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IntroductionIntroduction
• Complex queries on raw data can be very 

expensive in both CPU and I/O cost
• Many of these queries are often repeated

or share common intermediate result 
• Solution: Pre-computed information which 

can be used to speed up the answering of 
queries or mining. Result returned can be 
exact or approximate.
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Data CubesData Cubes
• Two ways to look at them:

– As a relational aggregation operator to generalize 
group-by and aggregate. Use to model data warehouse. 
Also known as  OLAP(On-line Analytical Processing)

– As the implementation for supporting the above 
operator

• Relational Operator
select model, year, color, sum(sales)
from car_sales
where model in {“chevy”, “ford”}
and year between 1990 and 1994
group by cube model, year, color 
having sum(sales) > 0;
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Data Cube: An ExampleData Cube: An Example
SALES  

Model Year Color Sales 
Chevy 1990 red 5 
Chevy 1990 white 87 
Chevy 1990 blue 62 
Chevy 1991 red 54 
Chevy 1991 white 95 
Chevy 1991 blue 49 
Chevy 1992 red 31 
Chevy 1992 white 54 
Chevy 1992 blue 71 
Ford 1990 red 64 
Ford 1990 white 62 
Ford 1990 blue 63 
Ford 1991 red 52 
Ford 1991 white 9 
Ford 1991 blue 55 
Ford 1992 red 27 
Ford 1992 white 62 
Ford 1992 blue 39

DATA CUBE  
Model Year Color Sales 
ALL ALL ALL 942 
chevy ALL ALL 510 
ford ALL ALL 432 
ALL 1990 ALL 343 
ALL 1991 ALL 314 
ALL 1992 ALL 285 
ALL ALL red  165 
ALL ALL white 273 
ALL ALL blue 339 
chevy 1990 ALL 154 
chevy 1991 ALL 199 
chevy 1992 ALL 157 
ford 1990 ALL 189 
ford 1991 ALL 116 
ford 1992 ALL 128 
chevy ALL red 91 
chevy ALL white 236 
chevy ALL blue 183 
ford ALL red 144 
ford ALL white 133 
ford ALL blue 156 
ALL 1990 red 69 
ALL 1990 white 149 
ALL 1990 blue 125 
ALL 1991 red 107 
ALL 1991 white 104 
ALL 1991 blue 104 
ALL 1992 red 59 
ALL 1992 white 116 
ALL 1992 blue 110

CUBE
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Why the ALL Value?Why the ALL Value?
• Need a new “Null” value (overloads the null indicator)

• Value must not already be in the aggregated domain

• Can’t use NULL since may aggregate on it.

• Think of ALL as a token representing the set
– {red, white, blue}, {1990, 1991, 1992}, {Chevy, Ford}

• Rules for “ALL” in other areas not explored
– assertions

– insertion / deletion / ...

– referential integrity

• Follow “set of values” semantics.
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Data Cube: A Conceptual ViewsData Cube: A Conceptual Views

• Provide a multidimensional view of data for easier 
data analysis

Year
M

od
el

C
ol

orsum

sum
Ford

Chevy

1990 1991 1992

Red

Blue

White

sum
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Cube: A Lattice of CuboidsCube: A Lattice of Cuboids

all

model year color

model,year model,color year,color

model,year,color

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D(base) cuboid
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A Concept Hierarchy: Dimension (location)A Concept Hierarchy: Dimension (location)

all

Europe North_America

MexicoCanadaSpainGermany

Vancouver

M. WindL. Chan

...

......

... ...

...

all

region

office

country

TorontoFrankfurtcity
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A Concept Hierarchy: More examplesA Concept Hierarchy: More examples

• Sales volume as a function of product, month, and 
region

Pr
od

uc
t

Reg
ion

Month

Dimensions: Product, Location, Time
Hierarchical summarization paths

Industry   Region         Year

Category   Country  Quarter

Product      City     Month    Week

Office         Day
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Conceptual Modeling of Data CubeConceptual Modeling of Data Cube

• Modeling data cubes: dimensions & measures
– Star schema: A fact table in the middle connected to a set of 

dimension tables 
– Snowflake schema:  A refinement of star schema where some 

dimensional hierarchy is normalized into a set of smaller 
dimension tables, forming a shape similar to snowflake

– Fact constellations:  Multiple fact tables share dimension 
tables, viewed as a collection of stars, therefore called galaxy 

schema or fact constellation
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Example of Star SchemaExample of Star Schema

time_key
day
day_of_the_week
month
quarter
year

time

location_key
street
city
province_or_street
country

location

Sales Fact Table

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

avg_sales
Measures

item_key
item_name
brand
type
supplier_type

item

branch_key
branch_name
branch_type

branch
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Example of Snowflake SchemaExample of Snowflake Schema

time_key
day
day_of_the_week
month
quarter
year

time

location_key
street
city_key

location

Sales Fact Table

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

avg_sales

Measures

item_key
item_name
brand
type
supplier_key

item

branch_key
branch_name
branch_type

branch

supplier_key
supplier_type

supplier

city_key
city
province_or_street
country

city
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Example of Fact ConstellationExample of Fact Constellation

time_key
day
day_of_the_week
month
quarter
year

time

location_key
street
city
province_or_street
country

location

Sales Fact Table

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

avg_sales
Measures

item_key
item_name
brand
type
supplier_type

item

branch_key
branch_name
branch_type

branch

Shipping Fact Table

time_key

item_key

shipper_key

from_location

to_location

dollars_cost

units_shipped

shipper_key
shipper_name
location_key
shipper_type

shipper
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Measures: Three CategoriesMeasures: Three Categories
• distributive: if the result derived by applying the function to n 

aggregate values is the same as that derived by applying the 
function on all the data without partitioning.

• E.g., count(), sum(), min(), max().
• algebraic: if it can be computed by an algebraic function with M

arguments (where M is a bounded integer), each of which is 
obtained by applying a distributive aggregate function.

• E.g., avg(), min_N(), standard_deviation().
• holistic: if there is no constant bound on the storage size needed 

to describe a subaggregate.
• E.g., median(), mode(), rank().
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Typical OLAP OperationsTypical OLAP Operations
• Roll up (drill-up): summarize data

– by climbing up hierarchy or by dimension reduction
• Drill down (roll down): reverse of roll-up

– from higher level summary to lower level summary or detailed data, or 
introducing new dimensions

• Slice and dice:
– select on one or more dimensions

• Pivot (rotate):
– reorient the cube, visualization, 3D to series of 2D planes.

• Other operations
– drill across: involving (across) more than one fact table
– drill through: through the bottom level of the cube to its back-end 

relational tables (using SQL)
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Cube Alternatives in RDBMSCube Alternatives in RDBMS

• Physically materialize the whole data cube
– Best query response 

– Heavy pre-computing, large storage space

• Materialize nothing
– Worse query response

– Dynamic query evaluation, less storage space

• Materialize only part of the data cube
– Balance the storage space and response

– Addressed in this paper
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Motivating ExampleMotivating Example

• Parts (p) are bought from suppliers (s) and then sold to 
customers (c) at a sale price SP.

psc 6M

pc 6M ps 0.8M sc 6M

p 0.2M s 0.01M c 0.1M

none 1

1. part,supplier,customer 
(6M, I.e., 6 million rows)

2. Part, customer (6M)
3. Part, supplier (0.8M)
4. Supplier, customer (6M)
5 part (0.2M)
6. Supplier (0.01M)
7. Customer (0.1M)
8. None (1)
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Questions Questions 
• How many views must we materialize to get reasonable 

performance?

• Given that we have space S, what views do we materialize so 
that we minimize average query cost

• If we’re willing to tolerate an X% degradation in average 
query cost from a fully materialize data cube, how much 
space can we save over the full materialized data cube?
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OutlineOutline
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• Data Reduction:
– One-Dimensional Synopses: Histograms, Wavelets
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Dependence Relation on QueriesDependence Relation on Queries
• Q1, Q2 are two queries, Q1≦Q2 if and only if Q1 can be 

answered using only the results of query Q2, or we may say 
Q1 is dependent on Q2.
– E.g. (part) ≦(part, customer), (part) ≦(customer), (customer) 

≦(part)

– Here, relation ‘≦’ is called partial order

– All the views (queries) of a cube L and dependence relations ‘≦’ is a 
lattice, denoted as <L, ≦>
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Composite Lattices Composite Lattices 
• Two kinds of query dependence

– Query dependencies caused by the interaction of the different 
dimensions with one another.

– Query dependencies  within a dimension caused by attributes 
hierarchies.

• Composite lattice 
– Hi is the hierarchy lattice of dimensioni, then (a1,a2,…,an) ≦

(b1,b2,…,bn) if and only if ai ≦bi for all i.
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ExampleExample

part

p:individual part

s: size

T: type

none

c

n

customer

c:individual customer

n: country

cp 6M

cs 5M ct 5.99M

np 5M c 0.1M

ns 1250 nt 3750

p 0.2M n 25

s 50 t 150

none 1

p

t

none

s
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View QueriesView Queries

• Types of view queries 
– Queries for the whole view

• Scanning of the whole view, cost are proportional to the size 
of the view

– Queries for a single or small numbers of cells. 
• The materialized view is indexed, about 1 (I/O)
• No index, the cost almost equal to scanning the whole view

• Assumption
– All the queries are identical to some element (view) in the given 

lattice.

* In fact, complex access path to single cells may be used
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Cost ModelCost Model
• Linear relationship between cost and size

T=m*S + c
T: running time of the query on the view
m: ratio of query time to the size
S: size of the view
c: a fixed cost (overhead of running this query on a view of 

negligible size)

.000037226.236,000,00
0

View (part, supplier, 
customer)

.00002320.77800,000View (part, supplier)

.0000312.3810,000From view(supplier)

Not applicable2.071From cell itself

RatioTime(sec.)sizeSource
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Benefit to Materialize a ViewBenefit to Materialize a View
<L,≦> is a cube, 

S ={MV1,MV2, …,MVn} is a subset of L,all MVi’s are already 
materialized. S always includes the top view.

A view V∈L, the benefit of V relative to S is defined as follows.

1. For each W≦V, define the quantity Bw by 

(a) Let U be the view of least cost in S such that W ≦U. Note 
that since the top view is in S, there must be at least one 
such view in S.

(b) If C(V)<C(U), then Bw=C(U)-C(V). Otherwise Bw=0.

2. Define B(V,S)=∑W≦VBw

*actually, here B(V,S) indicates how much will be saved if V 
is materialized.
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Greedy AlgorithmGreedy Algorithm
Only k views are materialized in order to save the 

space.

S = {top view};

For I=1 to k do begin

select that view V not in S such that B(V,S)     
is maximized;

S=S union {V};

End;

Resulting S is the greedy selection;
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Example for Greedy SelectionExample for Greedy Selection

a

b c
ed f

g h

100

50 7530
20

1

40

10

30X1=3040X1=4090X1=90h

49X1=4949X1=4999X1=99g

60+10=7060X2=120f

20+20+10=5020X3=6070X3=210e

30X2=6030X2=6080X2=160d

25X1=2525X2=5025X5=125c

50X5=250b

Third ChoiceSecond ChoiceFirst Choice

‘a’ is the top view; The first loop, ‘b’ is 
selected; the second loop, ‘f’ is selected, 
the third loop, ‘d’ is selected

If only a is 
materialized, total 
cost is 800. If 
a,b,d,f 
materialized, total 
cost is 420
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Not an Optimal Not an Optimal 

a

b dc

200

100 100

20 
node 
total 
1000

99

Suppose k = 2. The first 
loop, c is selected with 
benefit 41X101=4141. The 
second loop, b (or d) is 
selected with benefit 
100X21=2100.

Total benefit=6241.

But if a,b,d are selected, 
total benefit = 
20X100X4+2X100 = 8200
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HoweverHowever

• Performance is guaranteed
– A/B > 0.63 (A: optimal benefit; B: greedy benefit)

• The views in a lattice are unlikely to have the same 
probability of being requested in a query.
– Weight each view by its probability 

• Limited space may replace limited number of views 
– need further considerations
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Efficient Computation of Data CubesEfficient Computation of Data Cubes
• Preliminary cube computation tricks (Agarwal et al’96)

• Computing full/iceberg cubes: 3 methodologies 
– Top-Down: Multi-Way array aggregation (Zhao,Deshpande & Naughton, 

SIGMOD’97) 

– Bottom-Up: 

• Bottom-up computation: BUC (Beyer & Ramarkrishnan, 
SIGMOD’99)

• H-cubing technique (Han, Pei, Dong & Wang: SIGMOD’01)
– Integrating Top-Down and Bottom-Up: 

• Star-cubing algorithm (Xin, Han, Li & Wah: VLDB’03)

• High-dimensional OLAP: A Minimal Cubing Approach

• Computing alternative kinds of cubes: 
– Partial cube, closed cube, approximate cube, etc.
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Preliminary Tricks (Preliminary Tricks (AgarwalAgarwal et al. VLDBet al. VLDB’’96)96)
• Sorting, hashing, and grouping operations are applied to the dimension 

attributes in order to reorder and cluster related tuples
• Aggregates may be computed from previously computed aggregates, rather 

than from the base fact table
– Smallest-child: computing a cuboid from the smallest, previously computed 

cuboid
– Cache-results: caching results of a cuboid from which other cuboids are 

computed to reduce disk I/Os
– Amortize-scans: computing as many as possible cuboids at the same time to 

amortize disk reads
– Share-sorts: sharing sorting costs cross multiple cuboids when sort-based 

method is used
– Share-partitions: sharing the partitioning cost across multiple cuboids when 

hash-based algorithms are used
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MultiMulti--Way Array AggregationWay Array Aggregation
• Array-based “bottom-up” algorithm
• Using multi-dimensional chunks
• No direct tuple comparisons
• Simultaneous aggregation on multiple 

dimensions
• Intermediate aggregate values are re-used 

for computing ancestor cuboids
• Cannot do Apriori pruning: No iceberg 

optimization

all

A B

AB

ABC

AC BC

C
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MultiMulti--way Array Aggregation for Cube way Array Aggregation for Cube 
Computation (MOLAP)Computation (MOLAP)
• Partition arrays into chunks (a small subcube which fits in memory). 
• Compressed sparse array addressing: (chunk_id, offset)
• Compute aggregates in “multiway” by visiting cube cells in the order 

which minimizes the # of times to visit each cell, and reduces memory 
access and storage cost.

What is the best 
traversing order 
to do multi-way 
aggregation?

A

B
29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1c 0

b3

b2

b1

b0
a2 a3

C

B

44
28 56

4024 5236
20

60
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Order of Order of computation computation 

all

A B C

AB AC BC

ABC

Two ways of ordering computation of a cube. 
Which is more efficient ?

all

A B
C

AB AC BC

ABC
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MultiMulti--way Array Aggregation for Cube way Array Aggregation for Cube 
ComputationComputation

A

B

29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1
c 0

b3

b2

b1

b0
a2 a3

C

44
28 56

40
24 52

36
20

60

B
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MultiMulti--way Array Aggregation for Cube way Array Aggregation for Cube 
ComputationComputation

A

B

29 30 31 32

1 2 3 4

5

9

13 14 15 16

64636261
48474645

a1a0

c3
c2

c1
c 0

b3

b2

b1

b0
a2 a3

C

44
28 56

40
24 52

36
20

60

B
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MultiMulti--Way Array Aggregation for Cube Way Array Aggregation for Cube 
Computation (Cont.)Computation (Cont.)

• Method: the planes should be sorted and computed according to 
their size in ascending order
– Idea: keep the smallest plane in the main memory, fetch and 

compute only one chunk at a time for the largest plane

• Limitation of the method: computing well only for a small number
of dimensions
– If there are a large number of dimensions, “top-down” computation 

and iceberg cube computation methods can be explored
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The Curse of DimensionalityThe Curse of Dimensionality
• None of the previous cubing method can handle high dimensionality!

• A database of 600k tuples.  Each dimension has cardinality of 100 
and zipf of 2.
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Motivation of HighMotivation of High--D OLAPD OLAP

• Challenge to current cubing methods:
– The “curse of dimensionality’’ problem

– Iceberg cube and compressed cubes: only delay the inevitable 
explosion

– Full materialization: still significant overhead in accessing results 
on disk

• High-D OLAP is needed in applications
– Science and engineering analysis

– Bio-data analysis: thousands of genes

– Statistical surveys: hundreds of variables
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Fast HighFast High--D OLAP with Minimal CubingD OLAP with Minimal Cubing

• Observation: OLAP occurs only on a small subset of dimensions at a 
time

• Semi-Online Computational Model

1. Partition the set of dimensions into shell fragments

2. Compute data cubes for each shell fragment while retaining inverted 
indices or value-list indices

3. Given the pre-computed fragment cubes, dynamically compute cube cells 
of the high-dimensional data cube online
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Properties of Proposed MethodProperties of Proposed Method
• Partitions the data vertically

• Reduces high-dimensional cube into a set of lower dimensional cubes

• Online re-construction of original high-dimensional space

• Lossless reduction

• Offers tradeoffs between the amount of pre-processing and the 

speed of online computation
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Example ComputationExample Computation
• Let the cube aggregation function be count

• Divide the 5 dimensions into 2 shell fragments: 
– (A, B, C) and (D, E)

e3d1c1b1a25

e2d1c1b1a24

e2d1c1b2a13

e1d2c1b2a12

e1d1c1b1a11

EDCBAtid
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11--D Inverted IndicesD Inverted Indices
• Build traditional invert index or RID list

15e3

23 4 e2

21 2e1

12d2

41 3 4 5d1

51 2 3 4 5c1

22 3b2

31 4 5b1

24 5a2

31 2 3a1

List SizeTID ListAttribute Value
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Shell Fragment CubesShell Fragment Cubes

• Generalize the 1-D inverted indices to multi-dimensional ones in the data 
cube sense

111 2 3    1 4 5a1 b1

04 5    2 3a2 b2

24 54 5    1 4 5a2 b1

22 31 2 3    2 3a1 b2

List SizeTID ListIntersectionCell

∩

∩

∩

∩ ⊗
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Shell Fragment Cubes (2)Shell Fragment Cubes (2)
• Compute all cuboids for data cubes ABC and DE while retaining the 

inverted indices

• For example, shell fragment cube ABC contains 7 cuboids:
– A, B, C

– AB, AC, BC

– ABC

• This completes the offline computation stage
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Shell Fragment Cubes (4)Shell Fragment Cubes (4)

• Shell fragments do not have to be disjoint

• Fragment groupings can be arbitrary to allow for maximum online 

performance

– Known common combinations (e.g.,<city, state>) should be grouped

together.

• Shell fragment sizes can be adjusted for optimal balance between

offline and online computation
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ID_Measure TableID_Measure Table
• If measures other than count are present, store in ID_measure table 

separate from the shell fragments

3025

4054

2083

1032

7051

sumcounttid
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The The FragFrag--Shells AlgorithmShells Algorithm

1. Partition set of dimension (A1,…,An) into a set of k fragments (P1,…,Pk).

2. Scan base table once and do the following

3. insert <tid, measure> into ID_measure table.

4. for each attribute value ai of each dimension Ai

5. build inverted index entry <ai, tidlist>

6. For each fragment partition Pi

7. build local fragment cube Si by intersecting tid-lists in bottom-

up fashion.
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FragFrag--Shells (2)Shells (2)

…FEDCBA

ABC
Cube

DEF
Cube

D Cuboid
EF Cuboid

DE Cuboid

……

{5, 10}d2 e1

{2, 4, 6, 7}d1 e2

{1, 3, 8, 9}d1 e1

Tuple-ID ListCell

Dimensions
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Online Query ComputationOnline Query Computation
For example,   returns a 2-D data cube. 

(a1, b1, c1, * , e1)
  a1,a2,K,an : M
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Online Query Computation (2)Online Query Computation (2)
• Given the fragment cubes, process a query as follows

1. Divide the query into fragment, same as the shell

2. Fetch the corresponding TID list for each fragment from the 
fragment cube

3. Intersect the TID lists from each fragment to construct 
instantiated base table

4. Compute the data cube using the base table with any cubing algorithm
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Online Query Computation (3)Online Query Computation (3)

…NMLKJIHGFEDCBA

Online
Cube

Instantiated 
Base Table
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Other Issues: Order of Materialization(II)Other Issues: Order of Materialization(II)

all

A B C

AB AC BC

ABC

Two ways of ordering computation of a cube. 
Which is more efficient ?

all

A B
C

AB AC BC

ABC
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Other Issues: Efficient Range Query ProcessingOther Issues: Efficient Range Query Processing

• What if we want to restrict our aggregation to certain range of values 
in each dimension ?

• Eg. Total number of people with (25<age<=35) and (160 < height <180) 
which is highlighted in blue.

533242

286237

322153

age

height
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Other Issues: Efficient Range Query Processing(II)Other Issues: Efficient Range Query Processing(II)

• Potential Solution: Pre-computed prefix-sum array

635340292412

443929211810

161311983

533242

286237

322153

age

height

191411862

28261812107

161311983
sum 
along
row

sum along 
column

sum =(40-11)-(24-8)

= 40-11-24+8

= 13
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Other Issues: Efficient Range Query Processing(III)Other Issues: Efficient Range Query Processing(III)

• What about range max query ?

• What if the cube is sparse ?

• What happen if update is required ?
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From OnFrom On--Line Analytical Processing to On Line Analytical Processing to On 
Line Analytical Mining (OLAM)Line Analytical Mining (OLAM)

• Why online analytical mining?
– High quality of data in data warehouses

• DW contains integrated, consistent, cleaned data
– Available information processing structure surrounding data warehouses

• ODBC, OLEDB, Web accessing, service facilities, reporting and 
OLAP tools

– OLAP-based exploratory data analysis

• mining with drilling, dicing, pivoting, etc.
– On-line selection of data mining functions

• integration and swapping of multiple mining functions, 
algorithms, and tasks.

• Architecture of OLAM
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An OLAM ArchitectureAn OLAM Architecture

Data 
Warehouse

Meta Data

MDDB

OLAM
Engine

OLAP
Engine

User GUI API

Data Cube API

Database API

Data cleaning

Data integration

Layer3

OLAP/OLAM

Layer2

MDDB

Layer1

Data 
Repository

Layer4

User Interface

Filtering&Integration Filtering

Databases

Mining query Mining result
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Data reductionData reduction
• Volume of data that must be handled in databases and data 

warehouses can be very large- terabytes  of data are not 
uncommon

• Analyses and mining can be complex and can take a very long 
time to run on complete data set. There is also a need to do 
some estimation of the data distribution in order to 
formulate good query plan (or mining plan)

• Is it possible to have a reduced representation of the data 
set that is much smaller in data volume and yet produce the 
same analytical result ?
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Measure of PerformanceMeasure of Performance

• Reduction Ratio
– Size after reduction/Size before reduction

• Secondary Measure
– Progressive Resolution

– Incremental Computation

– Speed of reduction - as long as not too slow

– Speed of retrieval - more important
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NumerosityNumerosity vsvs Dimension ReductionDimension Reduction
• Numerosity Reduction

– Reduce the number of distinct values or tuples
– Can involve one or more dimensions
– Methods include 

• histograms, wavelet, sampling, clustering, index tree

• Dimension Reduction
– Reduce the number of dimensions
– Have to involve more than one dimensions
– Methods include

• Singular Value Decomposition (SVD), local 
dimensionality reduction

• Of course, you can try to do both
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Parametric Parametric vsvs NonNon--Parametric TechniquesParametric Techniques
• Parametric

– Assume a model for the data and the aim is to estimate the parameters for 
the model

– Example: log-linear model, SVD, linear regression...

– Advantage: Give good reduction if correct model and parameters are found

– Disadvantage: Parameters are hard to estimate

• Non-Parametric
– Opposite of parametric method, assume no model

– Example: histogram, cluster, index tree

– Advantage: No need to set parameters

– Disadvantage: Less reduction

• Sampling: Neither parametric or non-parametric
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The Data Reduction CycleThe Data Reduction Cycle

Original 
Data

reduction 
techniques

Reduced
Data

more 
efficient 

processing
produce 
reduced 
dataset
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Our Focus of StudiesOur Focus of Studies

• One-Dimensional Synopses
– Histograms: Equi-width, Equi-depth, Compressed, V-optimal

– Wavelets: 1-D Haar-wavelet histogram construction
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HistogramsHistograms
• Partition attribute value(s) domain into a set of buckets

• Issues: 
– How to partition

– What to store for each bucket

– How to estimate an answer using the histogram

• Long history of use for selectivity estimation within a query 
optimizer [Koo80], [PSC84], etc.

• [PIH96] [Poo97] introduced a taxonomy, algorithms, etc.
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11--D Histograms: D Histograms: EquiEqui--DepthDepth

• Goal: Equal  number of rows per bucket (B buckets in all)

• Can construct by first sorting then taking B-1 equally-spaced splits

• Faster construction: Sample & take equally-spaced splits in sample
– Nearly equal buckets
– Can also use one-pass quantile algorithms (e.g., [GK01])

Count in
bucket

Domain values1  2  3 4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

1  2  2  3 4  7  8  9 10 10 10 10 11 11 12 12 14 16 16 18 19 20 20 20
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11--D Histograms: CompressedD Histograms: Compressed

• Create singleton buckets for largest values, equi-depth over the rest

• Improvement over equi-depth since get exact info on largest values, 
e.g., join estimation in DB2 compares largest values in the relations 

Construction: Sorting + O(B log B) + one pass; can use sample

1  2  3 4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

[PIH96]
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11--D Histograms: VD Histograms: V--OptimalOptimal
[IP95] defined V-optimal & showed it minimizes the average selectivity 
estimation error for equality-joins & selections

– Idea: Select buckets to minimize frequency variance within buckets
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OneOne--Dimensional Dimensional HaarHaar Wavelets Wavelets 
• Wavelets: mathematical tool for hierarchical decomposition 

of functions/signals 
• Haar wavelets:  simplest wavelet basis, easy to understand 

and implement 
– Recursive pairwise averaging and differencing at different 

resolutions

Resolution           Averages             Detail Coefficients
[2, 2, 0, 2, 3, 5, 4, 4]

[2,    1,    4,      4] [0, -1, -1, 0]

[1.5,           4] [0.5, 0]

[2.75] [-1.25]

----3

2

1

0

Haar wavelet decomposition: [2.75, -1.25, 0.5, 0, 0, -1, -1, 0]
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HaarHaar Wavelet Coefficients Wavelet Coefficients 

Coefficient “Supports”

2              2   0            2   3            5   4          4

-1.25
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0.5 0

0 -1 0-1

+

-+

+

+ + +

+

+
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- - - -

+
-+

+ -
+ -

+-
+-

-+
+--1
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0.5

0

2.75 

-1.25

0

0

• Hierarchical decomposition structure 
(a.k.a. “error tree”)

Original data
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WaveletWavelet--based Histograms based Histograms [MVW98][MVW98]

• Problem: range-query selectivity estimation 

• Key idea: use a compact subset of Haar/linear wavelet 
coefficients for approximating the data distribution



2007-12-1 78

Using WaveletUsing Wavelet--based Histograms  based Histograms  
• Selectivity estimation: sel(a<= X<= b) = C’[b] - C’[a-1]

– C’ is the (approximate) “reconstructed” cumulative distribution
– Time: O(min{b, logN}), where b = size of wavelet synopsis (no. of 

coefficients),  N= size of domain

• Empirical results over synthetic data 
– Improvements over random sampling and histograms (MaxDiff)

C[a]

• At most logN+1  coefficients are 
needed to reconstruct any C value
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Essential ReadingsEssential Readings

• Data Mining Concepts and techniques. Chapter 2,3,4

• [Gray+96] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. 
Reichaxt, and M. Venkatrao. “Data Cube: A Relational Aggregation 
Operator Generalizing Group-By, Cross-Tab, and Sub-Totals”. In 
DMKD, pages 29-53. Kluwer Academic Publishers, 1997.

• [JKM98] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, 
K. Sevcik, and T. Suel. “Optimal Histograms with Quality 
Guarantees”. VLDB 1998
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Optional ReadingsOptional Readings
• Bar+97] D. Barbara, W. DuMouchel, C. Faloutsos, P. J. Haas, 

J. M. Hellerstein, Y. Ioannidis, H. V. Jagadish, T. Johnson, R. 
Ng, , V. Poosala, K. A. Ross, and K. C. Sevcik. “The New 
Jersey data reduction report”. Bulletin of the Technical 
Committee on Data Engineering, 20(4), 1997.

• [MVW98] Y. Matias, J.S. Vitter, and M. Wang. “Wavelet-based 
Histograms for Selectivity Estimation”. ACM SIGMOD 1998

• [HG04]X. Li, J. Han, and H. Gonzalez, “High-Dimensional 
OLAP: A Minimal Cubing Approach”, Proc. 2004 Int. Conf. on 
Very Large Data Bases (VLDB'04), Toronto, Canada, Aug. 
2004. 



2007-12-1 81

AcknowledgmentAcknowledgment
• Part of these slides are adopted from the slides of the 

following tutorials
– "Approximate Query Processing: Taming the Terabytes" (ppt)

(with Phillip Gibbons).  2001 International Conference on Very Large 
Databases (VLDB'2001), Roma, Italy, September 2001. 



2007-12-1 82

ReferenceReference

• [PIH96] V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita. “Improved 
Histograms for Selectivity Estimation of Range Predicates”. ACM SIGMOD 
1996.

• [MVW00] Y. Matias, J.S. Vitter, and M. Wang. “Dynamic Maintenance of 
Wavelet-based Histograms”. VLDB 2000



2007-12-1 83

References (1)References (1)
• [AC99] A. Aboulnaga and S. Chaudhuri. “Self-Tuning Histograms: Building Histograms 

Without Looking at Data”. ACM SIGMOD 1999.
• [AGM99] N. Alon, P. B. Gibbons, Y. Matias, M. Szegedy. “Tracking Join and Self-Join Sizes 

in Limited Storage”. ACM PODS 1999.
• [AGP00] S. Acharya, P. B. Gibbons, and V. Poosala. ”Congressional Samples for Approximate 

Answering of Group-By Queries”. ACM SIGMOD 2000.
• [AGP99] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy.  “Join Synopses for Fast 

Approximate Query Answering”.  ACM SIGMOD 1999.
• [AMS96] N. Alon, Y. Matias, and M. Szegedy. “The Space Complexity of Approximating the 

Frequency Moments”. ACM STOC 1996.
• [BCC00] A.L. Buchsbaum, D.F. Caldwell, K.W. Church, G.S. Fowler, and S. Muthukrishnan. 

“Engineering the Compression of Massive Tables: An Experimental Approach”. SODA 2000.
– Proposes exploiting simple (differential and combinational) data dependencies for effectively 

compressing data tables.
• [BCG01] N. Bruno, S. Chaudhuri, and L. Gravano. “STHoles: A Multidimensional Workload-

Aware Histogram”. ACM SIGMOD 2001.
• [BDF97] D. Barbara, W. DuMouchel, C. Faloutsos, P. J. Haas, J. M. Hellerstein, Y. 

Ioannidis, H. V. Jagadish, T. Johnson, R. Ng, V. Poosala, K. A. Ross, and K. C. Sevcik.  “The 
New Jersey Data Reduction Report”. IEEE Data Engineering bulletin, 1997.



2007-12-1 84

References (2)References (2)
• [BFH75] Y.M.M. Bishop, S.E. Fienberg, and P.W. Holland. “Discrete Multivariate Analysis”. 

The MIT Press, 1975.
• [BGR01] S. Babu, M. Garofalakis, and R. Rastogi. “SPARTAN: A Model-Based Semantic 

Compression System for Massive Data Tables”. ACM SIGMOD 2001.
– Proposes a novel, “model-based semantic compression” methodology that exploits mining models 

(like CaRT trees and clusters) to build compact, guaranteed-error synopses of massive data tables.
• [BKS99] B. Blohsfeld, D. Korus, and B. Seeger. “A Comparison of Selectivity Estimators for 

Range Queries on Metric Attributes”. ACM SIGMOD 1999.
– Studies the effectiveness of histograms, kernel-density estimators, and their hybrids for 

estimating the selectivity of range queries over metric attributes with large domains.
• [CCM00] M. Charlikar, S. Chaudhuri, R. Motwani, and V. Narasayya. “Towards Estimation 

Error Guarantees for Distinct Values”. ACM PODS 2000.
• [CDD01] S. Chaudhuri, G. Das, M. Datar, R. Motwani, and V. Narasayya. “Overcoming 

Limitations of Sampling for Aggregation Queries”. IEEE ICDE 2001.
– Precursor to [CDN01]. Proposes a method for reducing sampling variance by collecting outliers     

to a separate “outlier index” and using a weighted sampling scheme for the remaining data. 
• [CDN01] S. Chaudhuri, G. Das, and V. Narasayya. “A Robust, Optimization-Based Approach 

for Approximate Answering of Aggregate Queries”. ACM SIGMOD 2001.
• [CGR00] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim. “Approximate Query 

Processing Using Wavelets”. VLDB 2000. (Full version to appear in The VLDB Journal)



2007-12-1 85

References (3)References (3)
• [Chr84] S. Christodoulakis. “Implications of Certain Assumptions on Database Performance 

Evaluation”. ACM TODS 9(2), 1984.
• [CMN98] S. Chaudhuri, R. Motwani, and V. Narasayya. “Random Sampling for Histogram 

Construction: How much is enough?”.  ACM SIGMOD 1998.
• [CMN99] S. Chaudhuri, R. Motwani, and V. Narasayya. “On Random Sampling over Joins”. 

ACM SIGMOD 1999. 
• [CN97] S. Chaudhuri and V. Narasayya.  “An Efficient, Cost-Driven Index Selection Tool 

for Microsoft SQL Server”.  VLDB 1997.
• [CN98] S. Chaudhuri and V. Narasayya. “AutoAdmin “What-if” Index Analysis Utility”. 

ACM SIGMOD 1998.
• [Coc77] W.G. Cochran. “Sampling Techniques”. John Wiley & Sons, 1977.
• [Coh97] E. Cohen. “Size-Estimation Framework with Applications to Transitive Closure   

and Reachability”.  JCSS, 1997.
• [CR94] C.M. Chen and N. Roussopoulos. “Adaptive Selectivity Estimation Using Query 

Feedback”. ACM SIGMOD 1994.
– Presents a parametric, curve-fitting technique for approximating an attribute’s distribution   

based on query feedback.
• [DGR01] A. Deshpande, M. Garofalakis, and R. Rastogi. “Independence is Good: 

Dependency-Based Histogram Synopses for High-Dimensional Data”. ACM SIGMOD 2001.



2007-12-1 86

References (4)References (4)
• [FK97] C. Faloutsos and I. Kamel. “Relaxing the Uniformity and Independence Assumptions 

Using the Concept of Fractal Dimension”. JCSS 55(2), 1997.
• [FM85] P. Flajolet and G.N. Martin. “Probabilistic counting algorithms for data base 

applications”. JCSS 31(2), 1985.
• [FMS96] C. Faloutsos, Y. Matias, and A. Silbershcatz. “Modeling Skewed Distributions 

Using Multifractals and the `80-20’ Law”. VLDB 1996.
– Proposes the use of “multifractals” (i.e., 80/20 laws) to more accurately approximate the 

frequency distribution within histogram buckets.
• [GGM96] S. Ganguly, P.B. Gibbons, Y.  Matias, and A. Silberschatz. “Bifocal Sampling for 

Skew-Resistant Join Size Estimation”. ACM SIGMOD 1996.
• [Gib01] P. B. Gibbons. “Distinct Sampling for Highly-Accurate Answers to Distinct Values 

Queries and Event Reports”. VLDB 2001.
• [GK01] M. Greenwald and S. Khanna. “Space-Efficient Online Computation of Quantile

Summaries”. ACM SIGMOD 2001.
• [GKM01a] A.C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M.J. Strauss. “Optimal and 

Approximate Computation of Summary Statistics for Range Aggregates”. ACM PODS 
2001.

– Presents algorithms for building “range-optimal” histogram and wavelet synopses; that is, synopses 
that try to minimize the total error over all possible range queries in the data domain.



2007-12-1 87

References (5)References (5)
• [GKM01b] A.C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M.J. Strauss. “Surfing Wavelets 

on Streams: One-Pass Summaries for Approximate Aggregate Queries”. VLDB 2001.
• [GKT00] D. Gunopulos, G. Kollios, V.J. Tsotras, and C. Domeniconi. “Approximating Multi-

Dimensional Aggregate Range Queries over Real Attributes”. ACM SIGMOD 2000.
• [GKS01a] J. Gehrke, F. Korn, and D. Srivastava. “On Computing Correlated Aggregates  

over Continual Data Streams”. ACM SIGMOD 2001.
• [GKS01b] S. Guha, N. Koudas, and K. Shim. “Data Streams and Histograms”. ACM STOC 

2001.
• [GLR00] V. Ganti, M.L. Lee, and R. Ramakrishnan. “ICICLES: Self-Tuning Samples for 

Approximate Query Answering“. VLDB 2000.
• [GM98] P. B. Gibbons and Y. Matias. “New Sampling-Based Summary Statistics for 

Improving Approximate Query Answers”. ACM SIGMOD 1998.
– Proposes the “concise sample” and “counting sample” techniques for improving the accuracy         

of sampling-based estimation for a given amount of space for the sample synopsis.
• [GMP97a] P. B. Gibbons, Y. Matias, and V. Poosala.  “The Aqua Project White Paper”.  Bell 

Labs tech report, 1997.
• [GMP97b] P. B. Gibbons, Y. Matias, and V. Poosala. “Fast Incremental Maintenance of 

Approximate Histograms”.  VLDB 1997.



2007-12-1 88

References (6)References (6)
• [GTK01] L. Getoor, B. Taskar, and D. Koller. “Selectivity Estimation using Probabilistic 

Relational Models”. ACM SIGMOD 2001.
– Proposes novel, Bayesian-network-based techniques for approximating joint data distributions     

in relational database systems.
• [HAR00] J. M. Hellerstein, R. Avnur, and V. Raman. “Informix under CONTROL: Online 

Query Processing”. Data Mining and Knowledge Discovery Journal, 2000.
• [HH99] P. J. Haas and J. M. Hellerstein. “Ripple Joins for Online Aggregation”. ACM 

SIGMOD 1999.
• [HHW97] J. M. Hellerstein, P. J. Haas, and H. J. Wang. “Online Aggregation”. ACM 

SIGMOD 1997.
• [HNS95] P.J. Haas, J.F. Naughton, S. Seshadri, and L. Stokes. “Sampling-Based Estimation 

of the Number of Distinct Values of an Attribute”. VLDB 1995.
– Proposes and evaluates several sampling-based estimators for the number of distinct values in        

an attribute column.
• [HNS96] P.J. Haas, J.F. Naughton, S. Seshadri, and A. Swami. “Selectivity and Cost 

Estimation for Joins Based on Random Sampling”. JCSS 52(3), 1996.
• [HOT88]  W.C. Hou, Ozsoyoglu, and B.K. Taneja. “Statistical Estimators for Relational 

Algebra Expressions”. ACM PODS 1988.
• [HOT89]  W.C. Hou, Ozsoyoglu, and B.K. Taneja. “Processing Aggregate Relational Queries 

with Hard Time Constraints”. ACM SIGMOD 1989.



2007-12-1 89

References (7)References (7)
• [IC91] Y. Ioannidis and S. Christodoulakis. “On the Propagation of Errors in the Size of 

Join Results”. ACM SIGMOD 1991.
• [IC93] Y. Ioannidis and S. Christodoulakis. “Optimal Histograms for Limiting Worst-Case 

Error Propagation in the Size of join Results”. ACM TODS 18(4), 1993.
• [Ioa93] Y.E. Ioannidis. “Universality of Serial Histograms”. VLDB 1993.

– The above three papers propose and study serial histograms (i.e., histograms that bucket 
“neighboring” frequency values, and exploit results from majorization theory to establish their 
optimality wrt minimizing (extreme cases of) the error in multi-join queries.

• [IP95] Y. Ioannidis and V. Poosala. “Balancing Histogram Optimality and Practicality for 
Query Result Size Estimation”. ACM SIGMOD 1995.

• [IP99] Y.E. Ioannidis and V. Poosala. “Histogram-Based Approximation of Set-Valued 
Query Answers”. VLDB 1999.

• [JKM98] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. Sevcik, and T. Suel. 
“Optimal Histograms with Quality Guarantees”. VLDB 1998.

• [JMN99] H. V. Jagadish, J. Madar, and R.T. Ng. “Semantic Compression and Pattern 
Extraction with Fascicles”. VLDB 1999.

– Discusses the use of “fascicles” (i.e., approximate data clusters) for the semantic compression of 
relational data.

• [KJF97] F. Korn, H.V. Jagadish, and C. Faloutsos. “Efficiently Supporting Ad-Hoc Queries 
in Large Datasets of Time Sequences”. ACM SIGMOD 1997.



2007-12-1 90

References (8)References (8)
– Proposes the use of SVD techniques for obtaining fast approximate answers from large time-

series databases.
• [Koo80] R. P. Kooi. “The Optimization of Queries in Relational Databases”. PhD thesis, Case 

Western Reserve University, 1980.
• [KW99] A.C. Konig and G. Weikum. “Combining Histograms and Parametric Curve Fitting for 

Feedback-Driven Query Result-Size Estimation”. VLDB 1999.
– Proposes the use of linear splines to better approximate the data and frequency distribution 

within histogram buckets.
• [Lau96] S.L. Lauritzen. “Graphical Models”. Oxford Science, 1996.
• [LKC99] J.H. Lee, D.H. Kim, and C.W. Chung. “Multi-dimensional Selectivity Estimation 

Using Compressed Histogram Information”. ACM SIGMOD 1999. 
– Proposes the use of the Discrete Cosine Transform (DCT) for compressing the information in 

multi-dimensional histogram buckets.
• [LM01] I. Lazaridis and S. Mehrotra. “Progressive Approximate Aggregate Queries with a 

Multi-Resolution Tree Structure”. ACM SIGMOD 2001.
– Proposes techniques for enhancing hierarchical multi-dimensional index structures to enable 

approximate answering of aggregate queries with progressively improving accuracy.
• [LNS90] R.J. Lipton, J.F. Naughton, and D.A. Schneider. “Practical Selectivity Estimation 

through Adaptive Sampling”. ACM SIGMOD 1990.
– Presents an adaptive, sequential sampling scheme for estimating the selectivity of relational    

equi-join operators. 



2007-12-1 91

References (9)References (9)
• [LNS93] R.J. Lipton, J.F. Naughton, D.A. Schneider, and S. Seshadri. “Efficient sampling 

strategies for relational database operators”, Theoretical Comp. Science, 1993.
• [MD88] M. Muralikrishna and D.J. DeWitt. “Equi-Depth Histograms for Estimating 

Selectivity Factors for Multi-Dimensional Queries”. ACM SIGMOD 1988. 
• [MPS99] S. Muthukrishnan, V. Poosala, and T. Suel. “On Rectangular Partitionings in Two 

Dimensions: Algorithms, Complexity, and Applications”. ICDT 1999.
• [MVW98] Y. Matias, J.S. Vitter, and M. Wang. “Wavelet-based Histograms for Selectivity 

Estimation”. ACM SIGMOD 1998.
• [MVW00] Y. Matias, J.S. Vitter, and M. Wang. “Dynamic Maintenance of Wavelet-based 

Histograms”. VLDB 2000.
• [NS90] J.F. Naughton and S. Seshadri. “On Estimating the Size of Projections”. ICDT 

1990. 
– Presents adaptive-sampling-based techniques and estimators for approximating the result size      

of a relational projection operation.
• [Olk93] F. Olken. “Random Sampling from Databases”.  PhD thesis, U.C. Berkeley, 1993.
• [OR92] F. Olken and D. Rotem.  “Maintenance of Materialized Views of Sampling Queries”. 

IEEE ICDE 1992.
• [PI97] V. Poosala and Y. Ioannidis. “Selectivity Estimation Without the Attribute Value 

Independence Assumption”. VLDB 1997.



2007-12-1 92

References (10)References (10)
• [PIH96] V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita. “Improved Histograms for 

Selectivity Estimation of Range Predicates”.  ACM SIGMOD 1996.
• [PSC84] G. Piatetsky-Shapiro and C. Connell. “Accurate Estimation of the Number of 

Tuples Satisfying a Condition”. ACM SIGMOD 1984.
• [Poo97] V. Poosala. “Histogram-Based Estimation Techniques in Database Systems”. PhD 

Thesis, Univ. of Wisconsin, 1997.
• [RTG98] Y. Rubner, C. Tomasi, and L. Guibas. “A Metric for Distributions with Applications 

to Image Databases”. IEEE Intl. Conf. On Computer Vision 1998.
• [SAC79] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. T. Price.  

“Access Path Selection in a Relational Database Management System”.  ACM SIGMOD 
1979.

• [SDS96] E.J. Stollnitz, T.D. DeRose, and D.H. Salesin. “Wavelets for Computer Graphics, A 
Primer”. Morgan-Kauffman Publishers Inc., 1996.

• [SFB99] J. Shanmugasundaram, U. Fayyad, and P.S. Bradley. “Compressed Data Cubes for 
OLAP Aggregate Query Approximation on Continuous Dimensions”. KDD 1999.

– Discusses the use of mixture models composed of multi-variate Gaussians for building compact 
models of OLAP data cubes and approximating range-sum query answers.

• [V85] J. S. Vitter.  “Random Sampling with a Reservoir”. ACM TOMS, 1985.



2007-12-1 93

References (11)References (11)
• [VL93] S. V. Vrbsky and J. W. S. Liu. “Approximate—A Query Processor that Produces 

Monotonically Improving Approximate Answers”.  IEEE TKDE, 1993.
– Uses class hierarchies on the data to iteratively fetch blocks relevant to the answer, producing 

tuples certain to be in the answer while narrowing the possible classes containing the answer.
• [VW99] J.S. Vitter and M. Wang. “Approximate Computation of Multidimensional 

Aggregates of Sparse Data Using Wavelets”. ACM SIGMOD 1999.


