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Predictive Modeling
Goal: learn a mapping:  y = f(x;θ)

Need:  1. A model structure

2. A score function

3. An optimization strategy

Categorical y ∈ {c1,…,cm}: classification

Real-valued y: regression

Note: usually assume {c1,…,cm} are mutually exclusive and 
exhaustive
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Two class of classifiers
Discriminative Classification

Provide decision surface or boundary to separate out 
the different classes
In real life, it is often impossible to separate out the 
classes perfectly
Instead, seek function f(x;θ) that maximizes some 
measure of separation between the classes. We call 
f(x; θ) the discriminant function.

Probabilistic Classification
Focus on modeling the probability distribution of 
each class
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Discriminative vs Probabilistic Classification

D1

D2

D3
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PCA: Theory

Rotate the data so that its primary axes 
lie along the axes of the coordinate space 
and move it so that its center of mass lies 
on the origin.
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PCA: Goal - Formally Stated

Problem formulation
Input: x=[x1|…|xN]d×N points in d-dimensional 
space
Look for: W, a d×m projection matrix (m≤d)
S.t. : y=[y1|…|yN]m×N = WT [x1|…|xN]...
...And correlation is minimized
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Dimension Reduction

Since there is no variance along one dimension, 
we only need a single dimension !!!
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2D data

y1

1D data
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Data Loss

Sample points can still be projected via 
the new m×d projection matrix Wopt and 
can still be reconstructed, but some 
information will be lost.

x1

x2

2D data 1D data

x1Wopt
T(xi - μ)

x1

x2

2D data

Wyi + μ



Data Mining: Foundation, Techniques and Applications 11

Basic: What is Covariance ?
Given a d-dimensional space with N data points, 
the covariance between the ith and jth
dimensions, represented as Covij defined as 
follow:

where xk[i] represent the ith dimension values 
for the kth data point and μi and μj represent 
the mean values of the data points along 
dimensions i and j respectively
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Example: Covariance 
μi = (1+2+3+4+5)/5 = 3
μj = (2+4+7+9+9)/5 =6.2
Covij(x)= 1/5 * ((1-3)(2-6.2) 
+ (2-3)(4-6.2) + (3-3)(7-
6.2) + (4-3)(9-6.2) + (5-
3)(9-6.2) ) 

= 4.04

Xi Xj

1 2

2 4

3 7

4 9

5 9
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Covariance: Intuition
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How to separate these two cases ?
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PCA: The Covariance Matrix

Given a d-dimensional space with N data 
points, the covariance matrix Cov(x) is a d x d
matrix in which the element at row i and 
column j contain the value Covij(x).

xi

xj

x x x x x xx x

xi

xj

x

x

x

x

x
x

x

x

x
x

x

x
x

x

x
x

x

x
x

x

x
x

x

x
x

x

x
x

x

Covjj(x) will be low Covjj(x) will be high



Data Mining: Foundation, Techniques and Applications 15

Properties of the Covariance Matrix(I)

The ith column can be seen as a vector that 
represent the covariance interaction of the ith
dimension with the rest of the dimensions
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Properties of the Covariance Matrix(II)

Given the covariance vector of dimension i, 
covi(x). We can compute the variance of it’s 
projection along a unit vector w as w.covi.

covi

wprojection

x
x

x

x

x

x

x

x

Recall that w.covi = |w||covi| cos θ. Since |w| is 1, we will 
have |covi| cos θ which is the length of the projection of 
covi along w.

θ
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Properties of the Covariance Matrix(III)

Assuming now we have W = [w1|…|wd], then WT Cov(x)
give the magnitude of the projection that each covariance 
vector in Cov(x) have on w1,...,wd.
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Properties of the Covariance Matrix(IV)

In addition, WT Cov(x) W give the variance of 
each covariance vector in Cov(x) when they are 
projected on w1,...,wd.
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PCA: Goal Revisited
We want each of the data points x1,...,xN are 
transformed to y1,...,yN based on WTxi for 1<= i 
<= N
Look for: W s.t.

[y1|…|yN] = WT [x1|…|xN], and 
correlation is minimized => Cov(y) is diagonal!
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Selecting the Optimal W
Note that Cov(y) can be expressed via Cov(x) and W as  

Cov(y) = WT Cov(x) W. How do we find such W ?
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Selecting the Optimal W(II)
We thus have

λiwi= Cov(x) wi

Therefore :
Choose Wopt to be the eigenvectors matrix:

Wopt = [w1|…|wd]
Where {wi|i=1,…,d} is the set of the 

d-dimensional eigenvectors of 
Cov(x)
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So…to sum up

To find a more convenient coordinate 
system one needs to :

Calculate 
mean 
sample μ

Subtract it 
from all 
samples xi

Calculate Covariance 
matrix for resulting 
samples

Find the set of 
eigenvectors for the 
covariance matrix

Create Wopt, the projection 
matrix, by taking as columns the 
eigenvectors calculated !
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So…to sum up (cont.)

Now we have that any point xi can be 
projected to an appropriate point yi by :

yi = Wopt
T(xi - μ)

and conversely (since W-1 = WT)
Wyi + μ = xi

X

Y xi

X

Y

yi

Wopt
T(xi-μ)

Wyi + μ
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Data Reduction: Theory

Each eigenvalue represents the the total 
variance in its dimension.
So…
Throwing away the least significant 
eigenvectors in Wopt means throwing 
away the least significant variance 
information !
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Data Reduction: Practice

Sort the d columns of the projection matrix Wopt
in descending order of appropriate eigenvalues.
Select the first m columns thus creating a new 
projection matrix of dimension d×m

Original Data

Compact Data

This will now be a 
projection from a d-

dimensional space to an m-
dimensional space (m < d) !
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Data Loss

It can be shown that the mean square 
error between xi and its reconstruction 
using only m principle eigenvectors is 
given by the expression :
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Feature Selection - Definition

Attempt to select the minimal size subset 
of features according to certain criteria:

classification accuracy is at least not
significantly dropped
Resulting class distribution given only values 
for the selected features is as close as 
possible to the original class distribution 
given all features



Data Mining: Foundation, Techniques and Applications 28

Four basic steps

Generation Evaluation

Stopping
Criterion Validation

Original
Feature Set Subset

Goodness of
the subset

No Yes

1 2

3 4
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Search Procedure - Approaches

Complete
complete search for optimal 
subset
Guaranteed optimality
Able to backtrack

Random
Setting a maximum number 
of iterations possible
Optimality depends on 
values of some parameters

Heuristic
“hill-climbing”
iterate, then remaining 
features yet to be 
selected/rejected are 
considered for 
selection/rejection
simple to implement
fast in producing results
produce sub-optimal 
results
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Evaluation Functions - Method Types

Filter methods
Distance Measures
Information Measures
Dependence Measures
Consistency Measures

Wrapper Methods
Classifier Error Rate Measures
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Relief :Underlying Concept
A statistical method to select the relevant 
features
It is a feature weight based algorithm
It first chooses a sample of instances from the 
training set instances, & user must provide the 
no of instances
It randomly pick the sample & find the near-hit 
and near-miss instances
Negative weights are for irrelevant features & 
positive weights are for relevant and redundant 
features
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Example

sample

near hit near miss
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Relief(S, No-of-Sample, Threshold) - Algorithm

Initialize all weights to
zero

For i = 1 to No-of-Sample

Randomly choose an
instance from training set

Find its near-hit and near-
miss

For i = 1 to N

W(i) = W(i) - diff(X(i), nearhit(i))2 +
diff(X(i), nearmiss(i))2

A

A

Divide all weights by No-
of-Sample

For i = 1 to N

W(i) > Threshold?

Append it to Selected-
Subset

Return Selected-Subset

Yes

No

Arbitrarily chosen
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Relief: Advantages and Disadvantages

Advantages
Relief works for noisy and correlated features
It requires only linear time in the number of given 
features and no of instances (No-of-Sample)
It works both for nominal and continuous data
The procedure is very simple to implement & very fast

Disadvantages
It often produces sub-optimal result because it does 
not remove redundant features
It works only for binary classes
User may find difficulty in choosing a proper No-of-
Sample
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LVF :Underlying Concept 

It randomly searches the space of 
instances which makes probabilistic choices 
faster to an optimal solution
For each candidate subset, it calculates an 
inconsistency count based on the intuition 
An inconsistency threshold is fixed in the 
beginning (0 by default)
Any subset with inconsistency rate greater 
than the threshold, is rejected
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Example:LVF
Current={A0,B0,C}, 
Mixed Class value comb.= (0,1,0), (1,0,0), (1,0,1)
Class Distribution=            (1,2), (1,1),   (1,1)
Inconsistency= (3-2)+(2-1)+(2-1) = 3
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LVF(S, MAX-TRIES, Incon-Threshold)

1. Initialize Selected-Subset to the original feature set

2. For i = 1 to MAX-TRIES
Randomly choose a subset of feature, CURRENT
If cardinality of CURRENT <= cardinality of Selected-Subset
   Calculate inconsistency rate of CURRENT
   If inconsistency rate < Incon-Threshold
      If cardinality < cardinality of Selected-Subset
         Selected-Subset=CURRENT
         Output CURRENT
      else
         Output CURRENT as 'yet another solution'

3. Return Selected-Subset
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LVF: Advantages and Disadvantages

Advantages
It is able to find the optimal subset even for 
databases with noise
User does not have to wait too long for a good 
subset
It is efficient and simple to implement and guarantee 
to find the optimal  subset if resources permit

Disadvantages
It may take more time to find the optimal subset 
(whether the data-set is consistent or not)



Data Mining: Foundation, Techniques and Applications 39

Problem with the Filter model

[Recap] Feature selection:
Pre-processing step to classification
Classification accuracy not dropped
Accuracy is always wrt to the classification 
algorithm

Assess merits of features from only the data 
and ignores the classification algorithm

generated feature subset may not be optimal for 
the target classification algorithm
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Wrapper Model
Use actual target classification 
algorithm to evaluate accuracy of each 
candidate subset

Evaluation Criteria
Classifier error rate

Generation method can be heuristic, 
complete or random
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Wrapper compared to Filter

higher accuracy

higher computation cost

lack generality
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Fisher’s Linear Discriminant
Objective: Find a projection which 

separates data clusters

Good separationPoor separation
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FLD: Problem formulation
Maximize the between-class variance while 
minimizing the within-class variance
Data points: 
2 classes:
Average of each class: 

Total average:
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FLD: Scoring Function
Let       and      be the covariance matrix of the 
two classes of points, their pooled covariance 
matrix will be computed as follow:

Given a vector w, we measure the separability
along w using the following score function
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No so good 
separation

wCwT ˆ

)ˆˆ( 21 μμ −Tw
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1μ̂
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Good separation

w
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Solution for Maximizing S(w)
Optimal solution for w is given by

http://www.stat.ucla.edu/~sczhu/Courses/UCLA/Stat_231/Lect7_Fisher.pdf

Classify a point to class 1 if
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Decision Tree 

Outlook

Sunny Overcast Rain

Humidity

High Normal

Wind

Strong Weak

No Yes

Yes

YesNo

• decision trees represent disjunctions of conjunctions

(Outlook=Sunny ∧ Humidity=Normal) 
∨ (Outlook=Overcast)
∨ (Outlook=Rain ∧ Wind=Weak)



Data Mining: Foundation, Techniques and Applications 50

Training Dataset
Outlook Temp Humid Wind PlayTennis
Sunny Hot High Weak No
Sunny Hot High Strong No

Overcast Hot High Weak Yes
Rain Mild High Weak Yes
Rain Cool Normal Weak Yes
Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes
Sunny Mild High Weak No
Sunny Cool Normal Weak Yes
Rain Mild Normal Weak Yes

Sunny Mild Normal Strong Yes
Overcast Mild High Strong Yes
Overcast Hot Normal Weak Yes

Rain Mild High Strong No
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Decision Tree for PlayTennis

Outlook

Sunny Overcast Rain

Humidity

High Normal

Wind

Strong Weak

No Yes

Yes

YesNo
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Decision Tree for PlayTennis

Outlook

Sunny Overcast Rain

Humidity

High Normal

No Yes

Each internal node tests an attribute

Each branch corresponds to an
attribute value node

Each leaf node assigns a classification
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No

Decision Tree for PlayTennis

Outlook

Sunny Overcast Rain

Humidity

High Normal

Wind

Strong Weak

No Yes

Yes

YesNo

Outlook Temperature Humidity Wind    PlayTennis
Sunny        Hot            High    Weak       ?
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Top-Down Induction of Decision Trees

1. A ← the “best” decision attribute for next node
2. Assign A as decision attribute for node
3.  For each value of A create new descendant 
4. Sort training examples to leaf node according to

the attribute value of the branch
5. If all training examples are perfectly classified 

(same value of target attribute) stop, else 
iterate over new leaf nodes.
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Which Attribute is ”best”?

A1=?

True False

[21+, 5-] [8+, 30-]

[29+,35-] A2=?

True False

[18+, 33-] [11+, 2-]

[29+,35-]
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Entropy

S is a sample of training examples
p+ is the proportion of positive examples
p- is the proportion of negative examples
Entropy measures the impurity of S
Entropy(S) = -p+ log2 p+ - p- log2 p-
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Information Gain
Gain(S,A): expected reduction in entropy due 
to sorting S on attribute A

A1=?

True False

[21+, 5-] [8+, 30-]

[29+,35-] A2=?

True False

[18+, 33-] [11+, 2-]

[29+,35-]

Gain(S,A)=Entropy(S) - ∑v∈values(A) |Sv|/|S| Entropy(Sv)

Entropy([29+,35-]) = -29/64 log2 29/64 – 35/64 log2 35/64
= 0.99
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Information Gain

A1=?

True False

[21+, 5-] [8+, 30-]

[29+,35-]

Entropy([21+,5-])   = 0.71
Entropy([8+,30-]) = 0.74
Gain(S,A1)=Entropy(S)

-26/64*Entropy([21+,5-]) 
-38/64*Entropy([8+,30-])

=0.27

Entropy([18+,33-]) = 0.94
Entropy([8+,30-]) = 0.62
Gain(S,A2)=Entropy(S)

-51/64*Entropy([18+,33-]) 
-13/64*Entropy([11+,2-])

=0.12

A2=?

True False

[18+, 33-] [11+, 2-]

[29+,35-]
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Entropy
Entropy(S)= expected number of bits needed to 
encode class (+ or -) of randomly drawn 
members of S (under the optimal, shortest 
length-code)

Why?
Information theory optimal length code assign 
–log2 p bits to messages having probability p.
So the expected number of bits to encode 
(+ or -) of random member of S:

-p+ log2 p+ - p- log2 p-
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Alternative Measures
Gain ratio: penalize attributes like date by 
incorporating split information

Split information is sensitive to how broadly and 
uniformly the attribute splits the data

Gain ratio can be undefined or very large
Only test attributes with above average Gain
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Gini Index
A data set S contains examples from n classes 
where pj is the relative frequency of class j in S

A data set S is split into two subsets S1 and S2
with sizes N1 and N2 respectively

The attribute provides the smallest ginisplit(T) is 
chosen to split the node
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Hypothesis Space Search ID3

+   - +

+  - +

A1

- - +
+  - +

A2

+   - -

+  - +

A2

-

A4
+  -

A2

-
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Inductive Bias
Preference for short trees, and for those with 
high information gain attributes near the root
Bias is a preference for some model, rather 
than a restriction of the model space
Occam’s razor: prefer the shortest (simplest) 
hypothesis that fits the data
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Occam’s Razor
Why prefer short hypotheses?
Argument in favor: 

Fewer short hypotheses than long hypotheses
A short hypothesis that fits the data is unlikely to be a 
coincidence
A long hypothesis that fits the data might be a 
coincidence

Argument opposed:
There are many ways to define small sets of 
hypotheses
E.g. All trees with a prime number of nodes that use 
attributes beginning with ”Z”
What is so special about small sets based on size of 
hypothesis
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Overfitting
A decision tree T overfits the training data 
if ∃ alternative tree T’ s.t. T has a higher 
accuracy than T’ over the training 
examples, but T’ has a higher accuracy 
than T over the entire distribution of data
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Avoid Overfitting
Prepruning: stop growing the tree earlier

Difficult to choose an appropriate threshold

Postpruning: remove branches from a 
“fully grown” tree

Use an independent set of data to prune

Key: how to determine the correct final 
tree size
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Discretizing Continuous Values
Turn continuous values into discrete values
Sort the examples according to their values for A
For each ordered pair Xi, Xi+1 in the sorted list,
If the category of Xi and Xi+1are different,
Then use the midpoint between their values as a 
candidate threshold

Value: 10 15 21 28 32 40 50

Class: No Yes Yes No Yes Yes No

12.5 24.5 30 45Threshold:
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Unknown Attribute Values
What if some examples have missing values for A?
Use training example anyway

If node n tests A, assign most common value of A 
among other examples 
Assign most common value of A among other 
examples with same target value
Assign probability pi to each possible value vi of A

Assign fraction pi of example to each 
descendant in tree

Classify new examples in the same fashion 
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Classification in Large Databases

What about the training data not in main 
memory?
Scalability: build classifiers for large data sets 
with many attributes in a reasonable speed
Why decision tree induction in data mining?

Relatively faster learning speed (than other 
classification methods)
Convertible to simple and easy to understand 
classification rules
Can use SQL queries for database accesses
Comparable classification accuracy with other 
methods
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SLIQ
Assumption: the training data set cannot be 
held in memory

Bottleneck: determining the best split for each 
attribute
Have to sort examples by attributes repeatedly

Presorted attribute lists and class list
Breadth-first growth of decision trees

Grow one level with a single, complete pass over 
the data
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Attribute Lists in SLIQ

Age Salary Class

30 65 G

23 15 B

40 75 G

55 40 B

55 100 G

45 60 G

Training data
Age

Class 
list 

index

23 2

30 1

40 3

45 6

55 5

55 4

Salary
Class 
list 

index

15 2

40 4

60 6

65 1

75 3

100 5

Index Class Leaf

1 G

B

G

B

G

G

N1

2 N1

3 N1

4 N1

5 N1

6 N1

Attribute lists Class list
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From SLIQ to SPRINT
The class list in SLIQ must stay in memory

Bottleneck: the class list can be huge

SPRINT: put class information in attribute 
lists

No class list anymore

Parallelizing classification
Partition the attribute lists
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Example of Attribute Lists

Age Salary Class
30 65 G
23 15 B
40 75 G
55 40 B
55 100 G
45 60 G

Training data

Age Class rid
23 B

G
G
G
G
B

2
30 1
40 3
45 6
55 5
55 4

Attribute lists

Salary Class rid
15 B

B
G
G
G
G

2
40 4
60 6
65 1
75 3
100 5
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RainForest: A Generic Framework

What is the bottleneck of scalability?
Computing the attribute-value, class label 
(AVC-group) for each node

RainForest: separate quality and 
scalability designs, focus on scalability

A set of algorithms for fast AVC-group 
computation
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Things to ponder

Is a decision tree a discriminant classifier 
or a probabilistic classifier ?
In discriminant classifier, it seems that we 
have an assumption that all predictive 
attributes are numerical attributes. Is it 
true ? What happen when there are 
categorical attributes ?
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SVM: Introduction
• Widely used method for learning classifiers 
and regression models

• Has some theoretical support from Statistical 
Learning Theory

• Empirically works very well, at least for some 
classes of problems
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l observations consisting of a pair: xi ∈ Rn, i=1,…,l and the 
associated “label” yi ∈ {-1,1}

Assume the observations are iid from P(x,y)

Have a “machine” whose task is to learn the mapping xi → yi

Machine is defined by a set of mappings x → f(x,α) 

Expected test error of the machine (risk):

Empirical risk(from training data):

VC Dimension

),(|),(|
2
1)( yxdPxfyR αα −= ∫

∑
=

−=
i

iemp xfy
l

R
1

|),(|
2
1)( αα

l

unknown
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VC Dimension (cont.)

Choose some η between 0 and 1. Vapnik (1995) showed that with 
probability 1- η :

l
hlhRR emp

)4log()1)2(log()()( ηαα −+
+≤

•h is the Vapnik Chervonenkis (VC) dimension and is a measure of 
the capacity or complexity of the machine.

•Note the bound is independent of P(x,y)!!!

•If we know h, can readily compute the RHS. This provides a 
principled way to choose a learning machine.
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VC Dimension (cont.)
Consider a set of function f(x,α) ∈ {-1,1}. A given set of l
points can be labeled in 2l ways. If a member of the set {f(α)} 
can be found which correctly assigns the labels for all 
labelings, then the set of points is shattered by that set of 
functions

The VC dimension of {f(α)} is the maximum number of 
training points that can be shattered by {f(α)}

For example, the VC dimension of a set of oriented lines in R2

is three.

In general, the VC dimension of a set of oriented hyperplanes
in Rn is n+1.

Note: need to find just one set of points.
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VC Dimension (cont.)

Note: VC dimension is not directly related to number of 
parameters. Vapnik (1995) has an example with 1 parameter 
and infinite VC dimension.

l
hlhRR emp

)4log()1)2(log()()( ηαα −+
+≤

VC Confidence
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η =0.05 and l=10,000
Amongst machines with zero empirical risk, choose the one with 

smallest VC dimension
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Linear SVM - Separable Case

l observations consisting of a pair: xi ∈ Rd, i=1,…,l and the 
associated “label” yi ∈ {-1,1}

Suppose ∃ a (separating) hyperplane w.x+b=0 that separates 
the positive from the negative examples. That is, all the training 
examples satisfy:

equivalently:

Let d+ (d-) be the shortest distance from the sep. hyperplane to 
the closest positive (negative) example. The margin of the sep. 
hyperplane is defined to be d+ + d-

1  when 1
1  when 1
−=−≤+⋅
+=+≥+⋅

ii

ii

ybwx
ybwx

ibwxy ii ∀≥−+⋅ 01)(
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w.x+b=0
(0,0) from |1|

w
b−

(0,0) from |1|
w

b−−
w
2
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SVM finds the hyperplane that minimizes |w| (equiv |w|2) 
subject to yi(wTxi + b)-1 ≥ 0    for i = 1, …., N i.e.

minimise Φ(w) = 1/2 wTw

The characteristics of the above QP are: convex quadratic 
objective function and linear constraints in w.
The Lagrangian of the QP is

Lp = 1/2 wTw - αi[yi(wTxi + b) - 1]

αi , i = 1, …, n is the Lagrange multiplier for constraint i.
Optimality conditions:

δLp / δw = 0 and   δLp / δb = 0

∑
=

l

i 1

Linear SVM - Separable Case(II)
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SVM (cont.)

•The two optimality conditions yield the following:

and

Equivalently maximize:

with respect to the αi’s, subject to αi≥0 and this is a convex 
quadratic programming problem

Note: only depends on dot-products of feature vectors

(Support vectors are points for which equality holds)

∑∑ ⋅−=
ji

jijiji
i

iD xxyyL
,2

1 ααα

0=∑ ii yα∑= iii xyw α
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Linear SVM - Non-Separable Case

l observations consisting of a pair: xi ∈ Rd, i=1,…,l and the 
associated “label” yi ∈ {-1,1}

Introduce positive slack variables ξi:

and modify the objective function to be:

11
11
−=+−≤+⋅
+=−+≥+⋅

iii

iii
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 when  
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Non-Linear SVM

kernels sigmoid ))(tanh(),(

functions basis radial   ))2(exp(),(

)(),(

),(by   Replace                  

22

θκ

σ

+⋅=

−−=

⋅=

⋅

jiji

jiji

d
jiji

jiji

xxxxk

xxxxk

xxxxk

xxkxx

•Finding VC dimension of machines with different 
kernels is non-trivial. 

•Some (e.g. RBF) have infinite VC dimension but still 
work well in practice.
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SVM: Issues
•Lots of work on speeding up the quadratic program

•Choice of kernel: doesn’t seem to matter much in 
practice

•Many open theoretical problems



Data Mining: Foundation, Techniques and Applications 92

Outline
Introduction
Data Preparation
Linear Discriminant
Decision Tree Building
Support Vector Machine(SVM)
Bayesian Learning
Other Classification Methods
Combining Classifiers
Validation Methods
Regression



Data Mining: Foundation, Techniques and Applications 93

Bayes Theorem

P(h) = prior probability of hypothesis h
P(D) = prior probability of training data D
P(h|D) = posterior probability of h given D
P(D|h) = posterior probability of D given h
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Choosing Hypotheses

Generally want the most probable hypothesis given 
the training data Maximum a posteriori hypothesis 
hMAP:

If assume P(hi) = P(hj) then can further simplify, and 
choose the Maximum likelihood (ML) hypothesis
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Basic Formulas for Probabilities

Product Rule: probability P(A ∧ B) of a conjunction of 
two events A and B:

P(A ∧ B) = P(A | B) P(B) = P(B | A) P(A)
Sum Rule: probability of a disjunction of two events A 
and B:

P(A ∨ B) = P(A) + P(B) - P(A ∧ B) 

Theorem of total probability: if events A1,…, An are 
mutually exclusive with ,    then
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Most Probable Classification 
of New Instances

So far we’ve sought the most probable hypothesis
given the data D (i.e., hMAP)
Given new instance x, what is its most probable 
classification?

hMAP(x) is not the most probable classification!
Consider:

Three possible hypotheses:
P(h1|D) = .4, P(h2|D) = .3,  P(h3|D) = .3

Given new instance x,
h1(x) = +,  h2(x) = −,  h3(x) = −

What’s most probable classification of x?
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Bayes Optimal Classifier
Bayes optimal classification:

Example:
P(h1|D) = .4, P(−|h1) = 0,  P(+|h1) = 1
P(h2|D) = .3, P(−|h2) = 1,  P(+|h2) = 0
P(h3|D) = .3, P(−|h3) = 1,  P(+|h3) = 0

therefore

and
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Gibbs Classifier
Bayes optimal classifier provides best result, but can be 
expensive if many hypotheses.
Gibbs algorithm:
1. Choose one hypothesis at random, according to P(h|D)
2. Use this to classify new instance

Surprising fact: Assume target concepts are drawn at 
random from H according to priors on H. Then:

E[errorGibbs]  ≤ 2E [errorBayesOptional]

Suppose correct, uniform prior distribution over H, then
Pick any hypothesis from VS, with uniform probability
Its expected error no worse than twice Bayes optimal
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Naive Bayes Classifier (I)
Along with decision trees, neural networks, 
nearest nbr, one of the most practical learning 
methods.
When to use

Moderate or large training set available
Attributes that describe instances are conditionally 
independent given classification

Successful applications:
Diagnosis
Classifying text documents
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Naive Bayes Classifier (II)
Assume target function f : X → V, where each instance x
described by attributes <a1, a2 … an>. 
Most probable value of f(x) is:

Naive Bayes assumption:
which gives
Naive Bayes classifier:
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Naive Bayes Algorithm
Naive Bayes Learn(examples)
For each target value vj

P (vj) ← estimate P (vj)
For each attribute value ai of each attribute a

P(ai |vj) ← estimate P (ai |vj) 

Classify New Instance(x)

^^

^
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Naive Bayes: Example
Consider PlayTennis again, and new instance
<Outlk = sun, Temp = cool, Humid = high, Wind = 

strong>

Want to compute:

P (y) P(sun|y) P (cool|y) P (high|y) P(strong|y) = .005
P (n) P(sun|n) P (cool|n) P (high|n) P(strong|n) = .021

→ vNB = n
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Example
Outlook Temp Humid Wind PlayTennis
Sunny Hot High Weak No
Sunny Hot High Strong No

Overcast Hot High Weak Yes
Rain Mild High Weak Yes
Rain Cool Normal Weak Yes
Rain Cool Normal Strong No

Overcast Cool Normal Strong Yes
Sunny Mild High Weak No
Sunny Cool Normal Weak Yes
Rain Mild Normal Weak Yes

Sunny Mild Normal Strong Yes
Overcast Mild High Strong Yes
Overcast Hot Normal Weak Yes

Rain Mild High Strong No
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Naive Bayes: Subtleties (I)
1. Conditional independence assumption is often 

violated

...but it works surprisingly well anyway. Note don’t need 
estimated posteriors             to be correct; need only that

see [Domingos & Pazzani, 1996] for analysis
Naive Bayes posteriors often unrealistically close to 1 or 0

Pedro Domingos, Michael Pazzan. Beyond Independence: Conditions for the Optimality of 
the Simple Bayesian Classifier (1996).
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Naive Bayes: Subtleties (II)
2. What if none of the training instances with target value vj

have attribute value ai? Then

Typical solution is Bayesian estimate for

where
n is number of training examples for which v = vi,
nc number of examples for which v = vj and a = ai

p is prior estimate for
m is weight given to prior(i.e. number of “virtual” examples)
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Bayesian Belief Networks
Interesting because:

Naive Bayes assumption of conditional independence 
too restrictive

But it’s intractable without some such assumptions...

Bayesian Belief networks describe conditional 
independence among subsets of variables

→ allows combining prior knowledge about 
(in)dependencies among variables with observed 
training data (also called Bayes Nets)
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Conditional Independence
Definition: X is conditionally independent of Y given Z if 
the probability distribution governing X is independent of 
the value of Y given the value of Z; that is, if

(∀xi, yj, zk) P (X= xi|Y= yj, Z= zk) = P (X= xi|Z= zk)

more compactly, we write
P (X|Y, Z) = P (X|Z)

Example: Thunder is conditionally independent of Rain, 
given Lightning

P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Naive Bayes uses cond. indep. to justify
P(X, Y|Z) = P(X|Y, Z) P(Y|Z) = P(X|Z) P(Y|Z) 
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Bayesian Belief Network (I)

Network represents a set of conditional independence 
assertions:

Each node is asserted to be conditionally 
independent of its nondescendants, given its 
immediate predecessors.
Directed acyclic graph
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Bayesian Belief Network (II)
Represents joint probability distribution over all 
variables

e.g., P(Storm, BusTourGroup, . . . , ForestFire)
in general,

where Parents(Yi) denotes immediate predecessors 
of Yi in graph
so, joint distribution is fully defined by graph, plus 
the P(yi|Parents(Yi))
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Inference in Bayesian Networks
How can one infer the (probabilities of) values of 
one or more network variables, given observed 
values of others?

Bayes net contains all information needed for this 
inference

If only one variable with unknown value, easy to infer it

In practice, can succeed in many cases
Exact inference methods work well for some network 
structures

Monte Carlo methods “simulate” the network randomly to 
calculate approximate solutions
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Learning of Bayesian Networks
Several variants of this mining task

Network structure might be known or unknown
Training examples might provide values of all
network variables, or just some

If structure known and observe all variables
Then it’s easy as training a Naive Bayes
classifier
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Learning Bayes Nets
Suppose structure known, variables partially 
observable
e.g., observe ForestFire, Storm, BusTourGroup, 
Thunder, but not Lightning, Campfire...

In fact, can learn network conditional probability tables 
using gradient ascent!
Converge to network h that (locally) maximizes P(D|h)
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Gradient Ascent for Bayes Nets
Let wijk denote one entry in the conditional 
probability table for variable Yi in the network

wijk = P (Yi = yij|Parents(Yi) = the list uik of values)

e.g., if Yi = Campfire, then uik might be
<Storm = T, BusTourGroup = F >

Perform gradient ascent by repeatedly
1. update all wijk using training data D

2. then, renormalize the weight wijk to assure
Σj wijk = 1       − 0 ≤ wijk ≤ 1
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More on Learning Bayes Nets
EM algorithm can also be used. Repeatedly:
1. Calculate probabilities of unobserved variables, 

assuming h
2. Calculate new wijk to maximize E [ln P(D|h)] where D

now includes both observed and (calculated 
probabilities of) unobserved variables

When structure unknown...
Algorithms use greedy search to add/substract edges 
and nodes
Active research topic
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A  Neuron

The n-dimensional input vector x is mapped 
into  variable y by means of the scalar 
product and a nonlinear function mapping

-

f

weighted 
sum

Input
vector x

output y

Activation
function

weight
vector w

∑
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w1
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Network Training
The ultimate objective of training 

obtain a set of weights that makes almost all the 
tuples in the training data classified correctly 

Steps
Initialize weights with random values 
Feed the input tuples into the network one by one
For each unit

Compute the net input to the unit as a linear combination 
of all the inputs to the unit
Compute the output value using the activation function
Compute the error
Update the weights and the bias
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Multi-Layer Perceptron

Output nodes

Input nodes

Hidden nodes

Output vector

Input vector: xi
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Association-Based Classification

Several methods for association-based classification
Associative classification(CBA): (Liu et al’98)  

It mines high support and high confidence rules in the 
form of “cond_set => y”, where y is a class label

CAEP (Classification by aggregating emerging 
patterns) (Dong et al’99)

Emerging patterns (EPs): the itemsets whose support 
increases significantly from one class to another
Mine EPss based on minimum support and growth rate
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Instance-based Methods
Instance-based learning:

Store training examples and delay the processing 
(“lazy evaluation”) until a new instance must be 
classified

Typical approaches
K-nearest neighbor approach

Instances represented as points in an Euclidean space

Case-based reasoning
Uses symbolic representations and knowledge-based 
inference
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The K-nearest Neighbor Algorithm (KNN)
Instances are points in an n-D space
The nearest neighbor in the Euclidean 
distance
Discrete-/real-valued target functions 
Return the most common value among 
the k training examples nearest to the 
query point

. 

_
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_ xq
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_ _
+

_

_
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Case-based Reasoning
Lazy evaluation + analysis of similar 
instances
Methodology

Instances represented by rich symbolic 
descriptions (e.g., function graphs)
Combine multiple retrieved cases
Tight coupling between case retrieval, 
knowledge-based reasoning, and problem 
solving
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Lazy vs. Eager Learning
Efficiency: lazy learning uses less training 
time but more predicting time
Accuracy

Lazy method effectively uses a richer 
hypothesis space
Eager: must commit to a single hypothesis 
that covers the entire instance space
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Bagging and Boosting
General idea 

Training data 

Altered Training data 

Altered Training data
……..

Aggregation ….

Classifier C
Classification method (CM)

CM

Classifier C1

CM

Classifier C2

Classifier C*
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Bagging 
Given a set S of s samples, generate a 
sequence of k independent bootstrap training 
sets
Construct a sequence of classifiers C1,C2,…,Ck 
by using the same classification algorithm 
To classify an unknown sample X, let each 
classifier predict or vote 
The bagged classifier C* counts the votes and 
assigns X to the class with the “most” votes
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Boosting Technique
Assign every example an equal weight  1/N
For t = 1, 2, …, T Do 

Obtain a classifier C(t) under w(t)
Calculate the error of C(t) and re-weight the 
examples based on the errors. Samples incorrectly 
predicted have bigger weight

Output a weighted sum of all the classifiers, 
with each classifier weighted according to its 
accuracy on the training set 
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Holdout
Randomly partition the given data into a 
training set and a test set

Typically, 2/3 are in the training set and 1/3 in 
the test set
Random subsampling is also feasible
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K-fold Cross-validation
Randomly partition the given data into k folds: 
mutually exclusive subsets with approximately 
equal size
In iteration j, use Sj as the test set and the 
remaining folds as training set

Stratified cross-validation: each fold has 
approximately equal class distribution
Stratified 10-fold cross-validation

Bootstrapping: sample the test set with 
replacement
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Sensitivity and Specificity

Sensitivity =  t_pos / pos
The percentage of positive samples 
correctly classified

Specificity = t_neg / neg
The percentage of negative samples 
correctly classified
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Precision

Precision = t_pos / (t_pos + f_pos)
The percentage of samples classified 
positive are actually positive

negpos
negyspecificitposysensitivitaccuracy

+
×+×

=
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What Is Regression
Regression is similar to classification

Construct a model
Use the model to predict unknown value

Linear and multiple regression, non-linear 
regression

Regression models continuous-valued 
functions
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Linear regression: Y = β0 + β1 X
Two parameters , β0 and β1 specify the line and are to 
be estimated by using the data at hand.
using the least squares criterion 

Multiple regression: Y = b0 + b1 X1 + b2 X2.
Many nonlinear functions can be transformed into the 
above.

Log-linear models:
The multi-way table of joint probabilities is 
approximated by a product of lower-order tables.

Probability:  p(a, b, c, d) = αab βacχad δbcd

Regression Analysis and Log-Linear Models
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Y Xi i i= + +β β ε0 1

Linear Regression Model

Relationship Between Variables Is a Linear 
Function

Dependent 
Variable

Independent 
Variable

SlopeY-Intercept
Residue
s
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ei = Random
Error

Y

X

Linear Regression Model

Observed Value

Unsampled 
Observation

Y b b X ei i i= + +0 1

$Y b b Xi i= +0 1
Prediction Eq’n
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Model Estimates 

b0 estimates β0 - “Y - Intercept”
Expected value of Y when X = 0

b1 estimates β1 - “Slope”
Expected change in Y per unit change in X

Valid only over - “Relevant Range”
Interpolate - Do Not Extrapolate!!
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Formula for b0 and b1

b0 = (y-intercept)(Σyi) (Σxi
2) – (Σxi) (Σxiyi)

N*(Σxiyi) – (Σxi) (Σyi)

N*(Σxi
2) – (Σxi)2

b1 = (slope)
N*(Σxi

2) – (Σxi)2

N=number of points
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How to get those formulae ?
Score Function

Minimize 

Partial Derivation

0))](([2

0)]([2

10
1

10
0

=−+−=
∂
∂

=+−−=
∂
∂

∑

∑

iii

ii

xxbby
b

SSE

xbby
b

SSE

∑ +−= 2
10 )]([ ii xbbySSE



Data Mining: Foundation, Techniques and Applications 141

Locally Weighted Regression
Construct an explicit approximation to f  over a local 
region surrounding query instance xq.
Locally weighted linear regression: 

The target function f is approximated near xq using the linear 
function:

minimize the squared error: distance-decreasing weight K

the gradient descent training rule:

In most cases, the target function is approximated by a 
constant, linear, or quadratic function.
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Residual Analysis

1.Graphical Analysis of Residuals 
(“errors”)

Residuals = Difference between actual Yi & predicted Yi

Plot residuals vs. Xi values

2.Purpose
Examine functional form (linear vs. non-linear) 
Test independence of errors
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Residual Analysis

X  Residual Plot
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Durbin-Watson Procedure

1. Used to Detect Autocorrelation
Residuals in one time period are related to 
residuals in another period
Violation of independence assumption

2. Durbin-Watson Test Statistic

D
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Durbin-Watson Rules
For given α, n,  & p:
If D < dL, then auto-correlation exists
If D > dU, then no auto-correlation exists
If dL < D < dU, then no definite conclusion
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Essential Readings
"Data Mining: Concepts and Techniques" Jiawei Han and 
Micheline Kamber. Chapter 6
"Principles of Data Mining", David Hand, Heikki Mannila and  
Padhraic Smyth. Chapter 10.1 - 10.4.
Johannes Gehrke, “Scalable Classification Tree Construction.”. 
“Langrange Multipliers without Permanent Scarring”, Dan 
Klein.
“A Tutorial on Support Vector Machines for Pattern 
Recognition”, Christopher J.C. Burges. 
“Machine Learning”, Tom M. Mitchell Chapter 6.1, 6.2, 6.7-
6.11

http://www-faculty.cs.uiuc.edu/~hanj/DM_Book.html
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Optional Readings
• Pedro Domingos and Michael Pazzani. Beyond 

independence: Conditions for the optimality of the simple 
bayesian classifier. In Proceedings of the 13th International 
Conference on Machine Learning, pages 105-112, 1996.

• Russell, S., Binder, J., Koller, D., and Kanazawa, K. (1995). 
Local learning in probabilistic networks with hidden 
variables. In Proceedings of the Fourteenth International 
Joint Conference on Artificial Intelligence. San Mateo, CA: 
Morgan Kaufmann. 1146--1152. 
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