
LazyLSH: Approximate Nearest Neighbor Search for
Multiple Distance Functions with a Single Index

Yuxin Zheng†, Qi Guo†, Anthony K. H. Tung† and Sai Wu#

† School of Computing, National University of Singapore, Singapore
College of Computer Science and Technology, Zhejiang University, China
†{yuxin, qiguo, atung}@comp.nus.edu.sg, #wusai@zju.edu.cn

ABSTRACT
Due to the “curse of dimensionality” problem, it is very ex-
pensive to process the nearest neighbor (NN) query in high-
dimensional spaces; and hence, approximate approaches, such
as Locality-Sensitive Hashing (LSH), are widely used for
their theoretical guarantees and empirical performance. Cur-
rent LSH-based approaches target at the `1 and `2 spaces,
while as shown in previous work, the fractional distance met-
rics (`p metrics with 0 < p < 1) can provide more insightful
results than the usual `1 and `2 metrics for data mining
and multimedia applications. However, none of the existing
work can support multiple fractional distance metrics using
one index. In this paper, we propose LazyLSH that an-
swers approximate nearest neighbor queries for multiple `p
metrics with theoretical guarantees. Different from previous
LSH approaches which need to build one dedicated index
for every query space, LazyLSH uses a single base index to
support the computations in multiple `p spaces, significantly
reducing the maintenance overhead. Extensive experiments
show that LazyLSH provides more accurate results for ap-
proximate kNN search under fractional distance metrics.

CCS Concepts
•Information systems → Nearest-neighbor search;

Keywords
Locality sensitive hashing, Nearest neighbor search, `p met-
rics

1. INTRODUCTION
State-of-the-art kNN processing techniques have been pro-

posed for low-dimensional cases. However, due to the “curse
of dimensionality”, the same techniques cannot be directly
applied to high-dimensional spaces. It was shown that con-
ventional kNN processing approaches become even slower
than the naive linear-scan approach [18]. One compromise
solution is to adopt the approximate kNN technique which

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’16, June 26–July 1, 2016, San Francisco, CA, USA.
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/XXXX.XXXX

returns k points within distance cR from a query point,
where c is an approximation ratio and R is the distance be-
tween the query point and its true (k)th nearest neighbor.
The intuition is that in high-dimensional spaces, approxi-
mate results are good enough for most applications.

Table 1: Classification accuracy

Dataset
Classification accuracy (%)

Real 1NN LazyLSH (Approximate 1NN)
`1.0 `0.5 `0.6 `0.7 `0.8 `0.9 `1.0

Ionos 90.9 92.0 91.7 91.7 91.7 91.7 91.5
Musk 93.5 94.0 93.8 93.5 93.4 93.4 93.5
BCW 92.8 93.3 93.3 93.1 93.0 92.6 92.8
SVS 67.5 67.8 68.9 67.8 67.4 67.2 67.5

Segme 91.9 92.1 92.1 92.4 92.3 92.1 91.9
Giset 96.2 94.9 95.7 96.4 96.4 96.8 96.5
SLS 90.0 87.8 88.3 88.7 89.2 90.0 89.8
Sun 9.5 9.0 9.3 9.3 9.4 9.4 9.5

Mnist 96.3 95.1 95.4 95.7 95.9 96.0 96.2

To process approximate kNN queries, several methods
have been proposed [5, 26, 2, 33], among which, locality-
sensitive hashing (LSH) [26] is widely used for its theoretical
guarantees and empirical performance. In essence, the LSH
scheme is based on a set of hash functions from the locality-
sensitive hash family which guarantees that similar points
are hashed into the same buckets with higher probabilities
than dissimilar points. The LSH scheme was first proposed
by Indyk et al. [26] for the use in the binary Hamming space,
and later was extended for the use in the Euclidean space
by Datar et al. [18] based on the p-stable distribution.

It was observed that the effectiveness of high-dimensional
search is sensitive to the choice of distance functions [1]. Al-
though the Manhattan (`1) and Euclidean (`2) metrics are
widely used, it was shown that `p metrics with 0 < p < 1,
called fractional distance metrics, can provide more insight-
ful results from both theoretical and empirical perspectives
for data mining applications [1, 16] and content-based image
retrievals [25]. Furthermore, it was shown that the optimal
`p metric is application-dependent and required to be tuned
or adjusted for each application [1, 16, 25, 20].

As an example, Table 1 shows the accuracy of the kNN
classifier [17] under different `p metrics. We test Mnist [29],
Sun [19] and seven datasets from the UCI ML repository1.
The ground-truth classification results are provided by the

1
http://archive.ics.uci.edu/ml/

The used datasets are: Ionosphere (Ionos), Musk, Breast Cancer
Wisconsin (BCW), Statlog Vehicle Silhouettes (SVS), Segmentation
(Segme), Gisette (Giset) and Statlog Landsat Satellite (SLS).

datasets themselves. For each query point, we retrieve its
nearest neighbor and assign it to the same class tag as its
nearest neighbor. For `p metrics (0.5 ≤ p ≤ 1), we compute
the approximate 1NN using our LazyLSH technique pro-
posed in the paper. For comparison, we also show the results
of the 1NN classifiers where the 1NN is the true 1NN in the
`1 space. We highlight the highest accuracy for LazyLSH in
bold font. The results indicate that the best classification
result may be obtained using different fractional distance
metrics for different datasets. There is no way to know
which fractional distance is optimal for a specific dataset.
This finding is similar to the observations presented in [1,
25]. Therefore, before implementing a system, we need an
approach that can explore the data using different distance
metrics, such that we can select a proper one to achieve the
best mining results.

Unfortunately, due to the lack of closed form density func-
tions for p-stable distributions when p 6= 1 or 2, it is non-
trivial to generate p-stable random variables and build an
optimal index structure for fractional distance metrics. More-
over, the conventional approach of building one index for
each possible value of p will incur very high costs in terms of
computational time and space requirement (with the num-
ber of possible values of p being potentially infinite). To
address this problem, in this paper, we propose LazyLSH
to process approximate kNN queries in different `p spaces
using only one single index.

LazyLSH builds an LSH index in a predefined `p0 space,
which is referred to as the base space. Using this material-
ized index, LazyLSH can answer approximate kNN queries
in a user-specific query space. The word “Lazy” is borrowed
from the lazy learning algorithms [49] in which generaliza-
tion beyond the training data is delayed until a query is
issued. LazyLSH means that we do not build an index for
every query space. Instead, we reuse the index constructed
in the base space to answer queries in the query space. Our
analysis shows that if two points are close in an `p1 space,
then they are likely to be close in another `p2 space. We
also find that a locality-sensitive hash function built in the
base space is still locality-sensitive in the query space when
certain conditions hold. With this observation, LazyLSH
adopts the strategy of having “one index for many frac-
tional distance metrics”. Figure 1 illustrates this idea.
A single materialized LSH index is built using a specific
distance function, based on which, we can approximately
process kNN queries for other fractional distance metrics.

Materialized Index

Queries in
different

lp spaces

LazyLSH

Query
Processor

l0.5 space

l0.7 space

l0.9 space

l1.0 space

…

Figure 1: LazyLSH Overview

In order to get more precise results, we propose a method
called query-centric rehashing to search the base index and
retrieve nearby objects. We further observe that during the
processing of queries under different `p metrics, many com-
mon index entries are probed. This finding motivates us to
optimize the processing of multiple queries under different
`p metrics concurrently by sharing their I/Os.

We summarize the contributions of this paper as follows.

• We propose a novel method called LazyLSH to an-
swer approximate nearest neighbor queries under mul-
tiple `p metrics. Compared to the costly naive method
which builds an LSH index for every value of p to cover
all possible fractional distance metrics, LazyLSH main-
tains only a single copy of LSH index in the base space,
significantly reducing the storage overhead.

• We give a theoretical proof that when certain condi-
tions hold, locality-sensitive hash function can be ex-
tended to support the fractional distance metrics. This
is the first work that gives a theoretical bound for the
approximate kNN processing using LSH with the frac-
tional distance metric.

• We propose two novel optimization methods, namely
query-centric rehashing and multi-query optimization,
to improve the effectiveness and efficiency of perform-
ing queries.

• We experimentally verify the effectiveness and efficiency
of our proposed LazyLSH using both synthetic and real
datasets. Experimental results show that LazyLSH
provides more accurate results for approximate kNN
search under fractional distance metrics, and it can
be used as the supervision to optimally choose the `p
metric for different applications.

The rest of this paper is organized as follows. Section 2
briefly reviews the preliminaries on LSH. Section 3 presents
the technical details of the proposed LazyLSH method. Sec-
tion 4 shows the processing of approximate range queries
and approximate kNN queries. Then, we experimentally
evaluate the proposed method in Section 5 and discuss the
related studies in Section 6. Finally, we conclude this paper
in Section 7. For the ease of presentation, we summarize our
notations in Table 2.

2. PRELIMINARY
Before delving into the details of LazyLSH, we first re-

view some preliminary knowledge of the locality-sensitive
hashing (LSH) method. We begin with the definition of the
`p distance used in this paper.

Definition 1 (`p distance). The distance between any
two d-dimensional points ~o and ~q in the `p space, denoted as
`p(~o, ~q), is computed as:

`p(~o, ~q) = p

√√√√ d∑
i=1

|oi − qi|p (1)

If 0 < p < 1, `p(~o, ~q) is called the fractional distance
metric [1]. In similarity search, if `p(~o, ~q) ≤ r, we say the
point ~o is within the ball of radius r centered at the point ~q,
denoted as Bp(~q, r).

Definition 2 (Ball Bp(~q, r)). Given a point ~q ∈ Rd,
and a radius r, the ball of radius r centered at point ~q in the
`p space is defined as Bp(~q, r) = {~v ∈ Rd|`p(~v, ~q) ≤ r}.

LSH methods try to map the points within a ball to the
same hash bucket. Let H be a family of functions mapping
Rd to some universe U . For any two points ~o, ~q ∈ Rd, con-
sider a process in which we choose a function h from H at

Table 2: Table of Notations

D database
d dimensionality
~q query point

h∗i (·) based materialized hash function
~a random vector in the hash function
b offset in the hash function
c approximation ratio
X random variable

`p(~o, ~q) the `p distance between ~o and ~q
p the subscript used in the `p space or `p distance
δ radius in the `p space
r radius in the `1 space

δ⊥ lower bound of the `1 distance given `p = δ
δ> upper bound of the `1 distance given `p = δ

Bp(~q, r) the ball of radius r centered at ~q in the `p space
η the number of required hash functions
θ the collision count threshold

random, and analyze the probability of h(~o) = h(~q). The
family H is called locality-sensitive if it satisfies the follow-
ing conditions.

Definition 3 (Locality-sensitive hashing). Let
d(·, ·) be a distance function of a metric space. A family H
is called (r, cr, p1, p2)-sensitive if for any two points ~o, ~q ∈
Rd, satisfying
(1) if d(~o, ~q) ≤ r, then PrH[h(~o) = h(~q)] ≥ p1,
(2) if d(~o, ~q) > cr, then PrH[h(~o) = h(~q)] < p2,
(3) c > 1, and
(4) p1 > p2.

Various LSH families have been discovered for different
distance metrics [4]. In particular, the LSH family for the
`p distance is found based on the p-stable distribution [18].

Definition 4 (p-stable distribution). A distribution
G over R is called p-stable, if there exists p ≥ 0 such that
for any n real numbers v1, ..., vn and i.i.d. random variables
X1, ..., Xn with distribution G, the variable

∑
i viXi has the

same distribution as the variable (
∑
i |vi|

p)1/pX, where X
is a random variable with distribution G. It has been proved
that stable distributions exist for p ∈ (0, 2]. In particular,
• The Cauchy distribution, with a density function f(x) =
1
π

1
1+x2

, is 1-stable;

• The Gaussian distribution, with a density function f(x) =
1√
2π
e−x

2/2, is 2-stable.

Using the p-stable distribution, one can generate a d-
dimensional vector ~a by setting its element as a random
value from the p-stable distribution. Given two points ~v1, ~v2 ∈
Rd, (~a. ~v1 −~a. ~v2) is distributed as `p(~v1, ~v2)X, where X is a
random variable with the same p-stable distribution. Based
on the above observations, Datar et al. [18] proposed the fol-
lowing LSH family for the `p distance. A data point in Rd
is projected onto a random line ~a, which is segmented into
equi-width intervals with length r0. Formally, the proposed
LSH function in the `p space is defined as:

h(~v) = b~a.~v + b

r0
c, (2)

where the projection vector ~a ∈ Rd is constructed by picking
each coordinate from a p-stable distribution.

Given ~v1, ~v2 ∈ Rd, let s = `p(~v1, ~v2). The probability
that ~v1 and ~v2 collide under a hash function h(·), denoted

as p(s, r0), can be computed as follows:

p(s, r0) =

∫ r0

0

1

s
fp(

t

s
)(1− t

r0
)dt, (3)

where fp(·) is the probability density function of the absolute
value of the p-stable distribution, and p(s, r0) is monotoni-
cally decreasing with s when r0 is fixed [18]. As a result, the
LSH family of the `p distance is (1, c, p1, p2)-sensitive with
p1 = p(1, r0) and p2 = p(c, r0). For special cases such as p
equals to 1 and 2, we can compute the probabilities using
the corresponding density functions [18].
• For the Cauchy distribution (p = 1), we have

p(s, r0) = 2
arctan(r0/s)

π
− 1

π(r0/s)
ln(1 + (r0/s)

2) (4)

• For the Gaussian distribution (p = 2), we have

p(s, r0) = 1− 2norm(−r0/s)−
2√

2π(r0/s)
(1− e−(r2/2s2)),

(5)
where norm(·) is the cumulative distribution function of the
standard normal distribution.

The above LSH family was employed to process approxi-
mate nearest neighbor queries which are defined as:

Definition 5 (Np(~q, k, c) problem). Given a dataset
D, a point ~q ∈ Rd, a cardinality k, an approximate ratio
c, and an `p space, the c-approximate k nearest neighbors
search returns a set of k points, Np(~q, k, c) = {~o1, . . . , ~ok},
where points are sorted in ascending order of their distances
to ~q in the `p space, and ~oi is a c-approximation of the

real ith nearest neighbor. Let ~o∗1, . . . , ~o
∗
k be the real kNNs

in ascending order of their distances to ~q. Then `p(~oi, ~q) ≤
(c× `p(~o∗i , ~q)) holds for all i ∈ [1, k].

Several approaches were proposed to answer approximate
nearest neighbor queries in the Euclidean space [18, 32, 45,
21, 43]. We briefly discuss two related methods: E2LSH [18]
and C2LSH [21].

E2LSH: E2LSH [18] is the first proposed LSH method
to answer the Rp(~q, r, c) problem in the Euclidean space
where p = 2, which is defined as:

Definition 6 (Rp(~q, r, c) problem). Given a dataset

D, a query point ~q ∈ Rd, Rp(~q, r, c) returns a point ~o′ ∈ D,

where ~o′ ∈ Bp(~q, cr), if there exists a point ~o ∈ Bp(~q, r).

As can be seen, the Rp(~q, r, c) problem is a decision ver-
sion of the Np(~q, k, c) problem. E2LSH exploits LSH func-
tions to address the R2(~q, r, c) problem in the following
way. First, a set of m LSH functions h1(·), . . . , hm(·) are
randomly chosen from an (r, cr, p1, p2)-sensitive family H,
and they are concatenated to form a compound hash func-
tion g(·), where g(~p) = (h1(~p), . . . , hm(~p)) for a point ~p ∈ Rd.
By using a compound hash function instead of a single LSH
function, the probability that two faraway points collide can
be largely reduced. Then, the hash function g(·) is used
to map all the data to a hash table. The above two steps
are repeated for L times and accordingly, L compound hash
functions g1(·), . . . , gL(·) are used to produce L hash tables.

When a query ~q comes, the points from buckets g1(~q), . . .,
gL(~q) are retrieved until all the points or the first 3L points
are found. For each retrieved point ~v, it is returned if ~v ∈
B2(~q, cr). An N2(~q, k, c) query can be answered by issuing a

series of R2(~q, c, r) queries using gradually increasing search
radii. For this purpose, hash tables with different radii must
be built, incurring a high storage cost.

C2LSH: To avoid building many hash tables for differ-
ent radii, C2LSH [21] is proposed by changing the original
hash function to:

h(~v) = b~a.~v + b∗

r0
c, (6)

where b∗ is uniformly drawn from b0, cdlogc tde(r0)2c, c is the
approximation ratio, t is the largest coordinate value, and d
is the dimensionality of the data. It is proved that the hash
function is (1, c, p1, p2)-sensitive.

First, a materialized index is built for a set of base LSH
functions with a small interval r0. Then, C2LSH reuses
the materialized index to retrieve objects at different radii
without explicitly building hash tables for different radii.
This process is referred to as virtual rehashing. To answer
an R2(~q, r, c) query, C2LSH modifies the hash function as:

Hr(~v) = bh(~v)

r
c (7)

Note that the Hr(~v) is (r, cr, p1, p2)-sensitive. Virtual
rehashing simplifies the process of retrieving the objects
hashed to Hr(~q) by guaranteeing that it is identical to re-

trieving objects in the buckets within [bh~a,b(~v)
r
c×r, bh~a,b(~v)

r
c×

r + r − 1] in the base hash function.
In addition, C2LSH estimates the probability of being the

nearest neighbor using the collision count. If the number of
an object colliding with a query exceeds a certain threshold,
namely the collision count threshold θ, the object is likely to
be a neighbor. Such an object is considered as a candidate
and retrieved for computing its real distance to the query.

As a result, anN2(~q, k, c) query can be answered by C2LSH
by issuing a set of R2(~q, c, r) queries with increasing radii.
C2LSH is claimed to be correct if these two properties hold
with a constant probability.
• P1: If ~v ∈ B2(~q, r), then the number of ~v’s collision with
the query ~q is at least θ.
• P2: The total number of false positives is smaller than
β|D|, where |D| is the cardinality of the database D.

In P1, the number of collisions θ is related to the number
of base hash functions, which is denoted as η. Given an error
probability ε and a false positive rate β, θ and η must be
carefully tuned for the best performance.

Lemma 1. If η and θ are set to:

η = d
ln 1

ε

2(p1 − p2)2
(1 + z)2e, where z =

√
ln 2

β

ln 1
ε

, (8)

θ =
zp1 + p2

1 + z
η, (9)

then Pr[P1] ≥ 1− ε and Pr[P2] ≥ 0.5. [21]

Therefore, both P1 and P2 hold with a constant probabil-
ity when the parameters are set as above, and C2LSH can
correctly answer the N2(~q, c, r) query.

3. LAZYLSH
In this section, we present LazyLSH as an efficient mech-

anism to process approximate kNN queries in different `p
spaces. We begin with an overview, and then illustrate the
technical details of LazyLSH.

3.1 Overview
In previous work such as E2LSH and C2LSH, an LSH

index is built for the `2 space, while Aggarwal et al. [1]
showed that the fractional distance metrics (0 < p < 1) pro-
vide more meaningful results and improve the effectiveness
of information retrieval algorithms. Extending techniques in
E2LSH and C2LSH to support an arbitrary fractional dis-
tance metric is not a trivial task. In this paper, we present
LazyLSH, a novel approach that can process approximate
nearest neighbor queries using different fractional distance
metrics with a single LSH index.

LazyLSH is proposed based on the intuition that given
p, s > 0, if two points are close in the `p space, then they
are likely to be close in the `s space. Let ε = |p − s|. The
property holds with a higher probability for a smaller ε. This
property can be extended as: the (r, cr, p1, p2)-sensitive
hash function in the `p space is (δ, cδ, p′1, p′2)-sensitive in the
`s space if certain conditions hold. We will give a detailed
theoretical analysis for this property later in this section.

Using this property, LazyLSH can transform the hash
functions between different `p spaces. LSH families for the
`1 and `2 metrics have been well studied [4, 45, 21]. As
the `1 metric is closer to the fractional distance metrics, in
LazyLSH, we materialize the LSH index in the `1 space as
our base index. We generate ηp base hash functions h∗1(·),
. . ., h∗ηp(·), where the setting of ηp will be discussed later.
In particular, we construct h∗i (·) as:

h∗i (~v) = b ~ai.~v + b∗i
r0

c, (10)

where ai is a random vector whose each entry is drawn from
the 1-stable (Cauchy) distribution and the other parameters
are the same as the ones in Equation 6. Each base hash
function h∗i is (1, c, p1, p2)-sensitive in the `1 space, with
p1 = p(1, r0), p2 = p(c, r0) as presented in Equation 4.

Using the materialized index, LazyLSH can answerNp(~q, k, c)
queries with probabilistic guarantees. For the ease of pre-
sentation, we first show our observation that a (r, cr, p1,
p2)-sensitive hash function in the `p space is (δ, cδ, p′1, p′2)-
sensitive in another `s space in this section. Then we il-
lustrate how the LazyLSH method answers Rp(~q, r, c) and
Np(~q, k, c) queries in Section 4.

3.2 LSH in an `p Space
If there exists a point ~o ∈ Bp(~q, δ), an Rp(~q, δ, c) query

returns a point ~o′ if ~o′ ∈ Bp(~q, cδ). We observe that Bp(~q, δ)
and B1(~q, r) share a lot of common areas if r is carefully
tuned for δ. Figure 2 plots a B1(~q, r) ball in blue and a
Bp(~q, δ) ball in red, where 0 < p < 1. The shadow region
represents the intersection of B1(~q, r) and Bp(~q, δ) which
takes over a large portion of Bp(~q, δ). This observation moti-
vates us to use a ball B1(~q, r) in the `1 space to approximate
Bp(~q, δ) in the `p space for the query Rp(~q, δ, c).

Given two points ~q, ~o ∈ Rd, with `p(~q, ~o) = δ. We can
compute the lower bound and upper bound of δ in the `1
space, denoted as δ⊥ and δ> respectively. Figure 3 shows
the geometric interpretations of δ⊥ and δ> for 0 < p < 1
and p > 1. The values of δ⊥ and δ> are computed as:

δ⊥ =

{
d×δ
p√
d

if 0 < p < 1

δ if p ≥ 1
δ> =

{
δ if 0 < p < 1

d×δ
p√
d

if p ≥ 1

(11)
Our goal is to use an `1 ball B1(~q, r) to approximate the

Figure 2: Use B1(~q, r) to approximate
Bp(~q, δ) (Best viewed in color)

lp= δ

l1= δ⊥ l1= δT

(a) 0 < p < 1

lp=δ

l1= δ⊥ l1= δT

(b) p > 1

Figure 3: Bounds of `p distance

`p ball Bp(~q, δ) specified by the query Rp(~q, δ, c). The
radius r significantly affects the search performance. If r <
δ⊥, we may fail to retrieve many candidate results, leading
to many false negatives. On the other hand, if r > δ>,
many irrelevant objects are retrieved, generating many false
positives. Therefore, a proper r should be chosen in the
range of [δ⊥, δ>] for B1(~q, r) to approximate Bp(~q, δ).

Given a queryRp(~q, δ, c) and a based (1, c, p1, p2)-sensitive
hash function h∗i (·), we modify h∗i (·) as follows:

hri (~v) = b ~ai.~v + b∗i
r0r

c, (12)

where r is in [δ⊥, δ>] as discussed above. It is easy to see
that hri (·) is (r, cr, p(r, r0r), p(cr, r0r))-sensitive in the `1
space, where p(·, ·) is defined in Equation 3. We further
observe the following lemma.

Lemma 2. Let p(s, r) =
∫ r
0

1
s
fp(

t
s
)(1 − t

r
)dt as shown in

Equation 3. For any real number c > 0, p(s, r) = p(cs, cr).

Proof. See Appendix A.1.

By Lemma 2, we get p(r, r0r) = p(1, r0) = p1 and p(cr, r0r)
= p(c, r0) = p2, where p1 and p2 are the same as the ones
defined in the base materialized hash function h∗i (·).

Recall that our LSH index is built in the `1 space. The
LSH family guarantees that close points in the `1 space are
likely to be hashed into the same bucket. We are interested
in whether an LSH function in the `1 space is still locality-
sensitive in another `p space. Given a (r, cr, p1, p2)-sensitive
hash function hri (·) in the `1 space, we define the following
events for any two points ~o, ~q ∈ Rd:

e1 : hri (~o) = hri (~q).
e2 : `p(~o, ~q) ≤ δ. e3 : `p(~o, ~q) > cδ, where c > 1
e4 : `1(~o, ~q) ≤ r. e5 : `1(~o, ~q) > cr, where c > 1

To verify whether the modified hash function hri (·) is locality-
sensitive in the `p space, we need to calculate the probabil-
ity of e1 given e2 and the probability of e1 given e3, i.e.
Pr(e1|e2) and Pr(e1|e3) respectively. Let ec represent the
complementary of event e. By Bayes’ Theorem, we compute
a lower bound of Pr(e1|e2):

Pr(e1|e2) = Pr(e1 ∧ e4|e2) + Pr(e1 ∧ ec4|e2)

= Pr(e4|e2)Pr(e1|e4 ∧ e2) + Pr(ec4|e2)Pr(e1|ec4 ∧ e2)

(Note: Pr(e1|e4 ∧ e2) ≥ Pr(e1|e4) ≥ p1, and

`p(~o, ~q) ≤ δ implies `1(~o, ~q) ≤ δ>)

≥ Pr(e4|e2)p1 + (1− Pr(e4|e2))p(δ>, r0r)

= Pr(e4|e2)p1 + (1− Pr(e4|e2))p(1,
r0r

δ>
) (13)

This is because p(s, r) is monotonically decreasing with
s when r is fixed. We infer p(1, r0r

δ>
) ≤ p1 from δ⊥ ≤ r ≤

δ>. For simplicity, we use p′1 to denote this lower bound.
Consequently, we get p′1 ≤ p1. Similarly, we compute an
upper bound of Pr(e1|e3):

Pr(e1|e3) =Pr(e1 ∧ e5|e3) + Pr(e1 ∧ ec5|e3)

=Pr(e5|e3)Pr(e1|e5 ∧ e3) + Pr(ec5|e3)Pr(e1|ec5 ∧ e3)

(Note: Pr(e1|e5 ∧ e3) ≤ Pr(e1|e5) ≤ p2, and

`p(~o, ~q) > cδ implies `1(~o, ~q) > cδ⊥)

≤Pr(e5|e3)p2 + (1− Pr(e5|e3))p(cδ⊥, r0r)

=Pr(e5|e3)p2 + (1− Pr(e5|e3))p(c, r0r/δ
⊥)

≤
{
p2 if p2 ≥ p(c, r0r/δ⊥), i.e. r ≤ δ⊥
p(c, r0r/δ

⊥) otherwise

(Note: we set δ⊥ ≤ r ≤ δ>)

=p(c, r0r/δ
⊥) (14)

Then, we use p′2 to denote p(c, r0r/δ
⊥). Based on the

above two inequalities, we have the following theorem:

Theorem 1. Given an (r, cr, p1, p2)-sensitive hash func-
tion hri (·) in the `1 space, we find the following two condi-
tions hold for a distance threshold δ in another `p space,
where δ⊥ ≤ r ≤ δ>:
(1) if `p(~o, ~q) ≤ δ, then Pr[hri (~o) = hri (~q)] ≥ p′1,
(2) if `p(~o, ~q) > cδ, then Pr[hri (~o) = hri (~q)] < p′2,
where p′1 and p′2 are stated as stated above.

p′1 = Pr(e4|e2)p1 + (1− Pr(e4|e2))p(1,
r0r

δ>
)

p′2 = p(c, r0r/δ
⊥)

3.3 Computing Internal Parameters
To ensure the correctness of LazyLSH, two parameters are

required to be computed. One is the radius r of an `1 ball
B1(~q, r) to approximate the `p ball Bp(~q, δ) for query Rp(~q,
δ, c). The other is the number of required hash functions to
be built, which is denoted as ηp. Then we present how to
compute them.

Recall the definition of LSH, we must have p′1 > p′2 so
that the locality-sensitive hash function hri (·) is useful in
the `p space. By substituting p′1 and p′2, we have p′2 =
p(c, r0r/δ

⊥) = p(cδ⊥/r, r0) < p′1 ≤ p1 = p(1, r0). Note that
p(s, r) is monotonically decreasing with s when r is fixed.
Thus, we get cδ⊥/r > 1 as a necessary condition, which in-
fers r < cδ⊥. Besides, we have δ⊥ ≤ r ≤ δ> as we explained
before. In summary, r must be chosen properly in the range
of [δ⊥,min(δ>, cδ⊥)] in order for p′1 > p′2 to hold. In details,

Algorithm 1: Sampling a point in Bp(~o, 1) [13]

input : dimensionality d, `p space
output: a random point ~y in Bp(~o, 1), where ~o is the origin

1 Generate d independent random real scalars ξi ∼ G̃(1, 1, p) ;

2 Construct a vector ~x ∈ Rd of components xi = siξi, where si is
an independent random sign;

3 Construct z = w1/d, where w is a random variable uniformly
distributed in the interval [0, 1] ;

4 return ~y = z ~x
`p(~x,~o)

;

Algorithm 2: Calculating Pr(`1(~o, ~q) ≤ r|`p(~o, ~q) ≤ 1)

input : dimensionality d, `p space, the number of sample points
n, the number of buckets b

output: an array p storing Pr(`1(~o, ~q) ≤ r|`p(~o, ~q) ≤ 1) with
different values of r

1 Initialize an array r of b dimensions recording the radii,

r[i] = δ⊥ + (i+ 1)× min(δ>,cδ⊥)−δ⊥
b for 0 ≤ i < b;

2 Initialize an array c of b dimensions to record the number of
points in B1(~o, r), c[i]← 0 for 0 ≤ i < b;

3 for k ← 0 to n− 1 do
4 ~v ← a random point in Bp(~o, 1);
5 Compute `1(~o, ~v) ; /* ~o is the origin */
6 Find the minimal index j such that r[j] ≥ `1(~o, ~v);
7 for i← j to b− 1 do
8 c[i]← c[i] + 1;

9 for i← 0 to b− 1 do

10 p[i]← c[i]
n ;

11 return p;

r is a parameter for the functions of p′1 and p′2. p′2 can be
simply computed using Equation 4 when we build the base
LSH index in the `1 space, while computing p′1 is a nontrivial
task. We begin with a lemma on the conditional probability.

Lemma 3. Pr(`s(~x, ~y) ≤ r|`p(~x, ~y) ≤ δ) =
Pr(`s(~u,~v) ≤ cr|`p(~u,~v) ≤ cδ) for any s, p, c > 0.

Proof. See Appendix A.2.

Based on Lemma 3, we can reduce the problem of cal-
culating Pr(e4|e2) to the computation of Pr(`1(~o, ~q) ≤ r |
`p(~o, ~q) ≤ 1), where δ = 1 and δ⊥ ≤ r < min(δ>, cδ⊥).
Pr(`1(~o, ~q) ≤ r|`p(~o, ~q) ≤ 1) can be computed as follows:

Pr(`1(~o, ~q) ≤ r|`p(~o, ~q) ≤ 1) =
V ol(B1(~q, r)

⋂
Bp(~q, 1))

V ol(Bp(~q, 1))
,

(15)
where V ol(·) outputs the volume of a given shape.

The challenge, however, is that computing the volume of
(B1(~q, r)

⋂
Bp(~q, 1)) for a random p and r exactly is very

expensive if not impossible. Alternatively, we use the Monte
Carlo method [9] to estimate Pr(`1(~o, ~q) ≤ r|`p(~o, ~q) ≤
1). Basically, this estimation is done by randomly sampling
points in Bp(~q, 1) and then calculating the percentage of the
sampled points in B1(~q, r). Suppose we randomly sample n
points in Bp(~q, 1), and find m points are in B1(~q, r) as well.
m
n

is roughly equal to Pr(`1(~o, ~q) ≤ r|`p(~o, ~q) ≤ 1) if the
number of samples is large enough.

Pr(`1(~o, ~q) ≤ r|`p(~o, ~q) ≤ 1) ≈ m

n
, (16)

Note that the location of the center does not affect the
probability. As a result, we sample points in Bp(~o, 1), where
~o represents the origin. Given a d-dimensional space and a

value of p, we can randomly sample points in Bp(~o, 1) using
Algorithm 1 [13]. In line 1, ξi is a random variable generated
from a Generalized Gamma density function.

Definition 7 (Generalized Gamma density [42]).
A random variable x ∈ R is generalized gamma distributed
with three parameters α > 0, λ > 0 and υ > 0, denoted as
x ∼ G̃(α, λ, υ), when x has the following density function:

f(x) =
υ/αλ

Γ(λ/υ)
xλ−1e−(x/α)υ , x ≥ 0. (17)

A random Generalized Gamma variable x ∼ G̃(1, λ, υ) can
be obtained from a Gamma random variable z ∼ G(λ

υ
, 1) as

x = z1/υ [42].

The formula involves the gamma function Γ(t) (t > 0),
which is computed as:

Γ(t) =

∫ ∞
0

xt−1e−xdx, t > 0. (18)

Therefore, we can sample points in Bp(~o, 1) using Algo-
rithm 1. Next we compute Pr(`1(~o, ~q) ≤ r|`p(~o, ~q) ≤ 1)
w.r.t. different values of r. As r is chosen in [δ⊥,min(δ>, cδ⊥)],
we divide [δ⊥,min(δ>, cδ⊥)] into b buckets. Thus, the length
of each bucket is φ (min(δ>, cδ⊥) − δ⊥)/b. Afterwards, we
set r to (δ⊥ + φ), (δ⊥ + 2φ), . . ., min(δ>, cδ⊥) respectively
and compute Pr(`1(~o, ~q) ≤ r|`p(~o, ~q) ≤ 1), as described in
Algorithm 2.

We initialize a counter to record the number of sample
points that are located in B1(~o, r) for each radius r (line
2). Then, we randomly sample n points in Bp(~o, 1). For
each sampled point ~v, we calculate its distance `1(~v, ~o) to
~o in the `1 space. For all the radii r greater than `1(~v, ~o),
we know that the sample point ~v is inside B1(~o, r). Then
we add one to the corresponding counters (lines 6-8). After
sampling n points, we output Pr(`1(~o, ~q) ≤ r|`p(~o, ~q) ≤ 1)
for different values of r (lines 9-11). Algorithm 2 is an offline
process. The approximation is more accurate if we sample
more points and maintain more buckets. In the experiments,
we set the number of sample points n to 1,000,000 and the
number of buckets b to 1000.

Once we get the value of Pr(`1(~o, ~q) ≤ r|`p(~o, ~q) ≤ 1),
which is equal to Pr(e4|e2), we can compute p′1 and p′2 as
shown in Equations 13 and 14. In particular, p(·, ·) is com-
puted as the one in Equation 4, because we build the base
index in the `1 space. Figure 4 plots the values of p′1 and
p′2 w.r.t. r for `0.5 in R128 when the approximate ratio c
is set to 2. The x axis represents the ratio of r to δ⊥, i.e.
(r
δ⊥

). As can be seen in the figure, p′2 increases smoothly.

In contrast, p′1 increases slowly at the beginning. When the
ratio reaches 1.4, p′1 increases dramatically. When the ratio
reaches around 1.55, p′1 exceeds p′2 and grows slowly at the
end. We are interested in the cases when p′1 > p′2.

Recall that a (1, c, p1, p2)-sensitive hash function requires
p1 > p2. In addition, the number of base hash functions ηp
must be set to a certain value to ensure the correctness of
the algorithm, which is related to (p1 − p2) as shown in
Equation 8 [21]. Equation 8 shows that the greater (p1−p2)
is, the less base hash functions are required, resulting in less
storage overhead. Therefore, we choose an optimal radius r,
denoted as r̂, by maximizing (p′1 − p′2).

r̂ = arg max
r

(p′1 − p′2) (19)

0

0.05

0.1

0.15

0.2

0.25

0.3

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Ratio

p1'

p2'

p1'‐p2'

Figure 4: Values of p′1 and p′2
for `0.5 in R128, c = 2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Lp space

p̂'1‐p̂'2

Figure 5: (p̂′1 − p̂′2) w.r.t the
`p spaces in R128, c = 2

0

2000

4000

6000

8000

10000

12000

14000

0.5 0.6 0.7 0.8 0.9 1 1.1
Lp space

ηp

Figure 6: Number of hash
functions required ηp in R128

0

0.05

0.1

0.15

0.2

0.25

Dimensionality

c=2 c=3 c=4

c=5 c=6

Figure 7: (p̂′1 − p̂′2) w.r.t d in
the `0.5 space

For different `p spaces, the value of r̂ varies. We pre-
compute and save the values of r̂ for different `p spaces,
which is used when processing a query. Besides, we store
the values of p′1 and p′2 when r = r̂, which are denoted as p̂′1
and p̂′2 respectively. They are used to compute the number
of required hash functions ηp when building the index and
the collision count threshold θp in processing a query. Figure
5 plots (p̂′1− p̂′2) w.r.t. different `p spaces in R128, where the
approximate ratio c is set to 2. When p < 1, (p̂′1− p̂′2) drops
when p decreases. When p < 0.44, p̂′1 is always smaller than
p̂′2, which indicates that the hash function built in the `1
space is no longer locality-sensitive in the corresponding `p
space. When p > 1, (p̂′1 − p̂′2) drops significantly when p
increases. When p > 1.18, p̂′1 is always smaller than p̂′2.

Next, we calculate the number of required hash functions
η for different `p spaces, which is computed as

ηp = d
ln 1

ε

2(p̂′1 − p̂′2)2
(1 + z)2e, where z =

√
ln 2

β

ln 1
ε

, (20)

where ε and β are the same as the ones defined in Equation
8. Figure 6 plots ηp w.r.t. different `p spaces in R128, where
c = 2, ε = 0.01 and β = 0.0001. When p < 1, ηp increases
when p decreases, because ηp is inversely proportional to
(p̂′1−p̂′2). Suppose we want to support a queryR0.6(~q, δ, c) in
the `0.6 space. Correspondingly, at least η0.6 hash functions
are required to be materialized for the base index. Suppose
we materialize η0.6 hash functions as the base index. Using
η0.6 base hash functions, queries Rp(~q, r, c) can be answered
in the `p spaces where ηp ≤ η0.6, as shown by the dashed
line (0.6 ≤ p ≤ 1.1) in Figure 6.

4. QUERY PROCESSING
In this section, we discuss how to leverage LazyLSH to

process approximate range queries (Rp(~q, δ, c)) and nearest
neighbor queries (Np(~q, k, c)) in different `p spaces.

4.1 Processing Rp(~q, δ, c)
Equation 20 indicates that we can find ηs and ηs′ with

s < s′ and ηs = ηs′ . Namely, two spaces share the same
η value. This idea is also shown in Figure 5, where we get
the same value of |p̂′1 − p̂′2| in `0.6 and `1.1. Suppose we
have materialized ηs hash functions as the base index, where
0 < s < 1. Rp(~q, δ, c) queries can be answered in a series of
`p spaces using the base index, where s ≤ p ≤ s′.

We use the B1(~q, r̂δ) ball in the `1 space to approximate
the Bp(~q, δ) ball in the `p space as described in the previous
section. We also pre-compute the corresponding p̂′1 and p̂′2
for the query `p space. To answer an Rp(~q, δ, c) query, we

5 6 7 8 9 10 11 12 13

1 … 7 8 9 10 … 16 17

5 6 7 8 9 10 11 12 13

5 6 7 8 9 10 11 12 13

q

q

v

v

o

o

qv o

qv o

1 … 7 8 9 10 … 25 26

qv

0

o

ℎ∗(.)

ℎ3(.)

𝐻3(.)

𝐻9(.)

𝐻27(.)

5 6 7 8 9 10 11 12 13

qv o
ℎ9(.)

0

Hash value

Query-centric
rehashing

Original
rehashing

Figure 8: Query-centric rehashing

modify the base hash function h∗i (·) as hr̂δi (·)

hr̂δi (~v) = b
h∗i (~v)− (h∗i (~q) mod br̂δc) + b 3r̂δ

2
c

r̂δ
c (21)

(h∗i (~q) mod br̂δc) can be viewed as a random integer as ~q
is not known beforehand. Thus, (b 3r̂δ

2
c − (h∗i (~q) mod br̂δc))

is a random positive integer, and hr̂δi (·) is (r̂δ, cr̂δ, p1, p2)-
sensitive in the `1 space. Based on Theorem 1, we know
that hr̂δi (·) is also (δ, cδ, p̂′1, p̂

′
2)-sensitive in the `p space if

p̂′1 > p̂′2.
Given a query Rp(~q, δ, c) and the base hash functions, if

an object collides with ~q more than θp times, the object is
considered as a candidate. In particular, θp is defined as:

θp =
zp̂′1 + p̂′2

1 + z
ηp, (22)

TheRp(~q, δ, c) query is processed by retrieving the objects
that are hashed to the same bucket as ~q for hδr̂i (·). We adopt
the virtual rehashing method [21]. If a point ~v has the same
hash value as the query, i.e. hδr̂i (~v) = hδr̂i (~q), we can get the
value range of h∗i (~v) by expanding the equation.

h∗i (~q)− b
δr̂

2
c ≤ h∗i (~v) ≤ h∗i (~q) + bδr̂

2
c (23)

From the above equation, we observe that the points hashed
into the range of [h∗i (~q)− b δr̂2 c, h

∗
i (~q) + b δr̂

2
c] in h∗i (·) will

collide with the query point which is mapped to the same
bucket hδr̂i (~q). We can see that the center of this range is the
query point. Thus, we refer to the proposed hash function
hr̂δi (·) as the query-centric rehashing function.

Figure 8 presents the advantage of the proposed query-
centric rehashing function. Suppose ~q is the query point.
The first line represents the based hash function h∗(~q), where
points ~v, ~q and ~o are hashed to buckets 8, 9 and 13 respec-
tively. The solid rectangle represents our proposed query-
centric rehashing function for radius r = 3, 9, whereas the
dashed rectangle represents the original rehashing function
in Equation 7. For the query-centric rehashing function

hr(·), ~q and ~v are hashed to the same bucket when r = 3,
while ~q and ~o are hashed to the same bucket when r = 9. In
contrast, for Hr(·), ~q and ~o are hashed to the same bucket
when r = 9, while ~q and ~v are hashed to the same bucket
when r = 27. We notice that the query point ~q is actually
closer to ~v compared with ~o, and thus ~q should collide with
~v in the same bucket first. Our proposed query-centric re-
hashing function can hold this property while Hr(·) cannot.
In particular, Hr(·) might perform poorly in some cases, for
example, when a query point is hashed to the bucket whose
id is a multiple of the radius.

Algorithm 3 shows the pseudo code of processing anRp(~q, δ, c)
query. An object with collision count larger than θp is con-
sidered as a candidate and its real distance to the query is
computed. The algorithm stops until β|D| candidates are
found. The algorithm is sound if the following two proper-
ties hold with a constant probability.

1. P ′1: If ~v ∈ Bp(~q, δ), then the number of ~v’s collision
with the query ~q is at least θp.

2. P ′2: The total number of false positives is smaller than
β|D|, where |D| is the cardinality of a database D.

Corollary 1 guarantees the correctness of the algorithm.

Corollary 1. Given a error probability ε and a false
positive rate β, if ηp is set as the one in Equation 20, we
have Pr(P ′1) ≥ (1− ε) and Pr(P ′2) ≥ 1/2

Proof. This is a corollary of Lemma 1 in [21]. We refer
readers to [21] for more details.

4.2 Processing Np(~q, k, c)
The nearest neighbor query can be processed in a similar

way. Algorithm 4 presents the general idea which can be
viewed as the processing of a set of Rp(~q, δ, c) queries with
increasing radii. We initialize the starting radius to be 1

r̂
and

issue an Rp(~q, δ, c) query. If not enough results are found,
we increase the radius to be cδ and issue a new range query.
The process continues until enough results are returned.

We iteratively retrieve the points that are hashed into the
range of [h∗i (~q)−b δr̂2 c, h

∗
i (~q)+b δr̂

2
c] for h∗i (·), because they

collide with the query point for the modified hash function.
However, as we have visited the points that are hashed in
[h∗i (~q)− b δr̂2c c, h

∗
i (~q) + b δr̂

2c
c] in the last iteration when the

radius is (δ/c), we skip those IDs (line 10).
The algorithm stops if (1) we have obtained k candidates

whose `p distance to q is smaller than cδ, or (2) we have
found more than k + β|D| candidates with collision count
larger than θp (lines 15-16). The stop conditions are defined
based on P ′1 and P ′2 respectively. In particular, P ′1 guaran-
tees that a candidate will be found definitely, and P ′2 ensures
that there are no more than β|D| false positives. Therefore,
we can stop the algorithm early and return the approximate
kNNs of q in the `p space.

4.3 Multi-query Optimization
For the processing of queries under different `p metrics,

the difference is that an object requires a different collision
threshold to become a candidate. For fractional distance
metrics, the smaller the p is, the larger the collision threshold
is. This requires that more index entries are needed to be
retrieved for the fractional distance metrics with a smaller
p. The good news is that the index entries for a larger

Algorithm 3: Answering Rp(~q, δ, c)
1 T ← a hash table to record the collision count for each database

object ;
2 C ← a list to record the candidates ;
3 r̂ ← the radius of B1(~q, r̂) to approximate Bp(~q, 1) ;
4 for i← 0 to ηp − 1 do

5 Compute hδr̂i (~q) ;
6 Read the IDs that are hashed in the range of

[h∗i (~q)− b δr̂2 c, h
∗
i (~q) + b δr̂2 c] for h∗i (·) ;

7 foreach object ~v ∈ IDs do
8 T [~v]← T [~v] + 1 ;
9 if (T [~v] > θp) ∧ (~v 6∈ C) then

10 C ← C
⋃
{~v} ;

11 if `p(~v, ~q) < cδ then
12 return ~v ;

13 if |C| > β|D| then
14 return NULL ;

Algorithm 4: Answering Np(~q, k, c)
1 T ← a hash table to record the collision count for each database

object ;
2 C ← a list to record the candidates ;
3 r̂ ← the radius of B1(~q, r̂) to approximate Bp(~q, 1) ;

4 δ ← 1
r̂ ;

5 while TRUE do
6 for i← 0 to ηp − 1 do
7 if δ = 1

r̂ then
8 IDs← the points that are hashed to h∗i (~q) ;

9 else
10 IDs← the points that are hashed in

[h∗i (~q)− b δr̂2 c, h
∗
i (~q)− b δr̂2c c − 1] or

[h∗i (~q) + b δr̂2c c+ 1, h∗i (~q) + b δr̂2 c] for h∗i (·) ;

11 foreach object ~v ∈ IDs do
12 T [~v]← T [~v] + 1 ;
13 if (T [~v] > θp) ∧ (~v 6∈ C) then
14 C ← C

⋃
{~v} ;

15 if (|{~o|~o ∈ C ∧ `p(~o, ~q) < cδ}| ≥ k) ∨
(|C| > k + β|D|) then

16 return the kNNs in C with the smallest `p
distance to ~q ;

17 δ ← δ ∗ c ;

collision threshold (a smaller p) cover the index entries for
a smaller collision threshold (a larger p), which means that
no additional sequential I/O is required when we process
queries in different `p spaces simultaneously for the same
query point.

This finding motivates us to perform multiple queries un-
der different `p metrics concurrently by sharing their I/Os.
For example, suppose we need to answer queries Np(~q, k, c)
for p = 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0. We can group them
and answer them simultaneously. The I/O cost of processing
these multiple queries is roughly the same as that of process-
ing a single N0.5(~q, k, c) query with additional random I/Os
for retrieving candidates of other `p metrics.

5. EXPERIMENTS
In this section, we study the performance of LazyLSH

with various datasets. We mainly focus on the following
two issues: (1) How the index size changes with different
parameter settings. (2) How LazyLSH performs with respect
to the efficiency and effectiveness on various datasets.

5.1 Datasets and Queries

Table 3: Parameter Settings for the synthetic datasets

Notation Description Values

|D| Cardinality 100k, 200k, 400k, 800k, 1.6m
d Dimensionality 100, 200, 400, 800, 1600
c Approximate ratio 2, 3, 4, 5, 6
p Supported `p space 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Table 4: Statistics of the real datasets and index sizes

Dataset d] points value range η0.5 index size(MB)

Inria 128 4,455,041 [0, 255] 1358 23824
SUN 512 108,703 [0, 10,000] 916 1100

LabelMe 512 207,859 [0, 10,000] 959 2061
Mnist 784 60,000 [0, 255] 845 498

In the experiments, synthetic datasets and four real datasets
are used: Mnist2 [29], Inria3 [27], LabelMe4 [37] and
Sun5 [48]. The statistics of the synthetic datasets and real
datasets are summarized in Tables 3 and 4 respectively. We
refer readers to Appendix B.1 for more details of the datasets
and query sets.

5.2 Evaluation Metrics
We follow the previous methods [45, 21, 22, 43] and adopt

three metrics in our evaluations.
Space Consumption. The space is measured by the

number of required hash tables and the index size.
Query Efficiency. The query efficiency is measured by

the average number of I/Os of answering a query. If a block
of an inverted list (4KB per block) is loaded into memory,
the number of simulated I/Os (sequential) is increased by 1.
If an object is visited to compute its distance to the query,
the number of simulated I/Os (random) is increased by 1.

Overall Ratio. The overall ratio is defined as how many
times farther a reported neighbor is compared to the real
nearest neighbor. Formally, for anNp(~q, k, c) query, {~o1, . . . , ~ok}
are the reported results sorted in ascending order of their
distances to ~q. Let { ~o∗1, . . . , ~o∗k} be the true kNNs sorted in
ascending order of their distances to ~q. The overall ratio is
calculated as: 1

k

∑k
i=1 `p(~oi, ~q)/`p(

~o∗i , ~q).
The I/O cost and the overall ratio are averaged over queries.

Unless otherwise specified, we materialize η0.5 hash func-
tions for the index so that queries can be answered in the `p
spaces, where 0.5 ≤ p ≤ 1. By default, queries are issued in
the `0.5 space.

Competitors. To the best of our knowledge, LazyLSH
is the first work of supporting approximate nearest neighbor
queries on multiple distance functions with a single index.
There is no direct competitor of our approach. Alternatively,
we modify C2LSH [21] and SRS [43] as competitors.

• C2LSH : We build the index of C2LSH in the `1 space.
Then we retrieve (k+ 100) candidates in the `1 space,
and select the top-k points from the candidate set with
the smallest `p distance to the query.

• SRS : We build the index of SRS in the `2 space because
SRS uses the 2-stable distribution. We retrieve the
candidates in the `2 space, and select the top-k points

2
http://yann.lecun.com/exdb/mnist/

3
http://lear.inrialpes.fr/∼jegou/data.php

4
http://labelme.csail.mit.edu/Release3.0/

5
http://sundatabase.mit.edu/

from the candidate set with the smallest `p distance
to the query. The number of projected dimensions in
SRS is set to 6 as the experimental setting in [43]. The
approximate ratio c is set to 3 for comparison.

Implementation. Our algorithms were implemented in
C++. All experiments were conducted on a PC with Intel
Core i7-3770 CPU @ 3.40GHz, 8GB memory, 500GB hard
disk, running Ubuntu 12.04LTS. The page size was set to 4
KB in the experiments.

5.3 Study on Synthetic Datasets
We use synthetic datasets to study the index size w.r.t.

different parameter settings. As discussed in Section 3.3, the
index size is affected by four parameters: (1) the cardinality
of the dataset |D|, (2) the dimensionality d, (3) the approx-
imate ratio c, and (4) the range of supported `p spaces,
where ηp hash functions are built for the base index. Table
3 shows the parameter settings of the synthetic datasets.
The default values are underlined in the third column. We
study the required index size w.r.t each parameter by vary-
ing one parameter and setting the other three parameters to
the default values, as presented in Table 5.

Table 5: Index size w.r.t. different parameter settings

(a) Index size vs. the cardinality |D|
|D| 100k 200k 400k 800k 1.6m
η0.5 923 979 1025 1071 1116

Size(MB) 1063 2211 4557 9250 18291

(b) Index size vs. the dimensionality d

d 100 200 400 800 1600
η0.5 1223 1108 1025 966 879

Size(MB) 5011 4778 4557 4360 3997

(c) Index size vs. the approximate ratio c

c 2 3 4 5 6
η0.5 7114 1025 570 425 355

Size(MB) 31609 4557 2531 1889 1577
I/Os 672184 77532 37252 24922 18712
Ratio 1.011 1.053 1.075 1.084 1.089

(d) Index size vs. the range of supported `p spaces

p 0.5 0.6 0.7 0.8 0.9 1.0
ηp 1025 711 579 507 462 432

Size(MB) 4557 3157 2576 2252 2051 1916

Effect of the cardinality |D|: Table 5a shows the index
size w.r.t |D|. When |D| increases, the number of required
hash functions increases, and so does the index size.

Effect of the dimensionality d: Table 5b shows the
index size w.r.t d. It is worth noting that the index size
decreases when d increases. This is because ηp changes with
(p̂′1− p̂′2) as shown in Equation 20 and (p̂′1− p̂′2) varies w.r.t
different numbers of dimensions. Figure 7 shows the rela-
tionship between the value of (p̂′1 − p̂′2) and the dimension-
ality. The solid line in this figure plots (p̂′1 − p̂′2) when the
approximate ratio c = 3. As can be seen, (p̂′1 − p̂′2) first
decreases rapidly with the dimensionality and reaches the
smallest value when d = 16. Then (p̂′1− p̂′2) increases slowly
when the dimensionality increases. This explains the reason
why the index size decreases with d when d > 100 for the
synthetic datasets.

Effect of the approximate ratio c: Table 5c shows the
index size w.r.t c. When c increases, the index size decreases.
The reason can be also explained by Figure 7. As shown in

0

100000

200000

300000

400000

500000

600000

0.5 0.6 0.7 0.8 0.9 1

A
ve
ra
ge
 I/
O
s

Lp distance

LazyLSH

C2LSH

(a) Inria

0

2000

4000

6000

8000

10000

12000

14000

16000

0.5 0.6 0.7 0.8 0.9 1

A
ve
ra
ge
 I/
O
s

Lp distance

LazyLSH

C2LSH

(b) SUN

0

5000

10000

15000

20000

25000

0.5 0.6 0.7 0.8 0.9 1

A
ve
ra
ge
 I/
O
s

Lp distance

LazyLSH

C2LSH

(c) LabelMe

0

1000

2000

3000

4000

5000

6000

7000

0.5 0.6 0.7 0.8 0.9 1

A
ve
ra
ge
 I/
O
s

Lp distance

LazyLSH

C2LSH

(d) Mnist

Figure 9: I/O costs on real datasets w.r.t. the `p distance

100000

200000

300000

400000

500000

600000

10 20 30 40 50 60 70 80 90 100

A
ve
ra
ge
 I/
O
s

k

0.5 0.6 0.7 0.8 0.9 1

(a) Inria

5000

7000

9000

11000

13000

15000

10 20 30 40 50 60 70 80 90 100

A
ve
ra
ge
 I/
O
s

k

0.5 0.6 0.7 0.8 0.9 1

(b) SUN

7000

10000

13000

16000

19000

22000

10 20 30 40 50 60 70 80 90 100

A
ve
ra
ge
 I/
O
s

k

0.5 0.6 0.7 0.8 0.9 1

(c) LabelMe

2000

3000

4000

5000

6000

7000

10 20 30 40 50 60 70 80 90 100

A
ve
ra
ge
 I/
O
s

k

0.5 0.6 0.7 0.8 0.9 1

(d) Mnist

Figure 10: I/O costs on real datasets w.r.t. the number of k

the figure, for a fixed dimension, (p̂′1 − p̂′2) increases when c
increases, which leads to the smaller index size. When c = 2,
the number of required hash functions η0.5 is around seven
times of η0.5 for c = 3.

In addition, we test the number of I/Os and the overall
ratio when processing approximate queries with different ap-
proximate ratio c. We notice that: (1) the number of I/Os
decreases significantly as c increases. The number of I/Os
when c = 2 is about nine times of that when c = 3, because
of the difference in index size. (2) the overall ratio increases
with c because a larger approximation ratio is applied, which
means that we can get more accurate results when we use
a smaller c. Therefore, c can be viewed as a parameter to
be set as a trade-off between query accuracy and efficiency
(index size). To make it comparable to C2LSH, which used
c = 2 or 3 in its experiment [21], we set c = 3 for LazyLSH
in the rest of the experiments.

Effect of the range of supported `p spaces: Table 5d
shows the index size w.r.t the range of supported `p spaces.
To support a larger range of `p spaces, we need to material-
ize more hash functions. For instance, we need 2.37x hash
functions to support queries in a range of `p spaces, where
0.5 ≤ p ≤ 1, compared to the number of hash functions
required for the single `1 space.

5.4 Study on Real Datasets

5.4.1 Index Size
We first study the index size for the real datasets. We

materialize η0.5 hash functions as the base index so that
queries Rp(~q, δ, c) can be supported in a range of `p spaces,
where 0.5 ≤ p ≤ 1. Table 4 shows the number of hash
functions required and the index size for the real datasets.
When the dimensionality increases, fewer hash functions are
required. This observation is consistent with the result of
the synthetic datasets shown in Table 5b.

5.4.2 I/O Costs of Processing Queries

Next we study the performance of LazyLSH in terms of
the I/O cost of processing a query.

I/O Costs w.r.t. the query `p space: Figure 9 plots
the average I/Os of processing a query w.r.t. the `p space
where the number of nearest neighbors k is set to 100. The
query processing in the `0.5 space incurs more I/O overhead
than the `1 space. Generally, a smaller p will lead to a
higher I/O cost. This is because the processing of queries
in the `0.5 space requires a higher collision threshold for an
object to become a candidate and more index entries are
required to be read. In the `1 space, the performance of
LazyLSH is similar to C2LSH. The average I/O costs for
these two methods are at the same level. However, C2LSH
can only support queries in the `1 space, while in contrast,
LazyLSH is designed to support queries in a larger range of
`p distances. Please note that the I/O cost of SRS is not
reported as the provided implementation6 is in-memory and
SRS is based on the `2 distance. Still, it is obvious that
SRS can achieve the best performance in terms of the I/O
cost as its index size is one order of magnitude smaller than
that of C2LSH as reported in [43]. Even though SRS has
a small I/O cost, its reliance on the 2-stable distribution in
the `2 space constrains us from using its technique as the
base index structure. We refer readers to Appendix C for
more details.

I/O Costs w.r.t. the number of k: Figure 10 plots
the average I/Os of processing a query w.r.t. the number of
returned nearest neighbors. The horizontal axis k represents
the number of returned nearest neighbors, ranging from 10
to 100. We observe that there is a slight increase of I/Os on
all the four datasets when k increases. This indicates that
users can issue a query with a larger k to get more precise
nearest neighbors with a few additional I/Os.

I/O Costs w.r.t. the multiple-query optimization:
One application of using LazyLSH is to select the optimal `p
metric, which is shown to be highly application-dependent
[20]. One way is to use classifications to select the best `p

6
https://github.com/DBWangGroupUNSW/SRS

1

1.1

1.2

1.3

1.4

1.5

1.6

10 20 30 40 50 60 70 80 90 100

A
ve
ra
ge
 R
at
io

k

LazyLSH C2LSH SRS

(a) Inria

1

1.1

1.2

1.3

1.4

1.5

10 20 30 40 50 60 70 80 90 100

A
ve
ra
ge
 R
at
io

k

LazyLSH C2LSH SRS

(b) SUN

1

1.1

1.2

1.3

1.4

1.5

1.6

10 20 30 40 50 60 70 80 90 100

A
ve
ra
ge
 R
at
io

k

LazyLSH C2LSH SRS

(c) LabelMe

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

10 20 30 40 50 60 70 80 90 100

A
ve
ra
ge
 R
at
io

k

LazyLSH C2LSH SRS

(d) Mnist

Figure 11: Average overall ratios on real datasets

1

10

100

1000

10000

100000

1000000

Inria Sun LabelMe Mnist

A
ve
ra
ge
 I/
O
s

Datasets

multiQueries (L0.5, L0.6,
L0.7, L0.8, L0.9, L1.0)
L0.5

Figure 12: Multiple-query
optimization

1

1.02

1.04

1.06

1.08

Inria Sun LabelMe Mnist

Av
er
ag
e
Ra
tio

Datasets

query‐centric rehashing
original rehashing

Figure 13: Impact of query-
centric rehashing

metric. In particular, we retrieve the approximate kNNs
in different `p spaces. Then we select the optimal `p met-
ric with the highest classification accuracy as shown in Ta-
ble 1. This approach requires performing approximate kNN
queries in different `p spaces, which can be processed as the
multi-query optimization in Section 4.3.

Figure 12 presents the I/O cost of processing a single
query versus that of processing multiple queries concurrently.
We try to find the kNNs of the same data point in differ-
ent `p spaces (six queries in the `0.5, `0.6, `0.7, `0.8, `0.9
and `1 spaces in this experiment). The queries of different
`p spaces are processed together by sharing their I/Os, as
they all probe many common hash buckets. As indicated
in the figure, processing multiple queries concurrently only
incurs a few more I/Os than processing a single query. This
observation motivates us to process queries of different `p
distances in a batch, instead of processing them individu-
ally. With the help of the multiple-query optimization, we
can easily get the approximate kNNs of different `p metrics
and choose the optimal `p metric for a particular dataset
based on classification methods such as the kNN classifier
as presented in Table 1 in the introduction. We also com-
pare the running time of LazyLSH with that of the linear
scan method, which is presented in Appendix B.2.

5.4.3 Overall Ratio
Overall Ratio for queries in fractional metrics: We

then compare LazyLSH with the existing work in the con-
text of the overall ratio. Figure 11 presents the average over-
all ratio for queries in the `0.5 space. In general, LazyLSH
outperforms C2LSH in terms of the overall ratio. In most
cases, the overall ratio of LazyLSH is less than 1.02. In con-
trast, C2LSH does not perform well for queries in the `0.5
space, because C2LSH is designed to answer queries in the
`1 or `2 spaces and it is not optimized to answer queries for
fractional distances. Therefore, LazyLSH has better perfor-
mance in terms of the overall ratio.

Impact of the query-centric rehashing: Next we

study the impact of the query-centric rehashing. To achieve
a fair comparison, the queries are conducted in the same
index with different rehashing methods. In particular, the
queries are conducted in the `1 space and the approximate
100 NNs are returned. Figure 13 plots the average overall
ratio for different rehashing methods. We notice that our
query-centric rehashing method outperforms the original re-
hashing method on all the four datasets. This is because the
query-centric rehashing method is likely to retrieve nearby
points, while the original rehashing method may retrieve
distant points in some cases as stated in Figure 8.

6. RELATED WORK

6.1 Similarity Search and kNN Processing
The similarity search problem is of fundamental impor-

tance to a variety of applications such as classification [17],
clustering [35], semi-supervised learning [52], semi-lazy learn-
ing [51, 50], collaborative filtering [39] and near-duplicate
detection [8]. Given a query object ~q represented as a high-
dimensional vector, a typical similarity search retrieves the
k-nearest neighbors (kNNs) of ~q using a specific distance
function.
kNN search has been well studied in low-dimensional spaces

[36, 38]. However, retrieving exact results becomes a non-
trivial problem when the dimensionality increases due to the
“curse of dimensionality”. It has been shown that the aver-
age query time with an optimal indexing scheme is super-
polynomial with the dimensionality [34]. When the dimen-
sionality is sufficiently large, conventional kNN search ap-
proach becomes even slower than the linear scan approach
[18]. To address the problem, approximate nearest neigh-
bor search is introduced as an alternative solution, which
trades off the accuracy to speed up the search. One typical
solution is to employ the Locality-Sensitive Hashing (LSH)
because of its precise theoretical guarantees and empirical
performance.

6.2 Locality-Sensitive Hashing
LSH is first introduced by Indyk and Motwani [26]. The

basic idea of LSH is that an LSH function produces a hash
bit of a data point by projecting the data point to a random
hyperplane. Statistics guarantees that the nearby points in
the projected hyperplane are likely to be close to each other
in the original space. In addition, multiple hash tables are
built independently, aiming to enlarge the probability that
similar data points are mapped to similar hash codes. Sev-
eral LSH families have been discovered for metric distances
[4], including the Hamming distance between binary vectors
[26], the Jaccard distance between sets [11, 10], the arc-

cos distance measuring the angles between vectors [14], the
Manhattan distance [3, 18], and the Euclidean distance [18].

For the `p metrics, E2LSH [18] is the first LSH method
that supports approximate nearest neighbor queries in the
Euclidean space. The main drawback of E2LSH is that it
needs to build multiple indexes with different radii, resulting
in high maintenance overhead. To address the issue of high
storage costs, multi-probe LSH [32] is proposed. It not only
checks the data points that fall in the same bucket as the
query point, but also probes multiple buckets that are likely
to contain results in a hash table, which leads to the use of
fewer hash tables. However, it still suffers from the need for
building hash tables at different radii.

LSB-tree [45] is the first work that does not need to build
hash tables at different radii. It groups hash values as a one-
dimensional Z-order value and indexes it in a B-tree. Index
entries for different radii can be retrieved in corresponding
ranges in the B-tree. In addition, an LSB forest with mul-
tiple trees can be built to improve the search performance.
C2LSH [21] further improves the LSB-tree method by intro-
ducing techniques of collision counting and virtual rehash-
ing. It uses one hash function per hash table so that the
number of hash buckets to read does not increase exponen-
tially when the query radius increases. Furthermore, SRS
[43] projects data points from the original high-dimensional
space into a low-dimensional space via 2-stable projections.
The major observation is that the `2 distance in the pro-
jected space over the `2 distance in the original space fol-
lows a chi-squared distribution, which has a sharp concen-
tration bound. Therefore, SRS can index the data points in
the low-dimensional projected space and use the chi-squared
distribution to perform queries. In this case, the index size
is significantly reduced.

LSH variants are proposed to address the drawbacks of the
traditional LSH methods. Traditional LSH methods suffer
from the disadvantage of generating a large number of the
false positives. To address this problem, BayesLSH [40] is
proposed. It integrates the Bayesian statistics and performs
candidate pruning and similarity estimation using LSH. It
can quickly prune away false positives, which leads to a
significant speedup. Traditional LSH methods also suffer
from the disadvantage of accessing many candidates, which
brings a larger number of random I/Os. To address this,
SortingKeys-LSH [30] is presented to order the compound
hash keys so that the data points are sorted accordingly in
the index to reduce the I/O cost.

6.3 Fractional Distance Metric
Euclidean distance [15, 23, 41, 6, 36] is widely used in

kNN search. However, it was shown that when the dimen-
sionality is high, the Euclidean distance introduces the con-
centration problem [7]. Namely, the distance between any
random pair of high dimensional data points is almost iden-
tical. Therefore, the effectiveness of the Euclidean distance
in the high-dimensional space is not clear [24, 1].

To address the concentration problem, one direction is to
consider partial similarities, which have been drawn increas-
ing attention in the last decade [28, 46, 12, 44]. Tung et al.
[46] introduced the k-n-match model to discover the partial
similarity in n dimensions, where n is a given integer smaller
than dimensionality and these n dimensions are determined
dynamically to make the query and the returned results be
the most similar. It has been shown that the k-n-match

model yields better results than the traditional kNN query
in identifying similar objects by partial similarities.

Another direction is to investigate different distance met-
rics. Aggarwal et al. [24, 1] examined the “curse of dimen-
sionality” problem from the perspective of distance metrics.
They found that the Manhattan distance (`1) metric is more
effective than the Euclidean distance (`2) metric in the high-
dimensional space. They further introduced and examined
the fractional distance (`p for 0 < p < 1) metrics, which
are less concentrated. It was shown that the fractional dis-
tance metrics provide more meaningful results from both the
theoretical and empirical perspectives. Their experimental
results verified that fractional distance metrics improve the
effectiveness of standard clustering algorithms.

Later, fractional distance metrics have been applied to
applications such as content-based image retrieval [25, 47].
The experiments showed that the performances of fractional
distance metrics outperform the `1 and `2 metrics. In par-
ticular, the `0.5 distance consistently outperforms both `1
and `2 metrics in their experiments. Still, the experimental
results showed that the optimal `p metric is application-
dependent and required to be learned for each dataset.

Recently, it was argued that the analysis of the concentra-
tion phenomenon is based on the assumption of independent
and identically distributed variables [20], which might not be
true in real datasets. The authors showed that the optimal
`p metric is actually application-dependent. In order to ex-
plore the high-dimensional data, it is important to support
different distance metrics. Hence, users can try and select
the best `p metric for their applications. However, to the
best of our knowledge, none of the existing LSH approaches
can support multiple distance metrics. LazyLSH is the first
work that supports approximate kNN processing in multiple
fractional metrics using a single index. In this paper, we use
the index structure of C2LSH as the base index structure.
LazyLSH can also be used other LSH index structures as
the base index, which is presented in Appendix C.

7. CONCLUSIONS
In this paper, we proposed an efficient mechanism called

LazyLSH to answer approximate kNN queries under frac-
tional distance metrics in high-dimensional spaces. We ob-
served that an LSH function in a specific `p space can be ex-
tended to support queries in other spaces. Based on this ob-
servation, we materialized a base LSH index in the `1 space
and used it to process approximate kNN queries in different
`p spaces. We conducted extensive experiments on synthetic
and real datasets, and the experimental results showed that
LazyLSH provides accurate results and improves existing
machine learning algorithms for retrieving approximate kNN
under different fractional distance metrics.

8. ACKNOWLEDGEMENT
The work by Anthony K.H. Tung was partially supported

by NUS FRC Grant R-252-000-370-112. The work by Sai
Wu was partially supported by the National Basic Research
Program of China 973 (No. 2015CB352400). This research
was carried out at the NUS-ZJU Sensor-Enhanced social Me-
dia (SeSaMe) Centre. It is supported by the Singapore Na-
tional Research Foundation under its International Research
Centre @ Singapore Funding Initiative and administered by
the Interactive Digital Media Programme Office.

9. REFERENCES
[1] C. Aggarwal, A. Hinneburg, and D. Keim. On the

surprising behavior of distance metrics in high dimensional
space. In ICDT, volume 1973, pages 420–434. 2001.

[2] N. Ailon and B. Chazelle. Approximate nearest neighbors
and the fast johnson-lindenstrauss transform. In STOC,
pages 557–563, 2006.

[3] A. Andoni and P. Indyk. Efficient algorithms for substring
near neighbor problem. In SODA, pages 1203–1212, 2006.

[4] A. Andoni and P. Indyk. Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions.
COMMUNICATIONS OF THE ACM, 51(1):117–122,
2008.

[5] S. Arya and D. M. Mount. Approximate nearest neighbor
queries in fixed dimensions. In SODA, pages 271–280, 1993.

[6] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The r*-tree: An efficient and robust access method for
points and rectangles. In SIGMOD, pages 322–331, 1990.

[7] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft.
When is ↪ařnearest neighbor ↪aś meaningful? In ICDT, pages
217–235. 1999.

[8] M. Bilenko and R. J. Mooney. Adaptive duplicate detection
using learnable string similarity measures. In SIGKDD,
pages 39–48, 2003.

[9] K. Binder and D. Heermann. Monte Carlo simulation in
statistical physics: an introduction. Springer Science &
Business Media, 2010.

[10] A. Broder. On the resemblance and containment of
documents. In Compression and Complexity of Sequences
1997. Proceedings, pages 21–29, 1997.

[11] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. In WWW, pages
1157–1166, 1997.

[12] A. M. Bronstein, M. M. Bronstein, A. M. Bruckstein, and
R. Kimmel. Partial similarity of objects, or how to compare
a centaur to a horse. International Journal of Computer
Vision, 84(2):163–183, 2008.

[13] G. Calafiore, F. Dabbene, and R. Tempo. Uniform sample
generation in lp balls for probabilistic robustness analysis.
In CDC, volume 3, pages 3335–3340, 1998.

[14] M. S. Charikar. Similarity estimation techniques from
rounding algorithms. In STOC, pages 380–388, 2002.

[15] J. G. Cleary. Analysis of an algorithm for finding nearest
neighbors in euclidean space. ACM Trans. Math. Softw.,
5(2):183–192, 1979.

[16] G. Cormode, P. Indyk, N. Koudas, and S. Muthukrishnan.
Fast mining of massive tabular data via approximate
distance computations. In ICDE, pages 605–614, 2002.

[17] T. Cover and P. Hart. Nearest neighbor pattern
classification. Information Theory, IEEE Trans. on,
13(1):21–27, 1967.

[18] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In SCG, pages 253–262, 2004.

[19] M. Douze, H. Jégou, H. Sandhawalia, L. Amsaleg, and
C. Schmid. Evaluation of gist descriptors for web-scale
image search. In CIVR, pages 19:1–19:8, 2009.

[20] D. Francois, V. Wertz, and M. Verleysen. The concentration
of fractional distances. TKDE, 19(7):873–886, 2007.

[21] J. Gan, J. Feng, Q. Fang, and W. Ng. Locality-sensitive
hashing scheme based on dynamic collision counting. In
SIGMOD, pages 541–552, 2012.

[22] J. Gao, H. V. Jagadish, W. Lu, and B. C. Ooi. Dsh: Data
sensitive hashing for high-dimensional k-nnsearch. In
SIGMOD, pages 1127–1138, 2014.

[23] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In SIGMOD, pages 47–57, 1984.

[24] A. Hinneburg, C. C. Aggarwal, and D. A. Keim. What is
the nearest neighbor in high dimensional spaces? In VLDB,
pages 506–515, 2000.

[25] P. Howarth and S. Rüger. Fractional distance measures for

content-based image retrieval. In ECIR, pages 447–456,
2005.

[26] P. Indyk and R. Motwani. Approximate nearest neighbors:
towards removing the curse of dimensionality. In STOC,
pages 604–613, 1998.

[27] H. Jegou, M. Douze, and C. Schmid. Hamming embedding
and weak geometric consistency for large scale image
search. In ECCV, pages 304–317, 2008.

[28] L. J. Latecki, R. Lakaemper, and D. Wolter. Optimal
partial shape similarity. Image and Vision Computing,
23(2):227 – 236, 2005. Discrete Geometry for Computer
Imagery.

[29] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

[30] Y. Liu, J. Cui, Z. Huang, H. Li, and H. T. Shen. Sk-lsh: An
efficient index structure for approximate nearest neighbor
search. PVLDB., 7(9):745–756, 2014.

[31] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision, 60(2):91–110, 2004.

[32] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li.
Multi-probe lsh: efficient indexing for high-dimensional
similarity search. In VLDB, pages 950–961, 2007.

[33] M. Muja and D. G. Lowe. Fast approximate nearest
neighbors with automatic algorithm configuration. VISAPP
(1), 2, 2009.

[34] V. Pestov. Lower bounds on performance of metric tree
indexing schemes for exact similarity search in high
dimensions. Algorithmica, 66:310–328, 2013.

[35] D. Ravichandran, P. Pantel, and E. Hovy. Randomized
algorithms and nlp: Using locality sensitive hash function
for high speed noun clustering. In ACL, pages 622–629,
2005.

[36] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In SIGMOD, pages 71–79, 1995.

[37] B. C. Russell, A. Torralba, K. P. Murphy, and W. T.
Freeman. Labelme: A database and web-based tool for
image annotation. Int. J. Comput. Vision, 77(1-3):157–173,
2008.

[38] H. Samet. Foundations of Multidimensional and Metric
Data Structures. Morgan Kaufmann Publishers Inc., 2005.

[39] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In WWW, pages 285–295, 2001.

[40] V. Satuluri and S. Parthasarathy. Bayesian locality
sensitive hashing for fast similarity search. PVLDB,
5(5):430–441, 2012.

[41] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The
r+-tree: A dynamic index for multi-dimensional objects. In
VLDB, pages 507–518, 1987.

[42] E. W. Stacy. A generalization of the gamma distribution.
The Annals of Mathematical Statistics, pages 1187–1192,
1962.

[43] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin. Srs:
Solving c-approximate nearest neighbor queries in high
dimensional euclidean space with a tiny index. PVLDB,
8(1):1–12, 2014.

[44] X. Tan, S. Chen, Z.-H. Zhou, and J. Liu. Face recognition
under occlusions and variant expressions with partial
similarity. Information Forensics and Security, IEEE
Transactions on, 4(2):217–230, 2009.

[45] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Efficient and
accurate nearest neighbor and closest pair search in
high-dimensional space. ACM Trans. Database Syst.,
35(3):20:1–20:46, 2010.

[46] A. K. H. Tung, R. Zhang, N. Koudas, and B. C. Ooi.
Similarity search: A matching based approach. In VLDB,
pages 631–642, 2006.

[47] H. Wang, S. Zhang, W. Liang, F. Wang, and Y. Yao.
Content-based image retrieval using fractional distance
metric. In IASP, pages 1–5, 2012.

[48] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba.
Sun database: Large-scale scene recognition from abbey to
zoo. In CVPR, pages 3485–3492, 2010.

[49] M.-L. Zhang and Z.-H. Zhou. Ml-knn: A lazy learning
approach to multi-label learning. Pattern Recognition,
40(7):2038 – 2048, 2007.

[50] J. Zhou and A. K. Tung. Smiler: A semi-lazy time series
prediction system for sensors. In SIGMOD, pages
1871–1886, 2015.

[51] J. Zhou, A. K. Tung, W. Wu, and W. S. Ng. A

↪ařsemi-lazy ↪aś approach to probabilistic path prediction in
dynamic environments. In SIGKDD, pages 748–756, 2013.

[52] X. Zhu and A. B. Goldberg. Introduction to
semi-supervised learning. Synthesis lectures on artificial
intelligence and machine learning, 3(1):1–130, 2009.

APPENDIX
A. PROOF

A.1 Proof of Lemma 2
Proof. We know:

p(cs, cr) =

∫ cr

0

1

cs
fp(

t

cs
)(1− t

cr
)dt

Let

x = t/c

.
Then we get:

p(cs, cr) =

∫ r

0

c
1

cs
fp(

cx

cs
)(1− cx

cr
)dx

=

∫ r

0

1

s
fp(

x

s
)(1− x

r
)dx = p(s, r) 2

A.2 Proof of Lemma 3
Proof. For any ~x, ~y ∈ Rd, let ~u = c~x and ~v = c~y. Then,

we have

`s(~u,~v) =(

d∑
i=1

(ui − vi)s)1/s

=(

d∑
i=1

(cxi − cyi)s)1/s

=c `s(~x, ~y)

Therefore, we get `s(~x, ~y) ≤ r ⇐⇒ `s(~u,~v) ≤ cr. Simi-
larly, `p(~x, ~y) ≤ δ ⇐⇒ `p(~u,~v) ≤ cδ. Note ~u and ~x, ~v and
~y are one-to-one corresponding. Thus, we get

Pr(`s(~x, ~y) ≤ r|`p(~x, ~y) ≤ δ) = Pr(`s(~u,~v) ≤ cr|`p(~u,~v) ≤ cδ)

B. MORE ON EXPERIMENTS

B.1 Datasets and Query sets
Synthetic datasets: We use synthetic datasets to study

the influences of the dimensionality and the cardinality. We
first fix the cardinality to be 40,000 and generate datasets
with different dimensionality as {100, 200, 400, 800, 1600}.
Then we fix the dimensionality to be 400 and generate datasets
with different cardinality as {100k, 200k, 400k, 800k, 1.6m}.
The value of each dimension is an integer randomly chosen

from [0, 10000]. For each synthetic dataset, we randomly
generate 50 query points as a query set.

Inria: The Inria dataset contains 1,491 holiday photos.
4,455,091 SIFT features [31] are extracted from the images,
and each feature is represented as a 128-dimensional point.
The value of each dimension is an integer in the range of
[0, 255]. We randomly select 50 feature points as our query
set and remove those features from the dataset during the
query processing to avoid returning the same feature.

SUN: SUN is a dataset containing 108,753 images, each
of which is attached with a class label to indicate which
scene category the image belongs to. We obtain the GIST
feature [19] of each image and generate a corresponding 512-
dimensional data point. The value of each dimension is nor-
malized to be an integer in the range of [0, 10,000]. We
randomly pick 50 data points as a query set.

LabelMe: LabelMe is a dataset containing 207,909 im-
ages. We apply the processing method of SUN to the La-
belMe dataset. Hence, the size of LabelMe is 207,859.

Mnist: Mnist is a dataset consisting of 60,000 pictures
of handwritten digits. Each picture has a class label repre-
senting which digit the picture shows. Each picture is repre-
sented as a 784-dimensional point, of which each dimension
is an integer ranging from 0 to 255. In addition, Mnist con-
tains a test set of 10,000 points. We randomly choose 50
points to form a query set.

B.2 Additional experiments
This experiment analyzes the query time of LazyLSH ver-

sus that of the linear scan method. As presented in Table 1
and Section 5.4.2, we need to retrieve approximate kNNs in
different `p spaces to test the accuracy of the kNN classifier
in order to pick the optimal `p metric.

We first study the effect of the multi-query optimization
in terms of query time. We use the synthetic dataset with
cardinality of 400k and dimensionality of 400 in this exper-
iment. We set the approximate ratio c = 3, 4, 5, 6 and the
number of returned points k = 100. The result for c = 2
is skipped as the I/O cost for c = 2 is much higher than
others as shown in Table 5c. The single query is performed
in the `0.5 space, and the multiple queries are preformed in
the `0.5, `0.6, `0.7, `0.8, `0.9 and `1 spaces using our multi-
query optimization. Figure 14 shows that the average query
time of the two methods. The query time of LazyLSH with
c = 4 for the single query is at the same level as that of
the linear scan. However, the running time of the linear
scan method increases dramatically when multiple queries
are answered. In contrast, the running time of LazyLSH for
processing multiple queries remains at the same level as that
for performing the single query. This finding is consistent
to the result in Figure 12, because the number of I/Os in-
creases by a small amount when processing multiple queries
in a batch.

In addition, Figure 14 shows that the running time de-
creases as the approximate ratio c increases. In fact, the
choice of c can be viewed as a trade-off between accuracy and
query time. As it is shown in Figure 11, LazyLSH achieves
the highest accuracy among the LSH competitors in per-
forming approximate queries using fractional distance met-
rics. We are interested in how the accuracy changes given
different settings of c. Figure 15 presents the average overall
ratio of performing queries w.r.t c in different `p spaces. The
overall ratio is fairly well. Even for c = 6, the overall ratio

0

10

20

30

40

50

Single query Multiple queries

A
ve
ra
ge
 Q
u
e
ry
 T
im

e
(s
)

c=3 c=4 c=5 c=6 scan

Figure 14: Query time with multi-
query optimization

1

1.02

1.04

1.06

1.08

1.1

0.5 0.6 0.7 0.8 0.9 1

A
ve
ra
ge
 R
at
io

value of p

c=3 c=4

c=5 c=6

Figure 15: Average overall ratios
w.r.t. c

0

10

20

30

40

50

60

0 400 800 1200 1600

A
ve
ra
ge
 Q
u
er
y
Ti
m
e
(s
)

Dimensionality

c=3 c=4 c=5

c=6 scan

Figure 16: Average query time w.r.t.
dimensionality

in the `0.5 space is still smaller than 1.1. This finding indi-
cates that we can set c to be larger for faster speed while the
accuracy remains acceptable. We find that c = 5 or 6 might
be good choices considering the trade-off between accuracy
and query time.

Next we study the query time with respect to the dimen-
sionality. We use the synthetic datasets with cardinality of
400k and dimensionality of 100, 200, 400, 800 and 1600.
Figure 16 presents the average running time for processing
multiple queries with different dimensionality. The average
running time of the linear scan method increases linearly
with the dimensionality because the CPU time of computing
the distance to the query grows linearly. Please note that the
results of the linear scan for d = 800 and 1600 are not shown
for better viewing of the results of LazyLSH, and the results
follow the trend. In contrast, the query time of LazyLSH re-
mains at the same level for different dimensionality. When
the approximate ratio is greater than or equal to 4, LazyLSH
achieves better results in terms of query time compared to
the linear scan method. In addition, LazyLSH gains more
speedup when the number of dimensions increases, because
the number of required hash functions does not increase lin-
early as presented in Table 5b. Again, the running time
decreases given a larger approximate ratio c. In order to
balance the accuracy and query time, we can use a larger c
for those datasets with low dimensionality, and use a smaller
c for those datasets with high dimensionality.

C. EXTENDING LAZYLSH TO OTHER EX-
ISTING METHODS

LazyLSH is orthogonal to most previous work on LSH.
LazyLSH targets at answering approximate nearest neigh-
bor queries in different `p spaces using a single index. In this
paper, the same index structure of C2LSH is used to pro-
cess approximate nearest neighbor queries. Besides C2LSH,
LazyLSH can also adopt other index structures. For in-
stance, LazyLSH can be easily combined with the E2LSH
structure. The difference is how to choose the optimal value
of r̂ in Equation 19. To fit the E2LSH structure and its vari-
ants [18, 30], we can choose r̂ with a different optimization

method. As stated in [18], ρ =
ln 1/p′1
ln 1/p′2

is a parameter to

be minimized in the algorithm. The smaller ρ is, the more
precise results are returned. Therefore, we choose a radius
r such that ρ is minimized, formally,

r̂ = arg min
r

ρ = arg min
r

ln 1/p′1
ln 1/p′2

. (24)

SRS [43] proposed a tiny index to support approximate
nearest neighbor queries in the `2 space. It is reported
that the index size of SRS is at least one order of magni-
tude smaller than that of C2LSH [21]. SRS projects data
points from the original high-dimensional space into a low-
dimensional space via 2-stable projections. The major ob-
servation is that the square of the ratio of the `2 distance
between two points in the projected space to the `2 distance
between them in the original space follows the standard chi-
squared distribution. Therefore, SRS can index the data
points in the low-dimensional projected space and process
approximate nearest neighbor queries for high-dimensional
points with theoretical guarantees based on the chi-squared
distribution. However, such 2-stable projection restricts SRS
to building its index in the `2 space. In contrast, our LazyLSH
method is proposed based on the intuition that given p > 0
and s > 0, if two points are close in the `p space, then they
are likely to be close in the `s space as well. Let ε = |p− s|.
The property holds with a higher probability for a smaller
ε. In order to better support the approximate queries in
fractional spaces, we materialize the base index in the `1
space.

To test whether the index built in the `2 space can answer
approximate queries in fractional spaces, we try to use an
`2 ball to approximate an `0.5 ball. We set the approximate
ratio c = 3. Our experimental result showed p′1 < p′2 when
the dimensionality is greater than five, which means that
the LSH functions in the `2 space might not necessarily be
locality-sensitive in the `0.5 space when the dimensionality
increases. Based on the analysis above, we conclude that it
is hard to integrate SRS into LazyLSH to support queries
in fractional distances because SRS has its restriction on
building its index in the `2 space. However, if there is a
subsequent method which can build a tiny index in the `1
space, it should be easy to extend LazyLSH to the method.

