Data Mining: Foundation, Techniques and Applications

Lesson 6,7: Classification and Regression

Li Cuiping(李翠平) School of Information Renmin University of China

Anthony Tung(鄧锦浩) School of Computing National University of Singapore

Outline

Introduction

- Data Preparation
- Linear Discriminant
- Decision Tree Building
- Support Vector Machine(SVM)
- Bayesian Learning
- Other Classification Methods
- Combining Classifiers
- Validation Methods
- Regression

Predictive Modeling

Goal: learn a mapping: $y = f(\mathbf{x}; \theta)$

Need: 1. A model structure

2. A score function

3. An optimization strategy

Categorical $y \in \{c_1, ..., c_m\}$: classification

Real-valued y: regression

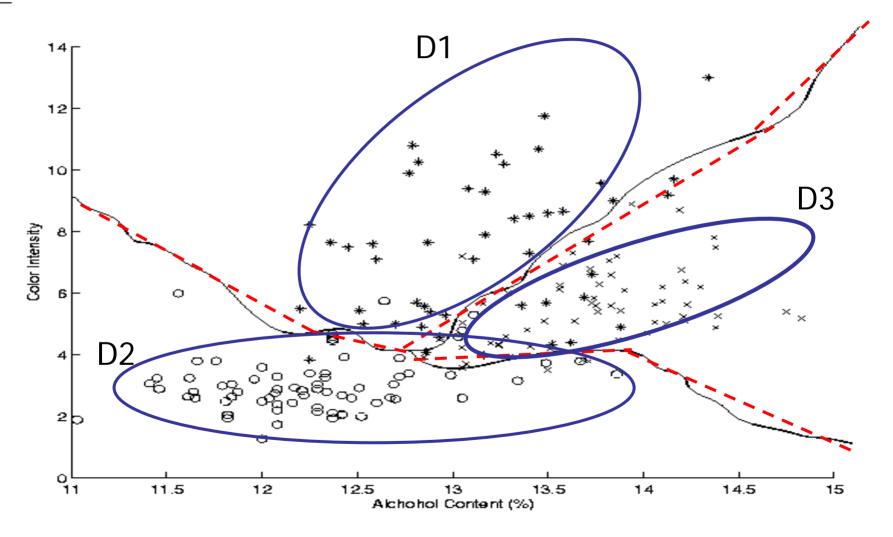
Note: usually assume $\{c_1, \ldots, c_m\}$ are mutually exclusive and exhaustive

Two class of classifiers

Discriminative Classification

- Provide decision surface or boundary to separate out the different classes
- In real life, it is often impossible to separate out the classes perfectly
- Instead, seek function f(x;θ) that maximizes some measure of separation between the classes. We call f(x; θ) the discriminant function.
- Probabilistic Classification
 - Focus on modeling the probability distribution of each class

Discriminative vs Probabilistic Classification

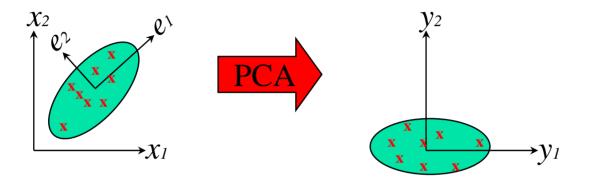


Data Mining: Foundation, Techniques and Applications

Outline

- Introduction
- Data Preparation
- Linear Discriminant
- Decision Tree Building
- Support Vector Machine(SVM)
- Bayesian Learning
- Other Classification Methods
- Combining Classifiers
- Validation Methods
- Regression

PCA: Theory

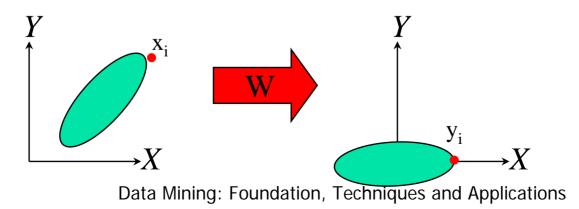


Rotate the data so that its primary axes lie along the axes of the coordinate space and move it so that its center of mass lies on the origin.

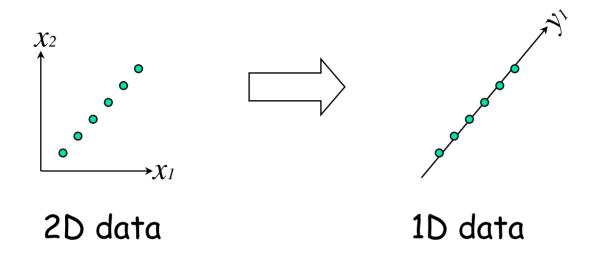
PCA: Goal - Formally Stated

Problem formulation

- Input: x=[x₁|...|x_N]_{d×N} points in d-dimensional space
- Look for: W, a d×m projection matrix (m≤d)
- S.t.: $y = [y_1|...|y_N]_{m \times N} = W^T [x_1|...|x_N]...$...And correlation is minimized



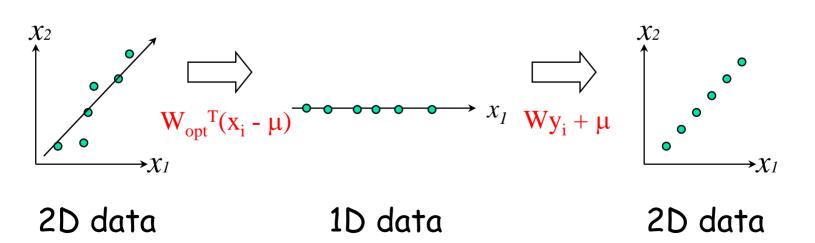
Dimension Reduction



Since there is no variance along one dimension, we only need a single dimension !!!

Data Loss

Sample points can still be projected via the new m×d projection matrix W_{opt} and can still be reconstructed, but some information will be lost.



Data Mining: Foundation, Techniques and Applications

Basic: What is Covariance ?

 Given a d-dimensional space with N data points, the covariance between the ith and jth dimensions, represented as Cov_{ij} defined as follow:

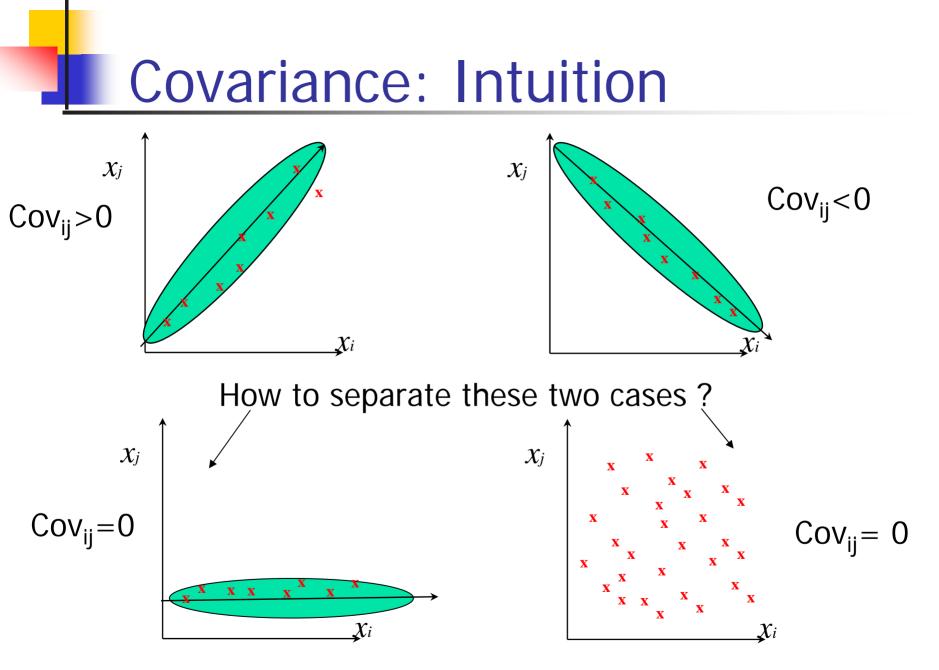
$$Cov_{ij}(x) = \frac{1}{N} \sum_{k=1}^{N} (x_k[i] - \mu_i) (x_k[j] - \mu_j)$$

where x_k[i] represent the ith dimension values for the kth data point and µ_i and µ_j represent the mean values of the data points along dimensions i and j respectively

Example: Covariance

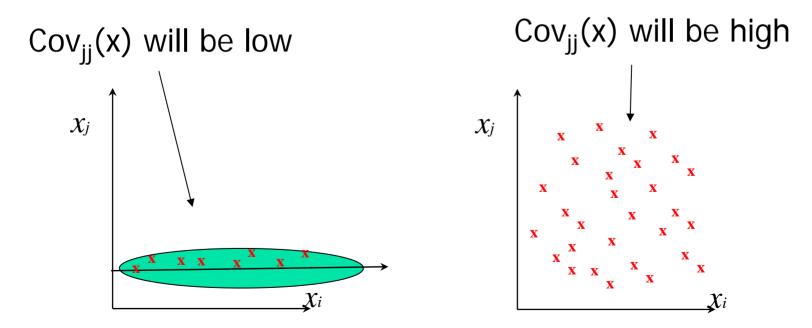
X _i	Xj
1	2
2	4
3	7
4	9
5	9

 $\mu_{i} = (1+2+3+4+5)/5 = 3$ $\mu_{j} = (2+4+7+9+9)/5 = 6.2$ $Cov_{ij}(x) = 1/5 * ((1-3)(2-6.2)) + (2-3)(4-6.2) + (3-3)(7-6.2) + (4-3)(9-6.2) + (5-3)(9-6.2)) = 4.04$



PCA: The Covariance Matrix

 Given a d-dimensional space with N data points, the covariance matrix Cov(x) is a d x d matrix in which the element at row i and column j contain the value Cov_{ii}(x).



Data Mining: Foundation, Techniques and Applications

Properties of the Covariance Matrix(I)

The ith column can be seen as a vector that represent the covariance interaction of the ith dimension with the rest of the dimensions

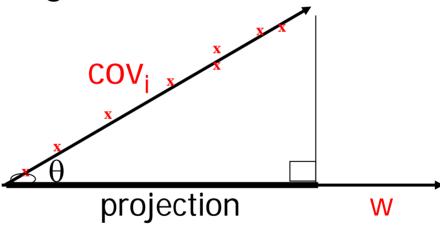
$$Cov(x) = \begin{bmatrix} \operatorname{cov}_{11} & \operatorname{cov}_{12} & \cdots & \operatorname{cov}_{1d} \\ \operatorname{cov}_{21} & \operatorname{cov}_{22} & \cdots & \operatorname{cov}_{2d} \\ \vdots & \vdots & \vdots & \vdots \\ \operatorname{cov}_{d1} & \operatorname{cov}_{d2} & \cdots & \operatorname{cov}_{dd} \end{bmatrix} = \begin{bmatrix} \operatorname{cov}_{1} & \operatorname{cov}_{2} & \cdots & \operatorname{cov}_{d} \end{bmatrix}$$

where

$$\operatorname{cov}_{1} = \begin{bmatrix} \operatorname{cov}_{11} \\ \operatorname{cov}_{21} \\ \vdots \\ \operatorname{cov}_{n1} \end{bmatrix} \qquad \operatorname{cov}_{2} = \begin{bmatrix} \operatorname{cov}_{12} \\ \operatorname{cov}_{22} \\ \vdots \\ \operatorname{cov}_{d2} \end{bmatrix} \qquad \cdots \qquad \operatorname{cov}_{d} = \begin{bmatrix} \operatorname{cov}_{1d} \\ \operatorname{cov}_{2d} \\ \vdots \\ \operatorname{cov}_{dd} \end{bmatrix}$$

Properties of the Covariance Matrix(II)

 Given the covariance vector of dimension i, cov_i(x). We can compute the variance of it's projection along a **unit** vector w as w.cov_i.



Recall that $w.cov_i = |w||cov_i| \cos \theta$. Since |w| is 1, we will have $|cov_i| \cos \theta$ which is the length of the projection of cov_i along w.

Properties of the Covariance Matrix(III)

Assuming now we have W = [w₁|...|w_d], then W^T Cov(x) give the magnitude of the projection that each covariance vector in Cov(x) have on w₁,...,w_d.

$$W^{T} Cov(x) = \begin{bmatrix} w_{1}^{T} \\ \vdots \\ \vdots \\ w_{d}^{T} \end{bmatrix} \begin{bmatrix} cov_{1} & cov_{2} & \cdots & cov_{d} \end{bmatrix}$$

where

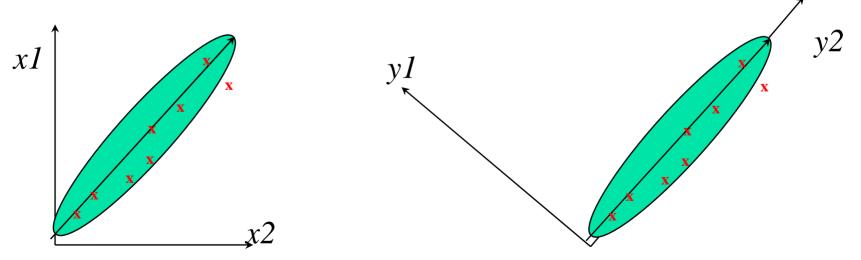
$$\operatorname{cov}_{1} = \begin{bmatrix} \operatorname{cov}_{11} \\ \operatorname{cov}_{21} \\ \vdots \\ \operatorname{cov}_{n1} \end{bmatrix} \qquad \operatorname{cov}_{2} = \begin{bmatrix} \operatorname{cov}_{12} \\ \operatorname{cov}_{22} \\ \vdots \\ \operatorname{cov}_{d2} \end{bmatrix} \qquad \cdots \qquad \operatorname{cov}_{d} = \begin{bmatrix} \operatorname{cov}_{1d} \\ \operatorname{cov}_{2d} \\ \vdots \\ \operatorname{cov}_{dd} \end{bmatrix}$$

Properties of the Covariance Matrix(IV)

In addition, W^T Cov(x) W give the variance of each covariance vector in Cov(x) when they are projected on w₁,...,w_d.

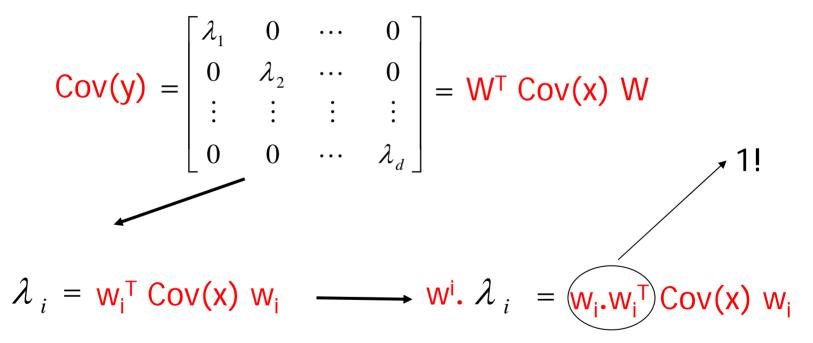
PCA: Goal Revisited

- We want each of the data points x₁,...,x_N are transformed to y₁,...,y_N based on W^Tx_i for 1<= i
 <= N
- Look for: W s.t.
 - $[y_1|...|y_N] = W^T [x_1|...|x_N]$, and
 - correlation is minimized => Cov(y) is diagonal!



Selecting the Optimal W

Note that Cov(y) can be expressed via Cov(x) and W as $Cov(y) = W^{T}Cov(x) W$. How do we find such W?



Selecting the Optimal W(II)

We thus have

$$\lambda_i W_i = Cov(x) W_i$$

Therefore :

Choose W_{opt} to be the eigenvectors matrix:

$W_{opt} = [W_1|...|W_d]$ Where {w_i|i=1,...,d} is the set of the d-dimensional eigenvectors of Cov(x)

So...to sum up

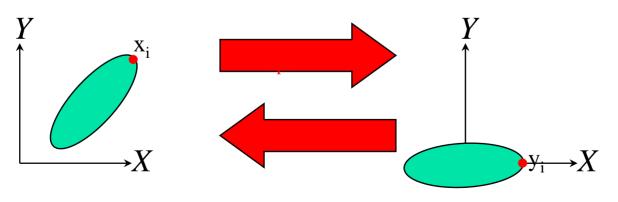
To find a more convenient coordinate system one needs to :

Calculate Subtract it from all from all samples x_i Subtract it calculate Covariance Find the set of matrix for resulting eigenvectors for the covariance matrix

Create W_{opt} , the projection matrix, by taking as columns the eigenvectors calculated !

So...to sum up (cont.)

- Now we have that any point x_i can be projected to an appropriate point y_i by :
 y_i = W_{opt}^T(x_i μ)
- and conversely (since $W^{-1} = W^T$) $Wy_i + \mu = x_i$



Data Mining: Foundation, Techniques and Applications

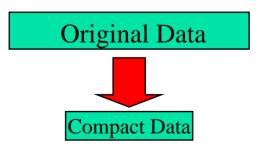
Data Reduction: Theory

- Each eigenvalue represents the the total variance in its dimension.
- **So**...
- Throwing away the least significant eigenvectors in W_{opt} means throwing away the least significant variance information !

Data Reduction: Practice

- Sort the d columns of the projection matrix W_{opt} in descending order of appropriate eigenvalues.
- Select the first m columns thus creating a new projection matrix of dimension d×m

This will now be a projection from a ddimensional space to an mdimensional space (m < d)!



Data Loss

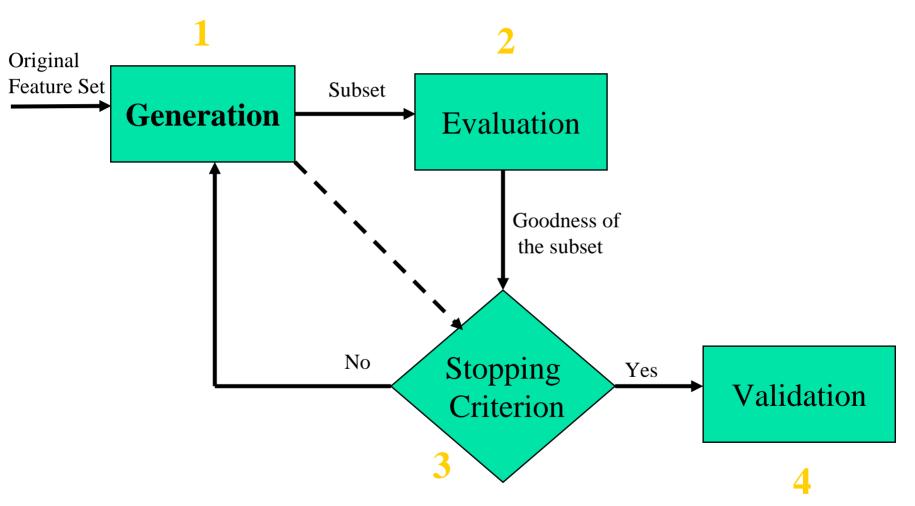
It can be shown that the mean square error between x_i and its reconstruction using only m principle eigenvectors is given by the expression :

$$\sum_{j=1}^{N} \lambda_j - \sum_{j=1}^{m} \lambda_j = \sum_{j=m+1}^{N} \lambda_j$$

Feature Selection - Definition

- Attempt to select the <u>minimal</u> size subset of features according to <u>certain criteria</u>:
 - <u>classification accuracy</u> is at least <u>not</u> significantly dropped
 - Resulting class distribution given only values for the <u>selected features</u> is <u>as close as</u> <u>possible</u> to the original class distribution given all features

Four basic steps



Data Mining: Foundation, Techniques and Applications

Search Procedure - Approaches

Complete

- complete search for optimal subset
- Guaranteed optimality
- Able to backtrack

Random

- Setting a maximum number of iterations possible
- Optimality depends on values of some parameters

Heuristic

- "hill-climbing"
- iterate, then remaining features yet to be selected/rejected are considered for selection/rejection
- simple to implement
- fast in producing results
- produce sub-optimal results

Evaluation Functions - Method Types

Filter methods

- Distance Measures
- Information Measures
- Dependence Measures
- Consistency Measures

Wrapper Methods

Classifier Error Rate Measures

Relief : Underlying Concept

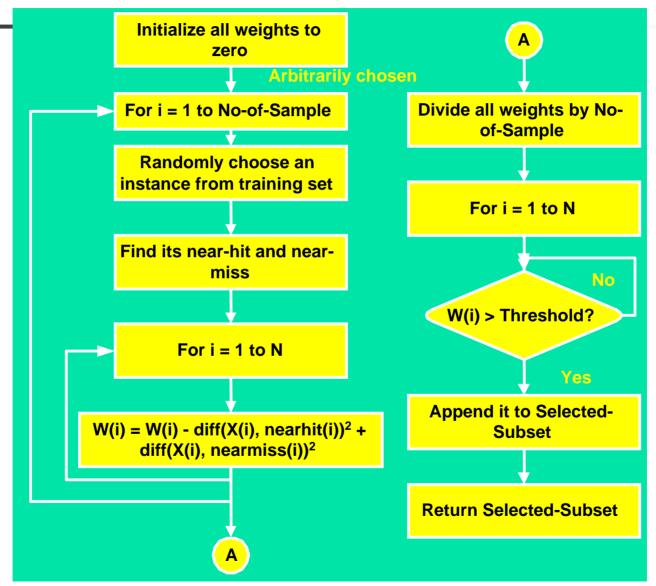
- A statistical method to select the relevant features
- It is a feature weight based algorithm
- It first chooses a sample of instances from the training set instances, & user must provide the no of instances
- It randomly pick the sample & find the near-hit and near-miss instances
- Negative weights are for irrelevant features & positive weights are for relevant and redundant features

	Example																		
_	near hit											near miss							
	#	A0	Al	B0	B1	Ι	С	Class	#	A0	A1	$\mathbf{B}0$	B1	Ι	С	Class			
-	1	0	0	0	0	0	1	0	9	1	0	þ	0	1	1	0			
	2	0	0	0	1	1	1	0	10	1	0	0	1	1	0	0			
	3	0	0	1	0	0	1	0	11	1	0	1	0	0	1	0			
	4	0	0	1	1	0	0	1	12	1	0	1	1	0	0	1			
	5	0	1	0	0	0	1	0	13	1	1	0	0	0	0	1			
Î	6	0	1	0	1	1	1	0	14	1	1	0	1	0	1	1			
	7	0	1	1	0	1	0	0	15	1	1	1	0	1	0	1			
	8	0	1	1	1	0	0	1	16	1	1	1	1	0	0	1			

sample

Data Mining: Foundation, Techniques and Applications

Relief(S, No-of-Sample, Threshold) - Algorithm



Data Mining: Foundation, Techniques and Applications

Relief: Advantages and Disadvantages

Advantages

- Relief works for noisy and correlated features
- It requires only linear time in the number of given features and no of instances (No-of-Sample)
- It works both for nominal and continuous data
- The procedure is very simple to implement & very fast

Disadvantages

- It often produces sub-optimal result because it does not remove redundant features
- It works only for binary classes
- User may find difficulty in choosing a proper No-of-Sample

LVF : Underlying Concept

- It randomly searches the space of instances which makes probabilistic choices faster to an optimal solution
- For each candidate subset, it calculates an inconsistency count based on the intuition
- An inconsistency threshold is fixed in the beginning (0 by default)
- Any subset with inconsistency rate greater than the threshold, is rejected

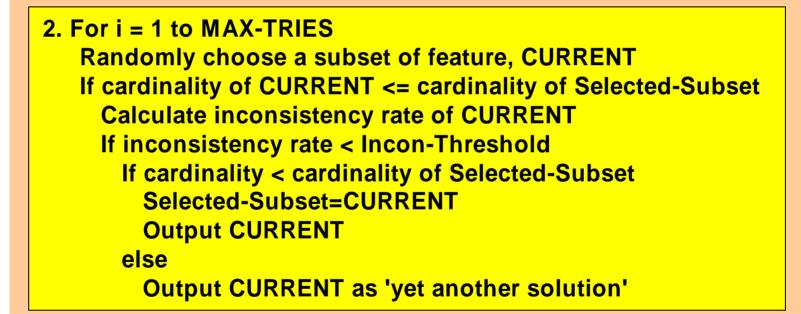
Example:LVF

Current={A0,B0,C},Mixed Class value comb.= (0,1,0), (1,0,0), (1,0,1)Class Distribution= (1,2), (1,1), (1,1)Inconsistency= (3-2)+(2-1)+(2-1) = 3

#	A0	A1	B0	B1	Ι	С	Class	#	A0	A1	B0	B1	Ι	С	Class
1	0	0	0	0	0	1	0	9	1	0	0	0	1	1	0
2	0	0	0	1	1	1	0	10	1	0	0	1	1	0	0
3	0	0	1	0	0	1	0	11	1	0	1	0	0	1	0
4	0	0	1	1	0	0	1	12	1	0	1	1	0	0	1
5	0	1	0	0	0	1	0	13	1	1	0	0	0	0	1
6	0	1	0	1	1	1	0	14	1	1	0	1	0	1	1
7	0	1	1	0	1	0	0	15	1	1	1	0	1	0	1
8	0	1	1	1	0	0	1	16	1	1	1	1	0	0	1

LVF(S, MAX-TRIES, Incon-Threshold)

1. Initialize Selected-Subset to the original feature set



3. Return Selected-Subset

LVF: Advantages and Disadvantages

Advantages

- It is able to find the optimal subset even for databases with noise
- User does not have to wait too long for a good subset
- It is efficient and simple to implement and guarantee to find the optimal subset if resources permit
- Disadvantages
 - It may take more time to find the optimal subset (whether the data-set is consistent or not)

Problem with the Filter model

- [Recap] Feature selection:
 - Pre-processing step to classification
 - Classification accuracy not dropped
 - Accuracy is always wrt to the classification algorithm
- Assess merits of features from only the data and *ignores* the classification algorithm
 - generated feature subset may not be optimal for the target classification algorithm

Wrapper Model

 Use actual target classification algorithm to evaluate accuracy of each candidate subset

- Evaluation Criteria
 - Classifier error rate

 Generation method can be *heuristic*, complete or random Wrapper compared to Filter

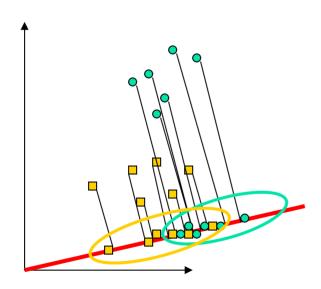
- higher computation cost
- Iack generality

Outline

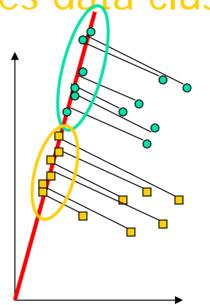
- Introduction
- Data Preparation
- Linear Discriminant
- Decision Tree Building
- Support Vector Machine(SVM)
- Bayesian Learning
- Other Classification Methods
- Combining Classifiers
- Validation Methods
- Regression

Fisher's Linear Discriminant

Objective: Find a projection which separates data clusters



Poor separation



Good separation

FLD: Problem formulation

- Maximize the between-class variance while minimizing the within-class variance
- Data points: $\{x_1, \dots, x_N\}$
- 2 classes: $\{c_1, c_2\}$
- Average of each class:

$$\mu_{1} = \frac{1}{n_{1}} \sum_{x_{k} \in c_{1}} x_{k}, \quad \mu_{2} = \frac{1}{n_{2}} \sum_{x_{k} \in c_{2}} x_{k}$$

Total average:
$$\mu_{1} = \frac{1}{N} \sum_{k=1}^{N} x_{k}$$

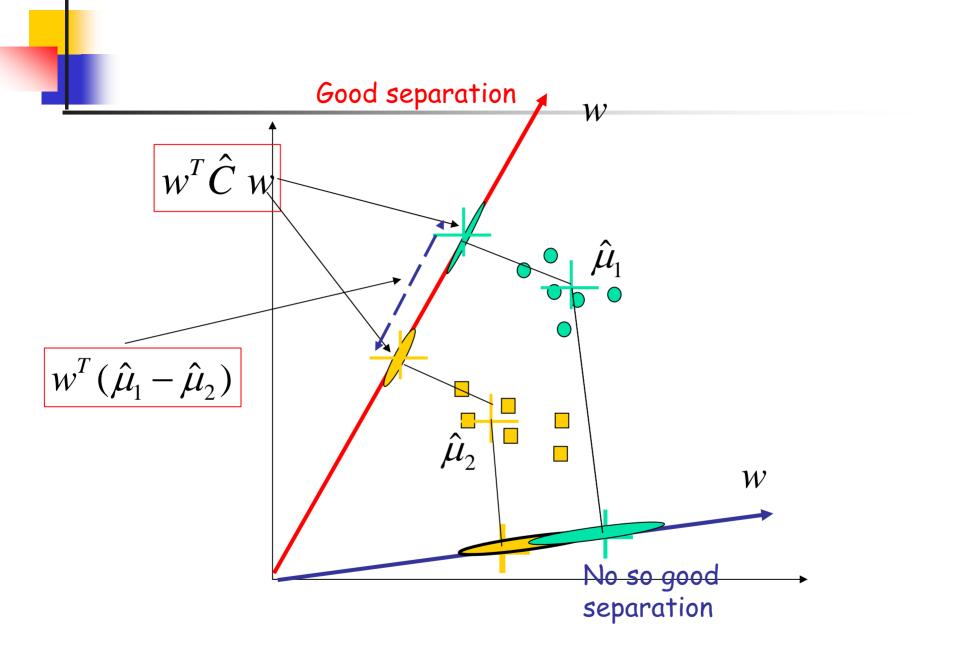
FLD: Scoring Function

Let C₁ and C₂ be the covariance matrix of the two classes of points, their pooled covariance matrix will be computed as follow:

$$\hat{C} = \frac{1}{n_1 + n_2} \left(n_1 \hat{C}_1 + n_2 \hat{C}_2 \right)$$

 Given a vector w, we measure the separability along w using the following score function

$$S(w) = \frac{w^{T}(\hat{\mu}_{1} - \hat{\mu}_{2})}{w^{T}\hat{C}w} = \frac{w.(\hat{\mu}_{1} - \hat{\mu}_{2})}{w^{T}\hat{C}w}$$



Data Mining: Foundation, Techniques and Applications

Solution for Maximizing S(w)

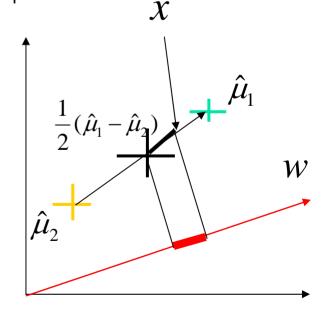
Optimal solution for w is given by

$$\hat{w}_{lda} = \hat{C}^{-1}(\hat{\mu}_1 - \hat{\mu}_2)$$

http://www.stat.ucla.edu/~sczhu/Courses/UCLA/Stat_231/Lect7_Fisher.pdf

Classify a point to class 1 if

$$\hat{w}_{lda}\left(x - \frac{1}{2}(\hat{\mu}_1 - \hat{\mu}_2)\right) > \log \frac{p(c_1)}{p(c_2)}$$



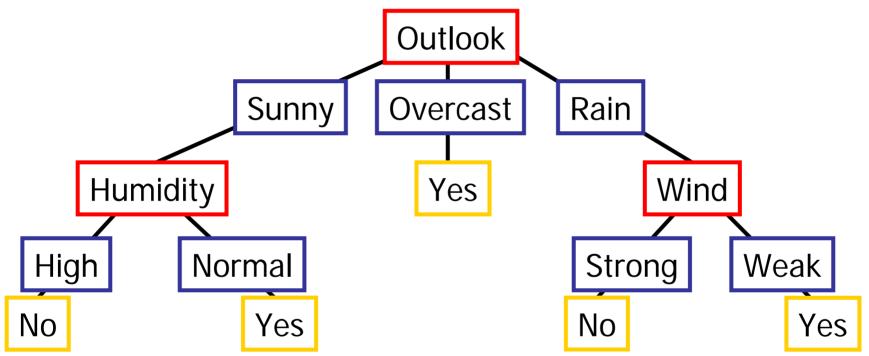
Data Mining: Foundation, Techniques and Applications

Outline

- Introduction
- Data Preparation
- Linear Discriminant
- Decision Tree Building
- Support Vector Machine(SVM)
- Bayesian Learning
- Other Classification Methods
- Combining Classifiers
- Validation Methods
- Regression

Decision Tree

decision trees represent disjunctions of conjunctions



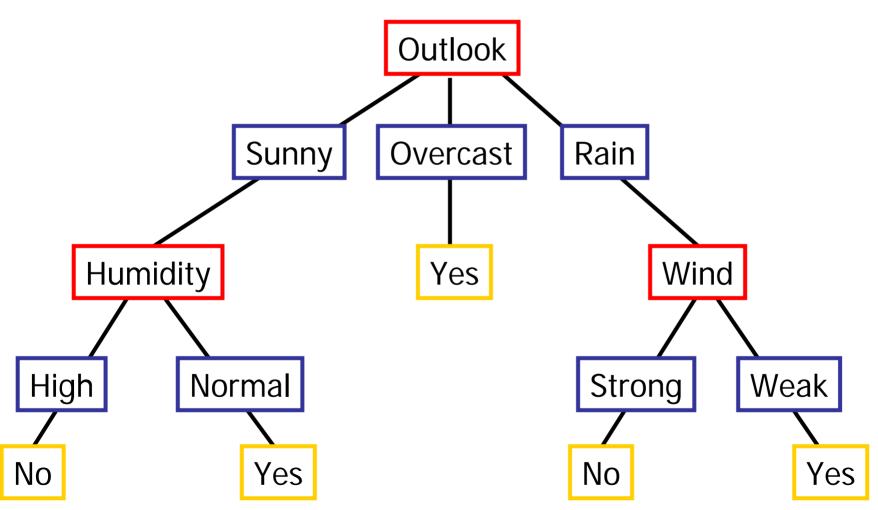
(Outlook=Sunny
 Humidity=Normal) (Outlook=Overcast) \vee \vee

(Outlook=Rain ^ Wind=Weak) Data Mining: Foundation, Techniques and Applications

Training Dataset

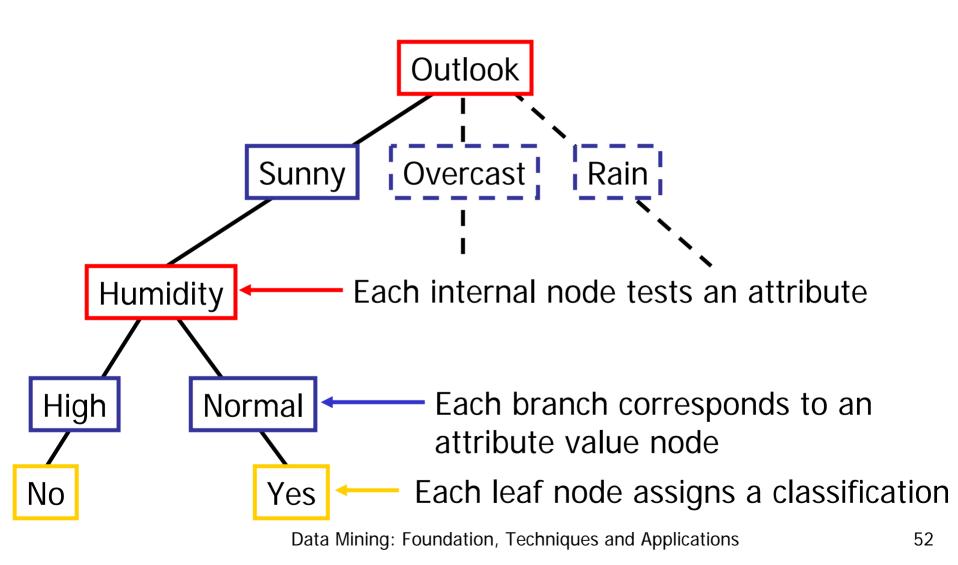
Outlook	Temp	Humid	Wind	PlayTennis	
Sunny	Hot	High Weak		No	
Sunny	Hot	High Strong		No	
Overcast	Hot	High	High Weak		
Rain	Mild	High	Weak	Yes	
Rain	Cool	Normal	Weak	Yes	
Rain	Cool	Normal	Strong	No	
Overcast	Cool	Normal	Strong	Yes	
Sunny	Mild	High	Weak	No	
Sunny	Cool	Normal	Weak	Yes	
Rain	Mild	Normal	Weak	Yes	
Sunny	Mild	Normal	Strong	Yes	
Overcast	Mild	High	Strong	Yes	
Overcast	Hot	Normal	Weak	Yes	
Rain	Mild	High	Strong	No	

Decision Tree for PlayTennis

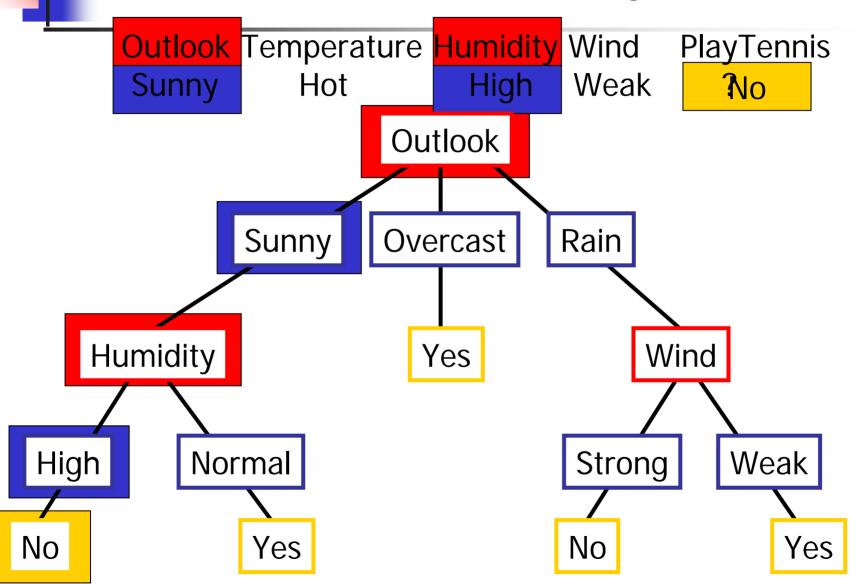


Data Mining: Foundation, Techniques and Applications

Decision Tree for PlayTennis



Decision Tree for PlayTennis

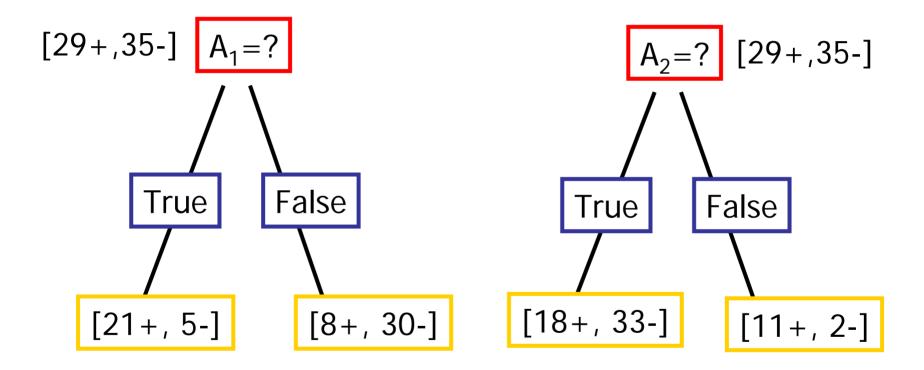


Data Mining: Foundation, Techniques and Applications

Top-Down Induction of Decision Trees

- 1. A \leftarrow the "best" decision attribute for next *node*
- 2. Assign A as decision attribute for *node*
- 3. For each value of A create new descendant
- 4. Sort training examples to leaf node according to the attribute value of the branch
- If all training examples are perfectly classified (same value of target attribute) stop, else iterate over new leaf nodes.

Which Attribute is "best"?



Entropy Entropy 0.9 0.8 0.7 Entropy(S) 0.3 0.2 0.1 0.1 0.2 0.9 0.3 04 0.6 07 0.8

• S is a sample of training examples

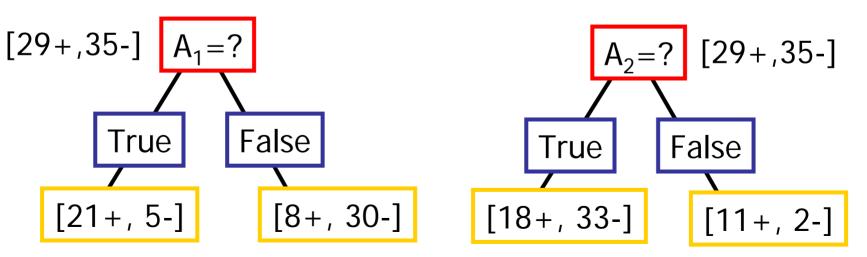
р

- p₊ is the proportion of positive examples
- p_ is the proportion of negative examples
- Entropy measures the impurity of S Entropy(S) = -p₊ log₂ p₊ - p₋ log₂ p₋ Data Mining: Foundation, Techniques and Applications

Information Gain

 Gain(S,A): expected reduction in entropy due to sorting S on attribute A

Gain(S,A)=Entropy(S) - $\sum_{v \in values(A)} |S_v|/|S|$ Entropy(S_v) Entropy([29+,35-]) = -29/64 log₂ 29/64 - 35/64 log₂ 35/64 = 0.99

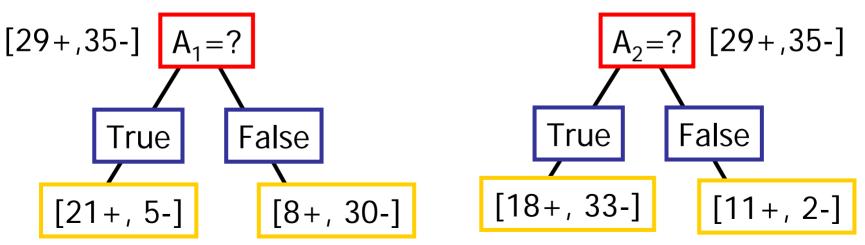


Data Mining: Foundation, Techniques and Applications

Information Gain

Entropy(
$$[21+,5-]$$
) = 0.71
Entropy($[8+,30-]$) = 0.74
Gain(S,A₁)=Entropy(S)
-26/64*Entropy($[21+,5-]$)
-38/64*Entropy($[8+,30-]$)
=0.27

Entropy([18+,33-]) = 0.94 Entropy([8+,30-]) = 0.62 Gain(S,A₂)=Entropy(S) -51/64*Entropy([18+,33-]) -13/64*Entropy([11+,2-]) =0.12



Data Mining: Foundation, Techniques and Applications

Entropy

 Entropy(S) = expected number of bits needed to encode class (+ or -) of randomly drawn members of S (under the optimal, shortest length-code)

Why?

- Information theory optimal length code assign
 - -log₂ p bits to messages having probability p.
- So the expected number of bits to encode
 - (+ or -) of random member of S:
 - $\textbf{-p}_{+} \log_2 p_{+} \textbf{-} p_{-} \log_2 p_{-}$

Alternative Measures

- Gain ratio: penalize attributes like date by incorporating split information
 - Split information is sensitive to how broadly and uniformly the attribute splits the data

SplitInformation (S, A) =
$$-\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$

- Gain ratio can be undefined or very large
 - Only test attributes with above average Gain

$$GainRatio(S, A) \equiv \frac{Gain(S, A)}{SplitInformation(S, A)}$$

A data set S contains examples from n classes where p_i is the relative frequency of class j in S

gini (T) =
$$1 - \sum_{j=1}^{n} p_{j}^{2}$$

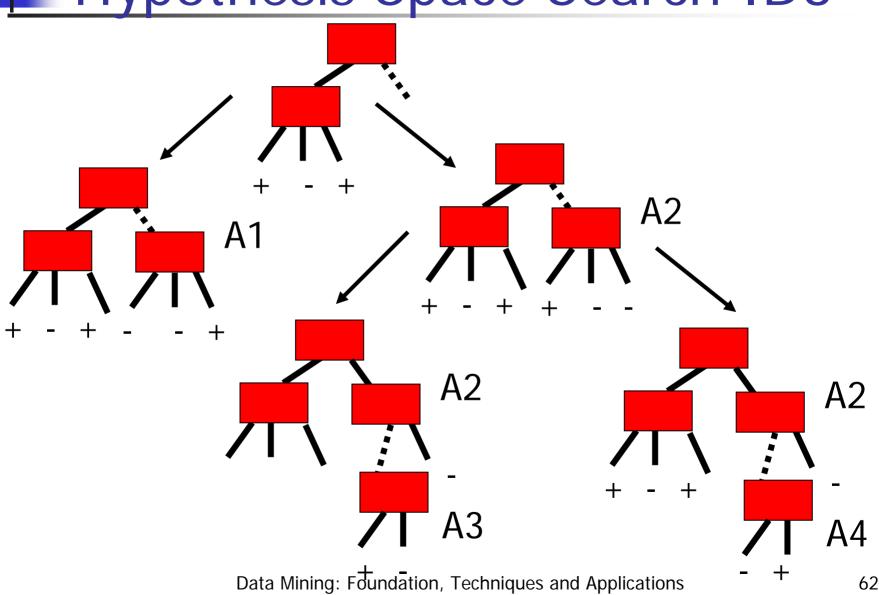
Gini Index

A data set S is split into two subsets S₁ and S₂ with sizes N₁ and N₂ respectively

gini _{split} (T) =
$$\frac{N_1}{N}$$
gini (T₁) + $\frac{N_2}{N}$ gini (T₂)

The attribute provides the smallest gini_{split}(T) is chosen to split the node

Hypothesis Space Search ID3



Inductive Bias

- Preference for short trees, and for those with high information gain attributes near the root
- Bias is a *preference* for some model, rather than a *restriction* of the model space
- Occam's razor: prefer the shortest (simplest) hypothesis that fits the data

Occam's Razor

Why prefer short hypotheses? Argument in favor:

- Fewer short hypotheses than long hypotheses
- A short hypothesis that fits the data is unlikely to be a coincidence
- A long hypothesis that fits the data might be a coincidence

Argument opposed:

- There are many ways to define small sets of hypotheses
- E.g. All trees with a prime number of nodes that use attributes beginning with "Z"
- What is so special about small sets based on *size* of hypothesis

Data Mining: Foundation, Techniques and Applications

Overfitting

A decision tree T overfits the training data if ∃ alternative tree T' s.t. T has a higher accuracy than T' over the training examples, but T' has a higher accuracy than T over the entire distribution of data

Avoid Overfitting

- Prepruning: stop growing the tree earlier
 - Difficult to choose an appropriate threshold
- Postpruning: remove branches from a "fully grown" tree
 - Use an independent set of data to prune
- Key: how to determine the correct final tree size

Discretizing Continuous Values

- Turn continuous values into discrete values
- Sort the examples according to their values for A
- For each ordered pair X_i, X_{i+1} in the sorted list, If the category of X_i and X_{i+1}are different, Then use the midpoint between their values as a candidate threshold

Value:	10	15	21	28	32	40	50
Class:	No	Yes	Yes	No	Yes	Yes	No
Threshold:	12.5		24	.5 30	45		

Data Mining: Foundation, Techniques and Applications

Unknown Attribute Values

What if some examples have missing values for A? Use training example anyway

- If node n tests A, assign most common value of A among other examples
- Assign most common value of A among other examples with same target value
- Assign probability pi to each possible value vi of A
 - Assign fraction pi of example to each descendant in tree

Classify new examples in the same fashion

Classification in Large Databases

- What about the training data not in main memory?
- Scalability: build classifiers for large data sets with many attributes in a reasonable speed
- Why decision tree induction in data mining?
 - Relatively faster learning speed (than other classification methods)
 - Convertible to simple and easy to understand classification rules
 - Can use SQL queries for database accesses
 - Comparable classification accuracy with other methods

SLIQ

- Assumption: the training data set cannot be held in memory
 - Bottleneck: determining the best split for each attribute
 - Have to sort examples by attributes repeatedly
- Presorted attribute lists and class list
- Breadth-first growth of decision trees
 - Grow one level with a single, complete pass over the data

Attribute Lists in SLIQ

Training data				Attribute lists					Class list		
Age	Training data Age Salary Class		Age	Class list		Salary	Class list	Index	Class	Leaf	
30				index			index	1	G	N1	
	65	G	23	2		15	2	2	В	N1	
23	15	В	30	1		40	4	3	G	N1	
40	75	G	40	3		60	6				
55	40	В	45	6		65	1	4	B	N1	
55	100	G		5		75	3	5	G	N1	
			55			100	5	6	G	N1	
45	60	G	55	4		100	5		1	1	

From SLIQ to SPRINT

- The class list in SLIQ must stay in memory
 - Bottleneck: the class list can be huge
- SPRINT: put class information in attribute lists
 - No class list anymore
- Parallelizing classification
 - Partition the attribute lists

Example of Attribute Lists

Training data

Attribute lists

Age	Salary	Class	Age	Class	rid	Salary	Class	rid
30	65	G	23	В	2	15	В	2
23	15	В	30	G	1	40	В	4
40	75	G	40	G	3	60	G	6
55	40	В	45	G	6	65	G	1
55	100	G	55	G	5	75	G	3
45	60	G	55	В	4	100	G	5

RainForest: A Generic Framework

- What is the bottleneck of scalability?
 - Computing the attribute-value, class label (AVC-group) for each node
- RainForest: separate quality and scalability designs, focus on scalability
 - A set of algorithms for fast AVC-group computation

Things to ponder

- Is a decision tree a discriminant classifier or a probabilistic classifier ?
- In discriminant classifier, it seems that we have an assumption that all predictive attributes are numerical attributes. Is it true ? What happen when there are categorical attributes ?

Outline

- Introduction
- Data Preparation
- Linear Discriminant
- Decision Tree Building
- Support Vector Machine(SVM)
- Bayesian Learning
- Other Classification Methods
- Combining Classifiers
- Validation Methods
- Regression

SVM: Introduction

- Widely used method for learning classifiers and regression models
- Has some theoretical support from Statistical Learning Theory
- Empirically works very well, at least for some classes of problems

l observations consisting of a pair: $x_i \in \mathbb{R}^n$, i=1,...,l and the associated "label" $y_i \in \{-1,1\}$

Assume the observations are iid from $P(\mathbf{x}, y)$

Have a "machine" whose task is to learn the mapping $x_i \rightarrow y_i$ Machine is defined by a set of mappings $x \rightarrow f(x, \alpha)$

Expected test error of the machine (risk):

$$R(\alpha) = \int \frac{1}{2} |y - f(x, \alpha)| dP(x, y)$$

Empirical risk(from training data):

$$R_{emp}(\alpha) = \frac{1}{2l} \sum_{i=1}^{l} |y - f(x_i, \alpha)|$$

VC Dimension (cont.)

Choose some η between 0 and 1. Vapnik (1995) showed that with probability 1- η :

$$R(\alpha) \le R_{emp}(\alpha) + \sqrt{\frac{h(\log(2l/h) + 1) - \log(\eta/4)}{l}}$$

•*h* is the Vapnik Chervonenkis (VC) dimension and is a measure of the capacity or complexity of the machine.

- •Note the bound is independent of *P*(*x*,*y*)!!!
- •If we know *h*, can readily compute the RHS. This provides a principled way to choose a learning machine.

VC Dimension (cont.)

Consider a set of function $f(x, \alpha) \in \{-1, 1\}$. A given set of l points can be labeled in 2^l ways. If a member of the set $\{f(\alpha)\}$ can be found which correctly assigns the labels for all labelings, then the set of points is *shattered* by that set of functions

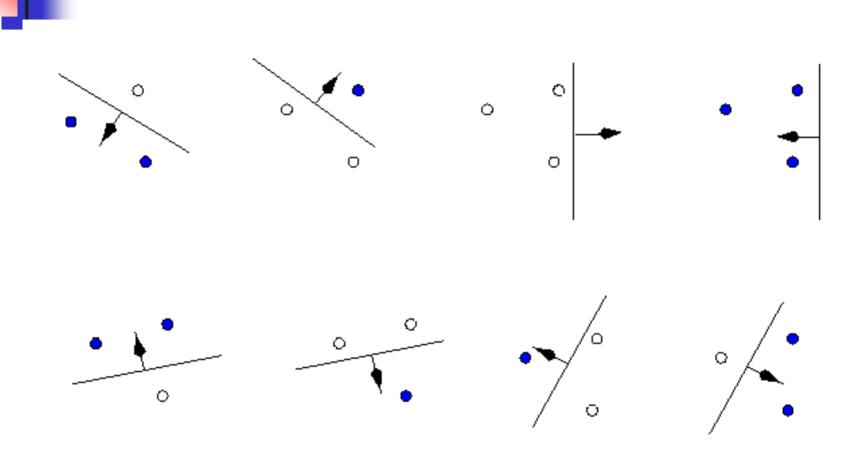
The *VC dimension* of $\{f(\alpha)\}$ is the maximum number of training points that can be shattered by $\{f(\alpha)\}$

For example, the VC dimension of a set of oriented lines in \mathbb{R}^2 is three.

In general, the VC dimension of a set of oriented hyperplanes in \mathbb{R}^n is n+1.

Note: need to find just one set of points.

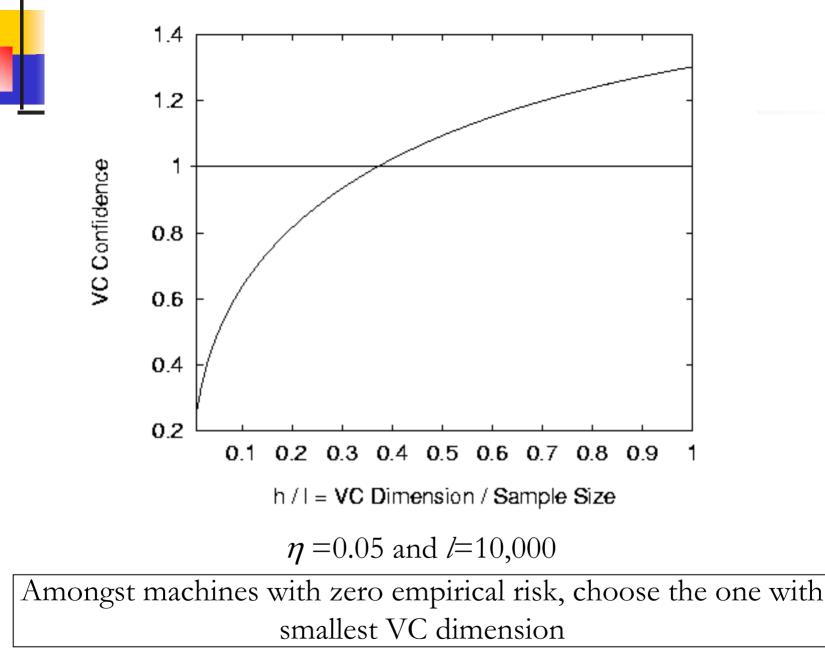
Data Mining: Foundation, Techniques and Applications



VC Dimension (cont.)

Note: VC dimension is *not* directly related to number of parameters. Vapnik (1995) has an example with 1 parameter and infinite VC dimension.

$$R(\alpha) \le R_{emp}(\alpha) + \sqrt{\frac{h(\log(2l/h) + 1) - \log(\eta/4)}{l}}$$
VC Confidence



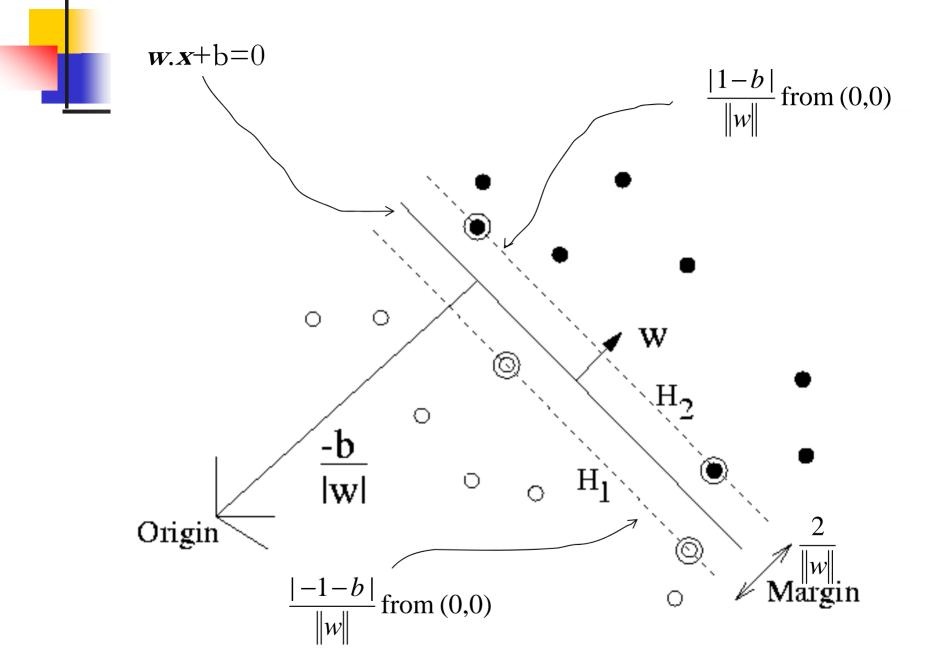
Linear SVM - Separable Case

l observations consisting of a pair: $x_i \in \mathbb{R}^d$, *i*=1,...,*l* and the associated "label" $y_i \in \{-1,1\}$

Suppose \exists a (separating) hyperplane w.x+b=0 that separates the positive from the negative examples. That is, all the training examples satisfy: $x_i \cdot w+b \ge +1$ when $y_i = +1$

equivalently: $x_i \cdot w + b \ge +1$ when $y_i = +1$ $x_i \cdot w + b \le -1$ when $y_i = -1$ $y_i (x_i \cdot w + b) - 1 \ge 0 \forall i$

Let d_+ (d_-) be the shortest distance from the sep. hyperplane to the closest positive (negative) example. The *margin* of the sep. hyperplane is defined to be $d_+ + d_-$ Data Mining: Foundation, Techniques and Applications



Data Mining: Foundation, Techniques and Applications

Linear SVM - Separable Case(II)

SVM finds the hyperplane that minimizes $|\mathbf{w}|$ (equiv $|\mathbf{w}|^2$) subject to $y_i(w^Tx_i + b) - 1 \ge 0$ for i = 1, ..., N i.e.

minimise $\Phi(w) = 1/2 w^T w$

The characteristics of the above QP are: convex quadratic objective function and linear constraints in w.

• The Lagrangian of the QP is

$$L_p = 1/2 w^T w - \sum_{i=1}^{l} \alpha_i [y_i (w^T x_i + b) - 1]$$

α_i, i = 1, ..., n is the Lagrange multiplier for constraint i.
 Optimality conditions:

$$\delta L_p / \delta w = 0$$
 and $\delta L_p / \delta b = 0$

SVM (cont.)

•The two optimality conditions yield the following:

$$w = \sum \alpha_i y_i x_i$$
 and $\sum \alpha_i y_i = 0$

Equivalently maximize:

$$L_D = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i \cdot x_j$$

with respect to the α_i 's, subject to $\alpha_i \ge 0$ and this is a convex quadratic programming problem

Note: only depends on dot-products of feature vectors

(Support vectors are points for which equality holds)

Linear SVM - Non-Separable Case

l observations consisting of a pair: $x_i \in \mathbb{R}^d$, *i*=1,...,*l* and the associated "label" $y_i \in \{-1,1\}$

Introduce positive slack variables ξ_i :

$$x_i \cdot w + b \ge +1 - \xi_i \text{ when } y_i = +1$$
$$x_i \cdot w + b \le -1 + \xi_i \text{ when } y_i = -1$$

and modify the objective function to be:

$$\left\|w\right\|^2 / 2 + C(\sum \xi_i)^k$$

Non-Linear SVM

Replace
$$x_i \cdot x_j$$
 by $k(x_i, x_j)$
 $k(x_i, x_j) = (x_i \cdot x_j)^d$
 $k(x_i, x_j) = \exp(-\|x_i - x_j\|^2 / (2\sigma^2))$ radial basis functions
 $k(x_i, x_j) = \tanh(\kappa(x_i \cdot x_j) + \theta)$ sigmoid kernels

•Finding VC dimension of machines with different kernels is non-trivial.

•Some (e.g. RBF) have infinite VC dimension but still work well in practice.

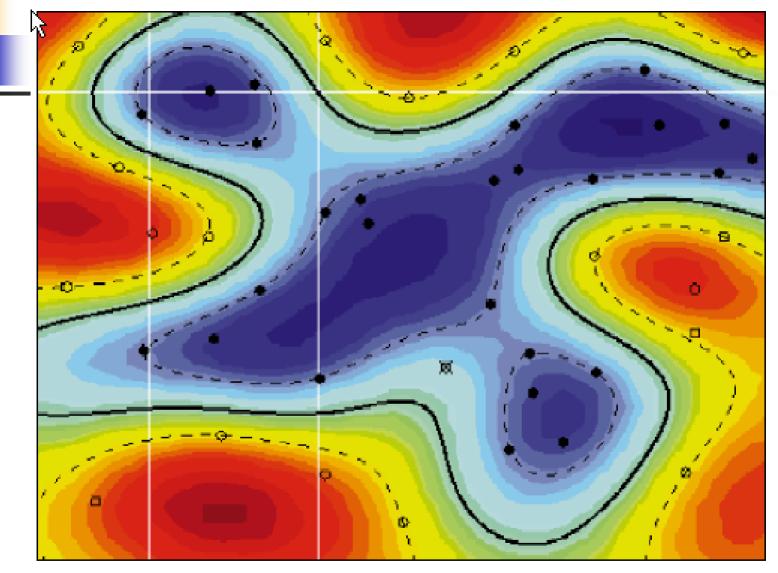


Figure 3. Example of an SV classifier found by using a radial basis function kernel (Equation 8). Circles and disks are two classes of training examples; the solid line is the decision surface; the support vectors found by the algorithm lie on, or between, the dashed lines. Colors code the modulus of the argument $\sum_i v_i \cdot k(\mathbf{x}, \mathbf{x}_i) + b$ of the decision function in Equation 10.

•Lots of work on speeding up the quadratic program

•Choice of kernel: doesn't seem to matter much in practice

•Many open theoretical problems

Outline

- Introduction
- Data Preparation
- Linear Discriminant
- Decision Tree Building
- Support Vector Machine(SVM)
- Bayesian Learning
- Other Classification Methods
- Combining Classifiers
- Validation Methods
- Regression

Bayes Theorem

$$P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)}$$

- P(h) = prior probability of hypothesis h
- P(D) = prior probability of training data D
- P(h|D) = posterior probability of h given D
- P(D|h) = posterior probability of D given h

Choosing Hypotheses

$$P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)}$$

- Generally want the most probable hypothesis given the training data *Maximum a posteriori* hypothesis h_{MAP} : $h_{MAP} = \arg \max_{h \in H} P(h|D)$ $= \arg \max_{h \in H} \frac{P(D|h)P(h)}{P(D)}$ $= \arg \max_{h \in H} P(D|h)P(h)$
- If assume P(h_i) = P(h_j) then can further simplify, and choose the Maximum likelihood (ML) hypothesis

$$h_{ML} = \arg \max_{h_i \in H} P(D|h_i)$$

Basic Formulas for Probabilities

 Product Rule: probability P(A A B) of a conjunction of two events A and B:

 $P(A \land B) = P(A | B) P(B) = P(B | A) P(A)$

Sum Rule: probability of a disjunction of two events A and B:

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

• Theorem of total probability: if events $A_1, ..., A_n$ are mutually exclusive with $\sum_{i=1}^n P(A_i) = 1$ then

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

Data Mining: Foundation, Techniques and Applications

Most Probable Classification of New Instances

- So far we've sought the most probable hypothesis given the data D (i.e., h_{MAP})
- Given new instance x, what is its most probable classification?
 - $h_{MAP}(x)$ is **not** the most probable classification!
- Consider:
 - Three possible hypotheses:

 $P(h_1|D) = .4, P(h_2|D) = .3, P(h_3|D) = .3$

• Given new instance *x*,

$$h_1(x) = +, h_2(x) = -, h_3(x) = -$$

What's most probable classification of x?

Bayes Optimal Classifier

Bayes optimal classification:

$$\arg \max_{v_j \in V} \sum_{h_i \in H} P(v_j | h_i) P(h_i | D)$$

Example:

$$P(h_1|D) = .4, P(-|h_1) = 0, P(+|h_1) = 1$$

$$P(h_2|D) = .3, P(-|h_2) = 1, P(+|h_2) = 0$$

$$P(h_3|D) = .3, P(-|h_3) = 1, P(+|h_3) = 0$$
therefore
$$\sum_{h_i \in H} P(+|h_i)P(h_i|D) = .4$$

$$\sum_{h_i \in H} P(-|h_i) P(h_i|D) = .6$$

and

$$\arg\max_{v_j \in V} \sum_{h_i \in H} P(v_j | h_i) P(h_i | D) = -$$

Gibbs Classifier

- Bayes optimal classifier provides best result, but can be expensive if many hypotheses.
- Gibbs algorithm:
 - 1. Choose one hypothesis at random, according to P(h|D)
 - 2. Use this to classify new instance
- Surprising fact: Assume target concepts are drawn at random from *H* according to priors on *H*. Then:

 $E[error_{Gibbs}] \leq 2E[error_{BayesOptional}]$

- Suppose correct, uniform prior distribution over *H*, then
 - Pick any hypothesis from *VS*, with uniform probability
 - Its expected error no worse than twice Bayes optimal

Naive Bayes Classifier (I)

- Along with decision trees, neural networks, nearest nbr, one of the most practical learning methods.
- When to use
 - Moderate or large training set available
 - Attributes that describe instances are conditionally independent given classification
- Successful applications:
 - Diagnosis
 - Classifying text documents

Naive Bayes Classifier (II)

- Assume target function *f*: X → V, where each instance x described by attributes < a₁, a₂ ... a_n>.
- Most probable value of f(x) is:

$$v_{MAP} = \operatorname*{argmax}_{v_j \in V} P(v_j | a_1, a_2 \dots a_n)$$

$$v_{MAP} = \operatorname*{argmax}_{v_j \in V} \frac{P(a_1, a_2 \dots a_n | v_j) P(v_j)}{P(a_1, a_2 \dots a_n)}$$

$$= \operatorname*{argmax}_{v_j \in V} P(a_1, a_2 \dots a_n | v_j) P(v_j)$$

Naive Bayes assumption: $P(a_1, a_2 \dots a_n | v_j) = \prod_i P(a_i | v_j)$ which gives **Naive Bayes classifier**: $v_{NB} = \underset{v_j \in V}{\operatorname{argmax}} P(v_j) \prod_i P(a_i | v_j)$

Naive Bayes Algorithm

- Naive Bayes Learn(*examples*) For each target value v_j $P(v_j) \leftarrow \text{estimate } \hat{P}(v_j)$ For each attribute value a_i of each attribute $a_i \hat{P}(\hat{a}_i | v_j) \leftarrow \text{estimate } \hat{P}(a_i | v_j)$
- Classify New Instance(x)

$$v_{NB} = \operatorname*{argmax}_{v_j \in V} \hat{P}(v_j) \underset{a_i \in x}{\Pi} \hat{P}(a_i | v_j)$$

Data Mining: Foundation, Techniques and Applications

Naive Bayes: Example

- Consider *PlayTennis* again, and new instance < *Outlk* = sun, *Temp* = cool, *Humid* = high, *Wind* = strong>
- Want to compute: $v_{NB} = \underset{v_j \in V}{\operatorname{argmax}} P(v_j) \prod_i P(a_i | v_j)$
- P(y) P(sun|y) P(cool|y) P(high|y) P(strong|y) = .005P(n) P(sun|n) P(cool|n) P(high|n) P(strong|n) = .021

$$\rightarrow V_{NB} = n$$

Example

Outlook	Тетр	Humid	Wind	PlayTennis
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

Naive Bayes: Subtleties (I)

- 1. Conditional independence assumption is often violated $P(a_1, a_2 \dots a_n | v_j) = \prod_i P(a_i | v_j)$
 - ...but it works surprisingly well anyway. Note don't need estimated posteriors $\hat{P}(v_j|x)$ to be correct; need only that $\hat{P}(v_j|x) = \hat{P}(v_j|x)$

$$\operatorname*{argmax}_{v_j \in V} \hat{P}(v_j) \prod_i \hat{P}(a_i | v_j) = \operatorname*{argmax}_{v_j \in V} P(v_j) P(a_1 \dots, a_n | v_j)$$

- see [Domingos & Pazzani, 1996] for analysis
- Naive Bayes posteriors often unrealistically close to 1 or 0

Pedro Domingos, Michael Pazzan. Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier (1996).

Naive Bayes: Subtleties (II)

2. What if none of the training instances with target value v_j have attribute value a_i ? Then

 $\hat{P}(a_i|v_j) = 0, \text{ and...}$ $\hat{P}(v_j) \prod_i \hat{P}(a_i|v_j) = 0$

Typical solution is Bayesian estimate for $\hat{P}(a_i|v_j)$

$$\hat{P}(a_i|v_j) \leftarrow \frac{n_c + mp}{n+m}$$

where

- *n* is number of training examples for which $v = v_{i'}$
- n_c number of examples for which $v = v_i$ and $a = a_i$
- p is prior estimate for $\hat{P}(a_i|v_j)$
- *m* is weight given to prior(i.e. number of "virtual" examples)

Bayesian Belief Networks

Interesting because:

- Naive Bayes assumption of conditional independence too restrictive
- But it's intractable without some such assumptions...
- Bayesian Belief networks describe conditional independence among *subsets* of variables
- → allows combining prior knowledge about (in)dependencies among variables with observed training data (also called Bayes Nets)

Conditional Independence

Definition: X is conditionally independent of Y given Z if the probability distribution governing X is independent of the value of Y given the value of Z; that is, if

 $(\forall x_{i'}, y_{j'}, z_k) P(X = x_i | Y = y_{j'}, Z = z_k) = P(X = x_i | Z = z_k)$

more compactly, we write

P(X|Y, Z) = P(X|Z)

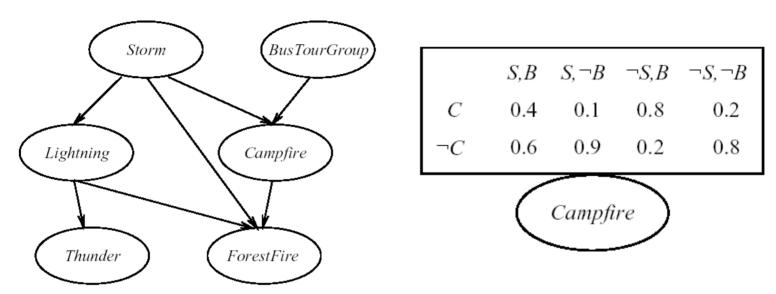
Example: *Thunde*r is conditionally independent of *Rain*, given *Lightning*

P(Thunder Rain, Lightning) = P(Thunder Lightning)

Naive Bayes uses cond. indep. to justify P(X, Y|Z) = P(X|Y, Z) P(Y|Z) = P(X|Z) P(Y|Z)

Data Mining: Foundation, Techniques and Applications

Bayesian Belief Network (I)



- Network represents a set of conditional independence assertions:
 - Each node is asserted to be conditionally independent of its nondescendants, given its immediate predecessors.
 - Directed acyclic graph

Data Mining: Foundation, Techniques and Applications

Bayesian Belief Network (II)

- Represents joint probability distribution over all variables
 - e.g., P(Storm, BusTourGroup, . . . , ForestFire)
 - in general,

$$P(y_1,\ldots,y_n) = \prod_{i=1}^n P(y_i | Parents(Y_i))$$

where $Parents(Y_i)$ denotes immediate predecessors of Y_i in graph

 so, joint distribution is fully defined by graph, plus the P(y_i|Parents(Y_i))

Inference in Bayesian Networks

- How can one infer the (probabilities of) values of one or more network variables, given observed values of others?
 - Bayes net contains all information needed for this inference
 - If only one variable with unknown value, easy to infer it
- In practice, can succeed in many cases
 - Exact inference methods work well for some network structures
 - Monte Carlo methods "simulate" the network randomly to calculate approximate solutions

Learning of Bayesian Networks

Several variants of this mining task

- Network structure might be known or unknown
- Training examples might provide values of *all* network variables, or just *some*

If structure known and observe all variables

 Then it's easy as training a Naive Bayes classifier

Learning Bayes Nets

- Suppose structure known, variables partially observable
- e.g., observe ForestFire, Storm, BusTourGroup, Thunder, but not Lightning, Campfire...
 - In fact, can learn network conditional probability tables using gradient ascent!
 - Converge to network *h* that (locally) maximizes P(D|h)

Gradient Ascent for Bayes Nets

 Let w_{ijk} denote one entry in the conditional probability table for variable Y_i in the network

 $W_{ijk} = P(Y_i = y_{ij} | Parents(Y_i) = the list u_{ik} of values)$

- e.g., if $Y_i = Campfire$, then u_{ik} might be < Storm = T, BusTourGroup = F >
- Perform gradient ascent by repeatedly
 - 1. update all w_{ijk} using training data D $w_{ijk} \leftarrow w_{ijk} + \eta \sum_{d \in D} \frac{P_h(y_{ij}, u_{ik}|d)}{w_{ijk}}$
 - 2. then, renormalize the weight W_{ijk} to assure

•
$$\Sigma_j W_{ijk} = 1$$
 $- 0 \le W_{ijk} \le 1$

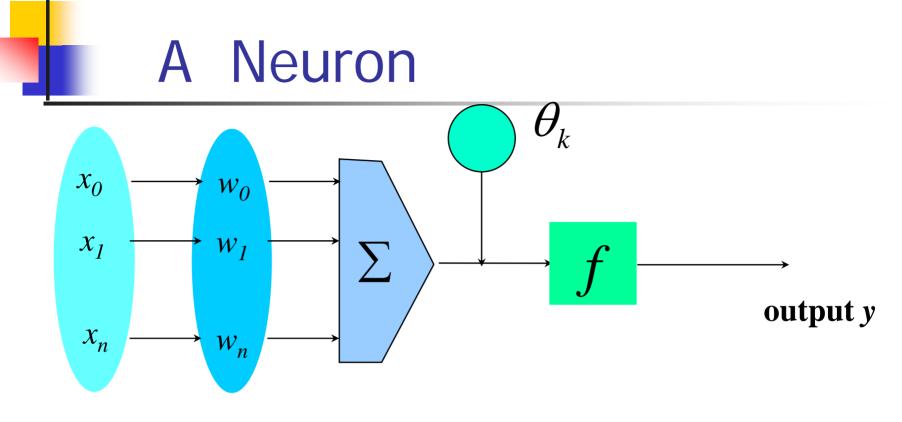
More on Learning Bayes Nets

• EM algorithm can also be used. Repeatedly:

- Calculate probabilities of unobserved variables, assuming h
- 2. Calculate new w_{ijk} to maximize $E[\ln P(D|h)]$ where D now includes both observed and (calculated probabilities of) unobserved variables
- When structure unknown...
 - Algorithms use greedy search to add/substract edges and nodes
 - Active research topic

Outline

- Introduction
- Data Preparation
- Linear Discriminant
- Decision Tree Building
- Support Vector Machine(SVM)
- Bayesian Learning
- Other Classification Methods
- Combining Classifiers
- Validation Methods
- Regression



InputweightweightedActivationvector xvector wsumfunction

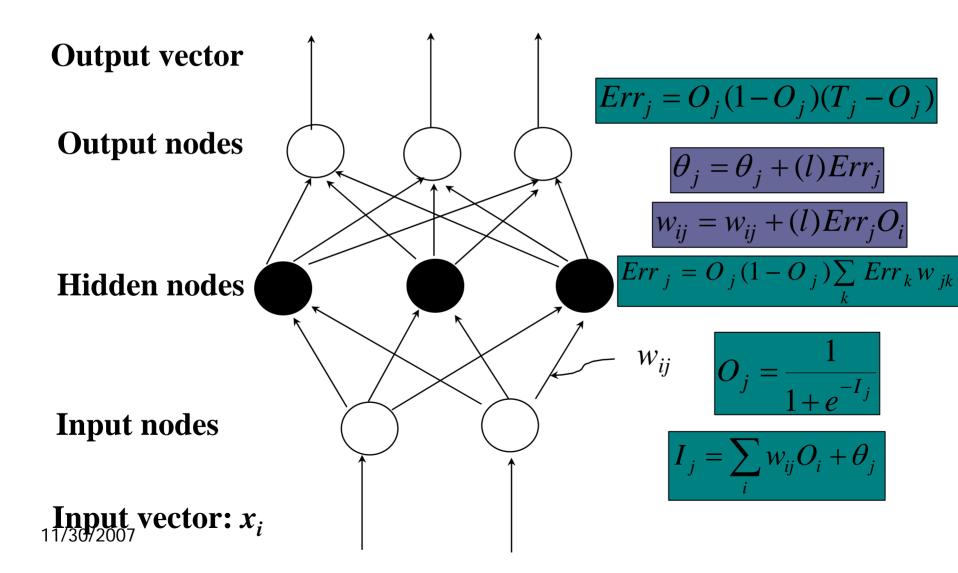
The *n*-dimensional input vector *x* is mapped into variable *y* by means of the scalar product and a nonlinear function mapping

Data Mining: Foundation, Techniques and Applications

Network Training

- The ultimate objective of training
 - obtain a set of weights that makes almost all the tuples in the training data classified correctly
- Steps
 - Initialize weights with random values
 - Feed the input tuples into the network one by one
 - For each unit
 - Compute the net input to the unit as a linear combination of all the inputs to the unit
 - Compute the output value using the activation function
 - Compute the error
 - Update the weights and the bias

Multi-Layer Perceptron



Association-Based Classification

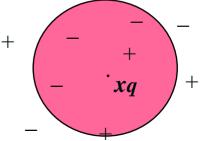
- Several methods for association-based classification
 - Associative classification(CBA): (Liu et al'98)
 - It mines high support and high confidence rules in the form of "cond_set => y", where y is a class label
 - CAEP (Classification by aggregating emerging patterns) (Dong et al'99)
 - Emerging patterns (EPs): the itemsets whose support increases significantly from one class to another
 - Mine EPss based on minimum support and growth rate

Instance-based Methods

- Instance-based learning:
 - Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified
- Typical approaches
 - K-nearest neighbor approach
 - Instances represented as points in an Euclidean space
 - Case-based reasoning
 - Uses symbolic representations and knowledge-based inference

The K-nearest Neighbor Algorithm (KNN)

- Instances are points in an n-D space
- The nearest neighbor in the Euclidean distance
- Discrete-/real-valued target functions
- Return the most common value among the k training examples nearest to the query point



Case-based Reasoning

- Lazy evaluation + analysis of similar instances
- Methodology
 - Instances represented by rich symbolic descriptions (e.g., function graphs)
 - Combine multiple retrieved cases
 - Tight coupling between case retrieval, knowledge-based reasoning, and problem solving

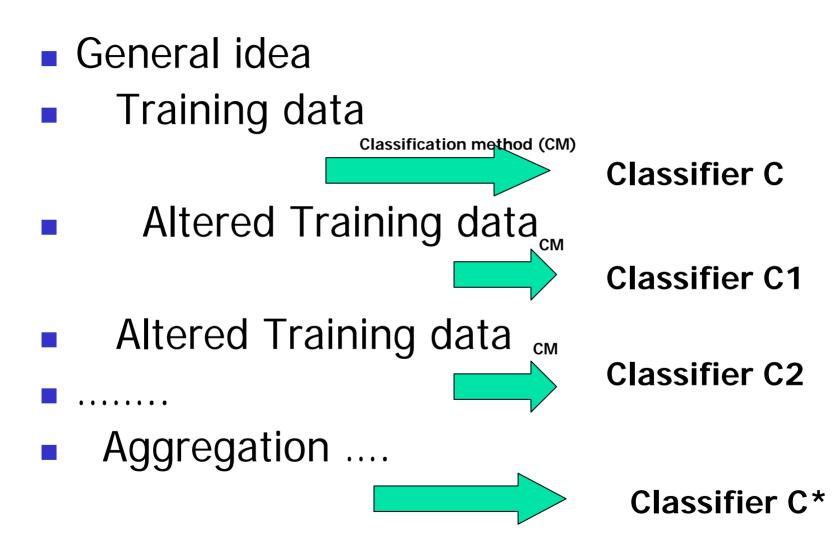
Lazy vs. Eager Learning

- Efficiency: lazy learning uses less training time but more predicting time
- Accuracy
 - Lazy method effectively uses a richer hypothesis space
 - Eager: must commit to a single hypothesis that covers the entire instance space

Outline

- Introduction
- Data Preparation
- Linear Discriminant
- Decision Tree Building
- Support Vector Machine(SVM)
- Bayesian Learning
- Other Classification Methods
- Combining Classifiers
- Validation Methods
- Regression

Bagging and Boosting



Data Mining: Foundation, Techniques and Applications

Bagging

- Given a set S of s samples, generate a sequence of k independent bootstrap training sets
- Construct a sequence of classifiers C1,C2,...,Ck
 by using the same classification algorithm
- To classify an unknown sample X, let each classifier predict or vote
- The bagged classifier C* counts the votes and assigns X to the class with the "most" votes

Boosting Technique

- Assign every example an equal weight 1/N
- For t = 1, 2, ..., T Do
 - Obtain a classifier C(t) under w(t)
 - Calculate the error of C(t) and re-weight the examples based on the errors. Samples incorrectly predicted have bigger weight
- Output a weighted sum of all the classifiers, with each classifier weighted according to its accuracy on the training set

Outline

- Introduction
- Data Preparation
- Linear Discriminant
- Decision Tree Building
- Support Vector Machine(SVM)
- Bayesian Learning
- Other Classification Methods
- Combining Classifiers
- Validation Methods
- Regression

Holdout

- Randomly partition the given data into a training set and a test set
 - Typically, 2/3 are in the training set and 1/3 in the test set
 - Random subsampling is also feasible

K-fold Cross-validation

- Randomly partition the given data into k folds: mutually exclusive subsets with approximately equal size
- In iteration j, use S_j as the test set and the remaining folds as training set
 - Stratified cross-validation: each fold has approximately equal class distribution
 - Stratified 10-fold cross-validation
- Bootstrapping: sample the test set with replacement

Sensitivity and Specificity

- Sensitivity = t_pos / pos
 - The percentage of positive samples correctly classified
- Specificity = t_neg / neg
 - The percentage of negative samples correctly classified

Precision

Precision = t_pos / (t_pos + f_pos)

The percentage of samples classified positive are actually positive

$$accuracy = \frac{sensitivity \times pos + specificity \times neg}{pos + neg}$$

Outline

- Introduction
- Data Preparation
- Linear Discriminant
- Decision Tree Building
- Support Vector Machine(SVM)
- Bayesian Learning
- Other Classification Methods
- Combining Classifiers
- Validation Methods
- Regression

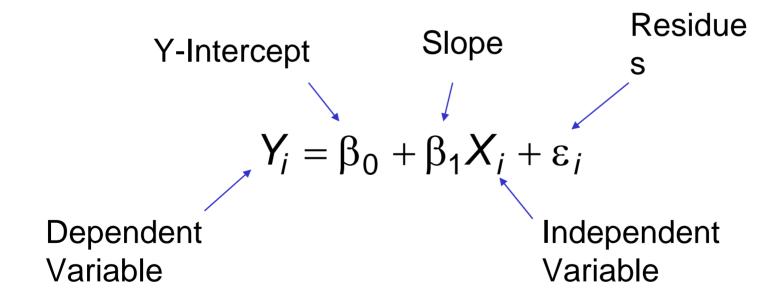
What Is Regression

- Regression is similar to classification
 - Construct a model
 - Use the model to predict unknown value
 - Linear and multiple regression, non-linear regression
- Regression models continuous-valued functions

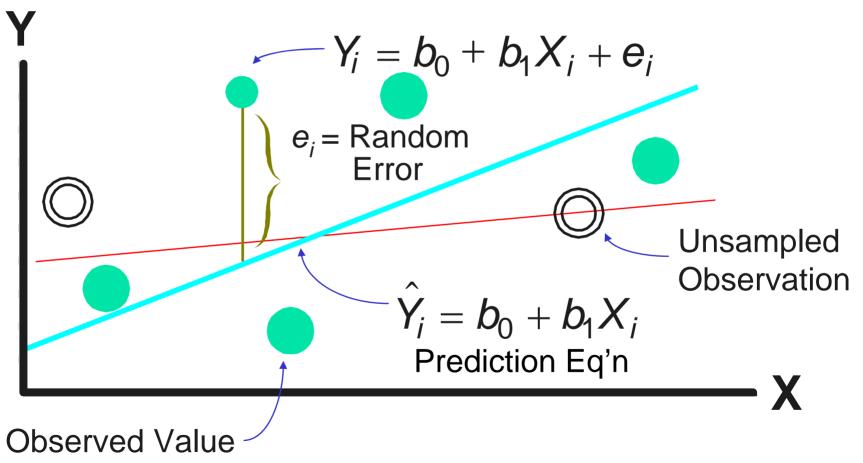
- Linear regression: $Y = \beta_0 + \beta_1 X$
 - Two parameters , β₀ and β₁ specify the line and are to be estimated by using the data at hand.
 - using the least squares criterion
- <u>Multiple regression</u>: $Y = b_0 + b_1 X_1 + b_2 X_2$.
 - Many nonlinear functions can be transformed into the above.
- Log-linear models:
 - The multi-way table of joint probabilities is approximated by a product of lower-order tables.
 - Probability: $p(a, b, c, d) = \alpha a \beta \beta a \chi a \delta b c d$ Data Mining: Foundation, Techniques and Applications

Linear Regression Model

 Relationship Between Variables Is a <u>Linear</u> <u>Function</u>



Linear Regression Model



Data Mining: Foundation, Techniques and Applications

Model Estimates

- b₀ estimates β₀ "Y Intercept"
 - Expected value of Y when X = 0
- b₁ estimates β₁ "Slope"
 - Expected change in Y per unit change in X
- Valid only over "Relevant Range"
 - Interpolate Do Not Extrapolate!!

Formula for b₀ and b₁

$$b_{0} = \frac{(\Sigma y_{i}) (\Sigma x_{i}^{2}) - (\Sigma x_{i}) (\Sigma x_{i} y_{i})}{N^{*} (\Sigma x_{i}^{2}) - (\Sigma x_{i})^{2}}$$
(y-intercept)

$$b_{1} = \frac{N^{*}(\Sigma x_{i}y_{i}) - (\Sigma x_{i})(\Sigma y_{i})}{N^{*}(\Sigma x_{i}^{2}) - (\Sigma x_{i})^{2}} \text{ (slope)}$$

N=number of points

11/30/2007

How to get those formulae ?

Score Function
 Minimize SSE = ∑[y_i - (b₀ + b₁x_i)]²
 Partial Derivation

$$\frac{\partial SSE}{\partial b_0} = -\sum 2[y_i - (b_0 + b_1 x_i)] = 0$$
$$\frac{\partial SSE}{\partial b_1} = \sum 2[y_i - (b_0 + b_1 x_i)](-x_i) = 0$$

Data Mining: Foundation, Techniques and Applications

Locally Weighted Regression

- Construct an explicit approximation to *f* over a local region surrounding query instance x_q.
- Locally weighted linear regression:
 - The target function *f* is approximated near x_q using the linear function: $\hat{f}(x) = w_0 + w_1 a_1(x) + \dots + w_n a_n(x)$
 - minimize the squared error: distance-decreasing weight K $E(x_q) \equiv \frac{1}{2} \sum_{x \in knn(x_q)} (f(x) - \hat{f}(x))^2 K(d(x_q, x))$
 - the gradient descent training rule:

$$\Delta w_j \equiv \eta \sum_{x \in knn(x_q)} K(d(x_q, x))((f(x) - \hat{f}(x))a_j(x)$$

In most cases, the target function is approximated by a constant, linear, or quadratic function.

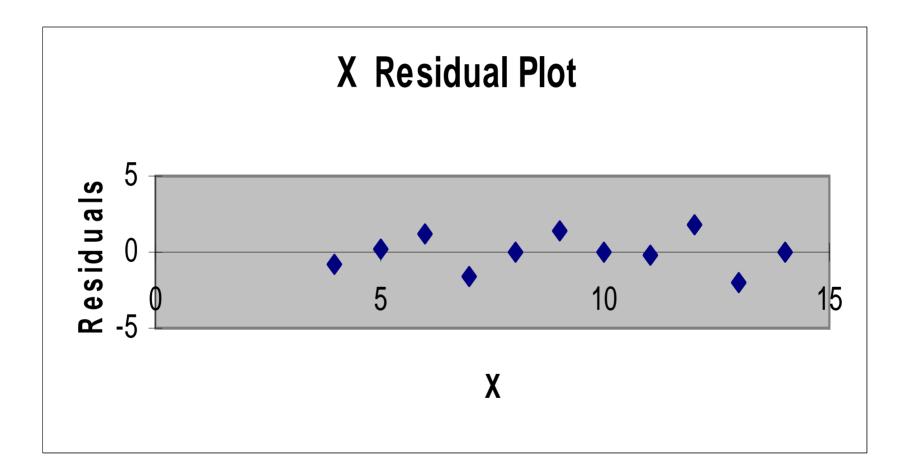
Residual Analysis

- 1.Graphical Analysis of Residuals ("errors")
 - Residuals = Difference between actual Y_i & predicted Y_i
 - Plot residuals vs. X_i values

2.Purpose

- Examine functional form (linear vs. non-linear)
- Test independence of errors

Residual Analysis



Durbin-Watson Procedure

- I. Used to Detect Autocorrelation
 - Residuals in one time period are related to residuals in another period
 - Violation of independence assumption
- 2. Durbin-Watson Test Statistic

$$D = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}$$

Durbin-Watson Rules

- For given α , n, & p:
- If D < d_L, then auto-correlation exists
- If $D > d_U$, then no auto-correlation exists
- If $d_1 < D < d_{11}$, then no definite conclusion

X variables, excluding the intercept											
Observations 1			2 3				. 4		5		
N	Prob.	D-L	D-U								
15	0.05	1.08	1.36	0.95	1.54	0.82	1.75	0.69	1.97	0.56	2.21
	0.01	0.81	1.07	0.7	1.25	0.59	1.46	0.49	1.70	0.39	1.96
20	0.05	1.20	1.71	1.10	1.54	1.00	1.68	0.90	1.83	0.79	1.99
	0.01	0.95	1.15	0.86	1.27	0.77	1.41	0.68	1.57	0.60	1.74
25	0.05	1.29	1.45	1.21	1.55	1.12	1.66	1.04	1.77	0.95	1.89
	0.01	1.05	1.21	0.98	1.30	0.90	1.41	0.83	1.52	0.75	1.65
30	0.05	1.35	1.49	1.28	1.57	1.21	1.65	1.14	1.74	1.07	1.83
	0.01	1.13	1.26	1.07	1.34	1.01	1.42	0.94	1.51	0.88	1.61
40	0.05	1.44	1.54	1.39	1.60	1.34	1.66	1.39	1.72	1.23	1.79
	0.01	1.25	1.34	1.20	1.40	1.15	1.46	1.10	1.52	1.05	1.58
50	0.05	1.50	1.59	1.46	1.63	1.42	1.67	1.38	1.72	1.34	1.77
	0.01	1.32	1.40	1.28	1.45	1.24	1.49	1.20	1.54	1.16	1.59
60	0.05	1.55	1.62	1.51	1.65	1.48	1.69	1.44	1.73	1.41	1.77
	0.01	1.38	1.45	1.35	1.48	1.32	1.52	1.28	1.56	1.25	1.60
80	0.05	1.61	1.66	1.59	1.69	1.56	1.72	1.53	1.74	1.51	1.77
	0.01	1.47	1.52	1.44	1.54	1.42	1.57	1.39	1.60	1.36	1.62
100	0.05	1.65	1.69	1.63	1.72	1.61	1.74	1.59	1.76	1.57	1.78
	0.01	1.52	1.56	1.50	1.58	1.48	1.60	1.46	1.63	1.44	1.65

Essential Readings

- "<u>Data Mining: Concepts and Techniques</u>" Jiawei Han and Micheline Kamber. Chapter 6
- "Principles of Data Mining", David Hand, Heikki Mannila and Padhraic Smyth. Chapter 10.1 - 10.4.
- Johannes Gehrke, "Scalable Classification Tree Construction.".
- "Langrange Multipliers without Permanent Scarring", Dan Klein.
- "A Tutorial on Support Vector Machines for Pattern Recognition", Christopher J.C. Burges.
- "Machine Learning", Tom M. Mitchell Chapter 6.1, 6.2, 6.7-6.11

Optional Readings

- Pedro Domingos and Michael Pazzani. Beyond independence: Conditions for the optimality of the simple bayesian classifier. In Proceedings of the 13th International Conference on Machine Learning, pages 105-112, 1996.
- Russell, S., Binder, J., Koller, D., and Kanazawa, K. (1995). Local learning in probabilistic networks with hidden variables. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence. San Mateo, CA: Morgan Kaufmann. 1146--1152.

Reference

- http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_compo nents.pdf
- T. M. Mitchell. Machine Learning. McGraw Hill, 1997. Chapter 3
- J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986
- Dash, M. and Liu, H. (1997). *Feature Selection for Classification*. Intelligent Data Analysis, 1 (3): 131-156. Elsevier Science Inc.
- Shafer, J. C.; Agrawal, R.; and Metha, M. SPRINT: A scalable parallel classifier for data mining. In VLDB'96
- J. Gehrke, R. Ramakrishnan and V. Ganti, Rainforest a framework for fast decision tree construction of large datasets, Proc. VLDB'98.
- M. Mehta, R. Agrawal, and J. Rissanen. SLIQ : A fast scalable classifier for data mining. (EDBT'96), Avignon, France, March 1996.
- R. Rastogi and K. Shim. Public: A decision tree classifer that integrates building and pruning. In Proc. 1998 Int. Conf. Very Large Data Bases, 404-415, New York, NY, August 1998.