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Abstract

The problem of mining frequent closed patterns has re-
ceive considerable attention recently as it promises to have
much less redundancy compared to discovering all frequent
patterns. Existing algorithms can presently be separated
into two groups, feature (column) ! enumeration and row
enumeration. Feature enumeration algorithms like CHARM
and CLOSET+ are efficient for datasets with small number
of features and large number of rows since the number of
feature combinations to be enumerated will be small. Row
enumeration algorithms like CARPENTER on the other hand
are more suitable for datasets (eg. bioinformatics data) with
large number of features and small number of rows. Both
groups of algorithms, however, will encounter problem for
datasets that have large number of rows and features.

In this paper, we describe a new algorithm called COB-
BLER which can efficiently mine such datasets . COBBLER
is designed to dynamically switch between feature enumer-
ation and row enumeration depending on the data charac-
teristic in the process of mining. As such, each portion of
the dataset can be processed using the most suitable method
making the mining more efficient. Several experiments on
real-life and synthetic datasets show that COBBLER is or-
der of magnitude better than previous closed pattern mining
algorithm like CHARM, CLOSET+ and CARPENTER.

1 Introduction

The problem of mining frequent closed patterns has re-
ceived considerable attention recently as it promises to have
much less redundancy compared to discovering all frequent
patterns [8]. Existing algorithms can presently be separated
into two groups, feature (column) enumeration and row enu-
meration. In feature enumeration algorithms like CHARM
[9] and CLOSET+ [7], combinations of features are tested
systematically to look for frequent closed patterns. Such an
approach is suitable for datasets with small number of fea-
tures and large number of rows since the number of feature
combinations to be tested will be small.

However, for bioinformatics data with large number of
features and small number of rows, the performance of these
algorithms deteoriate due to the large number of feature
combinations. To go around this problem, the algorithm

1 Although column is a more suitable term here, we will use the term
feature in this paper to avoid potential confusion during the technical
discussion

CARPENTER [3] is developed to perform row enumera-
tion on bioinformatics datasets instead. CARPENTER is a
row enumeration algorithm which looks for frequent closed
patterns by testing various combinations of rows. Since the
bioinformatics datasets have small number of rows and large
number of features, the number of row combinations will be
much smaller than the number of feature combinations. As
such, row enumeration algorithms like CARPENTER will
be more efficient than feature enumeration algorithms on
these kinds of datasets.

From the above, it is natural to make two observations.

First, we can conclude that different datasets will have
different characteristics and thus require a different enumer-
ation method in order to make closed pattern mining effi-
cient. Furthermore, since these algorithms typically focus
on processing different subset of the data during the min-
ing, the characteristics of the data subset being handled will
change from one subset to another. For example, a dataset
that have much more rows than features may be partitioned
into sub-datasets with more features than rows. Therefore a
single feature enumeration method or a single row enumer-
ation method may become inefficient in some phases of the
enumeration even if they are the better choice at the start of
the algorithm. As such, it makes sense to try to switch the
enumeration method dynamically as different subsets of the
data are being processed.

Second, both classes of algorithms will have problem
handling datasets with large number of features and large
number of rows. This can be seen if we understand the ba-
sic philosophy of these algorithms. In both classes of algo-
rithms, the aim is to reduce the amount of data being con-
sidered by searching in the smaller enumeration space. For
example, when performing feature enumeration, the number
of rows being considered will decrease as the number of fea-
tures in a feature set grow. It is thus possible to partition the
large number of rows into smaller subset for efficient min-
ing. However, for datasets with large number of rows and
large number of features, adopting only one single enumer-
ation method will make it difficult to reduce the data being
considered in another dimension.

Motivated by these observations, we derived a new algo-
rithm called COBBLER 2 in this paper. COBBLER is de-
signed to automatically switch between feature enumeration
and row enumeration during the mining process based on
the characteristics of the data subset being considered. As
experiments will show later, such an approach will produce
good results when handling different kinds of datasets. Ex-

2COBBLER stands for Combining Row and Column Enumeration. The
letter ‘b’ is counted twice here.



periments show that COBBLER outperforms other closed
pattern mining algorithms like CHARM [9], CLOSET+[7]
and CARPENTER [3].

In the next section, we will introduce some preliminar-
ies and give our problem definition. The COBBLER algo-
rithm will be explained in Section 3. To show the advantage
of COBBLER’s dynamic enumeration, experiments will be
conducted on both real-life and synthetic datasets in Section
4. Section 5 introduces some of the related work for this
paper. We will conclude our discussion in Section 6.

2. Preliminary

We will give a problem description and define some no-
tations for further discussion.

We denote our dataset as D. Let the set of binary fea-
tures/columns be F={f1, f2,.., fm} and let the set of rows
be R={ry,..,m,}. We abuse our notation slightly by saying
that a row r; contain a feature f; if f; have a value of 1 in
r;. Thus we can also say that r; C F.

For example, in Figure 1(a), the dataset has 5 features rep-
resented by alphabet set {a, b, ¢, d, e} and there are 5 rows,
{r1.-.., r5}, in the dataset, The first row r; contains feature
set {a, c,d} i.e. these binary features have a value of “1”
for r1. To simplify notation, we will use the row number to
represent a set of rows hereafter. For example, “23” will be
used to denote row set {ry,73}. And a feature set like {a, b}
will also be represented as ab.

Here, we give two concepts called feature support set
and row support set.

Definition 2.1 Feature Support Set, R(F")
Given a set of features F/ C F, weuse R(F') C Rtodenote
the maximal set of rows that contain F”. O

Definition 2.2 Row Support Set, F(R’)

Given a set of rows R’ C R, we use F(R') C F to denote
the largest set of features that are common amount the rows
inR'. m|

Example 1 R(F’) and F(R')

Let’s use the table in Figure 1(a). Let F’ be the feature set
{a,c}, then R(F") = {r1,75} since both 71 and r5 contain
F' and no other rows in table contain F’. Also let R’ be the
set of rows {ry,r2}, then F(R') = {a, d} since both feature
a and feature d occur in r; and ro and no other features
occur in both r; and ra. O

Definition 2.3 Support, |R(F")]

Given a set of features F’, the number of rows in the dataset
that contain F' is called the support of F’. Using earlier
definition, we can denote the support of F” as |R(F')|. O

Definition 2.4 Closed Patterns
A set of features F’ C F is called a closed pattern if there
exists no F” such that F' C F” and |R(F”)| = |R(F’)|. O

Definition 2.5 Frequent Closed Patterns

A set of features F’ C F is called a frequent closed pattern
if (1) |R(F")|, the support of F’, is higher than a minimum
support threshold. (2) F' is a closed pattern. m|

i | F(ri) fi | RUJ5)
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3| be c | 145
4 | be,de d | 124
5| ab,c,e e 2,3,45
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Figure 1. Running Example

Let us illustrate these notions with another example be-
low.

Example 2 Given that minsup=1, the feature set {b, e} will
be a frequent closed pattern in the table of Figure 1(a) since
the feature set occurs four times in the table. {b,d} on the
other hand is not a frequent closed pattern although it oc-
curs two times in the table which is more than the minsup
threshold. This is because that it has a superset {b, d, e} and

IR({b,d, e})| = |R({b, e})|- 0

We will now define our problem as following:
Problem Definition: Given a dataset D which contains
records that are subset of a feature set F, our problem is to
discover all frequent closed patterns with respect to a user
support threshold minsup.

3. The COBBLER Algorithm

To illustrate our algorithm, we will use the tables in Fig-
ure 1 as a running example. Table 1(a) is the original table T'
and Table 1(b) is the transposed version of Table 1(a), T'T.
In T'T, the row ids are the features in T" while the features
are the row ids in T". A row number i exists in the row f; of
TT if and only if the feature f; occursinrowiinT.

For example, since feature “c” occurs in r1, 74 and r5 in
the original table, row ids “1”, “4” and “5” occur in row “c”
in the transposed table. To avoid confusion, we will hereafter
use tuples to refer to the rows in the transposed table and use
rows to refer to the rows in the original table.

3.1 Static Enumeration Tree

Algorithms for discovering closed patterns can be rep-
resented as a search in an enumeration tree. An enumera-
tion tree can either be a feature enumeration tree or a row
enumeration tree. Figure 2(a) shows a feature enumeration
tree in which each possible combination of features is rep-
resented as an unique node in the tree. Node “ab” in the
tree for example represents the feature combination {a, b}
while the bracket below (i.e. {25}) indicates that row r4 and
r5 contain {a, b}. Algorithms like CHARM and CLOSET+
find closed pattern by performing depth-first search (DFS)
in the feature enumeration tree (starting from the root). By
imposing an order ORD on the feature, each possible com-
bination of features will be systematically visited following
a lexicographical order. In Figure 2(a), the order of enu-
meration will be {a, ab, abc,...,de,e} (in absence of any
optimization and pruning strategies).

The concept of a row enumeration tree is similar to a fea-
ture enumeration tree except that in a row enumeration tree,
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Figure 2. Traditional row and feature enumer-
ation tree.
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Figure 3. Conditional Table

each possible combination of rows(instead of features), R/,
is represented as a node in the tree. Figure 2(b) shows a
row enumeration tree. Node “12” in the figure represents
row combination {1, 2} while the bracket “{ad}” below de-
notes the fact the “{ad}” is found in both r and 75 (i.e.
F({1,2}) = {a,d}. Again, by imposing a order ORD,.
on the rows, row enumeration algorithm like CARPENTER
will be able to visit each possible combination of rows in a
DFS manner on the enumeration tree. The order of node vis-
ited in Figure 2(b) will be {1,12,123,...,45,5} when no
pruning strategies are adopted.

Regardless of row or feature enumeration, searches in the
enumeration tree are simulated by successive generation of
conditional (original) table and conditional transpose ta-
ble defined as the followings.

Definition 3.1 Conditional Table, T'|x

Let X be a subset of features. Given the original table T', an
X-conditional original table denoted as T'| x is a subset of
rows from T such that:

1. Each row is a superset of X in T’

2. Let f; be the feature with lowest order in X according to
ORDy. Feature f; and all f; that having higher order
than f; according to ORD; are removed from each row
in T|X

O

Example 3 Let the original table in Figure 1(a) be 7. When
the node ““b in the enumeration tree of Figure 2(a) is vis-

ited, an X-conditional table, T'|; (note: X={b}) will be cre-
ated and is as shown in Figure 3(a). From T'|, we can infer
that there are 4 rows which contain “b”. m|

Definition 3.2 Conditional Transposed Table, TT'| x

Let X be a subset of rows (in the original table). Given
the transposed table 7T, an X -conditional transposed table
denoted as T'T'| x is a subset of tuples from T'T" such that:

1. Each tuple is a superset of X in TT

2. Let r; be the row with lowest order in X according to
ORD,. Row r; and all r; that having higher order than
r; according to ORD,. are removed from each tuple in
TT|x

O

Example 4 Let the transposed table in Figure 1(b) be T'T.
When the node “12” in the row enumeration tree of Fig-
ure 2(b) is visited, an X-conditional transposed table, T'T'| 12
(note: X={1,2}) will be created and is as shown in Figure
3(b). The inference we make from T°T'|;2 is slightly different
from that we make from the earlier example. Here we can
infer that {a,d} occurs in two rows of the dataset (i.e. v, and
7‘2). O

In both Example 3 and 4, it is easy to see that the num-
ber of rows (tuples) in the conditional (transposed) table will
be reduced as the search move down the enumeration tree.
This enhanced the efficiency of mining since the number of
rows (tuples) being processed at deeper level of the tree will
also be reduced. Furthermore, the conditional (transposed)
table of a node can be easily obtained from that of its parent.
Searching the enumeration tree is thus a successive genera-
tion of conditional tables where the conditional table at each
node is obtained by scanning the conditional table of its par-
ent node.

3.2 Dynamic Enumeration Tree

As we can see, the basic characteristic of a row enumera-
tion tree or a feature enumeration tree is that the tree is static.
The current solution is to make a selection between these ap-
proaches based on the characteristic of 7" at the start of the
algorithm. For datasets with many rows and few features,
algorithms like CHARM [9] and CLOSET+ [7] that search
in the feature enumeration tree will be more efficient since
the number of possible feature combinations will be small.
However, when the number of features is much larger than
the number of rows, a row enumeration algorithm like CAR-
PENTER [3] was shown to be much more efficient.

There are two motivations for adopting a more dynamic
approach.

o First, the characteristics of the conditional tables could be
different from the orignal table. Since the number of rows
(or tuples) can be reduced as we move down the enumer-
ation tree, it is possible that a table 7" which has more
rows than features initially, could have the characteristic
reversed for it’s conditional tables T'|,, (i.e. more features
than rows). As such, it makes sense to adopt a different
enumeration approach as the data characteristic changes.



e Second, for datasets with large number of rows and also
large number of features, a combination of row and fea-
ture enumeration could help to reduce both the number
of rows and features being considered in the conditional
tables thus enhancing the efficiency of mining.

Next, we will illustrate with a simple example on what
we mean by dynamic switching of enumeration method:

Example 5 Consider the table T in Figure 1(a). Let us
assume that the order for features, ORDy is {a,b,c,d, e}
and the order for rows, ORD, is {1,2,3,4,5}. Suppose,
we first perform a feature enumeration generating the {b}-
conditional table (shown earlier in Figure 3(a)) followed
by the {b,c}-conditional table in Figure 4(a). To switch
to row enumeration, T, Will first be transposed to create
TT(T|s.) ® in Figure 4(b). Since only row 4 and 5 are
in the tuples of TT(T|p.), We next perform row enumera-
tion on row 4, which give TT(T |pc)|4 in Figure 4(c). From
TT(T|pc)|a, We see that feature “d”” and “e” are both in
row 4. Thus, we can conclude that only 1 row (i.e. row 4)
contains the feature set {b,c} + {d,e} = {b,c,d,e} ({b,c}is
obtained from feature enumeration while {d,e} is obtained

from row enumeration). O
i | F(ri) fi | R(f;) fi | R(f;)
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Figure 4. Conditional Table

Figure 5(a) and 5(b) show examples of possible dynamic
enumeration tree that could be generated from table 7" in our
running example. In Figure 5(a), we highlight the path link-
ing nodes “b”, “bc” and “4” as they correspond to the nodes
we visited in Example 5. Switching from row enumeration
to feature enumeration is also possible as shown in Figure
5(b).

Like previous algorithms, COBBLER will also perform
a depth first search on the enumeration tree. To ensure a
systematic search, enumeration is done based on ORD,. for
row enumeration and on ORD for feature enumeration.

To formalize the actual enumeration switching procedure,
let us first divide all the nodes in our dynamic enumeration
tree into two classes, row enumerated node and feature enu-
merated node. As the name implies, row enumerated node
is a node which represents a subset of rows R’ being enu-
merated while a feature enumerated node is a node which
represents a subset of features F’ being enumerated. For ex-
ample, in Figure 5(a), the node “be” is a feature enumerated
node while its children node “4” is a row enumerated node.

Definition 3.3 Feature to Row Enumeration Switch Let
N be a feature enumerated node representing the feature
subset F” and let R(F"’) be the rows containing F’ in T'. In
additional, let f; be the lowest ranking feature in F’ based
on ORDy. A switch from feature to row enumeration will
follow these steps:

3TT stand for transposed
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Figure 5. Dynamic enumeration trees.

1. Create transposed table TT'(T'| p-) such that

e we have a tuple for each feature f € F, f having
lower rank than f;

e given a tuple in TT(T'| r+) representing a feature f,
the tuple contains all row r such that » € R(F"’) and

r e R({f})

2. Perform row enumeration on TT(T| ) following the or-
der ORD,..

O

Example 6 For example, in Figure 5(a), while node “ab”
enumerates feature set, its descendant will switch to enu-
merate row set. The sub-tree of node “ad” will create a
transposed table with one tuple for each feature ¢, d and
e since c,d,e are of lower rank than b in ORD|;. Since
R({a,b})={2, 5}, the tuples in the enumeration table will
only contain some subsets of {2,5}. We thus have the enu-
merating order {2, 25,5} on the transposed table m|

To define the procedure for switching from row to fea-
ture enumeration, we first introduce the concept of Direct
Feature Enumerated Ancestor

Definition 3.4 Direct Feature Enumerated Ancestor,
DFA(N)

Given a row enumerated node N, its nearest ancestor which
enumerates feature subsets is called its direct feature enu-
merated ancestor, DFA(N). In addition, we will use
Fp pa(y to denote the feature set represented by DF A(N)
The root node of the enumerating tree can be considered to
enumerate both row set and feature set. O

For example,in Figure 5(b), DF A(“bd”) = “24”.

Definition 3.5 Row to Feature Enumeration Switch

Let IV be a row enumerated node representing the row subset
R' and let F(R') be the maximal set of features that is found
in every row of R’ in T. In addition, let FbFA(N) be the
feature set that is represented by DFA(N) and let f; be
the lowest ranking feature in Fp, .,y based on ORDy.
A switch from row to feature enumeration will follow these
steps:



1. Create table 7" such that for each row r in R(Fpp 4 ).
a correspond row r’ is in T with

e Cr

o FIIDFA(N) cr
e ' C F(R)

2. Remove all features which have lower rank than f; from
all the 7

3. Perform feature enumeration on 7" following the order
ORDy;.

O

In essence, a row to feature enumeration create a condi-
tional table T such all features combinations that is a super-
set of F 4y but a subset of 7(R') can be tested system-
atically based on feature enumeration.

Example 7 For example, in Figure 5(b), while node “24”
enumerates row set, its descendant will switch to enumerate
feature set. T” will thus be generated for finding all frequent
closed patterns that is a subset of {b,d, e} (i.e. F({2,4})
but a superset of {} (since that is the DFA of node “24”).
Since R({}) contain rows r1, 7o, r3, 4 and r5, we will cre-
ate 5 corresponds rows r1,...,rg such that r; C r;, {} C 7}
and r; C {b,d,e} for 1 < i < 5. Based on ORDy, the
enumeration order will be {b, bd, bde, d, de, e}. O

Having specified the operation for switching enumeration
method, we will next prove that no closed frequent patterns
are missed by our algorithm. Our main argument here is
that switching the enumeration method at a node IV will not
effect the set of closed patterns that are tested at the descen-
dants of N. We will first prove that this is true for switching
from feature to row enumeration.

Lemma 3.1 Given a feature enumerated node NV, let T},
be the enumeration subtree rooted at IV after switching from
feature to row enumeration. Let Tfeqture b€ the imaginary
subtree rooted at node IV if there is no switch in enumeration
method. Let C(T,.,) be the set of frequent closed patterns
found in enumeration tree 7.0, and C(Tfeature) b€ the set
of frequent closed patterns that are found in enumeration
tree Tfeature- We claim that C'(Tteature) = C(Trow)-
Proof:

We first prove that C(Tfeature) © C(Trow) and then that
C(Trow) g C(Tfeature)-

Suppose node N represents the feature set F’. Assum-
ing that in T'feqture, & depth first search will produce a fre-
quent closed pattern F. In this case Fo = F’ + Fr with
Fr being the additional feature set that are added onto F’
when searching in subtree Tfeqture. It can be deduced that
R(Fc) € R(F') because F' C F. Since F¢ is a frequent
closed pattern, Frr being its subset will also be a frequent
pattern in R(F'). Let R’ C R(F") be the unique maximal
set of rows that contain Fr. It is easy to see that R’ will
also be enumerated in T, since all combinations of rows
in R(F') are enumerated in T}.,,,. We can now see that both
F’ (since R C R(F")) and Fr are in R' which means that

F¢ will be enumerated in 7., Since all closed pattern enu-
merated in T'teqture Will be enumerated in 17.,,. Therefore,
C(Tfeatuxre) Cc C(T'r'ow)-

On the other hand, assuming that F is a frequent closed
pattern that is found under T',,,,. Let Rt be the row combi-
nation enumerated in subtree T;.,,, that give F¢ (i.e Fo =
F(Rz)). Since T, essentially enumerate all row combi-
nations from R(F’), we know Ry C R(F') and thus F’
is in every row of Rr. By definition of F(Rr), we know
F' C Fg which means that all rows containing Fg are
in R(F"). Since T'feqrure Will enumerate all combination
of features which are in R(F"'), we know F¢ will be enu-
merated in Tteqrure. Since all closed pattern enumerated in
Trow Will be enumerated in T'yeqture. Therefore, C(Tyow) C
C(Tfeatuxre)-

We can now conclude that C(Tfeature) = C(Trow) SiNCE
C(Tfeature)gC(Tfrow) and C(Trow)gC(Tfeature)- O

We next look at the proceduce for switching from row to
feature enumeration. Our argument will go along the same
line as Lemma 3.1.

Lemma 3.2 Given a row enumerated node N, let Teqrure
be the enumeration subtree rooted at IV after switching from
row to feature enumeration. Let 7., be the imaginary sub-
tree rooted at node IV if there is no switch in enumeration
method. Let C(T,,v) be the set of frequent closed patterns
found in enumeration tree Ty, and C(Teature) € the set
of frequent closed patterns that are found in T¢eqrure. We
claim that C(Teature) = C(Trow)-

O

We omitted the proof for Lemma 3.1 due to lack of space.
The gist of the proof is however similar to the proof for
Lemma 3.2

With Lemma 3.1 and Lemma 3.2, we are sure that the set
of frequent closed patterns found by our dynamic enumer-
ation tree is equal to the set found by a pure row enumera-
tion or feature enumeration tree. Therefore, by a depth first
search of the dynamic enumeration tree, we can be sure that
all the frequent closed patterns in the database can be found.
It is obvious that a complete traversal of the dynamic enu-
meration tree is not efficient and pruning methods must be
introduced to prune off unnecessary searches. Before we ex-
plain these methods, we will first introduce the framework
of out algorithm in the next section.

3.3. Algorithm

Our formal algorithm is shown in Figure 6 and the details
about the subroutines are in Figure 7.

We use both the original table T" and the transposed ta-
ble T'T in our algorithm with infrequent features removed.
Our algorithm involves recursive computation of conditional
tables and conditional transposed tables for performing a
depth-first traversal of the dynamic enumeration tree. Each
conditional table represents a feature enumerated node while
each conditional transposed table represents a row enumer-
ated node. For example, the {a, b}-conditional table rep-
resents the node “a b” in Figure 5(a) while the {2,5}-
conditional transposed table represents the node “2 5” in
Figure 5(b). After setting F'C P, the set of frequent closed



Algorithm

Input: Original table T, transposed table T'T', features set F', row
set R and support level minsup

Output: Complete set of frequent closed patterns, FC P

Method:

1. Initialization. FCP = 0;
2. Check switching conditions. SwitchingCondition();

3. If mine frequent closed patterns in row enumeration first.
RowMine(T'T'|g,R,FCP);

4. If mine frequent closed patterns in feature enumeration first.
FeatureMine(T|g . F',F'C P);

Figure 6. The Main Algorithm

patterns, to be empty, our algorithm will check a switching
condition * to decide whether to perform row enumeration or
feature enumeration. Depending on the switch condition, ei-
ther subroutine Row M ine or FeatureMine will be called.

The subroutine RowMine takes in three parameters
TT'|x, R'and FCP. TT'|x is an X-conditional transposed
table while R’ contains the set of rows that will be consid-
ered for row enumeration according to ORD,.. FCP con-
tains the frequent closed patterns which have been found so
far. Step 1 to 3 in the subroutine performs the counting and
pruning. We will delay all discussion on pruning to Section
3.5. Step 4 in the subroutine will output the frequent closed
pattern. The switching condition will be checked in Step 5 to
decide whether a row enumeration or a feature enumeration
will be executed next. Based on this condition, the subrou-
tine will either continue to Step 6 for row enumeration or
to Step 7 for feature enumeration. Note that the RowMine
subroutine has essentially no difference from the row enu-
meration algorithm, CARPENTER in [3] except for Step 7
where we switch to feature enumeration. Since CARPEN-
TER is proven to be correct and Lemma 3.2 has shown that
the switch to feature enumeration does not affect our result,
we know that the Row Mine subroutine will output the cor-
rect set of frequent closed patterns.

The subroutine FeatureMine takes in three parameters
T'|x, F' and FCP. T'| x is an X-conditional original table.
F’ contains the set of features that will be considered for fea-
ture enumeration according to ORDy. FCP contains the
frequent closed patters which have been found so far. Step
1 to 3 performs counting and pruning and their explanation
will also be done in later section. Step 4 will output the fre-
quent closed pattern while Step 5 will check the switching
condition to decide on the enumeration method. Based on
the switching condition, the subroutine will either continue
to Step 6 for feature enumeration or to Step 7 for row enu-
meration. We again note that the FeatureMine subroutine
has essentially no difference from other feature enumeration
algorithm like CHARM [9] and CLOSET+ [7] except for
Step 7 where we switch to row enumeration. Since these al-
gorithms are proven to be correct and Lemma 3.1 has shown
that switch to row enumeration does not affect our result.
We know that the F'eatureMine subroutine will output the
correct set of frequent closed pattern.

We can observe that the recursive computation will
stop when in RowMine, the R’ becomes empty or in

4We will delay the discussion for this switching condition to the next
section.

Subroutine: RowMine(T1"| x ,R’,FCP).
Par ameters:

e TT'|x: A X-conditional transposed table;

e R': A subset of rows which have not been considered in the
enumeration;

e F'CP: The set of frequent closed patterns that have been found;

Method:

1. Scan TT'|x and count the frequency of occurrences for each
row,r; € R.Y = 0.

2. Pruning 1: Let U C R' be the set of rows in R’ which occur
in at least one tuple of TT"|x. If |[U| + |X| < minsup, then
return; else R' = U;

3. Pruning 2: Let Y be the set of rows which are found in every
tuple of the X -conditional transposed table. Let R’ = R' — Y
and remove all rows of Y from T'T"| x;

4. If | X|+ |Y| > minsup and F(X) ¢ FCP, add F(X) into
FCP;
5. Check the switching condition, SwitchingCondition();
6. If go on for row enumeration, for each r; € R/,
R’ = R’ — {7‘7,}
RowMine(TT"|x|r;, R', FCP);
7. If switch to feature enumeration, for each f; € F(X),
F'=F(X) - {fi}
FeatureMine(T|y,, F', FCP);

Subroutine: FeatureMine(T” | x ,EF',FCP).
Parameters:

e T'|x: A X-conditional original table;

e F': A subset of features which have not been considered in the
enumeration;

e F'CP: The set of frequent closed patterns that have been found;

Method:

1. Scan T"|x and count the frequency of occurrences for each fea-
ture, fi € F'.Y = 0.

2. Pruning 1: Let U C F' be the set of features in F which occur
in at least minsup rows of T"| x. F' = U,

3. Pruning 2: LetY be the set of features which are found in every
row of the X-conditional original table. Let F = F' — Y and
remove all features of Y from T”| x;

4 If X +Y ¢ FCP and R(X) > minsup, add X + Y into
FCP;

5. Check the switching condition, SwitchingCondition();

6. If go on the feature enumeration, for each f; € F’,
F'=F' —{fi}
FeatureMine(T" |x|y,, F', FCP);
7. If switch to row enumeration, transpose X conditional table
T'| x to a transposed table T'T e, foreach r; € R(X +Y),
R =R(X+Y) - {r:}
RowMine(T T} ey |r;, R, FCP);

Figure 7. The Subroutines




FeatureMine, the F’ becomes empty.
3.4 Switching Condition

Switching condition are used to decide whether to switch
from row enumeration to feature enumeration or vice verse.
To determine that, our main idea is to estimate the enumera-
tion cost for the subtree at a node and select the smaller one
between a feature enumeration subtree and a row enumera-
tion subtree.

The enumeration cost of a tree can be estimated from two
components, the size of the tree and the computation cost at
each node of the tree. The size of a tree is judged based on
the estimated number of nodes it contains while the compu-
tation cost at a node is measured using the estimated number
of rows (or features) that will be processed at the node.

For example, if a feature enumeration tree T, CON-
tains m nodes { Ny, Na, ..., N, } and node NV; will process
R; rows, the enumeration cost of T,,um IS Z;’;l R;. To
simplify explanation, we will focus on estimating the enu-
meration cost of a feature enumeration tree. The estimation
of the enumeration cost of a row enumeration tree will be
similar.

Assume that a feature enumeration tree, T.,.m, rooted
at node N,.,o; Which representing ' and R(F') and contains
m sub-nodes {Ny, Na, ..., Ny, }. Let N, correspond to
conditional table T'| . We give some definitions below.

o F={f1,fo,..., fu}
e S(f;,T|r), the frequency of feature f; in T'| .

e 7 = |R(F)|, the number of rows conditional table T'|x
contains.

e H(N;), the estimated maximum height of the subtree
rooted at node IV;.

Given one of the node N; representing feature set F,
we will first use a simple probability deduction to calculate
H(N;). Suppose the node on level 7 (IV;) is represented as
Nyy(n;), We then calculate R(Nyy;)), the estimated num-
ber of relevant rows being processed at the node Ny, ().

Assume that the set of features which have not been con-
sidered is {f;|1 < j < ¢} = {f1,f2,..., fq} and f; are
sorted by descending order of S(f;, T|r;). Let h be a value
such that

(h+1)
H S(f,T|r;) < minsup <r- HS 1 Tlr)
Jj=1 j=1

Then we calculate #(NN;) and R(Ny(x,)) as

H(Ni)=h

h
R(Nwu,) = H (fi» Tl r)-

Intuitively, (N;) corresponds to the expected maximum
number of levels enumeration will take place before support
pruning take place.

Thus the estimated enumeration cost on node Ny(x;) IS

h
r « RowProcessTime - H S(f5,T|r)
j=1

where RowProcessTime is the average processing time of
rows.

On the path from node N; to node Ny (), the kth node
will represent feature set {f1, f, ..., fx} and its estimated

enumeration cost is
k

r - RowProcessTime - H S(f5,T|r)
j=1
Let £(1V;) be the estimated enumeration cost of enumerating

through the entire path from node N; to node Ny;(x;,),
h k

Z(r - RowProcessTime - H S(fs T|F;))-

k=1 j=1

L(N;) =

1 f2 f3 e fn f1 f3 ... fn

(nﬁjn) (vzmmim) ‘ ‘
/N

(1,12} (72,13} (13,14}

{f1,12.13) {f3.14,(5) - ‘ ‘ ‘
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node under 13)

Figure 8. Entire and simplified enumeration
tree

Figure 8(a) shows the entire representation of feature enu-
meration tree Te,,,n. Figure 8(b) is a simplified enumera-
tion tree T,,..m OF Tenum in Which only the longest pathes
in each sub-tree rooted at node NNy, are retained. The esti-
mated enumeration cost of 77,,,,,., is >_i; L(Ny,). We use
the estimated enumeration cost of 77,,,,,., as an criterion for

the estimated enumeration coat of T¢,,,. Therefore, the es-
timated enumeration cost of the feature enumeration tree is

3£V

The estimated enumeration cost of a row enumeration tree
is computed in the similar way. Having computed these two
estimated values, we will select the searching method that
has a smaller estimated enumeration cost in the next level of
enumeration.

3.5. Prune Method

Both subroutines RowMine and Feature Mine applies
pruning strategies. We will only give a brief discussion here
since they are developed in previous work and not the em-
phasis of our work here.

The correctness of pruning strategy 1 and 2 used in sub-
routine RowMine has been proven in [3]. Here we will
only prove the correctness of the pruning strategy applied in
subroutine FeatureMine.

In step 3 of subroutine FeatureMinePattern, all the
features which occur in every row of X-conditional original
table T"|x will be removed from T”|x and will be consid-
ered to be already enumerated. We will prove its correctness
by the following Lemma.



Lemma 3.3 LetT”|x be an X conditional original table and
Y be the set of features which occur in every row of T"|x.
Given any subset F' C F, we have R(X + F') = R(X +
Y + F").

Proof: By definition, R(X + F’) contains a set of rows, all
of which contain feature set X + F’. Since the features in
Y occur in every row of T”| x, this means that these features
also occur in every row of T'| x4 sy (Note: T"| x4y C
T'|x). Thus, the set of rows in T'| x ) is exactly the set
of rows in 7’| (x4 p4y). From this, we can conclude that
RX+F)=R(X+Y +F"). |

Example 8 As an example to illustrate Lemma 3.3, let us
consider the b-conditional table in Figure 3(a). Since fea-
ture ““e” occurs in every row of T'|, we can conclude that
R(b)=R(be) =2345. Thus, we need not create T, in our
search and feature “e” need not be considered for further
enumeration down that branch of the enumeration tree. 0O

Lemma 3.3 proves that all the frequent closed patterns
found in the X-conditional table T"|x will contain feature
set Y, since for each feature set X + F’ found in T”"|x, we
can get its superset X + Y + F' and R(X + Y + F') =
R(X +F'). Thus it is correct to remove Y from all the rows
of T"|x and consider Y to be enumerated.

3.6. Implementation

To show the feasibility of implementation, we will show
some details about the implementation of COBBLER.

a-conditiona 1 1-conditional
i [1 [ 2fst—»fabecd | fi
Pos [ 1 | 1 Pos (111 |1
: cft45 ]

b-conditiohal —sfbe | 2-conditional

-conditional
. 4 fi

i Pos l;!.;’ d[1,2.4
Pos [ T

c-conditional 3-conditional

5-conditional

(b) row enumeration Con-
ditional Pointer List at
Node “1”

Figure 9. Conditional Pointer List

e-conditional
(@ feature enumeration

Conditional Pointer List at
Node “a”

The data structure for enumeration we used in COBBLER
is similar to that we used in CARPENTER. Dataset are or-
ganized in a table and memory pointers pointing to various
positions in the table are organized in a conditional pointer
list [3]. Since we enumerate both row and feature in COB-
BLER, we maintain two sets of conditional pointer list for
original table 7" and transposed table TT" respectively. The
conditional pointer list for row enumeration is the same as
the conditional pointer list used in CARPENTER while the
conditional pointer list for feature enumeration is create sim-
ply by replacing the feature ids with row ids and pointing
them to the original table T'. Figure 9 gives an example for
feature enumeration conditional pointer list and row enumer-
ation conditional pointer list. Most of the operations we take
to maintain the conditional pointer lists are similar to CAR-
PENTER. Interested readers are referred to [3] for details.

4. Performance

In this section we will compare the performance of COB-
BLER against other algorithms. All our experiments were
performed on a PC with Pentium IV 2.4Ghz CPU, 1 G RAM
and a 30GB hard-disk. Algorithms were coded in Standard
C.

Algorithms: We compare COBBLER against two other
closed pattern discovery algorithms, CHARM [9] and
CLOSET+ [7]. CHARM and CLOSET+ are hoth feature
enumeration algorithms. We also compared the perfor-
mance of CARPENTER [3] and COBBLER, but since COB-
BLER’s performance is always better than CARPENTER,
we do not present the result for CARPENTER here. To
make a fair comparison, CHARM and CLOSET+ are also
run in the main memory after one disk scan is done to load
the datasets.

Datasets: We choose 1 real-life datasets and 1 synthetic dat-
set to analyze the performance of COBBLER. The charac-
teristics of the 2 datasets are shown in the table below.

Dataset #items | #rows | row length
thrombin 139351 | 1316 29745
synthetic data | 100000 | 15000 | 1700

As we can see, the 2 datasets we used have different char-
acteristics. The thrombin dataset® consists of compounds
tested for their ability to bind to a target site on thrombin, a
key receptor in blood clotting. Each compound is described
by a single feature vector comprised of a class value (A for
active, | for inactive) and 139,351 binary features, which
describe three-dimensional properties of the molecule. The
synthetic dataset is generated by IBM data generator. Itis a
dense dataset and contains long frequent patterns even with
relatively high support value.

Parameters: Three parameters are varied in our experiment,
minimum support (minsup), row ratio (r) and length ratio
(l). The parameter minimum support, minsup, is a mini-
mum threshold of support which has been explained earlier.
The parameters r and [ are used to varying the size of the
synthetic dataset we used for scalability test. The parame-
ter row ratio, r, has a value above 0. It is used to generate
new datasets with different number of rows using IBM data
generator. All dataset with different row ratio of » was gen-
erated using a same set of parameters except that each time,
the number of rows is changed to 15000  r. The parameter
length ratio, I, has a value between 0 and 1. It is used to gen-
erate new datasets with different average row size from the
original synthetic dataset listed in the table above. A dataset
with a length ratio of [ retains on average I * 100% of the
columns in the original dataset. Columns to be retained are
randomly selected for each row. The default value of r is 1
and the default value of [ is 0.95. Because the real-life data
is very different from the synthetic dataset, we will only use
r and [ for the synthetic dataset.

5 http://www.biostat.wisc.edu/ page/ Thrombin.testset.zip



4.1. Varying Minimum Support

In this set of experiments, we set [ and r to their de-
fault value, 0.95 and 1, and vary the minimum support. Be-
cause of the different characteristics of the 2 datasets, we
vary the minimum support in different ranges. The thrombin
dataset is relatively sparse and its minimum support varies
in a range which has low minimum support value. The syn-
thetic dataset is relatively dense and the number of frequent
items is quite sensitive to the minimum support, so its min-
imum support varies in a smaller range which has relatively
high minimum support value.

Figure 10 and 11 show how COBBLER compares against
CHARM and CLOSET+ as minsup is varied. We can
observe that on the real-life dataset, CLOSET+ performs
worst for most of the time while CHARM performs best
when minsup is relatively high and when the minsup is de-
creased to be low, COBBLER performs the best. This is be-
cause when the minsup is high, the structure of the dataset
after removing all the infrequent items is relatively simple.
Because the characteristic of the data subset seldom changes
during the enumeration, COBBLER will only use one of the
enumeration method and become either a pure feature enu-
meration algorithm or a pure row enumeration algorithm.
The advantage of COBBLER’s dynamic enumeration can-
not been seen and therefore COBBLER is outperformed by
CHARM which is a highly optimized feature enumeration
algorithm.

With the decrease of minsup, the structure of the dataset
after removing infrequent items will become more com-
plex. COBBLER begins to switch between feature enumer-
ation method and row enumeration method according to the
varying characteristic of the data subset. Therefore COB-
BLER outperforms CHARM in low minsup on the real-life
datasets.

On the synthetic dataset, COBBLER performs the best
for most of the time since the synthetic dataset is dense and
complex enough. CHARM performs worst on this dataset,
even at very high minsup. This is due to the fact that the
synthetic dataset is a very dense one which results in a very
large feature enumeration space for CHARM.

4.2. Vary Length Ratio

In this set of experiments, we varying the size of the
synthetic dataset by changing the length ratio, I. We set
minsup t0 0.15%, » to 1 and vary [ from 0.8 to 1. If [
is set to values smaller than 0.8, the generated dataset will
be too sparse for any interesting result. Figure 12 shows
the performance comparison of COBBLER, CHARM and
CLOSET+ on the synthetic dataset when we vary . For
CHARM and CLOSETH+, it takes too much time to run on
dataset with [ = 1, so the result is not included in Figure
12. As we can see from the graph, COBBLER outperforms
CHARM and CLOSET+ in most cases. CHARM is always
the worst among these 3 algorithms and both COBBLER and
CLOSET+ are order of magnitude better than it. CLOSET+
has a steep increase in run time as length ratio is increased.
Its performance is as good as COBBLER when [ is low but
is soon outperformed by COBBLER when [ is increased to
some higher values.

COBBLER performance is not significantlly better than
CLOSET+ with low [ values because a low value of [ will
destroy many of the frequent patterns in the dataset, making
the dataset sparse. This will cause COBBLER to perform
pure feature enumeration method and lose the advantage of
performing dynamic enumeration. With the increase of [,
the dataset will become more complex and COBBLER will
show its advantage over CLOSET+ and also CHARM.

4.3. Varying Row Ratio

In this set of experiments, we varying the size of the syn-
thetic dataset by varying row ratio, r. We set minsup to
0.15%, I to its default value of 0.95 and varying r from 0.6
to 2. Figure 13 shows the performance comparison of COB-
BLER, CHARM and CLOSET+ on the synthetic dataset
whenwe vary r. As we can see, with the increase of the num-
ber of rows, the datasets become more complex and COB-
BLER ’s dynamic enumeration strategy shows its advantage
over the other two algorithms. In all the cases, COBBLER
outperforms CHARM and CLOSET+ by an order of magni-
tude and also has a smoothest increase in run time.

As can be seen, in all the experiments we conducted,
COBBLER outperforms CLOSET+ in most cases and out-
performs CHARM when the dataset becomes complicated
for increased [ and r or decreased minsup. This result also
demonstrates that COBBLER is efficient in datasets with dif-
ferent characteristics as it uses combined row and feature
enumeration and can switch between these two enumeration
methods according to the characteristics of a dataset while
in the searching process.

5. Related Work

Frequent pattern mining [1, 2, 6, 10] as a vital topic has
received a significant amount of attention during the past
decade. The number of frequent patterns in a large data set
can be very large and many of these frequent patterns may be
redundant. To reduce the frequent patterns to a compact size,
mining frequent closed patterns has been proposed. The fol-
lowings are some new advances for mining closed frequent
patterns.

CLOSET [5] and CLOSET+ [7] are two algorithms
which discover closed patterns by depth-first, feature enu-
meration. CLOSET uses a frequent pattern tree (FP-
structure) for a compressed representation of the dataset.
CLOSET+ is an updated version of CLOSET. In CLOSET+,
a hybrid tree-projection method is implemented and it builds
conditional projected table in two different ways according
to the density of the dataset. As shown in our experiment,
both CLOSET and CLOSET+ are unable to handle long
datasets due to their pure feature enumeration strategy.

CHARM [9] is a feature enumeration algorithm for min-
ing frequent closed pattern. Like CLOSET+, CHARM per-
forms depth-first, feature enumeration. But instead of using
FP-tree structure, CHARM use a vertical format to store the
dataset in which a list of row ids is stored for each feature.
These row id lists are then merged during the feature enu-
meration to generate new row id lists that represent corre-
sponding feature sets in the enumeration tree. In addition, a
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technique called diffset is used to reduce the size of the row
id lists and the computational complexity for merging them.

Another algorithm for mining frequent closed pattern is
CARPENTER [3]. CARPENTER is a pure row enumeration
algorithm. CARPENTER discovers frequent closed patterns
by performing depth-first, row enumeration combined with
efficient search pruning techniques. CARPENTER is espe-
cially designed to mine frequent closed patterns in datasets
containing large number of columns and small number of
rows.

6. Conclusion

In this paper, we proposed an algorithm called COB-
BLER which can dynamically switch between row and
feature enumeration for frequent closed pattern discovery.
COBBLER can automatically select an enumeration method
according to the characteristics of the datasets before and
during the enumeration. This dynamic strategy helps COB-
BLER to deal with different kind of dataset including large,
dense datasets that have varying characteristics on differ-
ent data subsets. Experiments show that our approach
yields good payoff as COBBLER outperforms existing fre-
quent closed pattern discovery algorithms like CLOSET+,
CHARM and CARPENTER on several kinds of datasets. In
the future, we will look at how COBBLER can be extended
to handle datasets that can’t be fitted into the main memory.
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