Data Mining: Foundation, Techniques and Applications

Lesson 7,8:Clustering and Outlier Detection

Li Cuiping(李翠平) School of Information Renmin University of China

Anthony Tung(鄧锦浩) School of Computing National University of Singapore

1

8/19/2002

Outline

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Constrained Clustering
- Outlier Analysis
- Summary

What is Cluster Analysis?

- Cluster: a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Cluster analysis
 - Grouping a set of data objects into clusters
- Clustering is unsupervised classification: no predefined classes
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

General Applications of Clustering

- Pattern Recognition
- Spatial Data Analysis
 - create thematic maps in GIS by clustering feature spaces
 - detect spatial clusters and explain them in spatial data mining
- Image Processing
- Economic Science (especially market research)
- WWW
 - Document classification
 - Cluster Weblog data to discover groups of similar access patterns

Examples of Clustering Applications

- <u>Marketing</u>: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- <u>Land use</u>: Identification of areas of similar land use in an earth observation database
- <u>Insurance</u>: Identifying groups of motor insurance policy holders with a high average claim cost
- <u>City-planning</u>: Identifying groups of houses according to their house type, value, and geographical location
- <u>Earth-quake studies</u>: Observed earth quake epicenters should be clustered along continent faults

11/30/2007

What Is Good Clustering?

- A <u>good clustering</u> method will produce high quality clusters with
 - high intra-class similarity
 - low <u>inter-class</u> similarity
- The <u>quality</u> of a clustering result depends on both the similarity measure used by the method and its implementation.
- The <u>quality</u> of a clustering method is also measured by its ability to discover some or all of the <u>hidden</u> patterns.

Requirements of Clustering in Data Mining

- Scalability
- Ability to deal with different types of attributes
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Incorporation of user-specified constraints
- Interpretability and usability

Cluster Analysis

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Constrained Clustering
- Outlier Analysis
- Summary

Data Structures

- Data matrix
 - (two modes)

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

Dissimilarity matrix
(one mode)

$$\begin{bmatrix} 0 & & & \\ d(2,1) & 0 & & \\ d(3,1) & d(3,2) & 0 & \\ \vdots & \vdots & \vdots & \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Measure the Quality of Clustering

- Dissimilarity/Similarity metric: Similarity is expressed in terms of a distance function, which is typically metric: d(i, j)
- There is a separate "quality" function that measures the "goodness" of a cluster.
- The definitions of distance functions are usually very different for interval-scaled, boolean, categorical, ordinal and ratio variables.
- Weights should be associated with different variables based on applications and data semantics.
- It is hard to define "similar enough" or "good enough"
 - the answer is typically highly subjective.

Type of data in clustering analysis

- Interval-scaled variables:
- Binary variables:
- Nominal, ordinal, and ratio variables:
- Variables of mixed types:

Outline

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Constrained Clustering
- Outlier Analysis
- Summary

Interval-valued variables

Standardize data

Calculate the mean absolute deviation:

$$s_{f} = \frac{1}{n} (|x_{1f} - m_{f}| + |x_{2f} - m_{f}| + \dots + |x_{nf} - m_{f}|)$$

where $m_f = \frac{1}{n}(x_{1f} + x_{2f} + ... + x_{nf})$

Calculate the standardized measurement (*z-score*)

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

Using mean absolute deviation is more robust than using standard deviation

Similarity and Dissimilarity Between Objects

- <u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u> between two data objects
- Some popular ones include: *Minkowski distance*:

$$d(i,j) = \sqrt[q]{(|x_{i_1} - x_{j_1}|^q + |x_{i_2} - x_{j_2}|^q + \dots + |x_{i_p} - x_{j_p}|^q)}$$

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two *p*-dimensional data objects, and *q* is a positive integer

• If q = 1, d is Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + \dots + |x_{i_p} - x_{j_p}|$$

11/30/2007

Similarity and Dissimilarity Between Objects (Cont.)

• If
$$q = 2$$
, d is Euclidean distance:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + \dots + |x_{ip} - x_{jp}|^2)}$$

- Properties
 - *d(i,j)* ≥ 0
 - d(i,i) = 0
 - $\bullet \quad d(i,j) = d(j,i)$
 - $d(i,j) \leq d(i,k) + d(k,j)$
- Also one can use weighted distance, parametric Pearson product moment correlation, or other dissimilarity measures.

Binary Variables

• A contingency table for binary data

		Object j				
		1	0	sum		
	1	a	b	a+b		
Object <i>i</i>	0	c	d	c+d		
	sum	a+c	b d b+d	p		

- Simple matching coefficient (invariant, if the binary variable is <u>symmetric</u>): $d(i, j) = \frac{b+c}{a+b+c+d}$
- Jaccard coefficient (noninvariant if the binary variable is <u>asymmetric</u>): $d(i, j) = \frac{b+c}{a+b+c}$

11/30/2007

Dissimilarity between Binary Variables

Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	Μ	Y	N	Р	N	N	Ν
Mary	F	Y	Ν	Р	N	Р	Ν
Jim	Μ	Y	Р	Ν	Ν	Ν	Ν

- gender is a symmetric attribute
- the remaining attributes are asymmetric binary
- Iet the values Y and P be set to 1, and the value N be set to 0

$$d (jack , mary) = \frac{0+1}{2+0+1} = 0.33$$

$$d (jack , jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d (jim , mary) = \frac{1+2}{1+1+2} = 0.75$$

11/30/2007

Nominal Variables

- A generalization of the binary variable in that it can take more than 2 states, e.g., red, yellow, blue, green
- Method 1: Simple matching
 - *m*: # of matches, *p*: total # of variables

$$d(i, j) = \frac{p - m}{p}$$

- Method 2: use a large number of binary variables
 - creating a new binary variable for each of the *M* nominal states

Ordinal Variables

- An ordinal variable can be discrete or continuous
- order is important, e.g., rank
- Can be treated like interval-scaled
 - replacing x_{if} by their rank $r_{if} \in \{1, ..., M_{f}\}$
 - map the range of each variable onto [0, 1] by replacing *i*-th object in the *f*-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_{f} - 1}$$

compute the dissimilarity using methods for interval-scaled variables

Ratio-Scaled Variables

- <u>Ratio-scaled variable</u>: a positive measurement on a nonlinear scale, approximately at exponential scale, such as Ae^{Bt} or Ae^{-Bt}
- Methods:
 - treat them like interval-scaled variables not a good choice! (why?) Example: Difference between 0.5 and 1.0 could be less significant than difference between 0.0 to 0.1
 - apply logarithmic transformation

$$y_{if} = log(x_{if})$$

 treat them as continuous ordinal data treat their rank as intervalscaled.

11/30/2007

Variables of Mixed Types

• A database may contain all the six types of variables

- symmetric binary, asymmetric binary, nominal, ordinal, interval and ratio.
- One may use a weighted formula to combine their effects. $d(i, j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$
 - *f* is binary or nominal:

 $d_{ij}^{(f)} = 0$ if $x_{if} = x_{jf}$, or $d_{ij}^{(f)} = 1$ o.w.

- *f* is interval-based: use the normalized distance
- *f* is ordinal or ratio-scaled
 - compute ranks r_{if} and
 - and treat z_{if} as interval-scaled

$$\mathcal{Z}_{if} = \frac{\mathcal{F}_{if} - 1}{M_{f} - 1}$$

11/30/2007

Outline

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Constrained Clustering
- Outlier Analysis
- Summary

11/30/2007

Major Clustering Approaches

- <u>Partitioning algorithms</u>: Construct various partitions and then evaluate them by some criterion
- <u>Hierarchy algorithms</u>: Create a hierarchical decomposition of the set of data (or objects) using some criterion
- <u>Density-based</u>: based on connectivity and density functions
- <u>Grid-based</u>: based on a multiple-level granularity structure

Outline

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Constrained Clustering
- Outlier Analysis
- Summary

Partitioning Algorithms: Basic Concept

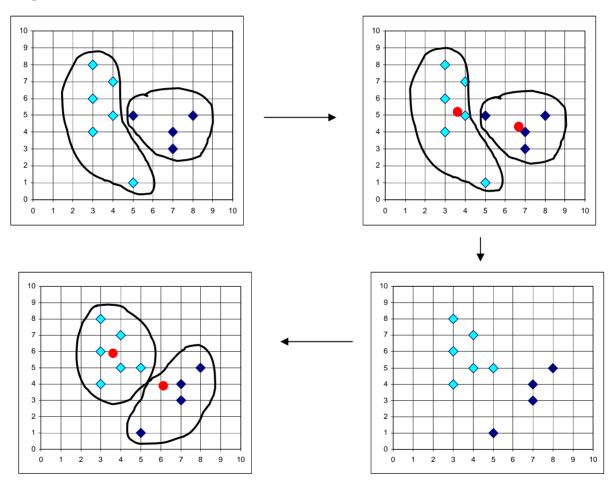
- <u>Partitioning method</u>: Construct a partition of a database *D* of *n* objects into a set of *k* clusters
- Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - <u>k-means</u> (MacQueen'67): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

The K-Means Clustering Method

- Given k, the k-means algorithm is implemented in 4 steps:
 - Partition objects into k nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partition. The centroid is the center (mean point) of the cluster.
 - Assign each object to the cluster with the nearest seed point.
 - Go back to Step 2, stop when no more new assignment.

The K-Means Clustering Method

Example



Comments on the K-Means Method

Strength

- *Relatively efficient*: O(*tkdn*), where n is # objects, k is # clusters, d is the # of dimensions and t is # iterations. Normally, k, t, d << n.
- Often terminates at a *local optimum*.
- Weakness
 - Need to specify k, the number of clusters, in advance
 - Unable to handle noisy data and *outliers*
 - Not suitable to discover clusters with *non-convex* shapes

Can we terminate k-means earlier?

- The k-means algorithm must be ran multiple times to get better result. How do we know a set of initial centers will not give better result?
- Compute a bound on how much can future iterations improve on the objective function. If it is too small, terminate at once.
 - Zhenjie Zhang, Bing Tian Dai and Anthony K.H. Tung.
 "On the Lower Bound of Lower Optimums in K-Means Algorithm". In ICDM 2006. [Codes][PPT]

The K-Medoids Clustering Method

- Find *representative* objects, called <u>medoids</u>, in clusters
- *PAM* (Partitioning Around Medoids, 1987)
 - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 - PAM works effectively for small data sets, but does not scale well for large data sets
- CLARA (Kaufmann & Rousseeuw, 1990)
- *CLARANS* (Ng & Han, 1994): Randomized sampling

CLARA (Clustering Large Applications) (1990)

- CLARA (Kaufmann and Rousseeuw in 1990)
 - Built in statistical analysis packages, such as S+
- It draws *multiple samples* of the data set, applies *PAM* on each sample, and gives the best clustering as the output
- <u>Strength</u>: deals with larger data sets than *PAM*
- Weakness:
 - Efficiency depends on the sample size
 - A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased

CLARANS ("Randomized" CLARA) (1994)

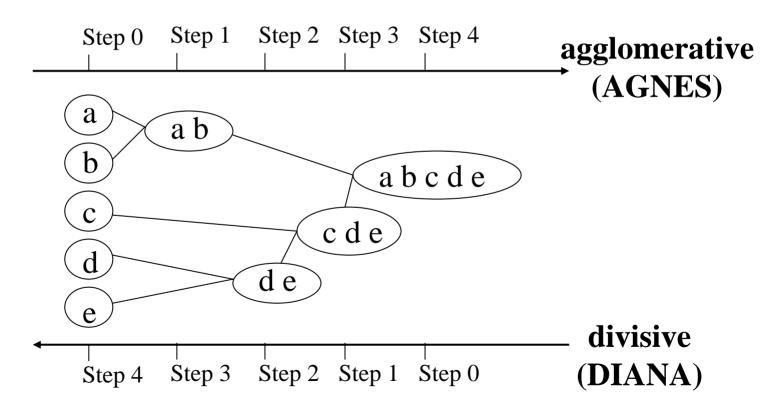
- CLARANS (A Clustering Algorithm based on Randomized Search) (Ng and Han'94)
- CLARANS draws sample of neighbors dynamically
- The clustering process can be presented as searching a graph where every node is a potential solution, that is, a set of k medoids
- If the local optimum is found, CLARANS starts with new randomly selected node in search for a new local optimum
- It is more efficient and scalable than both PAM and CLARA
- Focusing techniques and spatial access structures may further improve its performance (Ester et al.'95)

Outline

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Constrained Clustering
- Outlier Analysis
- Summary

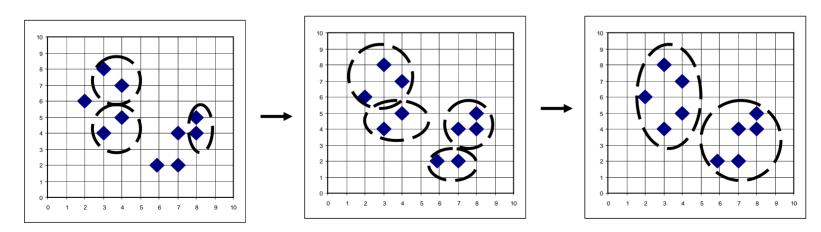
Hierarchical Clustering

 Use distance matrix as clustering criteria. This method does not require the number of clusters *k* as an input, but needs a termination condition



AGNES (Agglomerative Nesting)

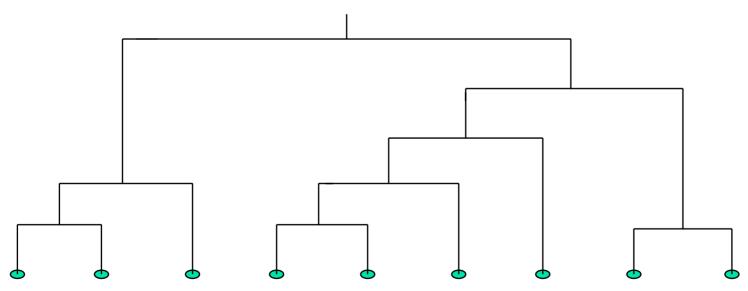
- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Use the Single-Link method and the dissimilarity matrix.
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster



A *Dendrogram* Shows How the Clusters are Merged Hierarchically

Decompose data objects into a several levels of nested partitioning (<u>tree</u> of clusters), called a <u>dendrogram</u>.

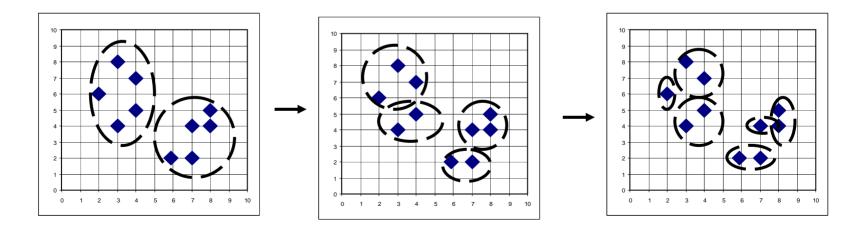
A <u>clustering</u> of the data objects is obtained by <u>cutting</u> the dendrogram at the desired level, then each <u>connected</u> <u>component</u> forms a cluster.



11/30/2007

DIANA (Divisive Analysis)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES
- Eventually each node forms a cluster on its own



More on Hierarchical Clustering Methods

Major weakness of agglomerative clustering methods

- <u>do not scale</u> well: time complexity of at least O(n²), where n is the number of total objects
- can never undo what was done previously
- Integration of hierarchical with distance-based clustering
 - <u>BIRCH (1996)</u>: uses CF-tree and incrementally adjusts the quality of sub-clusters
 - <u>CURE (1998)</u>: selects well-scattered points from the cluster and then shrinks them towards the center of the cluster by a specified fraction
 - <u>CHAMELEON (1999)</u>: hierarchical clustering using dynamic modeling

BIRCH (1996)

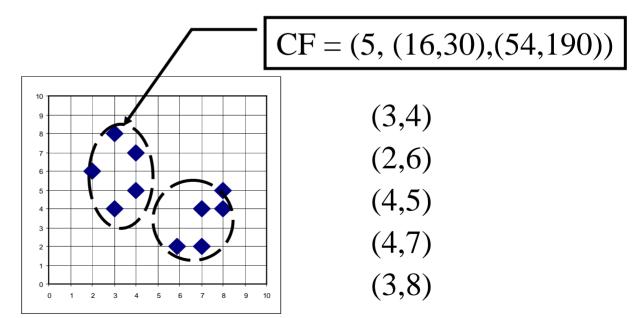
- Birch: Balanced Iterative Reducing and Clustering using Hierarchies, by Zhang, Ramakrishnan, Livny (SIGMOD'96)
- Incrementally construct a CF (Clustering Feature) tree, a hierarchical data structure for multiphase clustering
 - Phase 1: scan DB to build an initial in-memory CF tree (a multilevel compression of the data that tries to preserve the inherent clustering structure of the data)
 - Phase 2: use an arbitrary clustering algorithm to cluster the leaf nodes of the CF-tree
- Scales linearly: finds a good clustering with a single scan and improves the quality with a few additional scans
- *Weakness:* sensitive to the order of the data record.

Clustering Feature Vector

Clustering Feature: *CF* = (*N*, *LS*, *SS*)

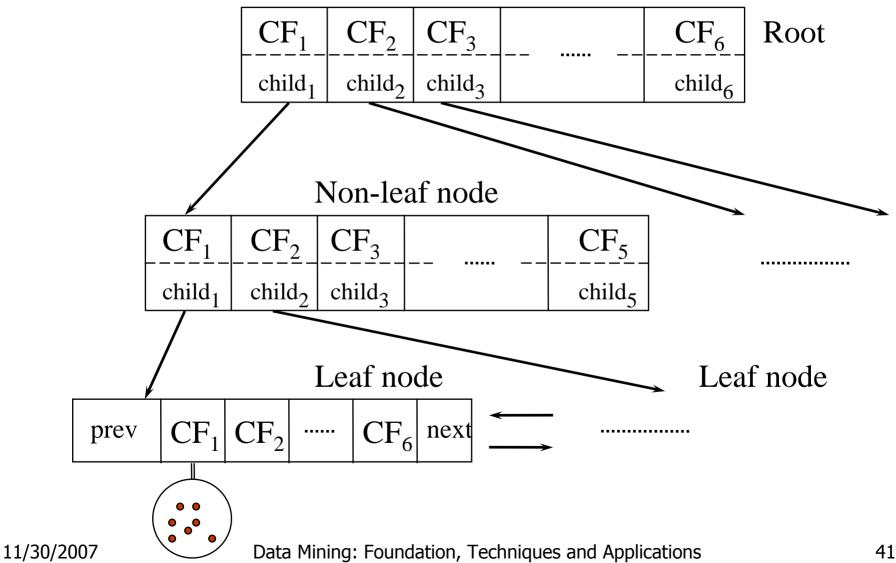
N: Number of data points

$$LS: \sum_{i=1}^{N} = \overrightarrow{X_{i}}$$
$$SS: \sum_{i=1}^{N} = \overrightarrow{X_{i}^{2}}$$

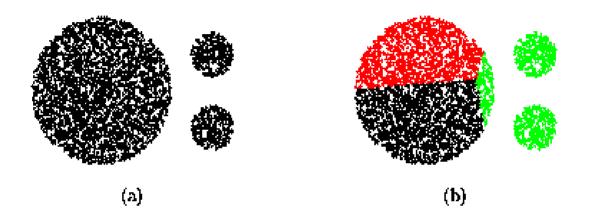


11/30/2007

CF Tree



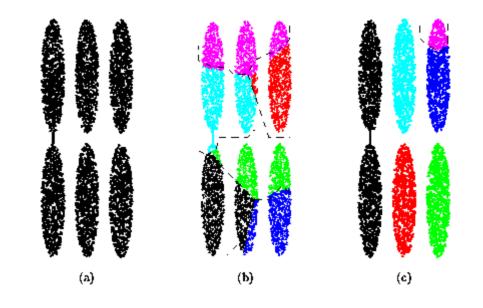
CURE (Clustering Using REpresentatives)



- CURE: proposed by Guha, Rastogi & Shim, 1998
 - Stops the creation of a cluster hierarchy if a level consists of k clusters
 - Uses multiple representative points to evaluate the distance between clusters, adjusts well to arbitrary shaped clusters and avoids single-link effect

11/30/2007

Drawbacks of Distance-Based Method

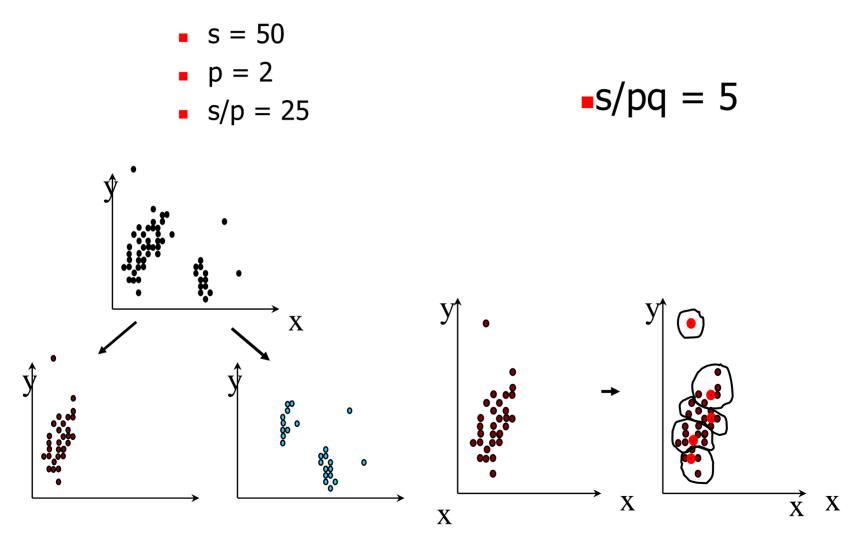


- Drawbacks of square-error based clustering method
 - Consider only one point as representative of a cluster
 - Good only for convex shaped, similar size and density, and if k can be reasonably estimated

Cure: The Algorithm

- Draw random sample *s*.
- Partition sample to p partitions with size s/p
- Partially cluster partitions into *s/pq* clusters
- Eliminate outliers
 - By random sampling
 - If a cluster grows too slow, eliminate it.
- Cluster partial clusters.
- Label data in disk

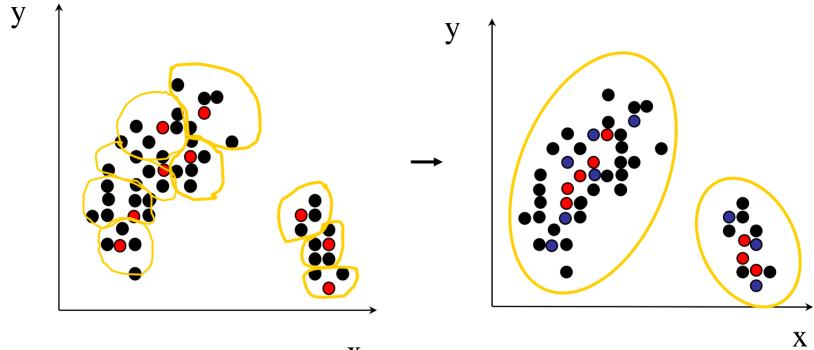
Data Partitioning and Clustering



11/30/2007

Data Mining: Foundation, Techniques and Applications

Cure: Shrinking Representative Points



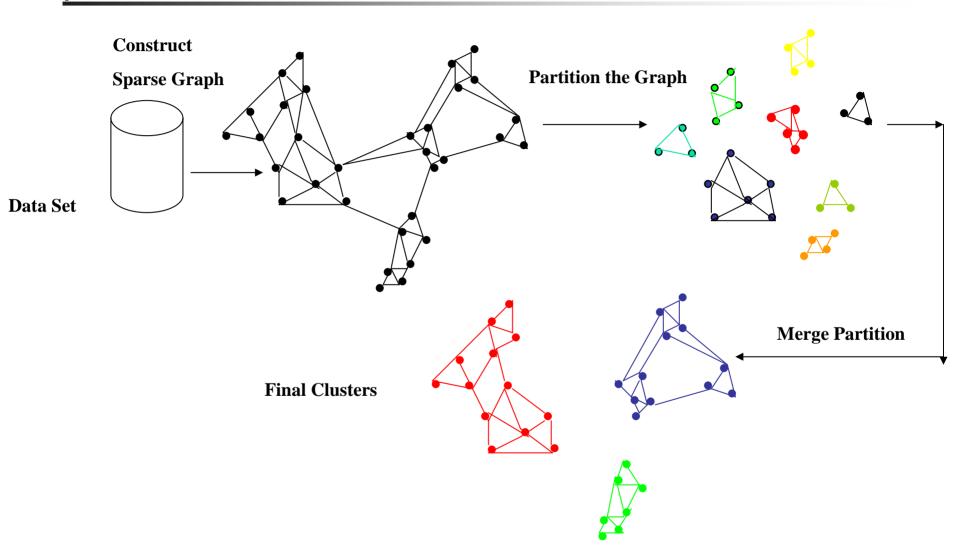
- Х
- Shrink the multiple representative points towards the gravity center by a fraction of α.
- Multiple representatives capture the shape of the cluster

11/30/2007

CHAMELEON

- CHAMELEON: hierarchical clustering using dynamic modeling, by G. Karypis, E.H. Han and V. Kumar'99
- Measures the similarity based on a dynamic model
 - Two clusters are merged only if the *interconnectivity* and *closeness (proximity)* between two clusters are high *relative to* the internal interconnectivity of the clusters and closeness of items within the clusters
- A two phase algorithm
 - 1. Use a graph partitioning algorithm: cluster objects into a large number of relatively small sub-clusters
 - 2. Use an agglomerative hierarchical clustering algorithm: find the genuine clusters by repeatedly combining these subclusters

Overall Framework of CHAMELEON



11/30/2007

Outline

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Constrained Clustering
- Outlier Analysis
- Summary

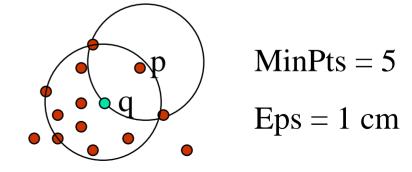
Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - <u>DBSCAN</u>: Ester, et al. (KDD'96)
 - <u>OPTICS</u>: Ankerst, et al (SIGMOD'99).
 - DENCLUE: Hinneburg & D. Keim (KDD'98)
 - <u>CLIQUE</u>: Agrawal, et al. (SIGMOD'98)

Density-Based Clustering: Background

- Two parameters:
 - *Eps*: Maximum radius of the neighbourhood
 - MinPts: Minimum number of points in an Eps-neighbourhood of that point
- N_{Eps}(p): {q belongs to D / dist(p,q) <= Eps}</p>
- Directly density-reachable: A point *p* is directly density-reachable from a point *q* wrt. *Eps*, *MinPts* if
 - 1) *p* belongs to *N_{Eps}(q)*
 - 2) core point condition:

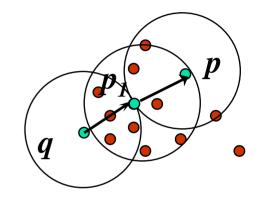
$$|N_{Eps}(q)| >= MinPts$$

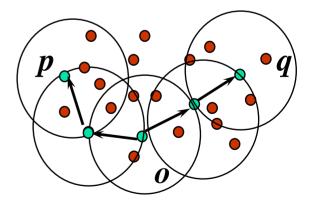


11/30/2007

Density-Based Clustering: Background (II)

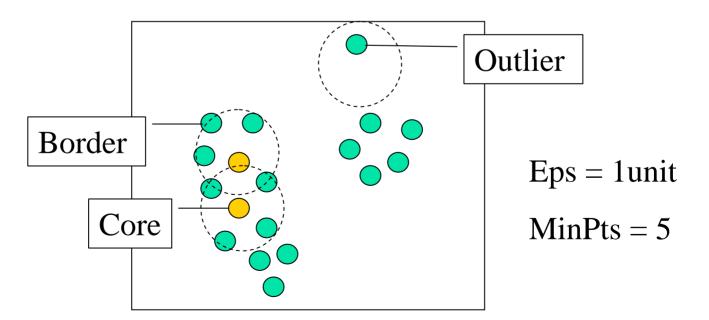
- Density-reachable:
 - A point *p* is density-reachable from a point *q* wrt. *Eps, MinPts* if there is a chain of points *p*₁, ..., *p*_n, *p*₁ = *q*, *p*_n = *p* such that *p*_{i+1} is directly density-reachable from *p*_i
- Density-connected
 - A point *p* is density-connected to a point *q* wrt. *Eps*, *MinPts* if there is a point *o* such that both, *p* and *q* are density-reachable from *o* wrt. *Eps* and *MinPts*.





DBSCAN: Density Based Spatial Clustering of Applications with Noise

- Relies on a *density-based* notion of cluster: A *cluster* is defined as a maximal set of density-connected points
- Discovers clusters of arbitrary shape in spatial databases with noise



DBSCAN: The Algorithm

- Arbitrary select a point *p*
- Retrieve all points density-reachable from *p* wrt *Eps* and *MinPts*.
- If *p* is a core point, a cluster is formed.
- If *p* is a border point, no points are densityreachable from *p* and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.

OPTICS: A Cluster-Ordering Method (1999)

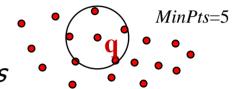
- OPTICS: Ordering Points To Identify the Clustering Structure
 - Ankerst, Breunig, Kriegel, and Sander (SIGMOD'99)
 - Produces a special order of the database wrt its density-based clustering structure
 - This cluster-ordering contains info equiv to the density-based clusterings corresponding to a broad range of parameter setting for ε' < ε (Note:Eps = ε) and Minpts
 - Good for both automatic and interactive cluster analysis, including finding intrinsic clustering structure
 - Can be represented graphically or using visualization techniques

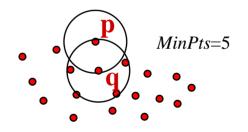
Density-Based Clustering I

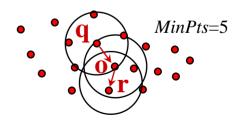
- Parameters
 - range ε and minimal weight *MinPts*
- Definition: core object
 - q is core object if $| rangeQuery(q,\varepsilon) | \ge MinPts$
- Definition: directly density-reachable
 - *p* directly density-reachable from *q* if

q is a core object and $p \in rangeQuery(q, \varepsilon)$

- Definition: density-reachable
 - density-reachable: transitive closure of "directly density-reachable"



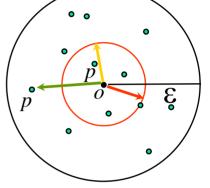




OPTICS

Core Idea of Hierarchical Cluster Ordering: MinPts = 5

Order the objects linearly such that objects of a cluster are adjacent in the ordering.



core-distance(o) reachability-distance(p,o) reachability-distance(p,o)

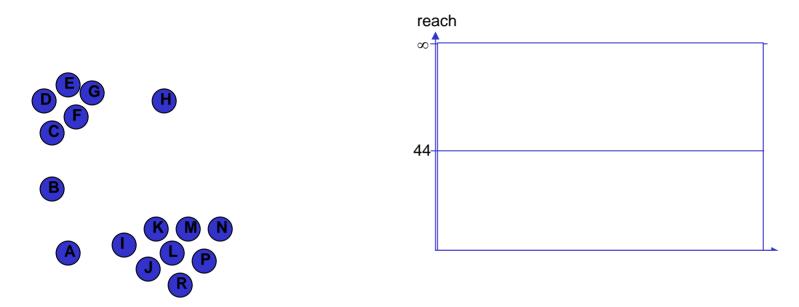
Definition: core-distance

 $\operatorname{core-dist}_{\varepsilon,MinPts}(o) = \begin{cases} \infty & \text{if } |\operatorname{rangeQuery}(o,\varepsilon)| < MinPts \\ MinPts-\operatorname{dist}(o) & \text{otherwise} \end{cases}$

Definition: reachability-distance

 $reach-dist_{\varepsilon,MinPts}(p,o) = max(core-dist_{\varepsilon,MinPts}(o),dist(p,o))$

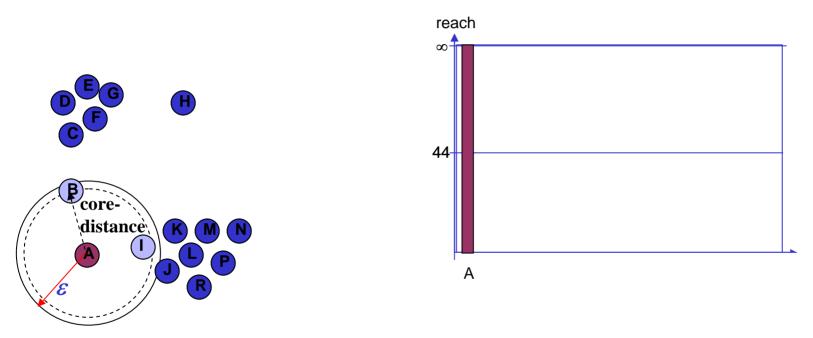
- Example Database (2-dimensional, 16 points)
- $\mathcal{E} = 44$, *MinPts* = 3



seedlist:

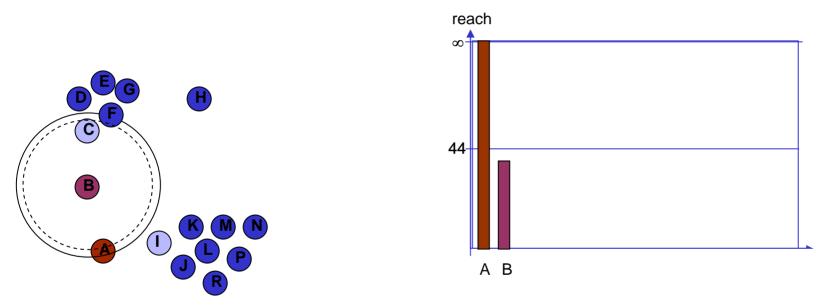
11/30/2007

- Example Database (2-dimensional, 16 points)
- $\mathcal{E} = 44$, MinPts = 3



seedlist: (B,40) (I, 40)

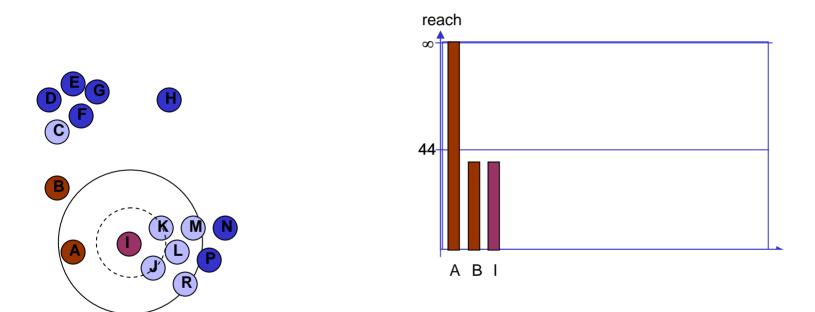
- Example Database (2-dimensional, 16 points)
- $\mathcal{E} = 44$, MinPts = 3



seedlist: (I, 40) (C, 40)

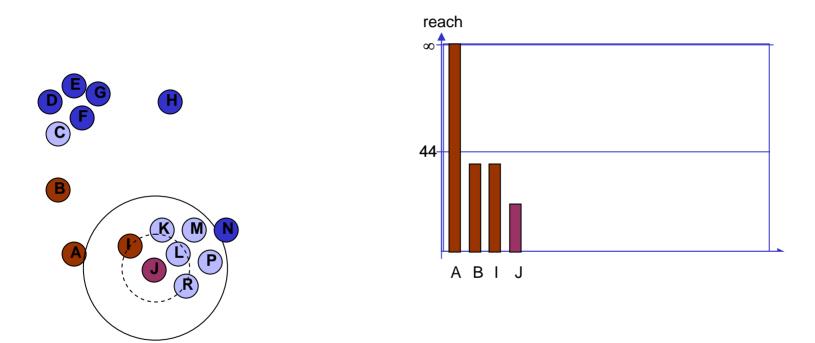
11/30/2007

- Example Database (2-dimensional, 16 points)
- $\mathcal{E} = 44$, *MinPts* = 3



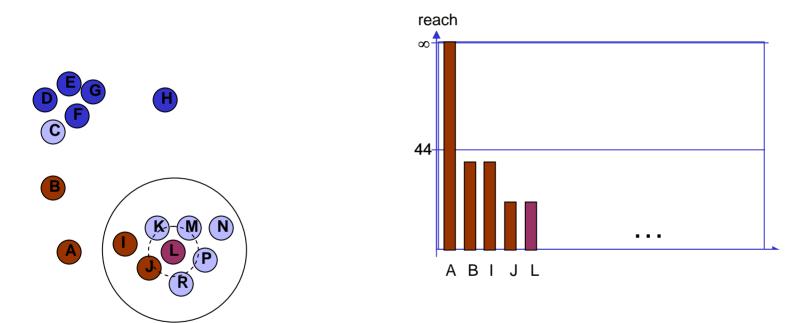
seedlist: (J, 20) (K, 20) (L, 31) (C, 40) (M, 40) (R, 43)

- Example Database (2-dimensional, 16 points)
- $\mathcal{E} = 44$, *MinPts* = 3



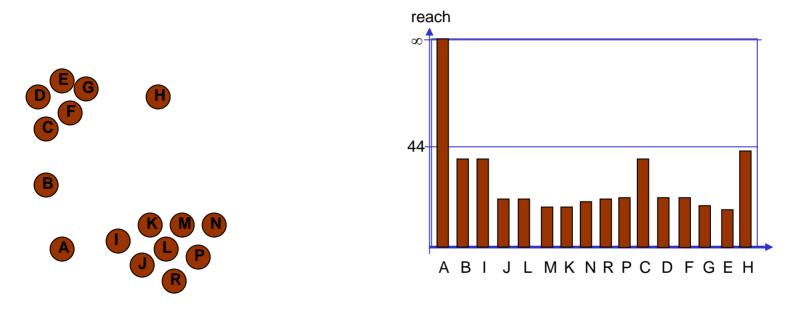
seedlist: (L, 19) (K, 20) (R, 21) (M, 30) (P, 31) (C, 40)

- Example Database (2-dimensional, 16 points)
- $\mathcal{E} = 44$, MinPts = 3



seedlist: (M, 18) (K, 18) (R, 20) (P, 21) (N, 35) (C, 40)

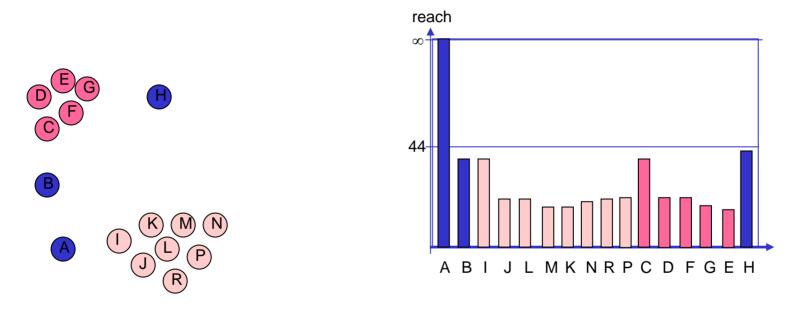
- Example Database (2-dimensional, 16 points)
- $\mathcal{E} = 44$, MinPts = 3



seedlist: -

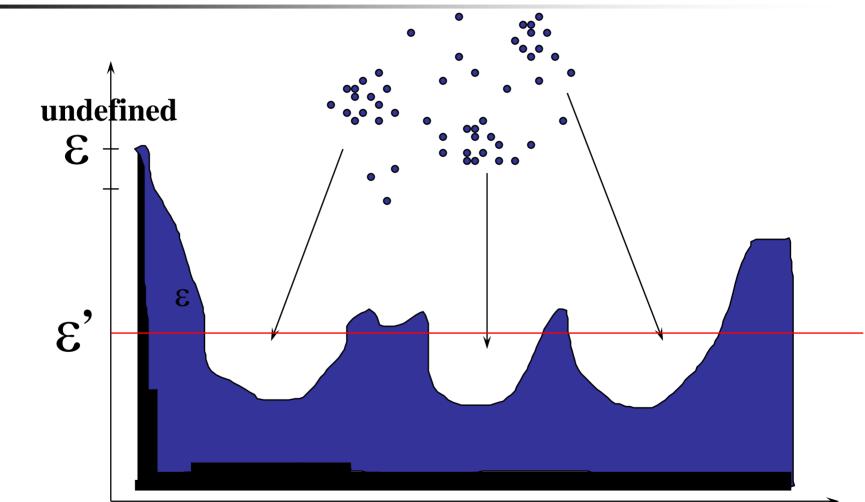
11/30/2007

- Example Database (2-dimensional, 16 points)
- $\mathcal{E} = 44$, MinPts = 3



seedlist: -

Reachability -distance



Cluster-order

Data Mining: Foundation, Techniques and Application of the objects ⁶⁶

11/30/2007

DENCLUE: using density functions

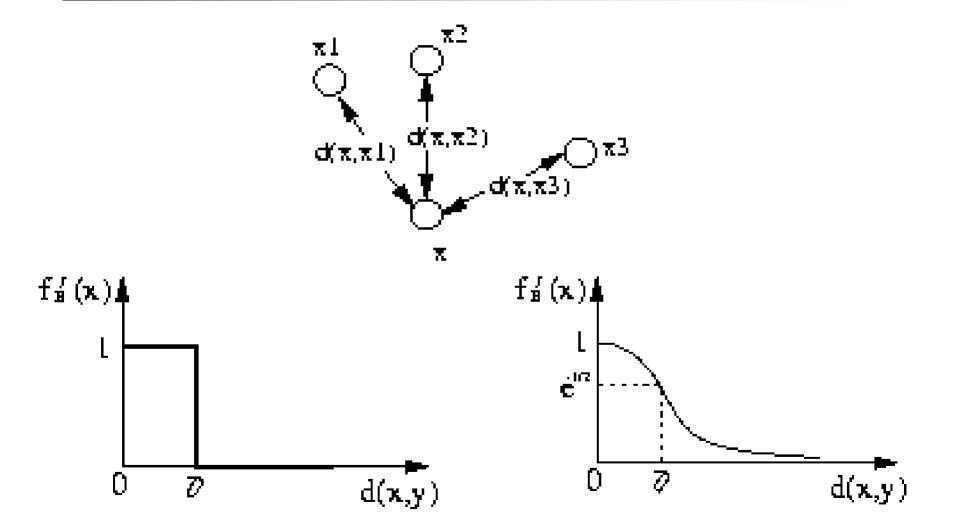
- DENsity-based CLUstEring by Hinneburg & Keim (KDD'98)
- Major features
 - Solid mathematical foundation
 - Good for data sets with large amounts of noise
 - Allows a compact mathematical description of arbitrarily shaped clusters in high-dimensional data sets
 - Significant faster than existing algorithm (faster than DBSCAN by a factor of up to 45)
 - But needs a large number of parameters

11/30/2007

DENCLUE: Technical Essence

- Uses grid cells but only keeps information about grid cells that do actually contain data points and manages these cells in a tree-based access structure.
- Influence function: describes the impact of a data point within its neighborhood.
- Overall density of the data space can be calculated as the sum of the influence function of all data points.
- Clusters can be determined mathematically by identifying density attractors.
- Density attractors are local maximal of the overall density function.

Influence Function



11/30/2007

Gradient: The steepness of a slope

Example

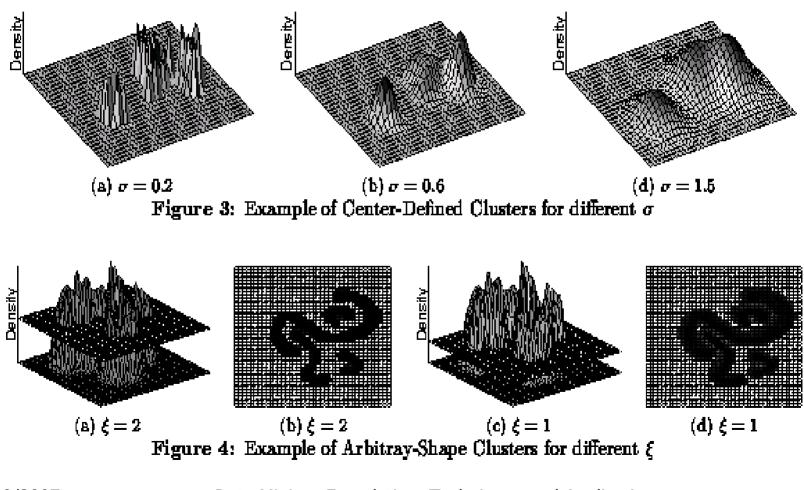
$$f_{Gaussian}(x, y) = e^{-\frac{d(x, y)^2}{2\sigma^2}}$$

$$f_{Gaussian}^{D}(x) = \sum_{i=1}^{N} e^{-\frac{d(x,x_i)^2}{2\sigma^2}}$$

$$\nabla f_{Gaussian}^{D}(x, x_i) = \sum_{i=1}^{N} (x_i - x) \cdot e^{-\frac{d(x, x_i)^2}{2\sigma^2}}$$

11/30/2007

Center-Defined and Arbitrary



11/30/2007

Outline

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Constrained Clustering
- Outlier Analysis
- Summary

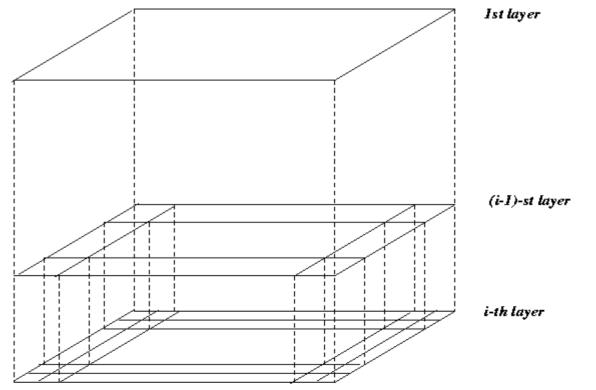
11/30/2007

Grid-Based Clustering Method

- Using multi-resolution grid data structure
- Several interesting methods
 - STING (a STatistical INformation Grid approach) by Wang, Yang and Muntz (1997)
 - WaveCluster by Sheikholeslami, Chatterjee, and Zhang (VLDB'98)
 - A multi-resolution clustering approach using wavelet method
 - CLIQUE: Agrawal, et al. (SIGMOD'98)

STING: A Statistical Information Grid Approach

- Wang, Yang and Muntz (VLDB'97)
- The spatial area area is divided into rectangular cells
- There are several levels of cells corresponding to different levels of resolution



11/30/2007

STING: A Statistical Information Grid Approach (2)

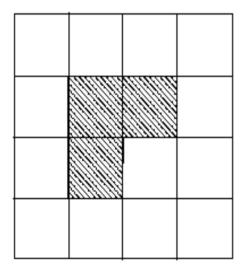
- Each cell at a high level is partitioned into a number of smaller cells in the next lower level
- Statistical info of each cell is calculated and stored beforehand and is used to answer queries
- Parameters of higher level cells can be easily calculated from parameters of lower level cell
 - *count, mean, s, min, max*
 - type of distribution—normal, *uniform*, etc.
- Use a top-down approach to answer spatial data queries
- Start from a pre-selected layer—typically with a small number of cells
- For each cell in the current level compute the confidence interval

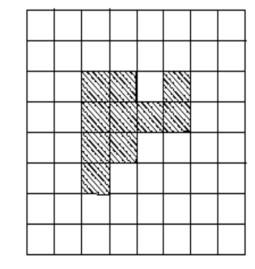
11/30/2007

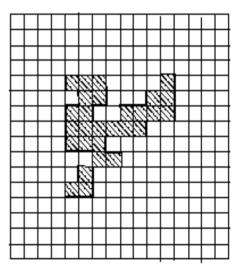
Data Mining: Foundation, Techniques and Applications

STING: A Statistical Information Grid Approach (3)

- Remove the irrelevant cells from further consideration
- When finish examining the current layer, proceed to the next lower level
- Repeat this process until the bottom layer is reached







Level t

Data Mining: Foundation, Techniques and Applications

WaveCluster (1998)

- Sheikholeslami, Chatterjee, and Zhang (VLDB'98)
- A multi-resolution clustering approach which applies wavelet transform to the feature space
 - A wavelet transform is a signal processing technique that decomposes a signal into different frequency sub-band.
- Both grid-based and density-based
- Input parameters:
 - # of grid cells for each dimension
 - the wavelet, and the # of applications of wavelet transform.

WaveCluster (1998)

How to apply wavelet transform to find clusters

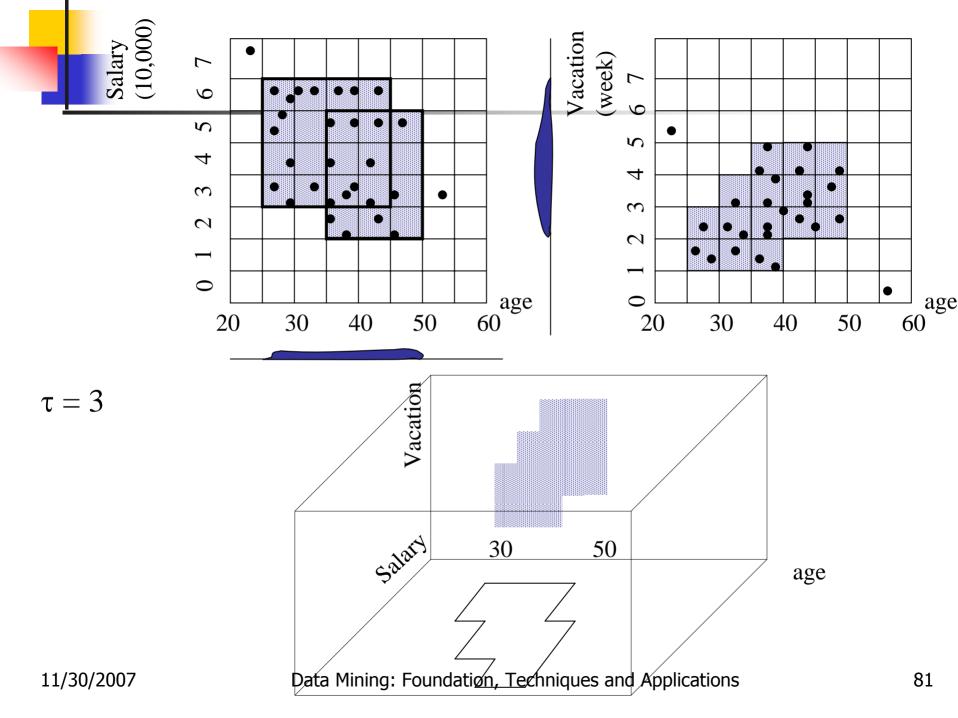
- Summaries the data by imposing a multidimensional grid structure onto data space
- These multidimensional spatial data objects are represented in a n-dimensional feature space
- Apply wavelet transform on feature space to find the dense regions in the feature space
- Apply wavelet transform multiple times which result in clusters at different scales from fine to coarse

CLIQUE (Clustering In QUEst)

- Agrawal, Gehrke, Gunopulos, Raghavan (SIGMOD'98).
- Automatically identifying subspaces of a high dimensional data space that allow better clustering than original space
- CLIQUE can be considered as both density-based and grid-based
 - It partitions each dimension into the same number of equal length interval
 - It partitions an m-dimensional data space into non-overlapping rectangular units
 - A unit is dense if the fraction of total data points contained in the unit exceeds the input model parameter
 - A cluster is a maximal set of connected dense units within a subspace

CLIQUE: The Major Steps

- Partition the data space and find the number of points that lie inside each cell of the partition.
- Identify the subspaces that contain clusters using the Apriori principle
- Identify clusters:
 - Determine dense units in all subspaces of interests
 - Determine connected dense units in all subspaces of interests.
- Generate minimal description for the clusters
 - Determine maximal regions that cover a cluster of connected dense units for each cluster
 - Determination of minimal cover for each cluster



Strength and Weakness of CLIQUE

Strength

- It <u>automatically</u> finds subspaces of the <u>highest</u> <u>dimensionality</u> such that high density clusters exist in those subspaces
- It is *insensitive* to the order of records in input and does not presume some canonical data distribution

Weakness

 The accuracy of the clustering result may be degraded at the expense of simplicity of the method

Outline

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Constrained Clustering
- Outlier Analysis
- Summary

Why Constraint-Based Cluster Analysis?

- Need user feedback: Users know their applications the best
- Less parameters but more user-desired constraints, e.g., an ATM allocation problem: obstacle & desired clusters

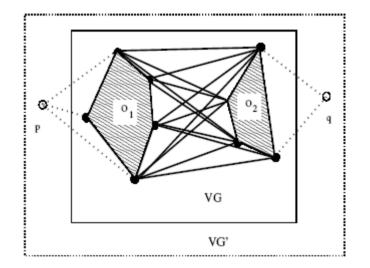


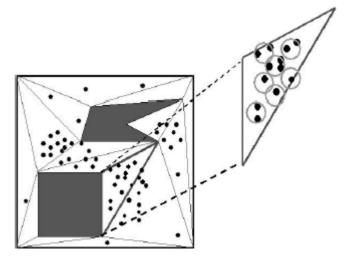
A Classification of Constraints in Cluster Analysis

- Clustering in applications: desirable to have user-guided (i.e., constrained) cluster analysis
- Different constraints in cluster analysis:
 - Constraints on individual objects (do selection first)
 - Cluster on houses worth over \$300K
 - Constraints on distance or similarity functions
 - Weighted functions, obstacles (e.g., rivers, lakes)
 - Constraints on the selection of clustering parameters
 - # of clusters, MinPts, etc.
 - User-specified constraints
 - Contain at least 500 valued customers and 5000 ordinary ones
 - Semi-supervised: giving small training sets as "constraints" or hints

Clustering With Obstacle Objects

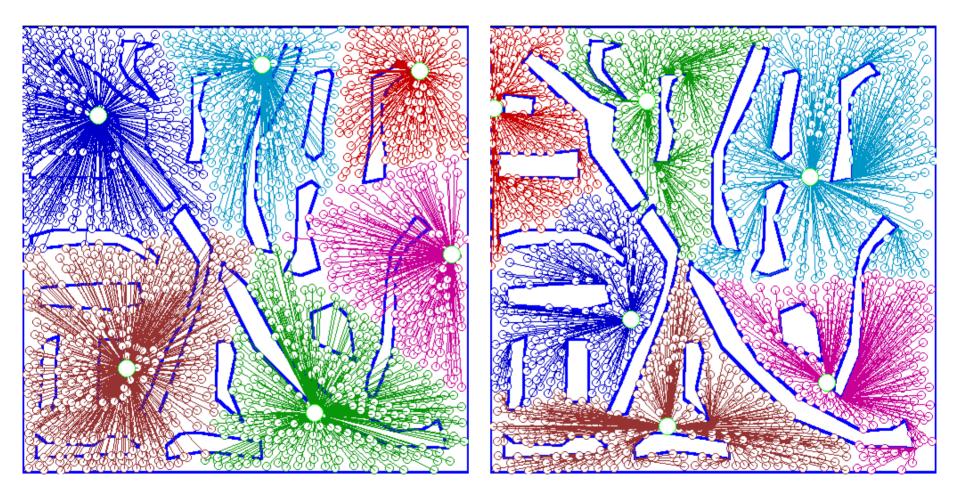
- k-medoids is more preferable since k-means may locate the ATM center in the middle of a lake
 - Anthony K. H. Tung, Jean Hou, Jiawei Han, "<u>Clustering in the Presence of Obstacles</u>". In Proc. of 17th International Conference on Data Engineering (ICDE'01, Heidelberg, Germany p359-367.
- Visibility graph and shortest path
- Triangulation and micro-clustering
- Two kinds of join indices (shortest-paths) worth pre-computation
 - VV index: indices for any pair of obstacle vertices
 - MV index: indices for any pair of micro-cluster and obstacle indices





11/30/2007

An Example: Clustering With Obstacle Objects



Not Taking obstacles into account Taking obstacles into account 11/30/2007 Data Mining: Foundation, Techniques and Applications

87

Clustering with User-Specified Constraints

- Example: Locating k delivery centers, each serving at least m valued customers and n ordinary ones
 - Anthony K. H. Tung, Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, "<u>Constrained Clustering on Large Database</u>", Proc. 8th Intl. Conf. on Database Theory (ICDT'01), London, UK, Jan. 2001, p405-419.

Proposed approach

- Find an initial "solution" by partitioning the data set into k groups and satisfying user-constraints
- Iteratively refine the solution by micro-clustering relocation (e.g., moving $\delta \mu$ -clusters from cluster C_i to C_j) and "deadlock" handling (break the microclusters when necessary)
- Efficiency is improved by micro-clustering
- How to handle more complicated constraints?
 - E.g., having approximately same number of valued customers in each cluster?! — Can you solve it?

11/30/2007

Data Mining: Foundation, Techniques and Applications

Extensions

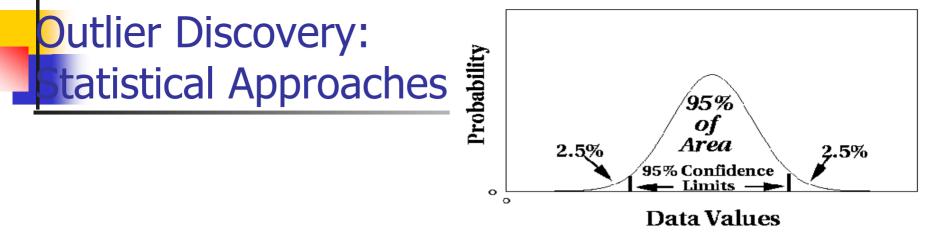
- k-anonymity: a concept in privacy preserving data publishing that require data records to be cluster into groups of at least size k. Can you see it as a clustering problem with constraints?
- Current methods for summarizing frequent patterns require you to find the patterns and then cluster them. Can it be done using ItCompress with constraints?
 - X. Yan, H. Cheng, J. Han, and D. Xin, "<u>Summarizing Itemset Patterns: A</u> <u>Profile-Based Approach</u>", in Proc. 2005 Int. Conf. on Knowledge Discovery and Data Mining (KDD'05), Chicago, IL, Aug. 2005. (Best Student Paper Runner-Up Award)
 - H. V. Jagadish, Raymond T. Ng, Beng Chin Ooi, Anthony K. H. Tung, "<u>ItCompress: An Iterative Semantic Compression Algorithm</u>". International Conference on Data Engineering (ICDE'2004), Boston, 2004

Outline

- What is Cluster Analysis?
- Types of Data in Cluster Analysis
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Constrained Clustering
- Outlier Analysis
- Summary

What Is Outlier Discovery?

- What are outliers?
 - The set of objects are considerably dissimilar from the remainder of the data
 - Example: Sports: Michael Jordon, Wayne Gretzky, ...
- Problem
 - Find top n outlier points
- Applications:
 - Credit card fraud detection
 - Telecom fraud detection
 - Customer segmentation
 - Medical analysis



- Assume a model underlying distribution that generates data set (e.g. normal distribution)
- Use discordancy tests depending on
 - data distribution
 - distribution parameter (e.g., mean, variance)
 - number of expected outliers
- Drawbacks
 - most tests are for single attribute
 - In many cases, data distribution may not be known

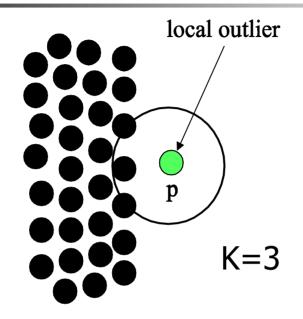
Outlier Discovery: Distance-Based Approach

- Introduced to counter the main limitations imposed by statistical methods
 - We need multi-dimensional analysis without knowing data distribution.
- Distance-based outlier: A DB(p, D)-outlier is an object O in a dataset T such that at least a fraction p of the objects in T lies at a distance greater than D from O
- Algorithms for mining distance-based outliers
 - Index-based algorithm
 - Nested-loop algorithm
 - Cell-based algorithm

Outlier Discovery: Deviation-Based Approach

- Identifies outliers by examining the main characteristics of objects in a group
- Objects that "deviate" from this description are considered outliers
- sequential exception technique
 - simulates the way in which humans can distinguish unusual objects from among a series of supposedly like objects
- OLAP data cube technique
 - uses data cubes to identify regions of anomalies in large multidimensional data

Local Outlier Factor(LOF)



- Outliers are computed w.r.t to the densities of the neighborhood
- First proposed
 - Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, Jörg Sander: <u>LOF:</u> <u>Identifying Density-Based Local Outliers</u>. SIGMOD Conference 2000: 93-104
- Extended to find top-n
 - Wen Jin, Anthony K. H. Tung , Jiawei. Han, "Finding Top-n Local Outliers in Large Database", in 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (SIGKDD'01)

11/30/2007

Data Mining: Foundation, Techniques and Applications

Local View of Outliers

- Outliers are computed respect to the densities of the neighborhoods
- Reachability distance of p w.r.t o
 - Reach-dist_k = max (k-distance(o), d(p,o))
- (Ird) Local Reachability Density of p
 - the inverse of the average reachability distance based on the MinPts-nearest neighbors of p

$$lrd_{MinPts}(p) = 1 / \left(\frac{\sum_{o \in N_{MinPts}(p)} reach-dist_{MinPts}(p, o)}{|N_{MinPts}(p)|} \right)$$

- (LOF) Local Outlier Factor of p
 - the average of the ratio of the local reachability density of p and those of p's MinPts-nearest neighbors

$$LOF_{MinPts}(p) = \frac{\sum_{\substack{o \in N_{MinPts}(p) \\ |N_{MinPts}(p)|}} \frac{lrd_{MinPts}(o)}{lrd_{MinPts}(p)}}{\left|N_{MinPts}(p)\right|}$$

11/30/2007

Data Mining: Foundation, Techniques and Applications

 \bigcirc

 \bigcirc

 p_2

reach-dist_{MinPts}(p_{2})

 \mathbf{p}_1

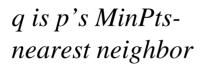
 \mathbf{O}

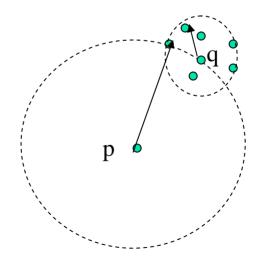
MinPts=4

reach-dist_{MinPts}(p_1 ,o)

The properties of LOF

- The lower p's local reachability density is, the higher the LOF value of p is.
 (That is, the higher p's MinPts reachability distance is, the higher the LOF.)
- The higher q's local reachability density is, the higher the LOF. (That is, the lower q's MinPts-nearest reachability distance is, the higher the LOF.)



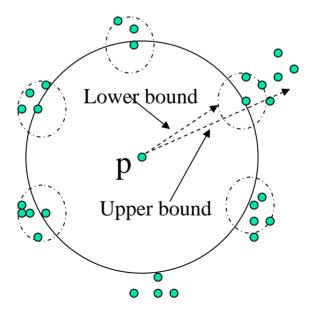


Finding Top-n Outlier based on LOF

- The original algorithm compute LOF for all points. If we are only interested in top n LOF, n<<DB, the reachability distance computations for most of the remaining points which do not affect those Top-n LOF calculation, are of little use and can be altogether avoided.
- Try to partitioning data space into "micro-clusters" so that the lower/upper bound of reachability distance of each microcluster instead of each data is determined instead of the huge cost of computation data by data.
- Prune out a significant number of micro-clusters whose LOF are so small that cannot possibly become TOP-n LOF.

What is a candidate LOF?

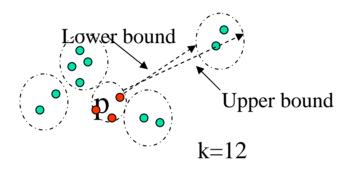
- Those data with high reachability distance have high probability to become Top-n LOF. But those data whose MinPts reachability distance are neither very low nor very high need to be paid much attention.
- The lower and upper bound of reachability distance is required to further identify candidate LOF. In term, this mean that we need to know the upper and lower bound for k-distance(p).



Data Mining: Foundation, Techniques and Applications

How to determine lower/upper bound for k-distance of p?

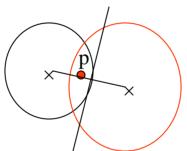
 The lower bound is the minimal distance between p and the furthest micro-cluster that contain k points around p.



- The upper bound of k-distance of p is any distance that is guaranteed to contain k points.
- The k-distance of each data is approximated by comparing with other micro-clusters instead of computing data pair by pair
- Note, if p can find k points within a micro-cluster p belongs to, the lower/upper bound is the distance between nearest neighbor and p, and the micro-cluster's inter/external respectively

What if overlapping micro-clusters occur?

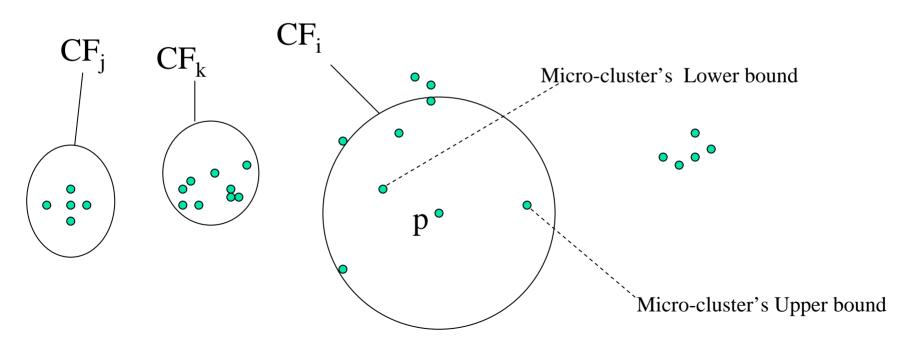
 Based on the mean of two centers of micro-clusters, a hyper-plane is created in constant time, the distance between p and the hyper-plane is taken as the lower bound of reachability distance.



 The rare but worst case is if p happens to be on the plane, then to calculate the distance between p and the data in its nearest microcluster, choose the minimal one as the lower bound

How to determine lower/upper bound for a micro-cluster's k-distance?

In a micro-cluster, compare each point's lower/upper bound of k- distance within Minpts range, select the minimal/maximal one as the micro-cluster's lower/upper bound.



Data Mining: Foundation, Techniques and Applications

How to determine lower/upper bound for a micro-cluster' LOF?

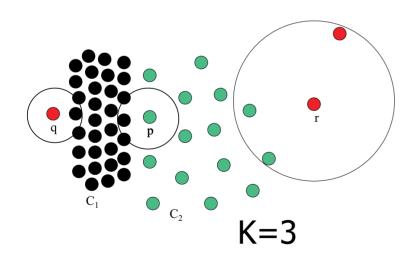
Theorem : if $p \in DB$, MC is micro-cluster and $p \in MC$, then

 $\frac{k - dis \tan ce(MC).lower}{k - dis \tan ce(MC).upper} \prec LOF(p) \prec \frac{k - dis \tan ce(MC).upper}{k - dis \tan ce(MC).lower}$

Based on this property, LOF bound for each micro-cluster can be made

Ranking Outliers Using Symmetric Neighborhood Relationship

- Take into account both nearest neighbor and reverse nearest neighbor distance
 - Wen Jin, Anthony K. H. Tung, Jiawei Han, and Wei Wang, "<u>Ranking Outliers</u> <u>Using Symmetric Neighborhood Relationship</u>," in Proc. 2006 Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD'06), Singapore, April 2006.



•Case 1: if the densities of the nearest neighboring objects for both p and q are the same, but q is slightly closer to cluster C1 than p

•Case 2: the density of r is lower than p, the average density of its neighboring objects (consisting of 2 objects from C2 and an outlier) is less than those of p. Thus, when the LOF measure is computed, p has stronger outlierness than r. But again it is wrong!

Influential Measure of Outlierness by Symmetric Relationship

- The density of p, denoted as den(p), is the inverse of the k-distance of p, i.e., den(p) = 1/k_{dist}(p).
- k-influence space for p, denoted as IS_k(p), consists of NN_k(p) and RNN_k(p).
- The influenced outlierness (*INFLO*) is defined as:

$$INFLO_{k}(p) = \frac{den_{avg}(IS_{k}(p))}{den(p)} \quad \text{where} \quad den_{avg}(IS_{k}(p)) = \frac{\sum_{o \in IS_{k}(p)} den(o)}{\left|IS_{k}(p)\right|}$$

• The higher INFLO is, the more likely that this object is an outlier. The lower INFLO is, the more likely that this object is a member of a cluster. Specifically, INFLO \approx 1 means the object locates in the core part of a cluster.

11/30/2007

Mining Algorithms for Top-n INFLO

- Naïve index-based method
- Two-way search method
- Micro-cluster method.

Summary

- Cluster analysis groups objects based on their similarity and has wide applications
- Measure of similarity can be computed for various types of data
- Clustering algorithms can be categorized into partitioning methods, hierarchical methods, density-based methods, grid-based methods
- There are still lots of research issues on cluster analysis, such as constraint-based clustering
- Outlier detection and analysis are very useful for fraud detection, etc. and can be performed by statistical, distance-based or deviation-based approaches

Essential Reading

- [HK01]: "Data Mining: Concepts and Techniques", Chapter 7.1-7.11
- Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Jörg Sander: <u>OPTICS: Ordering Points To Identify the Clustering Structure</u>. SIGMOD Conference 1999: 49-60
- Anthony K. H. Tung, Jean Hou, Jiawei Han, "<u>Clustering in the Presence</u> <u>of Obstacles</u>". In Proc. of 17th International Conference on Data Engineering (ICDE'01, Heidelberg, Germany p359-367
- Anthony K. H. Tung, Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, "<u>Constrained Clustering on Large Database</u>", Proc. 8th Intl. Conf. on Database Theory (ICDT'01), London, UK, Jan. 2001, p405-419.
- Wen Jin, Anthony K. H. Tung, Jiawei Han, and Wei Wang, "<u>Ranking</u> <u>Outliers Using Symmetric Neighborhood Relationship</u>," in Proc. 2006 Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD'06), Singapore, April 2006.

References

- Paul S. Bradley, Usama M. Fayyad, Cory Reina: <u>Scaling</u> <u>Clustering Algorithms to Large Databases</u>. KDD 1998: 9-15
- Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, Jörg Sander: <u>LOF: Identifying Density-Based Local Outliers</u>. SIGMOD Conference 2000: 93-104
- Wen Jin, Anthony K. H. Tung, Jiawei. Han, "Finding Top-n Local Outliers in Large Database", in 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (SIGKDD'01)
- Zhenjie Zhang, Bing Tian Dai and Anthony K.H. Tung. "On the Lower Bound of Lower Optimums in K-Means Algorithm". In ICDM 2006. [Codes][PPT]