over the text size

69

Tries called "PATRICIA"
The compact trie can be even more compacted.

Tries called "PATRICIA"
"PATRICIA" stands for "practical algorithm to
retrieve information coded in alphanumeric".
different from the previous trie, an edge can
be labeled with more than one character.

Hence, all the unary nodes will be collapsed.

70

Tries called "PATRICIA"
Collapsing process

71

Tries called "PATRICIA"
compact trie PATRICIA trie

72

Suffix trie
The idea behind suffix
TRIE is:

assign to each symbol in a
text an index
corresponding to its
position in the text.
For example:

TEXT: G O O G O L $
POSITION: 1 2 3 4 5 6 7

To build the suffix TRIE we
use these indices instead
of the actual object.

73

Suffix tree
The suffix tree is created by TRIMMING (compacting +
collapsing every unary node) of the suffix TRIE

Suffix trie Suffix tree

search "GO“, return: GOOGOL$,GOL$
Search “OR”, return NIL

74

Suffix tree
The suffix trie and suffix tree for the
sample text

This is a text. A text has many words. Words are made from letters
1 6 9 11 17 19 24 28 33 40 46 50 55 60

60

50

28
19

11
40

33

‘l
’ ‘m

’

‘a’
‘d
’
‘n
’‘t’

‘e’ ‘x
’

‘t’
‘’

‘.’‘w
’ ‘o

’
‘r’ ‘d

’
‘s’

‘’

‘.’

suffix trie

1 3

5

6

60
50

28
19

11
40

33

suffix tree
‘l
’ ‘m

’
‘t’

‘w
’

‘d
’‘n
’

‘’
‘.’

‘’
‘.’

position of the next
character to check

one pointer stored for
each indexed suffix

75

Suffix array

Search lgorithm can use a log2n, to find
word place in the table.
For example, if "GOOD" is in the text then it
is between 4 and 1. Looking up the string
corresponding to suffixes 4 and 1 in the text
we see that "GOOD" is not in it.

76

Suffix Arrays

77

Suffix Arrays: Supra indices

78

Suffix Arrays: Supra indices

79

Overview

Introduction
Spatial Indexing

R-Tree
Finding K-nearest Neighbors
The Reverse Nearest Neighbors

String Indexing
Inverted Files
Suffix Tree/Array
Signature Files

80

Signature files(I)

81

Signature files(II)

82

Signature files(III)

83

Signature files(IV)

84

Signature files(V)

85

Essential Reading

A. Guttman, "R-Trees: A Dynamic Index
Structure for Spatial Searching." SIGMOD
Conference 1984: 47-57
Nick Roussopoulos, Steve Kelley, and F.
Vincent. “Nearest Neighbor Queries”. Proc. of
ACM-SIGMOD, pages 71--79, May 1995.
[Baez+99] R. Baeza-Yates, et al, Modern
Information Retrieval (Acm Press Series),
1999, Chapter 8.1-8.3.

86

Additional Reading
F. Korn and S. Muthukrishnan. Influence sets
based on reverse nearest neighbor queries. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2000.

