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ABSTRACT
Data variety, as one of the three Vs of the Big Data, is man-
ifested by a growing number of complex data types such as
documents, sequences, trees, graphs and high dimensional
vectors. To perform similarity search on these data, exist-
ing works mainly choose to create customized indexes for
different data types. Due to the diversity of customized in-
dexes, it is hard to devise a general parallelization strategy
to speed up the search. In this paper, we propose a generic
inverted index on the GPU (called GENIE), which can sup-
port similarity search of multiple queries on various data
types. GENIE can effectively support the approximate near-
est neighbor search in different similarity measures through
exerting Locality Sensitive Hashing schemes, as well as sim-
ilarity search on original data such as short document data
and relational data. Extensive experiments on different real-
life datasets demonstrate the efficiency and effectiveness of
our system.

1. INTRODUCTION
The Big Data revolution has resulted in the generation of

a large variety of complex data in the form of documents,
sets, sequences, trees, graphs and high dimensional vectors
[50]. To perform similarity search on these data efficiently,
a widely adopted approach is to create indexes. More often
than not, the proposed index also varies for different com-
plex data types [47, 37, 58, 63, 64, 11]. Parallelization is
required for high performance on modern hardware archi-
tectures. Since each type of customized index has its own
properties and structures, different parallelization strategies
must be adopted for each type of index [31, 61, 32, 14, 57].

In this paper, we observe that similarity search on many
of these data types can be supported by an inverted index
and proceed to develop a generic inverted index on the GPU
to speed up searching on a large variety of data types. The
insight is that many data types can be transformed into a
form that can be searched by an inverted-index-like struc-
ture. Such a transformation can be done by the Locality

.

Sensitive Hashing (LSH) for several similarity measures [13,
16] and by Shotgun and Assembly [5, 53] for complex struc-
tured data like documents, sequences, trees and graphs. To
support our claim, let us first try to show a common frame-
work that is applicable for similarity search on a variety of
complex data types.

• High dimensional data. High dimensional data points
can be transformed by an LSH scheme [16] derived
from the p-stable distribution in lp space. In such a
scheme, multiple hash functions are used to hash the
data points into different buckets and points that are
frequently hashed to the same bucket are deemed to
be similar. As such, we can build an inverted index
where each posting list corresponds to a list of points
that are hashed to a particular bucket. Given a query
point, Approximate Nearest Neighbour (ANN) search
can be performed by hashing the query point based on
the hash functions and then scanning the correspond-
ing posting list to find data points that occur in many
of these buckets.

• Sets, feature sketches and geometries. Sets, fea-
ture sketches and geometries typically have kernelized
similarity functions. These includes Jaccard kernel
for sets [36], Radial Basis Function (RBF) kernel for
feature sketches, and Geodesic kernel for hyperplanes
[13]. Similarity search on such data can also be trans-
formed by Locality Sensitive Hashing functions [13]
and searched through an inverted index.

• Documents, sequences, trees and graphs. These
complex structure data can be transformed within the
“Shotgun and Assembly” [5, 53] framework. Specifi-
cally, the data will be broken down into smaller sub-
units (“shotgun”), such as words for documents [56,
44], q-grams for sequences [38, 61], binary branches
for trees [64] and stars for graph [63, 60]. After the
decomposition, we can build an inverted index with a
posting list for each unique sub-unit and data objects
containing a particular sub-unit are stored in the post-
ing list. During query time, query objects will also be
broken down into a set of smaller sub-units and the cor-
responding posting lists will be accessed to find data
objects that share a lot of common sub-units with the
query object. This approach has been widely used for
similarity search of complex structured data [61, 64,
63, 58].

• Relational data. The inverted index for relational



data can be built with the similar “Shotgun and As-
sembly” framework of complex structured data. We
first decompose each tuple into a set of attribute-value
pairs. A posting list is then allocated to each unique
attribute-value pair to store tuples that contain the
attribute-value pair. Given a query, the similarity search
can be done by scanning the posting lists of corre-
sponding attribute-value pairs. For attributes with
continuous value, we assume that they can be dis-
cretized to an acceptable granularity level.

Aside from the usefulness of an inverted index in similarity
search, we also observe that very often, it is useful to answer
multiple similarity queries in parallel. For example, image
matching is often done by extracting hundreds of high di-
mensional1 SIFT (scale-invariant feature transform) features
and matching them against SIFT features in the database
[9]. As another example, in sequence search, users might be
interested in similar subsequences that are within the query
sequence. In such a case, the query sequence will be broken
down into multiple subsequences on which multiple similar-
ity search will be invoked. To sum up, it is desirable to
design a general-purpose index that can be scaled up to a
large number of similarity search queries being submitted in
parallel.

To effectively parallelize the operations of our proposed
inverted index, we choose to implement it on the Graphics
Processing Units (GPUs). GPUs have experienced a tremen-
dous growth in terms of computational power and memory
capacity in recent years. At the time of writing, one of the
most advanced GPU in the consumer market, the Nvidia
GTX Titan X, has 12 GB of DDR5 memory at a price of
1000 US dollars while an advanced server class GPU, the
Nvidia K80, has 24GB of DDR5 memory at a price of 5000
US dollars2. Furthermore, most PCs allow two to four GPUs
to be installed, bringing the total amount of GPU memory
in a PC to be compatible with an in-memory database node
[66]. More importantly, the GPU’s parallel architecture –
SIMD on massive number of small cores – suits our pro-
cesses on the inverted index which are mostly simple match,
scan and count.

In view of the above considerations, in this paper, we pro-
pose a Generic Inverted Index, called GENIE, which is im-
plemented on the GPU to support similarity search in par-
allel. To cater to a variety of data types, we introduce an
abstract model, named match-count model, which can be
instantiated to specific models for different data types. The
match-count model essentially performs scan on posting lists
that are relevant to the similarity queries and maintains a
frequency count for the number of times that a data object
is seen in these posting lists. GENIE is designed to support
efficient and parallel computation of the match-count model
between multiple queries and a set of objects on the GPU.

To exhibit that our match-count model is a general model
that can be used in similarity search for various data types
with different measures (i.e. generalization), we first define
the concept of Tolerance-Approximate Nearest Neighbour
(τ -ANN) search for locality sensitive hashing in the same

1128 dimensions to be exact
2Looking forward, the Nvidia Pascal GPU is expected to
be released next year with 16GB of HBM2 memory which
has an access bandwidth of 1TB/s, three times the current
bandwidth. [10]

spirit of the popular c-ANN search [26]. Then we prove
that GENIE can support the τ -ANN search for any simi-
larity measure who has a generic Locality Sensitive Hash-
ing (LSH) scheme satisfying the definition of LSH given by
Charikar [13]. We further demonstrate that GENIE can
also perform ANN search in high dimensional space through
exerting another popular LSH scheme given by Indyk and
Motwani [26] based on the p-stable distribution. Through
these derivations, we ensure that GENIE is a generic in-
dex that can support various data types on a generic LSH
scheme. For complex data types without known LSH trans-
formation, there is a choice of adopting the “Shotgun and
Assembly” framework. We will also showcase this in this
paper by performing similarity search on short document
data and relational data using GENIE.

However, a straightforward implementation of the match-
count model requires huge memory space, which limits the
maximum number of parallel queries within a batch process
on the GPU. Therefore, we propose a novel data structure on
the GPU, called Count Heap, which can not only reduce the
time cost for similarity search per query, but also reduce the
memory requirement for multiple queries. By reducing the
memory requirement, the deployment of the Count Heap can
substantially increase the number of queries within a query
processing batch on the GPU.

We summarize our contributions as follows:

• We propose a generic inverted index (GENIE) on the
GPU, which can support similarity search of multi-
ple queries under different measures (on different data
types) on the GPU.

• With regard to the system design of the inverted index,
we also devise a novel data structure, named Count
Heap, which significantly reduces the memory require-
ment and increases the throughput for multi-query pro-
cessing on the GPU.

• We introduce a new concept for ANN search, the τ -
ANN search, and demonstrate that our system can
effectively support the τ -ANN search with the help
of the generic Locality Sensitive Hashing scheme. We
also showcase the similarity search of multiple queries
on short document data and relational data in original
space by GENIE.

• We conduct comprehensive experiments on different
types of real-life datasets to demonstrate the effective-
ness and efficiency of GENIE.

The rest of the paper is organized as follows. At first,
we will discuss related work in Section 2. Next, we will
present a framework overview and preliminary definitions of
this paper in Section 3. Then we will expound the system
design of our index in Section 4, followed by a discussion
about the similarity search on GENIE in Section 5. Finally,
we will conduct experiment evaluation in Section 6 and will
conclude the paper in Section 7.

2. RELATED WORK

2.1 Similarity search on complex Data



2.1.1 High dimensional data
Due to the “curse of dimensionality”, spatial index meth-

ods, like R tree [21], R+ tree [52] and R* tree [8], provide
little improvement over a linear scan algorithm when dimen-
sionality is high. It is often unnecessary to find the exact
nearest neighbour, leading to the development of Approxi-
mate Nearest Neighbor (ANN) search in high dimensional
space. The theoretical foundation of ANN search is based on
the Locality Sensitive Hashing (LSH) family, which is a fam-
ily of hash functions that map similar points into the same
buckets with a high probability [26]. An efficient LSH family
for ANN search in high dimensional space is derived from
the p-stable distribution [16]. We refer interested readers to
a survey of LSH [59].

2.1.2 Sets, feature sketches and geometries
Various types of data objects are generated due to the

growth in information technologies. Example of such objects
include page sets from web service, feature sketches from
multimedia and geometries from computer graphics. The
similarity between these objects is often known only implic-
itly, so the computable kernel function is adopted for similar-
ity search. For example, the Jaccard kernel distance is used
to estimate the similarity between two sets as sim(A,B) =
|A∩B|
|A∪B| . To scale up similarity search on these objects, the

approximate nearest neighbor search in such kernel spaces
has also drawn considerable attention. Similar as search-
ing high dimensional points, the most notably solution for
this problem is the Locality Sensitive Hashing (LSH). For
example, Charikar [13] investigates several LSH families for
kernelized similarity search. Kulis and Grauman [33, 34]
propose a data-dependent method to build LSH family in
a kernel space. Wang et al. [59] give a good survey about
the LSH scheme on different data types. Our GENIE sys-
tem can support the similarity search in an arbitrary kernel
space if it has a LSH scheme.

2.1.3 Documents, sequences, trees and graphs
There is a wealth of literature concerning the similarity

search of complex structured data, and a large number of
indexes have been devised. Many of them adopt the “Shot-
gun and Assembly” approach [5, 53] which splits the data
objects into small sub-units and build inverted index on
these sub-units. Different data types are broken down into
different types of sub-units. Examples include words for
documents [56, 44], q-grams for sequences [38, 61], binary
branches for trees [64] and stars for graphs [63, 58, 60]. Dur-
ing query processing, the query object is also broken down
into smaller sub-units and corresponding posting lists are
scanned to identify data objects that share a lot of common
sub-units with the query object. Sometimes, a verification
step is necessary to compute the real distance (e.g. edit dis-
tance) between the candidates and the query object [61, 60,
64].

2.2 Parallelizing similarity search
Parallelism can be adopted to improve the throughput for

similarity search. Different parallelization strategies must
however be adopted for different data types. For example,
Chen et al. propose a novel data structure – successor table
– for fast parallel sequence similarity search on an MPP
computing model; whereas Tran et al. [57] propose a two-
stage index to accelerate the sequence similarity search on

both GPUs/many cores. There are also some proposed index
structures on graphs and trees that can be parallelized [55,
63]. However, these indexes that are tailored for special data
types cannot be easily extended to support similarity search
for other data types.

There are also a few GPU-based methods for approximate
nearest neighbour (ANN) search by LSH. Pan and Manocha
[45] propose a parallel LSH searching method on the GPU
using a Bi-level LSH algorithm [46]. Lukac and Zalik[41]
study the LSH method with multi-probe variant for ANN
search using GPUs. Both of these two methods are specially
designed for ANN search in the lp space. In contrast, our
GENIE system can generally support LSH for ANN search
with various similarity measures.

2.3 Data structures and indexes on the GPU
There are several works about specific indexes and data

structures on the GPU, including the inverted index and
tree-based structures. The existing papers [18, 62, 4] about
an inverted index on the GPU may seem related to our work.
Nevertheless, they focus on designing specialized algorithms
for two important operations of search engines – list inter-
section and index compression, which cannot be generalized
for similarity search. A two-level inverted-like index on the
GPU is also studied for continuous time series search under
the Dynamic Time Warping distance [69].

Tree-based data structures are also investigated to fully
utilize the parallel capability on the GPU. Parallel access-
ing to the B-tree[68, 22, 7] or R-tree [42, 31, 65] index on the
GPU memory is studied for efficiently handling query pro-
cessing. Kim et al. propose an architecture sensitive layout
of the index tree exploiting thread-level and data-level par-
allelism on both CPUs and GPUs [30]. In order to leverage
the computational power as well as to overcome the current
memory bottleneck of the GPU, some heterogeneous CPU-
GPU systems for key-value store are also proposed [67, 23].

3. FRAMEWORK OVERVIEW
In this section, we give an overview of our system. We first

present a conceptual model which formally defines the data
and query in our system. Then we introduce the general
structure of our inverted index.

3.1 Match-count model for inverted index
We first give several preliminary definitions about the data

and query to facilitate the description of our model and in-
dex structure. Given a universe U , an object Oi contains
a set of elements in U , i.e. Oi = {oi,1, ..., oi,r} ⊂ U . A set
of such data objects forms a data set DS = {O1, ...On}. A
query Qi is a set of items {qi,1, ..., qi,s}, where each item
qi,j is a set of elements from U , i.e. qi,j ⊂ U (qi,j is a subset
of U). A query set is defined as QS = {Q1, ..., Qm}.

To understand the definitions of the query and the object,
we give two examples instancing them as real data types.
One example is the document data, where the universe U
contains all possible words. In this case, the object Oi is a
document comprising a set of words, while the query Q is a
set of items where each item may contain one or more words.
Another example is relational data, described as follows.

Example 3.1. Given a relational table, the universe U is a
set of ordered pairs (d, v) where d indicates an attribute of
this table and v is a value of this attribute. An l−dimensional



relational tuple p = (v1, ..., vl) can be represented as an ob-
ject Oi = {(d1, v1), (d2, v2), ..., (dl, vl)}. A query on the re-
lational table usually defines a set of ranges R=([vL1 , v

U
1 ],

[vL2 , v
U
2 ],..., [vLl , v

U
l ]). By our definition, the query can be

represented as Q={(d1, [v
L
1 , v

U
1 ]),(d2, [v

L
2 , v

U
2 ]),..., (dl, [v

L
l , v

U
l ])},

where (di, [v
L
i , v

U
i ]) is an infinite set of ordered pairs (di, v)

each comprised of a dimension di and a value v ∈ [vLi , v
U
i ].

A simple example of queries and objects for a relational table
is shown in Figure 1.

Informally, given a query Q and an object O, the match-
count model MC(·, ·) returns the number of elements oi,j ∈
Oi contained by at least one query item of Q. We give a
formal definition of the match-count model as follows.

Definition 3.1 (match-count model). Given a query Q
= {q1, q2, .., qs} and an object O = {oi,1, ..., oi,r}, we map
each query item qi to a natural integer C : (qi, O) → N0

where C(qi, O) returns the number of elements oi,j ∈ O con-
tained by the item qi (which is also a subset of U). Finally
the output of the match-count model is the sum of the inte-
gers MC(Q,O) =

∑
qi∈Q C(qi, O).

Accordingly, we can rank all the objects in a data set with
respect to the query Q according to the model MC(·, ·).
After computing all the counts, we can output the top-k
objects with the largest value of MC(·, ·).

3.2 Inverted index for multiple queries

ID count

O1 1

O2 3

O3 2

… …

key

Count Table
of Q1

Attr
ID

A B C

O1 1 2 1

O2 1 1 2

O3 2 2 3

… … … …

O1 = {(A,1), (B,2), (C,1)}
O2 = {(A,1), (B,1), (C,2)}
O3 = {(A,2), (B,2), (C,3)}

(A,1)

(A,2)

(A,3)

(B,1)

(B,2)

(B,3)

(C,1)

(C,2)

(C,3)

O1, O2

O3

NIL

O3O1, 

NIL

O1

O2

O3

(A,[1,2]) 

(B,[1,1])

(C,[2,3])

O2

Fig:invIndex

Inverted Index

Posting lists

GPU

Q1 = {(A,[1,2]), (B,[1,1]), (C,[2,3])}

Q2 = {(A,[2,3]), (B,[1,1]), (C,[1,2])}
… …

Count Table
of Q2

ID count

O1 1

… …

Figure 1: An illustration of the inverted index on
a relational table. Multiple queries are processed,
accessing the inverted index in parallel.

In this section, we introduce a computational framework
for the match-count model. Essentially, the framework is
based on an inverted index, which can fully utilize the GPU
parallel computation capability in a fine-grained manner.
We first give a brief introduction of the computational ar-
chitecture of the GPU, and then overview our index method
for facilitating the computation of the match-count model
on the GPU.

The Graphics Processing Unit (GPU) is a device that
shares many aspects of Single-Instruction-Multiple-Data (SIMD)
architecture. The GPU provides a massively parallel execu-
tion environment for many threads, with all of the threads
running on multiple processing cores, and executing the same
program on separate data. We implemented our system on
an NVIDIA GPU using the Compute Unified Device Archi-
tecture (CUDA) toolkit [15]. Each CUDA function is exe-
cuted by an array of threads. A small batch (e.g. 1024) of

threads is organized as a block that controls the cooperation
among threads.

Figure 1 shows an illustration of the high level inverted
index on a relational table for GENIE. We first encode at-
tributes and all possible values as ordered pairs. Continuous
valued attributes are first discretized. Then we construct an
inverted index where the keyword is just the encoded pair
and the posting list comprises all objects having this key-
word. Given a query, we can quickly map each query item
to the corresponding keywords (ordered pairs). After that,
by scanning the posting lists, we can calculate the match
counts between the query and all objects.

In our Generic Inverted Index (GENIE) system, a main
component is a specially designed inverted index on the GPU
to compute the match-count model for multiple queries,
which is introduced in Section 4. We describe how to gener-
alize our match-count model for searching on different data
types and with different similarity measures in Section 5.

4. INVERTED INDEX ON THE GPU
In this section, we discuss the system design of GENIE.

We first present the index structure and the data flow of
GENIE. Then we present a novel data structure – Count
Heap, which is a heap-like structure on the GPU memory
facilitating the search on the Count Table especially for top-
k related queries.

4.1 Multiple queries on inverted index
The inverted index is resident on the global memory of

the GPU. Figure 2 illustrates an overview of such an index
structure. On the GPU, all the posting lists are stored in a
large List Array on the GPU’s global memory. There is also
a Position Array which stores the starting position of each
posting list for each keyword in the List Array. In addition,
all the keywords (ordered pairs) are mapped to the Position
Array on the GPU. For the multiple dimensional/relational
data, where the ordered pair is (di, vj) with di being dimen-
sion identifier and vj being discretized value or category, we
can use a simple function to encode the dimension (in high
bits) and value (in low bits) into an integer which is also the
keyword’s address of the Position Array. In this case, the to-
tal size of the Position Array is O(dim∗number of values).
However, if an attribute of the data has many possible cate-
gories/values, but the existing objects only appear on a few
of the categories/values, it is wasteful to use such an encod-
ing method to build a big but almost empty Position Array.
In this case, we maintain a hash structure to build a bijective
map between the ordered pair and the Position Array.

O1

List Array

GPU
key

(A,1)

(A,2)

(B,1)

(B,2)

(C,1)

(C,2)

(C,3)

O2
O3

O2

O1

O3

O1

O2

O3

Count Table / CountHeap

ID count

O1 1

… …

Fig:gpuIndex

map

0
2
3

4
6
7
8

Position 
Array

Blk 1 Blk s…

Q1 =(q1,1,…,q1,s)
q1,1 q1,s

Blk s+1 Blk 2s…

Q2 =(q2,1,…,q2,s)
q2,1 q2,s

… …

Search 
Results

Figure 2: Overview of the inverted index and data
flow on the GPU.

GENIE is designed to support multiple queries on the



GPU. Figure 2 shows the processing of multiple queries.
Each query has a set of items which define particular ranges
on some attributes (that is why we say each item is a sub-
set of the universe U). After invoking a query, we use one
block of the GPU to scan the corresponding posting lists
for each query item, where each block has many threads
(up to 1024) to access the posting lists in parallel. For a
query Qi = {qi,1, qi,2, ..., qi,s} with s query items, we invoke
s blocks in total. If there are m queries, there will be about
m ·s blocks working on the GPU in parallel. During the pro-
cessing, we update the Count Table which records the num-
ber of occurrences of the objects in the scanned posting lists.
Therefore, the system is working in a fine-grained manner
to process multiple queries which fully utilizes the parallel
computational capability of the GPU. In the inverted index,
there may be some extreme long posting lists, which can
become the bottleneck of our system. We also consider how
to balance the workload for each block in scanning posting
lists, which is introduced in next section.

4.1.1 Load balance
Keyword 

(ordered pair)
Long posting list

(di,vj)

(di,vj) sub-lists for one keyword 

Fig:loadBalance

Figure 3: Splitting long posting list for load balance.

For the inverted index, there may be some extreme long
posting lists which can become the bottleneck of the system.
Thus, it is necessary to consider the load balance problem in
such application context. In our system, we also implement
a load balance function, whose solution is to limit the length
of posting lists and the maximum elements to be processed
by one block. When the posting list is too long, we divide
such a long posting list into a set of sublists, then instead of
using a bijective map, we build a one-to-many map to store
the addresses of the sub-lists in the List Array. Figure 3
gives an illustration for splitting a long posting list to three
posting sub-lists. During scanning the (sub-)posting lists,
we also limit the number of lists processed by one block.
In our system, after enabling the load balance function, we
limit the length of each (sub-)posting list as 4K and each
block takes two (sub-)posting lists at most. It is worthwhile
to note that, if there are already many queries running on
the system, the usefulness of load balance is marginally de-
creased. This is because all the computing resources of the
GPU have been utilized when there are many queries and
the effect of load balance becomes neglected.

4.2 The Count Heap
One drawback of the Count Table is its large space cost.

We need to allocate an integer to store the count for each
object for each query. Taking a dataset with 10M points as
an example, if we want to submit a batch of one thousand
queries, the required space of the Count Table is about 40
GB (by allocating one integer for count value, the size is
1k(queries) × 10M(points) × 4(bytes) = 40GB), which ex-
ceeds the memory limit of the current available GPUs. Such
an high space requirement limits the number of queries be-
ing processed in a batch. In order to support more queries
in a batch, we propose a novel data structure, called Count
Heap, to replace the Count Table.

4.2.1 The structure of Count Heap

Bitmap
Counter

001

011

101

…

Fig:countHeap

O1

O2

O3

Zipper
Array

0 1 2 3 4 5 6 7

k

Hash Table

key val

O2 1

NIL NIL

O3 5

… …Audit
Threshold




Gate

Figure 4: An illustration of the Count Heap.

Figure 4 shows three main components of the count-heap:
(1) the Bitmap Counter to store the count for each object,
(2) the Gate to filter candidates, and (3) the Hash Table to
store the count for the final candidates.

To save space, we first compress the whole Count Table
in a bitmap structure. One unique property of the Count
Table is that the maximum count of each object is bounded.
Take range queries in relational tables as an example. The
maximum count is no more than the number of attributes
of the table. To leverage this property, we use a bitmap to
store the count instead of an integer. The size of the bitmap
counter is equal to the number of objects multiplied by the
number of bits necessary to encode the maximum value of
the count. In this way, the identifier of an object is implicitly
expressed by the address of the bitmaps, and the value of
the counter is stored by a binary code.

In order to select the top-k objects with the highest count,
one possible solution is to employ a k-selection algorithm,
such as [1], on the GPU. However, such the k-selection method
requires to store object id explicitly. Taking the example
of 10M points again, if we want to submit a batch of one
thousand queries, except the size of bitmap structures, the
required space to store the object id of the method in [1]
is already 40 GB (by allocating one integer for object id,
the size is 1k(queries)× 10M(points)× 4(bytes) = 40GB).
We cannot save space by bitmap method if we adopt such
k-selection method. We refer readers to Appendix A for a
brief explanation of the k-selection method on the GPU.

To reduce the space requirement of selecting the top-k ob-
jects with the highest count, we further introduce the other
two components in the Count Heap: the Gate and the Hash
Table. The general idea is that, during the updating pro-
cess of the bitmap counter, we also insert the a small num-
ber of candidate objects into the Hash Table if the object’s
count is larger than an adaptive threshold (maintained in
the Gate). The objective is that, after scanning the posting
lists, only the objects in the Hash Table can be the potential
candidates of the top-k results, while all the objects in the
Bitmap Counter can be safely abandoned.

The Gate has a ZipperArray whose size is equal to the
maximum value of the count. ZipperArray[i] records the
number of objects whose counts have reached i. As we need
to select the top-k objects, we maintain a threshold called
AuditThreshold to restrict objects from going to the Hash
Table.

4.2.2 Updating the Count Heap
We present the update process of the Count Heap in Al-

gorithm 1. Figure 4 also gives an illustration of the updat-
ing process. When the count of an object is updated in the
Bitmap Counter, at the same time, we further check whether
the object’s count is larger than the AuditThreshold (line 3).



If it is (like O3 whose count is 5 in Figure 4 and the Audit-
Threshold is 4), we will insert an entry into the Hash Table
whose key is the object id and whose value is the object’s
count. If the object id is already in the Hash Table, we will
use the new entry to replace the old one. Meanwhile, we
will update the ZipperArray (line 5 of Algorithm 1). If Zip-
perArray[AuditThreshold] is larger than k, we also increase
the AuditThreshold by one unit (line 7 of Algorithm 1).

Algorithm 1: Update on the Count Heap

// After scanning object Oi in the inverted index
11 vali = BitmapCounter[Oi] + 1
22 BitmapCounter[Oi] = vali
3 if vali ≥ AuditThreshold then
44 Put entry (Oi, vali) into the Hash Table
55 ZipperArray[vali]+ = 1
6 while ZipperArray[AuditThreshold] ≥ k do
77 AuditThreshold+ = 1

4.2.3 Selecting top-k objects from the Count Heap
After updating the Gate (which happens at the same time

with scanning the inverted index), we claim that all the real
top-k candidates are stored in the Hash Table, since at least
k objects passed the gate for each possible value of Audit-
Threshold. It seems that we still need a dedicated method
to extract the top-k objects from the Hash Table. However,
in Theorem 4.1, we prove that the match count value of the
k−th object is just AuditThreshold− 1, which reduces the
candidate size significantly. Before giving the proof of the
theorem, we first illustrate the following lemma.

Lemma 4.1. In Algorithm 1, after finishing all the updates
of the Gate, we have ZipperArray[AuditThreshold] < k
and ZipperArray[AuditThreshold− 1] ≥ k.

Proof. In Algorithm 1, after each update of ZipperArray
in line 5, we check whether ZipperArray[AuditThreshold] ≥
k in line 6. If it is, we increase AuditThreshold (in line 7).
Therefore, we always have ZipperArray[AuditThreshold] <
k. Similarly, since we only increase AuditThreshold in line
7, we can guarantee that ZipperArray[AuditThreshold −
1] ≥ k.

Theorem 4.1. Suppose the match count of the k-th object
Ok of a query Q is MCk = MC(Q,Ok), then we have
MCk = AuditThrehsold− 1.

Proof. We prove it by contradiction. On the one hand,
if we suppose MCk > AuditThrehsold − 1, we can deduce
that MCk ≥ AuditThrehsold. Thus, we can further infer
that ZipperArray[AuditThreshold] ≥ k, which contradicts
with Lemma 4.1. On the other hand, if we suppose MCk <
AuditThrehsold− 1, then there must be less than k objects
with match count greater than or equal to AuditThreshold−
1, which contradicts with Lemma 4.1. Therefore, we only
have MCk = AuditThrehsold− 1.

With the help of Theorem 4.1, to select the top-k ob-
jects, we only need to scan the Hash Table to select all ob-
jects with match count greatler than (AuditThrehsold− 1).
If there are multiple objects with match count equal to
(AuditThrehsold− 1), we break ties randomly.

4.2.4 Hash Table with modified Robin Hood Scheme
The hashing operations will be carried out on GPU de-

vices, which are SIMD machines where the total execution

time of a set of instructions depends on the slowest thread.
The implication of this consideration is that the entry with
the longest conflict chain delays everyone. So we need to fo-
cus on solving the conflict issue in hashing. As a result, we
adopt the Robin Hood open address hashing scheme [12, 17]
for the implementation of the Hash Table. A similar GPU-
based hash table implementation with Robin Hood scheme
has been studied in [20].

The general idea of the Robin Hood hashing is to record
the number of probes for reaching (inserting or accessing)
an entry due to conflicts. We refer to this probing number
as age. During the insertion, one entry will evict an exist-
ing entry in the probed location if the existing entry has a
smaller age. Then we repeat the process of inserting the
evicted entry into the hash table until all the entries are in-
serted. For a non-full table of size T , the expected maximum
age per insertion or access is Θ(log2logT ) [17].

Since for each AuditThreshold, k objects can pass the Gate
into the Hash Table, there are at mostO(k∗max count value)
objects in the Hash Table. Thus, the size of the Hash Table
can be set as O(k ∗max count value) multiplied by a load
factor α which can be simply set as 1.5 indicating that 1/3
locations of the Hash Table are empty.

We further improve the Robin Hood hashing scheme. The
general idea is that all the entries with values smaller than
(AuditThrehsold−1) in the Hash Table cannot be the top-k
candidates (see theorem 4.1), therefore, they can be safely
replaced by the inserted entry regardless of ages. If the value
of the existing entry is smaller than the (AuditThrehsold−
1), we can directly overwrite the entry by the inserted one.
In this way, we can significantly reduce the probe times of
the insertion and access operations of the Hash Table, since
many inserted keys become expired with the monotonous
increase of AuditThreshold.

Another improvement of the Robin Hood Hashing is to
take the race condition problem into account (which is not
covered in [20] since the paper is for static data applica-
tions). The update and insertion of the gate and the hash
table should take place in a critical section to avoid race con-
ditions. The use of lock for critical section must be avoided
since multiple threads in the same warp competing for locks
will cause deadlock due to the SIMD architecture. We adopt
a lock-free synchronization mechanism which is studied in
[35, 43]. The idea is to use the atomic Compare and Swap
(CAS) operation to guarantee that only one thread can up-
date the critical section but all threads within one warp can
complete the operation in a finite number of steps.

5. GENERIC SEARCH ON THE INDEX
In this section, we discuss how to generalize our match-

count model for similarity search of various data types with
different measures. We first show that GENIE (with match-
count model) can support the ANN search for any similar-
ity measure which has a generic Locality Sensitive Hashing
(LSH) scheme. For complex data types which have no LSH
transformation, we also showcase the “Shotgun and Assem-
bly” framework of GENIE by performing similarity search
on short document data and relational data.

5.1 ANN search by generic similarity measure
The general Nearest Neighbor Search (NNS) problem is:



Given a set of n points P = {p1, p2, .., pn} 3 in a space
S, retrieve a point in P that is closest to a query point
q ∈ S under a similarity measure sim(pi, q). It is often
computationally infeasible and unnecessary to retrieve the
exact nearest neighbor. Therefore, the Approximate Nearest
Neighbor (ANN) search has been extensively studied. A
popular definition of the ANN search is the c−approximate
nearest neighbor (c-ANN) search [26], which is defined as:
to find a point p so that sim(p, q) ≤ c · sim(p∗, q) with
high probability where p∗ is the true nearest neighbor. Here
sim(·, ·) is a function that maps a pair of points to a number
in [0, 1] where sim(p, q) = 1 means p and q are identical. One
of the most popular solutions for the ANN search problem
is Locality Sensitive Hashing [26, 13, 59].

In order to integrate existing locality sensitive hashing
methods into GENIE, we first propose a revised definition of
the approximate nearest neighbor search, called Tolerance-
Approximate Nearest Neighbor search (τ -ANN):

Definition 5.1 (Tolerance-ANN, τ -ANN). Given a set
of n points P = {p1, p2, .., pn} in a space S under a simi-
larity measure sim(pi, q), the Tolerance-Approximate Near-
est Neighbor (τ -ANN) search returns a point p such that
|sim(p, q)− sim(p∗, q)| ≤ τ with high probability where p∗ is
the true nearest neighbor.

Note that some existing works, like [51], have used a concept
similar to Definition 5.1 for ANN search though without
explicit definition. The τ -ANN holds the same spirit of the
definition of c-ANN.

According to the definition in [13], a hashing function h(·)
is said to be locality sensitive if it satisfies:

Pr[h(p) = h(q)] = sim(p, q) (1)

which means the collision probability is equal to the simi-
larity measure. Another definition of the LSH is formulated
that the collision probability is larger than a threshold with
respect to a radius of query points. We postpone the dis-
cussion of this definition to Section 5.2.

The relationship between the collision of LSH and the sim-
ilarity measure can be explained from the view of the max-
imum likelihood estimation (MLE). Given a point p and a
query q with a set of LSH functions H = {h1, h2, ..., hm}
defined by Eqn.(1), if there are c functions in H satisfy-
ing hi(p) = hi(q), we can obtain an unbiased estimation of
sim(p, q) by maximum likelihood estimation (MLE):

ŝ =
c

m
(2)

Eqn. 2 provides an appealing insight that we can estimate
the real sim(p, q) according to the collision number of hash
functions in the hash set H (Eqn. 2 has been discussed in
[51]). In fact, Eqn. 2 has been implicitly used to tune the
number of LSH functions [13, 49]. This is good news since
our GENIE system based on the count-match model can ef-
fectively support counting the number of collision functions.
However, we should also analyze the error bound between
the estimate ŝ and the real similarity measure s = sim(p, q).
Next, we introduce how to integrate the LSH into our GE-
NIE system, followed by an estimation of error bound on
the ŝ estimated by MLE.
3Note that the point pi and object Oi are different concepts
in this paper. We reserve the object as a concept of the
match-count model. In this paper, the point presents the
general searching objects/items, e.g. documents.

5.1.1 Building index for LSH and ANN search
We can use the indexing method shown in Figure 1 to

build an inverted index for LSH. In this case, we treat each
hash function as an attribute, and the hash signature as the
value for each data point. The keyword in the inverted index
for point p under hash function hi(·) is a pair (hi, v) and the
posting list of pair (hi, v) is a set of points whose hash value
by hi(·) is v (i.e. hi(p) = v).

A possible problem is that the hash signature of LSH func-
tions may have a huge number of possible values. For ex-
ample, the signature of one minHash function with SHA1
hashing can be hundreds of bits, and the signature of some
hash function may be thousands of bits (such as the Ran-
dom Binning Hashing introduced later). Meanwhile, it is
not reasonable to discretize the hashing signature in to a
set of buckets, since the hashing signature of two points in
the same discretized bucket would have different similarity,
which will validate the definition of LSH in Eqn. 1.

To tackle this problem, we propose a random re-hashing
mechanism. After obtaining the LSH signature hi(·), we
further randomly project the signatures into a set of buck-
ets with a random projection function ri(·). Figure 5 shows
an example of the re-hashing mechanism. We can convert a
point to an object of our match-count model by the transfor-
mation: Oi = [r1(h1(pi)), r2(h2(pi)), ..., rm(hm(pi))] where
hj(·) is an LSH function and rj(·) is a random projection
function. Note that the re-hashing mechanism is generic: it
can be applied to any LSH hashing signature.
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Figure 5: Re-hashing mechanism. The hashed ob-
ject is Oi = [r1(h1(pi)), r2(h2(pi)), ..., rm(hm(pi))] where
h(·) is a LSH function and r(·) is a random projection
function.

After building the inverted index, the ANN search can be
conveniently supported by GENIE. Given a query point q,
we also convert the Q with the same transformation process
shown in Figure 5, i.e. Q = [r1(h1(q)), r2(h2(q)), ..., rm(hm(q))].
Then, the top result returned by GENIE is just the τ -ANN
search result, which is proved in the following section.

5.1.2 Error bound, hash function number and τ-ANN
In this section, we prove that the top return of GENIE

for a query q is the τ -ANN of q. To prove this, we first
analyze the error bound of the estimated similarity of Eqn.
2, whose close-form error bound is clarified in Theorem 5.1.
The proof of Theorem 5.1 is inspired by the routine of the
proof of Lemma 4.2.2 in [2].

Theorem 5.1. Given a similarity measure sim(·, ·), an LSH
family h(·) satisfied Eqn. 1, we can get a new hash function
f(x) = r(h(x)), where r(·) is a random projection function
from LSH signature to a domain R : U → [0, D).

For a set of hash functions fi(·) = ri(hi(·)), 1 ≤ i ≤ m

with m = 2 ln(3/δ)

ε2
, we can convert a point p and a query q

as an object and a query of the match-count model, which are



Op = [f1(p), f2(p), ..., fm(p)] and Qq = [f1(q), f2(q), ..., fm(q)],
then we have |MC(Op, Qq)/m − sim(p, q)| < ε + 1/D with
probability at least 1− δ.

Proof. For convenience, let c be the the return of match-
count model c = MC(Op, Qq), which essentially is the num-
ber of hash function fi(·) such that fi(p) = fi(q). The colli-
sions of fi(·) can be divided into two classes: one is caused
by the collision of the LSH hi(·) (since if hi(p) = hi(q) then
we must have fi(p) = fi(q)), the other one is caused by the
collision of the random projection (meaning hi(p) 6= hi(q)
but ri(hi(p)) = ri(hi(q))). Therefore, we further decompose
count c as c = ch + cr where ch denotes the number of col-
lisions of caused by hi(·) and cr denotes the one caused by
ri(·) when hi(p) 6= hi(q).

We first prove that that |ch/m − sim(p, q)| ≤ ε/2 with
probability at least 1−δ/2 given Pr[h(p) = h(q)] = sim(p, q).
This is deduced directly by Hoeffding’s inequity if m =

2 ln(3/δ)

ε2
, which is:

Pr[|ch/m− sim(p, q)| ≥ ε/2] ≤ 2e−2m( ε
2

)2 =
2δ

3
(3)

For the rest of the m − ch hashing functions, we need
to prove that the collision cr ≤ (ω + ε/2)m with proba-
bility at least 1 − δ/3, where ω is the collision probabil-
ity of ri. To simplify the following expression, we also de-
note ε/2 by β, i.e. β = ε/2 . Note that the expectation
of cr is E(cr) = ω(m − ch). According to the Hoeffd-
ing’s inequality, we have Pr[cr > (ω + β)m] = Pr[cr >

(ω + ωch+βm
m−ch

)(m − ch)] ≤ e
−2(

ωch+βm

m−ch
)2(m−ch)

. We have

(ωch+βm
m−ch

)2(m − ch) ≥ ( βm
m−ch

)2(m − ch) ≥ β2m2

m−ch
≥ β2m.

Therefore, we have e
−2(

ωch+βm

m−ch
)2(m−ch) ≤ e−2β2m. Finally,

we have Pr[cr/m > (ω + β)] ≤ e−2β2m. Since β = ε/2

and m = 2 ln(3/δ)

ε2
, we have Pr[cr/m > (ω + ε/2)] ≤ δ

3
. To

combine above together, we have:

Pr[|ch/m+ cr/m− sim(p, q)| > ω + ε]

≤ Pr[(|ch/m− sim(p, q)| > ε/2) ∪ (cr/m > ω + ε/2)]

≤ Pr[(|ch/m− sim(p, q)| > ε/2)] + Pr[(cr/m > ω + ε/2)]

≤ δ

We also have ω = D∗1/D2 = 1/D, therefore, |MC(Op, Qq)−
sim(x, y)| = |(ch + cr)/m− sim(p, q)| ≤ ε+ 1/D with prob-
ability at least 1− δ.

Number of hash functions in practical applications.
Theorem 5.1 provides a rule to set the number of LSH

functions to guarantee the error bound of the estimated sim-
ilarity based on our match-count model. The problem of
Theorem 5.1 is that the number of hash functions is propor-
tional to the inverse of squared error O( 1

ε2
) which may be

very large. It is NOT a problem for GENIE to support such
a number of hash functions since the GPU is a parallel archi-
tecture suitable for the massive quantity of relatively simple
tasks. The question here is that: Do we really need such a
large number of hash functions in practical applications?

Before exploiting this, we first explain that the collision
probability of a hash function fi(·) can be approximated
with the collision probability of an LSH function hi(·) if
D is large enough. As mentioned in the proof of Theorem

5.1, the collision probability of fi(·) can be divided into two
parts: collisions caused by hi(·) and collisions caused by
ri(·), which can be expressed as:

Pr[fi(p) = fi(q)] = Pr[ri(hi(p)) = ri(hi(q))] (4)

≤ Pr[hi(p) = hi(q)] + Pr[ri(hi(p)) = ri(hi(q))] (5)

= s+ 1/D (6)

where s = sim(p, q). Thus, we have s ≤ Pr[fi(p) = fi(q)] ≤
s + 1/D. If we assume D is large enough, we can see
Pr[fi(p) = fi(q)] ≈ s. Therefore, suppose r(·) can re-hash
hi(·) into a very large domain [0, D), we can claim that:

Pr[|MC(Op, Qq)/m− sim(p, q)|] ≈ Pr[|ch/m− s|] (7)

where ch is the collision number of LSH functions.
Eqn. 7 can be further justified by the following equation:

Pr[|ch
m
− s| ≤ ε] = Pr[(s− ε) ∗m ≤ ch ≤ (s+ ε) ∗m] (8)

=

d(s+ε)me∑
ch=b(s−ε)mc

(
m

ch

)
sch(1− s)m−ch (9)

The problem of Eqn. 9 is that the probability of error bound
depends on the similarity measure s = sim(p, q) [51]. There-
fore, there is no closed-form expression for such error bound.

Nevertheless, Eqn. 9 provides a practical solution to esti-
mate a tighter error bound of the match-count model differ-
ent from Theorem 5.1. If we fixed ε and δ, for any given sim-
ilarity measure s, we can infer the number of required hash
functions m subject to the constraint Pr[|ch/m− s| ≤ ε] ≥
1 − δ according to Eqn. 9. Figure 6 visualizes the number
of minimum required LSH functions for different similarity
measure with respect to a fixed parameter ε = δ = 0.06
by this method. A similar figure has also been illustrated
in [51]. As we can see from Figure 6, the largest required
number of hash functions appears at s = 0.5, which is much
smaller than the one estimated by Theorem 5.1 (which is

m = 2 ln(3/δ)

ε2
= 2174). We should note that the result shown

in Figure 6 is data independent. Thus, instead of using The-
orem 5.1, we can effectively estimate the actually required
number of LSH functions using the simulation result based
on Eqn. 9 (like Figure 6).
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Figure 6: Similarity (s) v.s. the number of min-
imum required LSH functions (m) with constraint
Pr[|ch/m − s| ≤ ε] ≥ 1 − δ where ε = δ = 0.06. By

Theorem 5.1, m = 2 ln(3/δ)

ε2
= 2174.

Tolerance Approximate NN (τ-ANN) Search.
Now we give a proof that, given a query point q, the top

result returned by GENIE is the τ -ANN of q.

Theorem 5.2. Given a query q and a set of points P =
{p1, p2, .., pn}, we can convert them as the objects of our
match-count model by transformation Opi = [r1(h1(pi)),



r2(h2(pi)) , ..., rm(hm(pi))] (as shown in Figure 5) which
satisfies |MC(Opi , Qq)/m − sim(pi, q)| ≤ ε with the proba-
bility at least 1− δ. Suppose the true NN of q is p∗, and the
top result based on the match-count model is p, then we have
sim(p∗, q)− sim(p, q) ≤ 2ε with probability at least 1− 2δ.

Proof. For convenience, we denote that the output count
values of match-count model as c = MC(Op, Qq) and c∗ =
MC(Op∗ , Qq), and denote the real similarity measures as
s = sim(p, q) and s∗ = sim(p∗, q). We can get that

Pr[|c/m− s| ≤ ε ∩ |c∗/m− s∗| ≤ ε]
= Pr[|c/m− s| ≤ ε] · Pr[|c∗/m− s∗| ≤ ε]
≥ (1− δ)(1− δ) ≥ 1− 2δ

We also have that c ≥ c∗ (c is top result) and s∗ ≥ s (s∗

is true NN). From |c/m−s| ≤ ε and |c∗/m−s∗| ≤ ε, we can
get that s∗ ≤ c∗/m+ ε and s ≥ c/m− ε, which implies that
s∗ − s ≤ c∗/m+ ε− (c/m− ε) ≤ 2ε

To sum up, we can obtain that Pr[sim(p∗, q)−sim(p, q) ≤
2ε] ≥ 1− 2δ

5.1.3 Case study: τ-ANN in Laplacian kernel space
A fascinating property of GENIE is that any similarity

measures associated with an LSH family defined by Eqn. 1
can be supported by GENIE for τ -ANN search. LSH for
similarity search under Eqn. 1 has been extensively studied
in recent years since the pioneering work [13].

In this section, we take the ANN search on a shift-invariant
kernel space as a case study, which has important applica-
tions for machine learning and computer vision. The authors
in [48] propose a LSH family, called Random Binning Hash-
ing (RBH), for Laplacian kernel k(p, q) = exp(− ‖ p − q ‖1
/σ). Though this method is well-known for dimension re-
duction, as far as we know, it is not applicable to the ANN
search. One possible reason is that this method requires
a huge hash signature space, where the number of bits re-
quired is a multiple of the number of dimensions of points.
Here we give a brief introduction about the Random Binning
Hashing.

Definition 5.2 (Random Binning Hashing). For any ker-
nel function k(·) satisfying that p(σ) = σk′′(σ) (where k′′(·)
is the second derivative of k(·)) is a probability distribution
function on σ ≥ 0, we can construct an LSH family by ran-
dom binning hashing (RBH) for kernel function k(·). For
each RBH function h(·), we impose a randomly shift reg-
ular grid on the space with a grid cell size g that is sam-
pled from p(σ), and a shift vector u = [u1, u2, ..., ud] that
is drawn uniformly from [0, g]. For a d-dimensional point
p = [p1, p2, ..., pd], the hash function is defined as:

h(p) = [b(p1 − u1)/gc, ..., b(pd − ud)/gc] (10)

The expected collision probability of RBH function is Pr(h(p) =
h(q)] = k(p, q). One typical kernel function satisfying the
conditions for RBH is Laplacian kernel k(p, q) = exp(− ‖
p− q ‖1 /σ). We refer interested readers to [48].

In our experiment, we demonstrate that GENIE can sup-
port ANN search in Laplacian kernel space based on RBH.
To reduce the hash signature space, we use the re-hashing
mechanism to project each signature into a finite set of buck-
ets (in the experiment, we set D = 8192). We select Mur-
murHashing3 [6] as the random projection function.

5.2 ANN search in high dimensional space
In this section, we discuss ANN search in high dimensional

space, where, instead of using Eqn. 1, an LSH function
family is usually defined as follows [16]:

Definition 5.3. In a d-dimensional lp norm space Rd, a
function family H = {h : Rd → [0, D)} is called (r1, r2, ρ1, ρ2)-
sensitive if for any p, q ∈ Rd:

• if ‖ p− q ‖p≤ r1, then Pr[h(p) = h(q)] ≥ ρ1

• if ‖ p− q ‖p≥ r2, then Pr[h(p) = h(q)] ≤ ρ2

where r1 < r2 and ρ1 > ρ2 and ‖ p−q ‖p is distance function
in lp norm space.

Based on the p-stable distribution [25], an LSH function
family in lp norm space can be defined as [16]:

h(q) = ba
T · q + b

w
c (11)

where a is a d-dimensional random vector whose entry is
drawn independently from a p-stable distribution for lp dis-
tance function (e.g. Gaussian distribution for l2 distance),
and b is a random real number drawn uniformly from [0, w).

In order to integrate such an LSH function into our pro-
posed match-count model for ANN search, we have to find
the relation between the collision probability and the lp dis-
tance. For this purpose, we justify the LSH function of Eqn.
11 by the following equation [16] (let ∆ =‖ p− q ‖p):

ψp(∆) = Pr[h(p) = h(q)] =

∫ w

0

1

∆
φp(

t

∆
)(1− t

w
)dt (12)

where φp(∆) denotes the probability distribution density
function (pdf) of the absolute value of the p-stable distribu-

tion. In Euclidean (l2) space, we have φ2(∆) = 2√
2π
exp(−∆2

2
).

From Eqn. 12, we can infer that ψp(∆) is a strictly mono-
tonically decreasing function [3]: If p1 is more nearby to q
than p2 in lp space (∆1 =‖ p1 − q ‖p< ∆2 =‖ p2 − q ‖p),
then ψp(∆1) is higher than ψp(∆2). Therefore, we can say
that ψp(∆) defines a similarity measure between two points
in lp norm space, i.e.

simlp(p, q) = ψp(∆) = ψp(‖ p− q||p). (13)

Now we can use GENIE to support the ANN search in
high dimensional space with the help of the (r1, r2, ρ1, ρ2)-
sensitive hashing function family. Recalling Theorem 5.1
and Theorem 5.2, the only requirement for the LSH func-
tion of GENIE is to satisfy Eqn. 1, which can be justified by
Eqn. 12 for (r1, r2, ρ1, ρ2)-sensitive hashing function family.
In other words, we can use the GENIE to do τ -ANN search
under the similarity measure of Eqn. 13. Though the ANN
search result is not measured by the lp norm distance, the
returned results follows the same criterion to select the near-
est neighbor since the similarity measure defined in Eqn.13
is closely related with the lp norm distance.

A similar counting method has also been used for c-ANN
search in [19] where a Collision Counting LSH (C2LSH)
scheme is proposed for c-ANN search. Though our method
has different theoretical perspective from C2LSH, the basic
idea behind them is similar: the more collision functions be-
tween points, the more likely that they would be near each
other. From this view, the C2LSH can corroborate the ef-
fectiveness of the τ -ANN search of our method.



5.3 Searching on original data
GENIE also provides a choice of adopting the “Shotgun

and Assembly” framework for similarity search. By this
framework, given a dataset, we split each object of the data
into small units. Then we build an inverted index on such
dataset where each unique unit is a keyword, and the cor-
responding posting list is a list of objects containing this
unique unit. When a query comes, it is also broken down as
a set of such small units. After that, GENIE can effectively
calculate the number of common units between the query
object and data objects in the index.

The result of the match-count model can either be con-
sidered as a similarity measure (such as document search
where the count is just the inner product between the space
vector of query document and the one of data documents)
or be considered as a lower bound of a distance (e.g. edit
distance) to filter candidates [61, 60, 64]. In the following
sections, we will showcase how to perform similarity search
on short document data and relational data using GENIE.

5.3.1 Searching on short document data
In this application, both the query document and the ob-

ject document are broken down into “words”. We build an
inverted index with GENIE where the keyword is a “word”
from the data document, and the posting list of a “word”
is a list of document ids. During the similarity search, GE-
NIE can access the posting lists in parallel whose keywords
are contained by the query document to calculate the match-
count model between query documents and data documents.
The result of the match-count model can be considered as a
similarity measure of documents.

We can explain the result returned by GENIE on short
document data by the document vector space model. Doc-
uments can be represented by a binary vector space model
where each word represents a separate dimension in the vec-
tor. If a word occurs in the document, its value in the vector
is one, otherwise its value is zero. The output of the match-
count model, which is the number of co-occurred words in
both the query and the object, is just the inner product be-
tween the binary sparse vector of the query document and
the one of the object document. In our experiment, we show
an application of similarity search on a tweet dataset.

5.3.2 Searching on relational data
GENIE can also be used to support query on the relational

data under the match-count model. In Figure 1, we have
shown how to build an inverted index for relational tuples.
A query on the relational table is a set of specific ranges
on attributes of the relational table. Comparing the SQL
Select/Where clause to retrieve tuples that strictly satisfy
a set of specified criteria, GENIE can further support top-
k queries to not only return the tuples satisfying all the
criteria, but may also return some tuples best matching the
criteria (i.e. missing the fewest criteria).

The top-k result returned by GENIE on relational tables
can be considered a special case of the traditional top-k se-
lection query. The top-k selection query selects the k tuples
in a relational table with the largest predefined ranking score
function F (·) (SQL ORDER BY F (·)) [24]. In GENIE, we
use a special ranking score function defined by the match-
count model, which is especially useful for tables having both
categorical and numerical attributes.

6. EXPERIMENTS

6.1 Settings

6.1.1 Datasets
We use four real-life datasets to evaluate our system. Each

dataset corresponds to one similarity measure respectively
introduced in Section 5.

[OCR]4 This is a dataset from a machine learning com-
petition for optical character recognition [54]. It contains
3,500,000 data points and each point has 1156 dimensions.
We randomly select 10K points from the dataset as query/test
set (and remove them from the dataset). There is a binary
label ({+1, -1}) for each point. We use RBH (see Section
5.1.3) to generate the LSH signature, which is further re-
hashed into an integer domain of [0,8192) (see Section 5.1.3).
The prediction performance (precision, recall, F1-score and
accuracy) is used to evaluate the quality of ANN search.

[SIFT]5 This dataset [28] contains 4,455,091 SIFT fea-
tures [40] extracted from 1,491 photos, and each feature is
represented as a 128-dimensional point. We randomly se-
lect 10K features as our query set and remove these features
from the dataset. We select the hash functions from the
E2LSH family [16, 3] and each function transforms a feature
into 67 buckets. The setting of the bucket width follows the
routine in [16], which is a trade-off between time cost and
accuracy. We use this dataset to evaluate the ANN search
in high dimensional space as discussed in Section 5.2.

[Tweets]6 This dataset has 6,770,945 tweets. We remove
stop words from the tweets. The dataset is crawled by our
collaborators from Twitter for three months by keeping the
tweets containing a set of keywords7. We reserve 10K tweets
as a query set for the experiment. It is used to study the
short document similarity search (see Section 5.3.1).

[Adult]8 This dataset has census information, available
in the UCI Machine Learning Repository [39]. It contains
48,842 rows with 14 attributes (mixed of numerical and cate-
gorical ones). For numerical data, we discretize all value into
1024 intervals of equal width. For categorical data, we en-
code the original data to integers. We further duplicate ev-
ery row 20 times. Thus, in total, there are 976,840 instances
(after duplication). We use this dataset to study the selec-
tion from relational data (see Section 5.3.2). We select 10K
tuples as queries. For numerical attributes, the query item
range is defined as [discretized value−50, discretized value+
50]; and for categorical attributes, we use exact match.

6.1.2 Competitors
We use the following competitors as baselines to evaluate

the performance of GENIE.
[GPU-LSH] GPU-LSH is a GPU-based LSH method [46]

in Euclidean space and its source code is publicly available9.
We use GPU-LSH as a competitor of GENIE for ANN search
in high dimensional space. Furthermore, since there is no

4
http://largescale.ml.tu-berlin.de/instructions/

5
http://lear.inrialpes.fr/~jegou/data.php

6
https://dev.twitter.com/rest/public

7The keywords include “Singapore”, “City”, “food joint”,
“restaurant” and “seating area”, etc. This dataset is crawled
for a research project.
8
http://archive.ics.uci.edu/ml/datasets/Adult

9http://gamma.cs.unc.edu/KNN/



GPU-based LSH method for ANN search in Laplacian ker-
nel space, we still use GPU-LSH method as a competitor
for ANN search of GENIE using generic similarity measure.
Before evaluating the running time of similarity search, we
adjust the configuration parameters of GPU-LSH to make
sure the ANN search results of GPU-LSH have similar qual-
ity with the one of GENIE. For convenience, we postpone
the discussion about the parameter configuration of GPU-
LSH in Section 6.4. The GPU-LSH cannot work with more
than 1M data points since OCR data has high number of
dimensions (which is ten times of SIFT data), thus, we only
use 1M data points for GPU-LSH on OCR dataset.

[GPU-Scan] We also implemented a scanning method
based on GPU as a competitor. We first scan the whole
dataset to compute match-count value between queries and
all points in the dataset and store these computed results in
an array, then we use a GPU-based fast k-selection method
to extract the top-k candidates from the array for each
query. We adopt an existing k-selection method [1] on the
GPU. Moreover, since the existing method only supports
the k-selection for one query, in order to support parallel
k-selections for multiple queries, we modify their method to
use one block to handle one k-selection for one query. We
give a brief introduction to the k-selection algorithm in Ap-
pendix A. Note that for ANN search, we scan on the LSH
signatures (not original data) since our objective is to verify
the effectiveness of the index.

[CPU-Idx] We also implemented an inverted index on the
CPU memory. While scanning the inverted index in mem-
ory, we use an array to record the match-count value for each
object. After finishing the scan, we use a partial quick selec-
tion function (with Θ(n+klogn) worst-case performance) in
C++ STL [29] to get the k largest-count candidate objects.

[GEN-noCH] This is a variant of GENIE but without
the Count Heap. We still build inverted index on the GPU
for each dataset as we discussed in Section 4.1. However,
instead of using Count Heap structure introduced in Section
4.2, we use k-selection method (which is the same with the
one for GPU-Scan) to extract candidates from the Count
Table. This method requires large memory requirement for
multiple queries.

6.1.3 Environment
We conducted the experiment on a CPU-GPU platform.

The GPU is NVIDIA GeForce GTX TITAN X with 12 GB
memory. All the GPU codes were implemented with CUDA
7. All other programs were implemented in C++ on CentOS
6.5 server (with 64 GB RAM). The CPU is Intel Core i7-
3820.

If not otherwise specified, we set k = 100 (i.e. to find
the 100 most similar objects from dataset) and set the sub-
mitted query number per batch to the GPU as 1024. All
the reported results are the average of running results of
ten times. By default, we do not enable the load balance
function since it is not necessary when the query number is
too large for one batch process (see Section 6.5). For ANN
search (on OCR data and SIFT data), we use the method
introduced in Section 5.1.2 to determine the number of LSH
hash functions with setting ε = δ = 0.06, therefore the num-
ber of hash functions is m = 237 (as illustrated in Figure
6).

6.2 Search time for multiple queries
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Figure 7: Total running time for multiple queries.

We show the total running time for the different numbers
of queries in Figure 7 (y-axis is log-scaled). We do not show
the running time for GPU-Scan if the query number is too
large to be supported in one batch. The running time of
CPU-Idx is also hidden if it is too large to be shown in the
figure. It is not surprising that GENIE is several orders of
magnitude faster than the CPU-Idx method. Moreover, our
method can also outperform the GPU-Scan method by more
than one order of magnitude. For example, given 128 queries
GENIE can usually finish tasks within 1 second on OCR
and Tweets, but GPU-Scan needs more than one minute.
Furthermore, GPU-Scan can only run less than 256 queries
in parallel (except for Adult dataset) for one batch process,
but GENIE can support more than 1000 queries in parallel.

As we can see from Figure 7, GENIE can also achieve
better (or at least not worse) performance than GPU-LSH.
The running time of GPU-LSH is relatively stable with vary-
ing numbers of queries. This is because GPU-LSH uses one
thread to process one query, therefore, GPU-LSH achieves
its best performance when there are 1024 queries (which is
the maximum number of threads per block on the GPU).
This also clarifies why GPU-LSH is even worse than the
GPU-Scan method when the query number is small since
part of computational capability is wasted in this case. We
can see that even when GPU-LSH comes into the full load
operation, GENIE can still achieve better running time than
GPU-LSH on the OCR dataset and has the similar running
time on the SIFT dataset. Note that we only use 1M data
points for GPU-LSH since it cannot work when the number
of points is larger than 1M.

Figure 8 (y-axis is log-scaled) shows the average running
time per query with varying numbers of queries, which re-
veals more insight about the advantage of GENIE. On the
one hand, GENIE can run more queries for one batch which
gives us the opportunities to amortize the time cost for
multi-query similarity search. On the other hand, both the
slope and the value of the curve of GPU-LSH are larger
than the ones of GENIE, which means GENIE is good at
fully utilizing the parallel computational capability of the
GPU given multiple queries.

Figure 9 conveys the running time of GENIE and its
competitors with varying numbers of data points from each
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Figure 8: Average running time per query.
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Figure 9: Varying data size for multiple queries. (The

query number is 512 since most competitors cannot run 1024

queries for one batch.)

dataset (the Adult dataset is further duplicated to 8 million
here). Since most of the competitors cannot run 1024 queries
for one batch even when there are only 1M data points, we
fix the query number as 512 in this figure. The running
time of GENIE is gradually increased with the growth of
data size. Nevertheless, the running time of GPU-LSH is
relative stable with respect to the data size. The possi-
ble reason is that GPU-LSH uses many LSH hash tables
and LSH hash functions to break the data points into short
blocks, therefore, the time for accessing the LSH index on
the GPU become the main part of query processing.

6.3 Effectiveness of the Count Heap
Figure 10 demonstrates the effectiveness of the Count

Heap in GENIE. The Count Heap can not only reduce the
running time for similarity search given the same number of
queries, but also significantly increase the number of queries
to be processed by the GPU within one batch. The effec-
tiveness of the Count Heap can be justified from two views:
1) the Count Heap can reduce the running time by avoid-
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Figure 10: The effectiveness of the Count Heap.

ing selecting the candidates from a large Count Table for
multiple queries. As we can see from Figure 10, when the
number of queries is the same, with the help of the Count
Heap, the running time of GENIE have a 2-4 fold decrease.
2) the Count Heap can also increase the maximum number
of queries that can be parallel processed on the GPU within
one batch, since the Count Heap can significantly reduce the
memory requirement for GENIE. In Figure 10, the deploy-
ment of the Count Heap results in more than 4-fold increase
of the maximum number of queries per batch on the GPU.

6.4 ANN Search of GENIE
In this section, we evaluate the quality of the ANN search

of GENIE. As mentioned in Section 6.1.2, we also discuss
the parameter setting for GPU-LSH.

An evaluation metric for the approximate kNN search in
high dimensional space is approximation ratio, which is de-
fined as how many times farther a reported neighbor is com-
pared to the real nearest neighbor. Formally, for a query
point q, let {p1, p2, ..., pk} be the ANN search results sorted
in an ascending order of their lp normal distances to q. Let
{p∗1, p∗2, ..., p∗k} be the true kNNs sorted in an ascending or-
der of their distances to q. Then the approximation ratio is
formally defined as:

1

k

k∑
i=1

‖pi − q‖p
‖p∗i − q‖p

(14)

In the experiment evaluation (especially for running time)
for ANN search in high dimensional space on the SIFT data
set, we set the parameters of GPU-LSH and GENIE to en-
sure that they have similar approximation ratio. For ANN
search of GENIE, we set the number of hash functions as 237
which is determined by setting ε = δ = 0.06 (as discussed in
Section 5.1.2 and illustrated by Figure 6). Another param-
eter for ANN search in high dimensional space is the bucket
width (of Eqn. 11). According to the method discussed in
the original paper of E2LSH [16], we divide the whole hash
domain into 67 buckets. The setting of bucket width is a
trade-off between time and accuracy: relative larger bucket
width can improve the approximation ratio of GENIE, but
requires longer running time for similarity search.

For GPU-LSH, there are two important parameters: the



Table 1: Prediction result of OCR data by 1NN

method precision recall F1-score accuracy
GENIE 0.8446 0.8348 0.8356 0.8374

GPU-LSH 0.7875 0.7730 0.7738 0.7783

number of hash functions per hash table and the number
of hash tables. With fixing the number of hash tables, for
different settings of the number of hash functions, we find
GPU-LSH has the minimal running time to achieve the same
approximation ratio when the number of hash functions is
32. After fixing the number of hash functions as 32, we
gradually increase the number of hash tables for GPU-LSH,
until it can achieve approximation ratio similar to that of
ANN search by GENIE (k is fixed as 100). The number of
hash tables is set as 700.
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Figure 11 shows the approximation ratio of GPU-LSH and
GENIE with varying the value of k. From Figure 11, we can
see that GENIE has stable approximation ratio with vary-
ing the k; whereas, GPU-LSH has large approximation ratio
when k is small and converges with the one of GENIE when
k increases. One possible reason of this phenomenon is that
GPU-LSH needs to verify a few set of candidates to deter-
mine the final returned kNNs while the number of verified
candidates is related with k. When k is small, GPU-LSH
cannot fetch enough candidates to select good NN results.
In any way, GENIE should be better than GPU-LSH since
it has stable approximation ratio given different k.

We use similar method to determine the parameters for
GPU-LSH and GENIE on the OCR dataset. For ANN
search in Laplacian kernel space by GENIE, except parame-
ters ε and δ which determine the number of hash functions,
another parameter is the kernel width σ of the Laplacian
kernel k(x, y) = exp(−‖x − y‖1/σ). We random sample
10K points from the dataset and use their mean of paired l1
distance as the kernel width. This is a common method to
determine the kernel width for kernel function introduced by
Jaakkola et al.[27]. GPU-LSH uses constant memory of the
GPU to store random vector for LSH. Due to this implemen-
tation, the number of hash functions on OCR data cannot be
larger than 8 otherwise the constant memory is overflowed.
We use only 1M data points from the OCR dataset for GPU-
LSH since it cannot work on larger dataset. we increase the
number of hash tables (with fixing the number of hash func-
tions as 8) until it can achieve similar prediction performance
as GENIE as reported in Table 1 where the number of hash
tables for GPU-LSH is set as 100. Note that the prediction

Table 2: Time profiling of different stages of GENIE
for 1024 queries (the unit of time is millionsecond).

Stage OCR SIFT Tweets Adult
Index building 78082.12 115273.71 10999.25 946.05

Query
transfer 272.06 291.03 8.77 12.16
match 3209.95 49016.56 1137.24 1509.95
select 27.02 24.33 18.60 11.71

performance of GPU-LSH is slightly worse then the one of
GENIE. It is possible to improve the performance of GPU-
LSH by increasing the number of hash functions, which will
dramatically increase the running time for queries.

6.5 Experimental study on load balance
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Figure 12: Load balance on Adult data (with

100M data points)

We study the effect of the load balance for GENIE in this
section. We use the Adult dataset which has long posting
lists since some its attributes have only a few of categories
(e.g. sex). We also duplicate the Adult dataset to 100M
points to show the effect more clearly. In this experiment, we
exert exact match for all attributes given a query, and return
the best match candidates to the query. For load balance, we
limit the length of each sub-list as 4096, and let each block of
the GPU take two (sub-)lists at most. Figure 12 illustrates
the running time of GENIE with and without load balance
by varying the number of queries. The “noLB match” and
“LB match” represent the running time with and without
enabling load balance function respectively. The “noLB op”
and “LB op” represent other operation cost for searching
including transferring queries and results. From Figure 12,
we can see that the load balance function can effectively
allocate the workload to different blocks by breaking down
the long lists. With increasing of the number of queries,
the effect of the load balance is marginally decreased. The
reason is that when the number of queries is larger, GENIE
has already maximized the possibility for parallel processing
by using one block for one posting list. For 14-dimensional
dataset with 16 queries, all the stream processors of the GPU
have been utilized. Besides, since the load balance requires
some additional cost to maintain the index, the running time
of GENIE with load balance is slightly higher than the one
without load balance when the GPU is fully utilized.

6.6 Time profiling
Table 2 shows the time cost of different stages of GENIE.

The “Index building” represents the running time to build
the inverted index on the GPU. This is an one-time cost, and



we do not count it into the query time. The rows of “Query”
show the time for similarity search with 1024 queries per
batch. The “Query-transfer” is the time cost to transfer
queries and other related information from the CPU to the
GPU. And the “Query-select” contains the time for selecting
the candidates from the Count Heap and sending back the
candidates to the CPU memory. The “Query-match” is just
the time cost for scanning the inverted index, which domi-
nates the cost for similarity search of multiple queries. Since
the cost for transforming data is quite small, it is reasonable
to use the GPU to accelerate such expensive list scanning
operation. This justifies the rationality for developing an
inverted index on the GPU.

7. CONCLUSION
In this paper, we presented GENIE, a generic inverted in-

dex for multiple similarity search queries on the GPU. GE-
NIE can support the tolerance-Approximate Nearest Neigh-
bour (τ -ANN) search for various data types with any similar-
ity measure satisfying a generic Locality Sensitive Hashing
scheme, as well as similarity search on original data within
a “Shotgun and Assembly” framework. In order to process
more queries simultaneously in a batch on the GPU, we pro-
posed a novel data structure – Count Heap, which reduces
the memory requirement significantly for multi-query pro-
cessing. In particular, in the experiment we showed how to
use GENIE to support ANN search in kernel space and in
high dimensional space, similarity search on short document
data, and selection on relational data. Extensive experi-
ments on various datasets demonstrate the efficiency and
effectiveness of GENIE. In future, we plan to extend our
system to support more complex data types such as graphs
and trees.
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[12] P. Celis, P.-Å. Larson, and I. J. Munro. Robin hood
hashing. In FOCS, pages 281–288, 1985.

[13] M. S. Charikar. Similarity estimation techniques from
rounding algorithms. In STOC, pages 380–388, 2002.

[14] Y. Chen, A. Wan, and W. Liu. A fast parallel
algorithm for finding the longest common sequence of
multiple biosequences. BMC bioinformatics, 7(Suppl
4):S4, 2006.

[15] C. Cuda. Programming guide. NVIDIA Corporation,
2015.

[16] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In SoCG, pages 253–262, 2004.

[17] L. Devroye, P. Morin, and A. Viola. On worst-case
robin hood hashing. SIAM Journal on Computing,
33(4):923–936, 2004.

[18] S. Ding, J. He, H. Yan, and T. Suel. Using graphics
processors for high performance ir query processing. In
WWW, pages 421–430, 2009.

[19] J. Gan, J. Feng, Q. Fang, and W. Ng.
Locality-sensitive hashing scheme based on dynamic
collision counting. In SIMOD, pages 541–552, 2012.
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APPENDIX
A. K-SELECTION ON THE GPU

To extract the top-k object from an array, we modify a
GPU-based bucket-selection algorithm [1] for this purpose.
Figure 13 shows an example for such selection process.

B1 B2 B3 B4 B5
Iteration 1

Iteration 2

Iteration 3
… … …

k1

k2

Fig:bucketSelection

k-th object

Figure 13: Example for bucket k-selection. The it-
eration repeats until k = k1 + k2 + ...+ kt.

The algorithm has multiple iterations, and each iteration
has three main steps. Step (1): we use a partition formulae
bucketid = b(count − min)/(max − min) ∗ bucket num)c
to assign every objects into buckets. In Figure 13, all the
objects in a hash table are assigned bucket B1 to B5. Step
(2): We then check the bucket containing k − th object. In
Figure 13, B2 is the selected bucket in Iteration 1. Step (3):
we save all the objects before the selected bucket, and denote
the number of saved objects as ki (e.g. k1 in Iteration 1).
Then we repeat Step (1)-(3) on the objects of the selected
buckets until we find all the top-k objects (i.e. k = k1 +
k2 + ... + kt). From the algorithm, we can see that this
method requires to explicitly store the object ids to assign
them into buckets. In regard to multiple queries, we use one
block to handle one hash table to support parallel selection
in the GPU-based implementation. In our experiment, the
algorithm usually finishes in two or three iterations.


