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Abstract

In constrained data mining, users can specify con-
straints to prune the search space to avoid mining un-
interesting knowledge. This is typically done by spec-
ifying some initial values of the constraints that are
subsequently refined iteratively until satisfactory results
are obtained. Existing mining schemes treat each itera-
tion as a distinct mining process, and fail to exploit the
information generated between iterations. In this pa-
per, we propose to salvage knowledge that is discovered
from an earlier iteration of mining to enhance subse-
quent rounds of mining. In particular, we look at how
frequent patterns can be recycled. Our proposed strat-
egy operates in two phases. In the first phase, frequent
patterns obtained from an early iteration are used to
compress a database. In the second phase, subsequent
mining processes operate on the compressed database.
We propose two compression strategies and adapt three
existing frequent pattern mining techniques to exploit
the compressed database. Results from our extensive
experimental study show that our proposed recycling al-
gorithms outperform their non-recycling counterpart by
an order of magnitude.

1 Introduction

Mining frequent patterns or itemsets is a fundamen-
tal and essential problem in many data mining appli-
cations [9]. Recently, many constraints (apart from the
traditional support) were introduced into frequent pat-
tern mining to give the user more freedom to express
his/her preferences [18, 12, 14]. On one hand, these
additional constraints can restrict the search to find
only those relevant patterns. On the other hand, it of-
ten prolongs the mining process because the user may
want to see the results of various combinations of con-
straint changes by running the mining algorithm many

times. For example, consider a frequent pattern min-
ing task with only the minimum support constraint.
A user may initially set the minimum support to 5%
and run a mining algorithm. After inspecting the re-
turned results, s/he may find that 5% is too high, and
rerun the algorithm with a reduced minimum support
of 3%. This process is repeated several times until s/he
is satisfied with the final mining results.

Existing techniques provide very little support for
interactive and iterative mining process. In fact, the
dataset usually has to be mined from scratch in each
iteration. This is clearly inefficient because a large por-
tion of the computation from an early iteration is re-
peated in the new mining process. Thus, it is critical
to design mechanisms to exploit and recycle frequent
patterns that have been mined in earlier iterations.

It is straightforward to obtain the new set of fre-
quent patterns when constraints are tightened from
those in a previous round of mining (the solution space
is reduced), e.g., when the minimum support is in-
creased. To obtain the new set of frequent patterns
under the new constraints, we can simply check the
frequent patterns from the early mining step to filter
out patterns that do not satisfy the new constraints.
This filtering process is sufficient because the set of
new frequent patterns is only a subset of the old set.
When constraints are relaxed (the solution space is
expanded), recycling previous frequent patterns be-
comes non-trivial as re-running the mining algorithm is
needed to find those additional frequent patterns. For
instance, when minimum support is decreased, more
patterns may be generated.

In this paper, we propose a novel technique to recy-
cle frequent patterns to speed up subsequent frequent
pattern mining. Our scheme comprises two phases. In
the first phase, we use the frequent patterns from an
early iteration of mining to compress the database. In
the second phase, we mine the compressed database.
The compression here aims to speed up subsequent



mining by utilizing the knowledge encapsulated in pre-
vious frequent patterns, rather than to save space al-
though it does. We design two compression strate-
gies. While the first attempts to minimize cost, the
second minimizes storage space. The strategy of mini-
mizing cost is novel in that we design a function to esti-
mate the potential saving of using a pattern to do the
compression for subsequent mining. The strategy of
minimizing storage space is relatively straightforward.
We also propose a naive mining algorithm that oper-
ates on the compressed database using the projected
database technique. We show how the naive algorithm
can be combined with algorithms that use the projected
database as the underlying framework. In this paper,
we adapted the H-Mine [15], FP-tree [10] and Tree Pro-
jection [4].

We conducted extensive experiments to study the
performance of our recycling technique. Our experi-
mental results show that our proposed recycling algo-
rithms outperform their non-recycling counterparts by
an order of magnitude. Our study also shows that the
compression strategy that minimizes cost is more ef-
fective than the compression strategy which minimizes
storage space. Another interesting finding is that the
saving of recycling algorithms over non-recycling coun-
terparts is much greater than the time that is used to
mine the set of frequent patterns for recycling.

The rest of the paper is organized as follows. In
Section 2, we present the problem of recycling patterns.
Section 3 presents the compression techniques and how
to apply the projected database techniques to mine the
compressed database. In Section 4, we show how exist-
ing frequent mining algorithm can be adapted to mine a
compressed database. Section 5 presents performance
studies. We review some related works in Section 6,
and finally, we conclude in Section 7.

2 Problem Statement

Let I = {i1,42,...,in} be a set of items which rep-
resent attribute values in a database DB. A pattern
(or itemset) X is a non-empty subset of I. Given DB,
the support of a pattern X, denoted as sup(X), is
the number of tuples in DB which contains X. Given
a minimum support threshold £, the problem of fre-
quent pattern mining is to find the complete set of
frequent patterns whose supports are greater than &.
Given a database DB and a set of constraints C' (in-
cluding minimum support threshold £), the problem of
constrained frequent pattern mining is to find the
complete set of frequent patterns that satisfy C.
Minimum support threshold is an essential con-
straint in frequent pattern mining. There are many
types of constraints that can be imposed on frequent

pattern mining. Four categories of constraints - anti-
monotone, monotone, succinct, and convertible con-
straints - have been effectively integrated into some
mining algorithms [12, 14].

As discussed before, a typical data mining applica-
tion is an iterative process. A user often runs a min-
ing algorithm many times, each with more refined con-
straints. Such an iterative process provides the oppor-
tunity to recycle frequent patterns obtained in early
iterations. Moreover, when there are many users in a
data mining system, the frequent patterns discovered
by one user also provide opportunity for the others to
recycle.

Recycling frequent patterns: Given a database
DB and a set of constraints C, the problem of recycling
frequent patterns is to find the complete set of frequent
patterns with the help of the set of frequent patterns,
denoted as F' P, discovered at a set of constraints Cy;4.

Compared with C;4, the set of constraints C' might
be tightened (e.g., the minimum support is increased),
or relaxed (e.g., the minimum support is decreased).
When constraints are tightened from C,;4, the new set
of frequent pattern can be filtered from the old set eas-
ily. The challenge comes when constraints are relaxed.
The new set of frequent patterns cannot be obtained
from the old ones. Our main approach to recycling
previous patterns is to carefully select a set of frequent
patterns from an early iteration and compress the data
to be mined using these patterns. The selection criteria
take into account the estimated saving that could oc-
cur when the database is compressed with a particular
pattern. We can adapt a series of algorithms using pro-
jected database as the underlying framework to mine
the compressed database.

We note that many frequent pattern discovery algo-
rithms have been developed [5, 6, 10, 15, 11] and it is
not our intention to develop yet another efficient algo-
rithm for finding frequent patterns. Instead, our aim
here is to show that the concept of recycling patterns is
useful and practical in an interactive data mining en-
vironment. More specifically, we hope to illustrate two
points: (1) Frequent patterns can be used to estimate
the cost for visiting some portion of the search space
that have been visited before. (2) It is possible to use
such estimation to develop a mining plan such that the
cost of a new round of mining is reduced.

Note that we can extend the problem statement by
two cases (1) The constraints C and Cyq are the same
while a set of FFP may be discovered on a database
that contains more or fewer tuples than DB. This is
essentially the incremental update problem. (2) Both
constraints and database are changed. We should point
out that our proposed technique can be applied to these
two cases [20].



3 Recycling Frequent Patterns

In this section, we shall present our proposed strat-
egy to recycle frequent patterns. We shall first look at
how compression can optimize subsequent mining. We
then present two compression strategies, and finally a
naive algorithm to mine the compressed database.

We use the minimum support constraint relaxation
as an example to present the proposed technique of re-
cycling frequent patterns. Let £,4 be the minimum
support corresponding to the set of frequent patterns
FP, and &,y be the current minimum support (relaxed
from £,14). Recycling with other constraint changes
can be similarly addressed as discussed in our techni-
cal report [20]. We use projected database concept (ex-
plain later) as the underlying mining framework of our
proposed technique. Algorithms based on projected
database concept include Tree Projection, FP-tree, H-
Mine and their variations [16, 11].

3.1 Recycling frequent patterns via compression

We first illustrate how compression can be used to
speed up the mining of frequent patterns with an ex-
ample. The following three definitions will be used in
the example.

Definition 3.1 Frequent List

Given a database DB, a frequent list is a list in which
frequent items in the database are ordered in support
ascending order. We denote frequent list as F-list. O

For example, with £,e,, = 2, the F-list of the
database DB in Table 1is < d : 2,f : 3,9 : 3,a :
3,e:4,c: 4 >, where the number after ”:” indicates
the support of the item.

Definition 3.2 Projected Database

Consider a database DB and its F-list. Let i be a fre-
quent item in DB. The ¢projected database is the
subset of tuples in DB containing ¢, where all the oc-
currences of infrequent items, item ¢ and items before
i (i.e., lower support values) in the F-list are omitted.
We denote the i-projected database as PROJ; O

For instance, the a-projected database in Table 1 is
< 100 : ec,400 : ec,500 : e > where ”:” separates the
tuple ID and tuple.

Definition 3.3 Candidate Extension

Consider a (projected) database DB and its F-list. Let
1 be an item in F-list. The candidate extensions of 7
(or the corresponding pattern of ¢) in DB are defined
to be the items following i in the F-list. We denote
candidate extensions of ¢ as C; O

| ID | Items |
100 | a,c,dye, f,g
200 | b,c,df,g
300 | c.ef,g
400 | a,c,e,i
500 | a,e,h

Table 1. The example database DB.

Example 1 For the database in Table 1, the set of
frequent patterns under &,y = 3 is FP = {f : 3, fg :
3,f9c:3,9:3,9c:3,a:3,ae:3,e:4,ec: 3,c;4}. Ta-
ble 2 is the corresponding compressed database using
the set FP (we will explain how to get the compressed
database shortly). The outlying items are the remain-
ing items in each tuple after compression.

With £,e0 = 2, the fourth column in Table 2 is ob-
tained by ranking the left items according to F-list af-
ter removing the infrequent items (not in F-list) in the
third column of Table 2. We observe that compression
can help to save computation in two ways.

First, computation can be saved when counting the
support of a pattern. When we mine frequent patterns
extended from item f (it is in group fgc), we do not
need to scan the items in the group fgc (in the un-
compressed database, we have to scan them tuple by
tuple). Instead we can utilize the group count (here
it is 3) to compute the frequent items in fprojected
database. When mining frequent patterns extended
from d (it does not belong to any group), we associate
group fgc with a counter when scanning d-projected
database, and then add the counter value (here it is
2) to the counter of each item in fgc. In this way,
we require less computation to mine the compressed
database than the uncompressed one. The saving is
significant in practice where each group contains a large
number of tuples. Similarly, it requires less computa-
tion to construct F-list by scanning Table 2 (the com-
pressed database) instead of Table 1 (the uncompressed
database).

Second, computation can be saved when construct-
ing a projected database. Consider the construction of
g-projected database. We can know all tuples of group
fgc belonging to the g-projected database by checking
fgc once. Again, if we were to operate on the uncom-
pressed database, we have to scan every tuple in Table
1. For group ae, we need to scan ae only once and then
scan the outlying items in the group. O

In summary, the new round of mining can benefit
from the compression using patterns from the previ-
ous round of mining as follows. Computation can be
saved when we count supports for candidate extensions
of a pattern P in a (projected) database. As shown



Group | ID | Outlying items | (Ordered) Frequent
Outlying Items
fgc 100 a,d,e d,a,e
200 b,d d
300 e e
ae 400 c,i c
500 h

Table 2. The compressed database CDB.

in the above example, not only items in some groups
but also items not in any group can benefit when we
compute the supports of candidate extensions. Com-
putation can also be saved when we construct the pro-
jected database. Constructing projected databases and
computing supports take the main computation in fre-
quent pattern mining algorithms that employ projected
database as the underlying framework. The saving
from the two aspects can greatly improve mining ef-
ficiency as we shall see later in our experimental study.

3.2 Compression strategies

We now have some intuition on how compression
can help in mining frequent patterns. The remain-
ing problem is determine good strategies to compress a
database given a set of frequent patterns F'P. The ba-
sic framework for the compression works as follows (see
Figure 1. In step 1, we determine the utility of each
frequent pattern. We shall discuss the utility functions
used shortly. In step 2, the patterns are ordered in de-
scending order of their utility values. For each tuple in
the database, we then select a pattern to compress it
(Steps 3-5). Note that we leave a tuple as it is when
it has no matching pattern. The pattern picked is the
one with the highest utility.

To estimate the potential savings for subsequent
mining if we use the pattern for compression, we
design two functions to compute the utility of each
frequent pattern X as follows:

Strategy 1: Minimize Cost Principle (MCP)
The utility function is U(X) = (21X — 1) x X.C, where
X.C is the number of tuples that contain pattern X.

MCP assumes that the potential savings of pattern
X for subsequent mining can be estimated by the cost
of visiting the search space to generate the pattern X
at £,14- The assumption is reasonable since the larger
the cost used in the old mining to discover X, the
larger the potential savings can be derived from using
X for the compression. The remaining problem is how
to estimate the amount of processing that must be
done in order to discover X at £,;4. Since all subsets

Compression Algorithm
Procedure CompressDB(Database: DB, set of fre-
quent patterns: FP)

(1) Compute the utility values of all patterns in FP;
(2) Sort patterns in F'P according to the descending
order of utility values;
(3) for each tuple ¢t in DB do
(4) for each pattern X in FP do
(5) if tuple ¢ contains pattern X then
Use X to compress t, break;

Figure 1. The Compression Algorithm

of X are also frequent patterns in this case and their
support are at least X.C, the amount of processing to
discover X can be estimated to be (21X — 1) x X.C.
This represents the potential savings for subsequent
mining if a tuple is covered with the pattern.

Strategy 2: Maximal Length Principle (MLP)
The utility function is U(X) = | X| % [DB| + X.C.

MLP aims to cover each tuple with the longest pat-
tern. Among the patterns with the same maximal
length, MLP will choose the pattern with the high-
est support to do compression. The first part of the
utility function, i.e., the product of the pattern length
and its frequency of occurrences, ensures that longer
patterns always have larger utility values than shorter
ones. The second part, i.e., the frequency of occur-
rences of X in database, ensures that among patterns
with the same length, patterns with larger frequency
have larger utility values.

The two utility functions essentially give rise to
two different compression strategies that we will study
later.

Example 2 Here, we see how the compressed database
in Table 2 is obtained from Table 1 using the MCP
strategy. We compute the utility of patterns in FP (e.g.
the utility value of fgc : 3 is (22 —1) %3 = 21) and sort
them in descending utility value. We get {fgc: 21, fg:
9,9c : 9,ae : 9,ec : 9,e : 4,¢4,f : 3,9 : 3,a : 3}
(the number after 7:” is the utility value). First, we
find that tuple 100 contains pattern fgc. Thus we use
fgc to compress it. The same is done for tuples 200
and 300. Tuple 400 does not contain fgc, fg, and gc,
but ae. We use ae to compress it. The same is done
for tuple 500. Finally, the results obtained is shown in
Table 2. O
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Figure 2. Mining from compressed DB

3.3 A naive algorithm for mining compressed
databases

We show how to mine the compressed database us-
ing the projected databases in a naive way in this sub-
section. Let us illustrate our naive algorithm with an
example first.

Example 3 Figure 2 shows the mining process on the
compressed database CDB in Table 2 with &pew = 2.
We first find frequent items by scanning the CDB to
construct the F-list. Following the order of F-list, we
mine the complete search space of frequent patterns as
follows (the mining process can be regarded as a depth-
first traversal of all nodes of Figure 2):
(1) Find those containing item d. The candidate ez-
tensions for d are the items after d in F-list, i.e. f, g,
a, e, c. We first construct d-projected database, which
is fgc(2){ae}, where 2 registers the frequency of the
group fgc in d-projected database. Fach candidate ex-
tension is associated with a counter and each group is
also associated with a counter. In the process of con-
structing projected database, we fill these counters. We
then add the values of group counters to the correspond-
ing counters for candidate extensions. We get the set of
frequent items {f : 2,9 : 2,c: 2} in d-projected database
(the count of a is 1). Because all occurrences of f,g,c
belong to group fgc, the frequent patterns can be gen-
erated by enumerating any combination of f,g,c, i.e.
{dc:2,df :2,dg:2,dcf :2,dcg : 2,dfg:2,dcfg:2}.
(2) Find those containing item f but not d. We first
construct the f-projected database. We count the sup-
port for candidate extensions of f as in (1). The set of
frequent items in f-projected database is {g:3,e:2,c:
3}. Then we construct fg-projected database. The set of
frequent items in fg-projected database is {e : 2,c : 3}.
We need to construct the fge-projected database. In
the step, we can get the set of frequent patterns {fg :

3,fge:2,fgec:2,fgc:3,fe:2,fec:2, fc:3}.

(3) Find those containing g, but not f and d. The min-
ing process is similar to (2) and is ignored here.

(4) Find those containing a but not g, f and d. We
construct the a-projected database and get the set of
frequent items {e : 3,c : 2}. Then we construct ae-
projected database. Finally, the frequent patterns in
the step are {ae: 3,aec: 2,ac: 2}.

(5) Finally, the other frequent patterns are computed
i a similar way and are ignored here. These include
those patterns containing e but no a, g, f and d as well
as those only containing c. O

Lemma 3.1 (Single group pattern generation)
Suppose that all occurrences of frequent items in a pro-
jected database is in a single group. The complete set
of frequent patterns can be generated by the enumera-
tions of all the combinations of frequent items with the
count of the group as support. O

The above example assumes that the compressed
database fit in memory. Although the compressed
database is smaller than the original database, it is
possible that it may still be too large for the available
memory. In this case, the compressed database can
be projected onto its set of frequent items. There are
two methods for doing so. One is the partition-based
projection as used in [15]. This approach projects
each tuple only to its first projected database (ac-
cording to item ordering). After processing the first
projected database, it needs to project the first pro-
jected database to subsequent projected databases.
The method is not efficient although it saves disk space.
Another approach, which we adopted, is to use parallel
projection to speed up the computation. This approach
projects each tuple into all its projected databases.
Based on the above analysis, we give the naive algo-
rithm of recycling patterns in Figure 3. In line 1 of
procedure RP-Mine(), the estimation of memory usage
relies on the representation of the projected database
and is discussed in [20].

4 The Mining Algorithms on Com-
pressed database

We adapt three representative frequent pattern min-
ing algorithms (using projected database as the under-
lying framework) to mine a compressed database. This
section mainly introduces how to adapt H-Mine since
it is the most complicated to be adapted. Due to space
limitation, we only give a short introduction about
adapting FP-tree and Tree Projection algorithms. In-
terested readers can refer to [20] for details.
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Figure 4. The Representation

of Table 2 with RP-Struct H; and Hy,

Algorithm Recycling

Input: Compressed database CD B, the support
threshold £new, and available memory M.
Output: The complete set of frequent patterns.
Method: Call Procedure RP-Mine(C DB, null)

Procedure RP-Mine(compressed DB: D, pattern: «)
(1) Scan D to find frequent items Iy and estimate
the size of expected memory usage EM (D)

(2) if (EM(D) > M) then

(3)  Project D to items in set Iy;

(4)  for each projected database D; (i € I) do

(5) Generate pattern 8 = ¢ U o with supp = i.count
(6) Call RP-Mine(D;, 8);

(7) else Count frequency of items in D & construct F-list
(8)  Call RP-InMemory(D, F-list, i U o);

Procedure RP-InMemory(Projected DB: PROJ,
List :list, Pattern:a)
(1) if all occurrences of items in list are in
a single group G in PROJ then
(2) for each combination (denoted as ) of the items
in the list do Generate pattern 8 U «
with supp = the count of group G;j
(3) else for each item a; in list do
(4) Generate pattern 8 = a; U a with supp = ai.count;
(5) Construct a;-projected database PROJ,, and
find the list of frequent items LF,, in PROJ,;;
(6) if LF,, # null
(7 then Call RP-InMemory(PROJ,,;, LF,,, B3);

Figure 3. Algorithm to Recycle Patterns

4.1 Recycling using H-Mine algorithm

We use the data structure of H-Mine to represent
the outlying frequent items (uncompressed part). The

Figure 5. RP-Header tables

Figure 6. RP-Header table H,

integration of such a data structure into recycling al-
gorithm is non-trivial. We first use an example to il-
lustrate how a compressed database can be mined by
adapting H-Mine. Then the algorithm for frequent pat-
tern discovery is given.

Example 4 Consider the compressed database CDB
as shown in Table 2 and &ney = 2. CDB can be or-
ganized as shown in Figure 4. The RP-Header table H
contains the same number of items as F-list and follows
the order of F-list. One compressed group fgc contains
three tuples, and the other group ae contains two tuples
(one tuple is null after compression). O

The representation of the compressed database as
in Figure 4 is called RP-Struct. It has three compo-
nents:

1. Group Head: Each entry in group head con-
sists of three fields: group pattern, count, and tail,
where group pattern registers the items contained in
the group, count registers the number of tuples in the
group, and tail points to the tuples of the group.

2. Group Tail: It records the frequent items in the
uncompressed part of each tuple. We adapt the data
structure of H-Mine [15] for group tails. Each frequent
item is stored in an entry that contains two fields:
item-name and item-link, where item-name registers
the item the entry represents and item-link is used to
link the same item-name in different group tails to-
gether.

3. RP-Header Table: Each entry in RP-Header ta-
ble represents a pattern and the entries in RP-Header
table follow the same order as F-list. Each entry con-
sists of four fields: item-name, count, item-link, and
group-link, where item-name registers the last item of
the pattern represented by the entry, count means the
number of tuples containing the pattern represented by



Algorithm FillTable

Method: Fill-RPHeader(null, H, F-list, null);

Procedure Fill-RPHeader(RP-Header table:Hj,

PR-Header table:Hs, Item List: LI, Item:a;)

(1) for each group G linked by group-link of entry a; of Hy
// if Hx = null, for each group used for compression

(2) fGNLI£D
3) Let 4 be the first item of GN LI;
(4) Link group G to the group-link of entry i of Ha;
(5)  for each group tail t of G
(6) if there exists an item j,j € LINt,
j orders before i in the order of LI then

// if there are several such j, we choose the first

// When i = null, i is ordered after all items in LI
(7 Link entry j in group tail ¢ with entry j of Hs

Figure 7. Algorithm to Fill the RP-Header Ta-
ble

the entry, item-link points to the tuple whose first item
is item-name, and group-link points to the groups con-
taining item-name. By following item-link, and group-
link, we can get the projected database for the pattern
represented by each entry.

One main originality of H-Mine is to construct the
projected database using a set of pointers rather than
physically projecting the database. The compressed
database makes it non-trivial to do so since we need
to consider both group heads and tails. We show how
to fill the item-link and group-link of RP-Header table
in Figure 4 to construct the projected database. The
algorithm is described in Figure 7.

As in Example 3, d-projected database is mined first.
In filling the RP-Header table, we can get d-projected
database while assigning the group heads and group
tails that are not in d-projected database to the other
entries in RP-Header table. For group head G (lines
2-4), we assign it to the entry corresponding to the first
item of G N F-list. For instance, group fgc is assigned
to the entry f of RP-Header table H because f is the
first item of fgc N F-list. For group tail (lines 5-7),
we give two examples: (1) Group tail 100 in group fgc
is linked by the item-link of entry d of H. (2) Group
tail 300 is not linked with entry e of H. Note that
group tails 100 and 300 are handled differently. This
is because in 100 item d ranks before f (the first item
of group fgc) in F-list and d-projected database is
mined before f-projected database. However, in 300 e
ranks after f and e-projected database is mined after
f-projected database.

Example 5 Let us examine the mining process for Ez-
ample 8 based on the RP-Struct constructed in Example

4 as follows:

(1) Find those containing item d. There is no group
head that contains d. Therefore, by traversing the
item-link of d, we can find the set of frequent items
{f:2,9:2,c:2} in d-projected database. Because all
occurrences of f,g,c belong to group fgc, the frequent
patterns can be generated by enumerating any combi-
nation of f,g,c.

After discovering frequent patterns in the subset, we
traverse the item-link of d again to assign them to the
items after d, i.e. f,g,a,e (there is no need to fill the
item-link and group-link of item c because it can not be
further extended). In group tail 100, the item after d is
a and a ranks after item f, the first item of group fgc.
Group tail 100 is not linked with the entry of item a of
RP-Header table H since we mine f-projected database
before a-projected database. For the similar reason, we
also do not link group tail 300 with any entry of H.
(2) Find those containing item f but not d. The item-
link of item f is null. The set of frequent items in f-
projected database is {g : 3,e: 2,¢: 3} by checking the
group fgc. The RP-Header table Hy is constructed for
f as shown in Figure 5. The group fgc contains the
first item g of Hy. Therefore, the group fgc is linked
with group-link of entry g of Hy. Since all items in
group tails are after item g according to the order of
Hy, there is no need to scan the group tails of fgc to
build item-link for other items in Hy.

In order to mine the fg-projected compressed
database, the RP-Header table Hy, is constructed as
shown in Figure 5. The RP-Header table is constructed
by traversing the item-link and group-link of entry g of
Hy. For group fgc, its first item contained in Hyy is c.
Since its group tails 100 and 300 contain item e and e
is before ¢ in Hyg, they are linked with entry e of Hy,.
We do not link entry c with group fgc since pattern
(fgc) represented by c can not be extended. The group
tail 200 do not contain any items in Hyy. See Example
8 for the set of frequent patterns obtained. At the end
of the step, the group fgc is assigned to item g of H.
(8) Find those containing g, but not f and d. The min-
ing process is similar to (2) and is ignored here.

(4) Find those containing a but not g, f and d. Figure
6 shows the RP-Header table H,. By traversing the
item-link and group-link of entry e, we can get the set
of frequent patterns (see Example 3).

(5) The step is ignored here. O

Based on the above analysis, we give the procedure
Recycle-HM that recycles patterns by adapting H-Mine
in Figure 8. The procedure Recycle-HM is used to re-
place the procedure RP-InMemory in algorithm Recy-
cling shown in Figure 3. The a;-projected database in
line 6 of procedure Recycle-HM is obtained by follow-
ing the item-link and group-link of entry a; of H. The



Procedure Recycle-HM(PR-Struct: Struct,
RP-Header table :H, pattern:ca)
(1) if RP-Header table H only contains a single group G
(2) then for each combination of (denoted as f3)
the items in group G do Generate pattern S U «
with supp = the count of group G;j
(4) else for each item a; in H do
(5) Generate pattern 8 = a; U a with supp = a;.count;
(6) Find List of frequent items LFy, in a;-projected
database;
(7 Construct RP-Header table Hg for pattern 3;
(8) Call Fill-RPHeader(H, Hg, LF,,, a;);
) if Hg # null
(10) then Call Recycle-HM(Struct, Hg, 3);
(11)  Let A, be the list of items ordered after a; in H;
(12)  Call Fill-RPHeader(H, H, A,;, a;);

Figure 8. Recycling frequent patterns by
adapting H-Mine

Procedure Fill-RPHeader() called in lines 8 and 12 is
given in Figure 8. In line 8, the item-link and group-
link of a; are assigned to the RP-Header table in next
level while in line 12 they are assigned to the entries
after a; in the same RP-Header table.

4.2 Recycling using FP-tree and Tree Projection
Algorithms

We use the data structure of frequent pattern tree
(or FP-tree in short), which is a prefix tree, to repre-
sent the outlying frequent items (uncompressed part).
In the process of recursively constructing projected
databases that are represented with FP-tree, we treat
each (compressed) group head as a special item, which
is in the upper of each prefix tree branch.

In Tree Projection algorithm [4], transactions are
projected on each node of the tree from the root on.
A matrix is maintained to count the support on the
reduced set of transactions after projection. Tree Pro-
jection algorithm can mine frequent patterns in both
depth-first and breath-first ways. We adopt depth-first
approach in this paper.

5 Performance Studies

In this section, we will look at the performance of
our approaches to recycling and reusing frequent pat-
terns by comparing recycling algorithms with the cor-
responding non-recycling algorithms. As it is difficult
to simulate the actual constrained mining environment,
we adopt a simplified method to conduct our experi-

ments. We perform an initial mining with a support
threshold £,;4 to generate a set of patterns for recycling
and then lower the support threshold to &,¢,, When try-
ing to recycle the patterns.

We have performed an extensive performance study
on a wide range of data sets. We report a summary of
the results here. All the experiments are performed on
a 1.4GHz Pentium PC with 512M main memory, run-
ning Windows XP. All programs are developed using
Microsoft VC++.

Weather [1] and Forest [3] are two sparse datasets
used to report our results. Connect-4 [3] and Pumsb [2]
are dense data sets that we have used. The columns 2-4
of Table 3 list the number of tuples, the average tuple
length and the total number of items in each data set.
Because of the different properties of these datasets, we
cannot choose the same initial support threshold &4
for all datasets. We try to choose the initial support
€14 to ensure that we can have some frequent patterns
to recycle.

Our argument for this is that a lack of frequent
patterns for recycling will mean that little or no re-
sources are used for the previous round of mining. It
thus makes no sense to try to recycle patterns when
no resources are used in the first place. This argu-
ment, based on the law of conservation, is also consis-
tent with our observation that a lower initial support
will usually give better performance of recycling. Af-
ter all, we know that mining frequent patterns with low
minimum support will typically require more resources
in term of both CPU and I/Os. Since more resources
are used, it is expected to bring more benefits when
reusing the output of the mining.

5.1 Analysis of Compression Strategies

This subsection analyzes compression time and com-
pression ratio of the two proposed compression strate-
gies, MCP and MLP.

Columns 6 and 7 of Table 3 give some statistic on the
patterns that are discovered with a minimum support
&o1q- We compress each database using these patterns.
The last two columns of Table 3 show the compression
ratio using the two strategies. The compression ratio
R is computed as S./S,, where S is the size of com-
pressed database and S, is the size of original database.
In term of the compression ratio, MLP > MCP.

We would stress again that the compression here
provides a way to speed up subsequent mining by uti-
lizing previous frequent patterns, rather than to save
space although it does. We can see that the compres-
sion ratio is not very large.

Table 3 also shows the running time for compressing
the dataset in seconds. The column “run time (I/0)”
in Table 3 includes the time used to read, write and



Dataset #Tuples Avg. Len. # Items €old # pattern | maximal | Run Time(I/O) Run Time(Pipeline) Compression
length Sec. Sec. Ratio

MCP MLP MCP MLP MCP | MLP

Weather 1,015,367 15 7939 5% 1227 9 9.61 10.68 4.34 5.31 0.723 | 0.675

Forest 581,012 13 15,970 1% 523 4 2.67 4.58 0.45 2.25 0.858 | 0.785

Connect-4 67,557 43 130 95% 4411 10 0.32 0.32 0.06 0.06 0.773 | 0.773

Pumsb 49,046 74 7117 90% 2607 8 0.50 0.51 0.10 0.11 0.894 | 0.894

Table 3. The properties of datasets and compression statistic

compress data sets. The column “run time (pipeline)”
deducts the I/O time from the column run time (I/0).
We list such a column since the compression step can
in fact be directly integrated into the mining algorithm
when it is projecting the databases which means that
the I/O time will be incurred anyway.

As shown in Table 3, the compression time is small
compared with the mining time as shown in next sub-
section. This shows that the overhead of compression
is not significant. The run time of the two strategies
follows the order: M LP > MCP. The order is consis-
tent with the compression ratio since the better ratio
usually means more computation required for compres-
sion.

5.2 Mining in Main Memory

In this subsection, we assume that both the com-
pressed databases and original databases can fit into
the memory. We will evaluate the effectiveness of recy-
cling patterns and the two compression strategies. We
use HM-MCP and HM-MLP to represent the two recy-
cling pattern algorithms adapted from H-Mine. HM-
MCP and HM-MLP run on compressed database gen-
erated with the MCP and MLP strategies respectively.
Similarly, FP-MCP and FP-MLP represent two algo-
rithms adapted from FP-tree; TP-MCP and TP-MLP
represent two algorithms adapted from Tree Projec-
tion.

The reported CPU time does not include the time
used to output frequent patterns since it is the same for
all algorithms. In any case, the mining cost dominates
performance so that including them does not affect the
relative performance of the various schemes.

The effectiveness of recycling patterns: Fig-
ures 9, 12, 15 and 18 compare the performance of re-
cycling algorithm HM-MCP with H-Mine by varying
the new support threshold &,.,, and plotting the CPU
running time for each support threshold. For example,
in Figure 9, HM-MCP mines the compressed dataset
weather which is generated using the set of frequent
patterns under £, = 5%. Readers can refer to Ta-
ble 3 to get the related information for other figures.
Note that the vertical axes of Figures 15 and 18 use
logarithmic scale for clarity. These figures clearly show
that HM-MCP are performing far better than H-Mine

with respect to run time. In Figures 15 and 18, re-
cycling algorithms are over two orders of magnitude
faster than the non-recycling version. We also observe
similar relative performance between the recycling al-
gorithms and their non-recycling counterparts for FP-
based techniques (see Figures 10, 13, 16 and 19) and
Tree Projection methods (see Figures 11, 14, 17 and 20,
where the vertical axes of Figures 17 and 20 use loga-
rithmic scale). The experiment results clearly demon-
strate the usefulness of recycling frequent patterns.

There are three interesting observations from our
experiment results:

(1) When minimum support is low, the savings of
HM-MCP against H-Mine are much more than the time
used to generate the set of frequent patterns at £y;4.!
Considering that the compression time with pipeline
in Table 3 is also small, this suggests the possibility
that we could split a new mining task with low mini-
mum support into two steps: (a) we first run it with
a high minimum support; (b) we then compress the
database with the strategy MCP and mine the com-
pressed database with the actual low minimum sup-
port. We plan to explore this issue further.

(2) None of H-Mine, FP-tree and Tree Projection
algorithms came out as a winner on all the datasets
used. However, our recycling algorithms can always
improve their performance.

(3) When the minimum support is low, recycling pat-
terns using MCP performs better. This is exciting for
incremental mining of frequent patterns. Existing in-
cremental mining techniques do not work well when the
data set or constraints change dramatically (e.g. sharp
decrease in minimum support). HM-MCP can over-
come the problem when it is applied to incremental
mining.

Comparison of two compression strategies:
Figures 9-20 compare the usefulness of the two com-
pression strategies in recycling patterns. As shown,
in all cases, the compression strategy MCP achieves
at least the same or better performance than the
other strategy MLP. As shown in subsection 5.1, MLP
usually achieves better compression ratio than MCP.
Therefore, we can conclude that better compression

LAlthough we do not show the time when mining with the
support threshold £,;4, readers can infer that it will be less than
the CPU time for the lowest &pep-
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does not necessary means better performance. QOur
experiments also prove that minimizing mining cost
(MCP) is more effective than minimizing storage space
(MLP)in recycling frequent patterns. In fact, the com-
pression ratios are not very large for both strategies
as in Table 3. As given in section 3.1, the reason for
the improvement of recycling algorithms against non-
recycling schemes is that we can achieve savings in
counting and projecting by means of compression.

In Figure 12, HM-MLP that recycles patterns based
on MLP performs even worse than H-Mine. This im-
plies that simply maximizing compression can even
worsen the situation. We also observe that our min-
ing algorithms based on the two compression strate-
gies nearly achieve the same performance on dense data
sets. This is because the two strategies nearly do the
same compression as shown in Table 3.

5.3 Mining with Memory Limitation

In this subsection, we consider the case that the
compressed datasets (and hence the original datasets)
cannot be held in the main memory. As discussed in
[15, 20], our mining algorithms HM-MLP and HM-
MCP can compute the size of memory usage in the
same manner as the H-Mine algorithm because they
adopt similar data structure. The memory usage of
FP-tree and Tree Projection algorithms can not be ef-
fectively estimated, and it is difficult to enforce mem-
ory limitation using FP-tree and Tree Projection algo-
rithms. As a result, we do not compare FP-tree and
Tree Projection with their recycling algorithms.

We enforce memory limitation to 4 and 8 megabytes.
Such limitations are used because they can imitate the
memory limitation situations considering the size of
datasets although we realize such limitations are small
compared to the available memory in current PC. The
compressed databases are generated using the same set
of recycled patterns as that in Section 5.1. Figures 21—
24 show that HM-MCP outperforms H-Mine. Figures
23 and 24 use logarithmic scale for y-axes.

When comparing Figure 15 with Figure 23, readers
may find that enforcing memory restriction on dense
data set Connect-4 even improves performance of both
H-Mine and HP-MCP in some cases . Memory restric-
tion requires that the (compressed) database be pro-
jected in the secondary storage until a level where the
projected database can fit into memory. The projected
(compressed) databases require less time in counting
and the savings may be larger than the time used to
read and write the projected (compressed) database.

Finally, all experiments show that in nearly all cases
the saving of recycling algorithms over non-recycling
counterparts is much greater than the time that is used
to generate the set of frequent patterns for recycling.
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In summary, our experimental results and perfor-
mance analysis support the claim that recycling pat-
terns is useful. Moreover, our experiments showed that
the strategy of minimizing cost (MCP) is usually more
effective than MLP for recycling patterns.

6 Related Work

Frequent pattern mining has been studied exten-
sively in the past e.g. in [5, 4, 10, 17, 15, 11]. Many
existing algorithms are variations of the Apriori algo-
rithm [5]. Recently, a series of algorithms using pro-
jected database as the underlying framework were pro-
posed [4, 10, 15] and were shown to be more efficient
than the Apriori algorithm.

Some studies, such as [18, 12, 14], push constraints
deep into frequent pattern mining algorithm in or-
der to reduce computation in discovering uninterest-
ing patterns. These constraints often prolong the fre-
quent pattern mining process because the user may
want to see the results of various combinations of con-
straint changes by running the mining algorithm mul-
tiple times. Studies on mining on multi-user platforms
provide more opportunities for users to share their min-
ing results. This makes recycling and reusing frequent
patterns even more important.

Incremental techniques [7, 19, 13] are related to our
work. They assume that the old mining process will
output intermediate results for use in subsequent in-
cremental mining. However, our approach does not
make any assumption that old mining process realizes
and makes preparation for subsequent mining. Our
technique can be applied to incremental mining. Com-
pared with existing incremental techniques [7, 19, 13],
our techniques overcome the following disadvantages
of existing incremental techniques: (1) existing incre-
mental techniques need to store the negative border or
similar information from previous computation, which
can take large amount of space. (2) they are not effec-
tive when the changes of database or constraints are
significant. (3) existing techniques become awkward
when the size of data set reduces rather than increases.
(4) they are usually not practical for recycling patterns
problems with constraint changes because of huge num-
ber of candidates generated by such techniques|[8].

Similarly, the techniques of mining with constraint
change [8] have the same problems as incremental min-
ing. In [8], the handling of constraint changes is depen-
dent on the properties of constraints and is not appli-
cable to certain constraints, for example convertible
and hard constraints. The proposed technique in this
paper gives a non-intrusive method of reusing patterns
in previous computation no matter what type of con-
straints that are being used.



7 Conclusion

In this paper, we showed how frequent patterns dis-
covered in the early round of mining (by the same user
or different users) can be recycled to enhance subse-
quent mining. We proposed a two phase strategy that
first compresses the database based on frequent pat-
terns from an early round of mining and then mines
the compressed database. We designed two compres-
sion strategies and adapted three existing mining al-
gorithms to work on compressed databases. Our ex-
perimental results showed that the proposed strategy
is effective, and the proposed recycling algorithms out-
perform their non-recycling counterparts significantly.
Our results also showed that a cost-based compression
strategy is preferred over a storage-based strategy.
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