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ABSTRACT

Given a multi-features data set, a best preference query
(BPQ) computes the maximal preference score (MPS) that
the tuples in the data set can achieve with respect to a pref-
erence function. BPQs are very useful in applications where
users want to efficiently check whether many individual data
sets contain tuples that are of interest to them. Although
a BPQ can be näıvely answered by issuing a top-1 query
and computing the score from the returned tuple, doing so
might require to load a larger number of tuples externally.
In this paper, we address the problem of efficient process-
ing BPQs by using lightweight cubic (3-dimensional) views.
With these in-memory views, the MPSs of BPQs can be effi-
ciently estimated with an error bound guaranteed, by paying
only a small number of I/Os. Extensive experimental results
over real-life data sets show that our approximate solution
can achieve the efficiency of up to three orders of magnitude
compared to exact solutions, with certain accuracy guaran-
teed.

Categories and Subject Descriptors

H.2.4 [Database Management]: System—query process-
ing

General Terms

Algorithms, Experimentation, Performance

Keywords

preference query, best preference score, top-k query, materi-
alized views

1. INTRODUCTION
Preference queries have been widely used for ranking ob-

jects with multiple features [3, 4, 5, 9, 13, 12]. They serve
for retrieving a small set of tuples with top preference scores
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over multiple features, from a set of tuples. A tuple t of mul-
tiple (r) features is represented as a vector t ∈ ℜr, where
ti is the ith feature of t. Without loss of generality, we as-
sume that high feature values are preferred by users for all
the features. The kernel of preference queries is the scoring
function S(q, t) for measuring the preference score of a tuple
t to a given preference query q. Monotonic scoring functions
are typically applied in many existing studies on preference
queries [4, 5, 9]. A preference function S is monotonic if
for any given two tuples t1 and t2, t

i
2 ≥ ti1 for i = 1, . . . , d,

S(q, t2) ≥ S(q, t1) holds. Although there are many mono-
tonic functions, the linear preference function, which is a
simple linear product (S(q, t) = q · t) of a preference vector
q ∈ ℜr (qi ≥ 0) and a tuple t, is more widely used [5, 7, 8,
13, 12, 17]. Because of the wide usage, we only consider the
linear preference function in this work. In practice, a pref-
erence query typically has only a small number (e.g. ≤ 6,
[5, 8, 13, 12, 15]) of features whose preference weights are
larger than zero (called ranking features). In this paper, the
dimensionality of a query q, d, actually refers to the number
of ranking features of q. A query vector can be normalized
as ‖ q ‖1= 1 (L1-norm) without changing the order of tuple
preference. We therefore use normalized query vectors in
this study.

Given a data set T of tuples, a best preference query
(BPQ) q, is to compute the maximal preference score (MPS)
that can be achieved by tuples in T , i.e., to compute S(q, T ) =
supt∈T S(q, t). BPQ is very useful in applications where
users want to efficiently check whether many individual data
sets contain tuples that are of interest to them. For exam-
ple, in a location-based service application, a driver presents
a preference query to continuously monitor interesting com-
modities sold by surrounding shops. To avoid the frequent
interruption of finding too many items, a high preference
threshold may be used for pruning most items. In this case,
the BPQ will be very useful for quickly pruning data sets
whose MPSs are not large enough. In a slightly different
example of online shopping application, a user presents a
top-k query for retrieving global top-k commodities among
a large number of data sources (which are online selected
with some conditions). With BPQ, we can quickly prune
those data sources that may not contain any commodities
of the global top-k results. When we have n data sources
and k ≪ n, our method will be efficient to prune off most of
the n data sources. That is, BPQ is useful and efficient in
pruning a data set with a large probability that it does not
contain any tuples preferred by the user.



A BPQ can be simply treated as a variant of a top-1 pref-
erence query, whose goal is varied as the preference score
of the top-1 tuple, instead of the tuple itself in the top-1
preference query. As a variant of the top-k query, existing
algorithms on top-k queries [3, 4, 9, 13, 19] can be simply
adapted to address the BPQ. However, as we will show with
the two widely used algorithms [9, 19] later, a large number
of tuples need to be read externally for data sets of large
skyline cardinality. As a result, the efficiency of BPQs is de-
graded due to the large number of I/Os incurred for loading
tuples.

Given the motivating applications of BPQs mentioned
above, a close approximation of the MPSs will not affect
the effectiveness of BPQs significantly. A potential benefit
of the approximation is the significant efficiency improve-
ment that can be achieved. Although the dimensionality of
a dataset can be as large as tens or even hundreds, practi-
cal BPQs usually contain no more than 6 ranking features
[5, 8, 13, 15]. We observe that the MPSs of those low di-
mensional queries can be effectively approximated by using
cubic views. Creating views of high dimensionality will be
not economic for queries of low dimensionality. We therefore
propose an approximate solution for computing the MPSs of
low dimensional BPQs by 3-dimensional views. Instead of
always giving an exact result of an MPS, our algorithm pro-
vides a tight range (which is a pair of a lower bound and an
upper bound) that the MPS will lie in. We will show that by
trading off on the accuracy, we can achieve the much desired
efficiency on computing an MPS with a small error guaran-
teed. The main contributions of the paper are summarized
as follows:

• We propose an effective mechanism for bounding the
MPSs for practical BPQs. A number of lightweight cu-
bic views are carefully materialized, for tightly bound-
ing the MPSs of queries.

• We propose an indexing structure to index the par-
titioned query space, so that effective cubic views for
bounding an ad hoc query can be efficiently discovered.
The lightweight views allow the updates of views and
indexes to be efficiently processed.

• An error bound of theMPS is always guaranteed. While
it is designed as an approximate solution, the exact re-
sults are however often returned.

• Extensive experiments over real-life data sets demon-
strate the efficiency of BPQs can be significantly im-
proved by our solution.

The rest of the paper is organized as follows: Section 2
presents related work. Section 3 provides two baseline so-
lutions of computing MPSs by extending existing top-k al-
gorithms. Section 4 introduces the upper bound and lower
bound of MPSs achieved by views. Section 5 presents the ap-
proximate solution on efficient query processing for BPQs.
The experimental studies are described in Section 6. The
conclusion is drawn in Section 7.

2. RELATED WORK
Top-k preference queries have been widely studied [3, 4, 5,

9, 13, 12, 19]. A top-k preference query is to retrieve the k
highest scoring tuples from a given data set. Figure 1 gives

an example in which the query vector q is represented as
a line initiated from the origin and perpendicular to the
plane Σd

i=1q
iti = c. All the tuples falling on the plane

Σd
i=1q

iti = c have the same projection on q. They therefore
have the same preference score c, which is proportional to
the length of the projection of t on q. Top-k tuples are
therefore detected on those planes (perpendicular to q) far
from the origin.

t1

1t

2t0

1

t2

q

Figure 1: A top-2 preference query on 2D data set.

A good survey of top-k query processing techniques can
be found in [14], with most top-k query algorithms assuming
that the data are stored in external devices. Consequently,
reducing the cost of sequential and random I/Os for read-
ing the tuples is the main goal of many top-k algorithms.
The main design consideration of these top-k algorithms is
therefore to save the I/O cost by using the information pre-
computed from the order of tuples in different ways. One
category of techniques on top-k queries use inverted lists to
rank tuples for different features. Fagin et al. [9] proposed
two well known algorithms: No Random Access (NRA) and
Threshold Algorithm (TA). To retrieve top-k items, the in-
verted lists (one for each feature) are sequentially scanned
in parallel, and since items in the inverted lists are ranked,
the upper bound of interest scores of the unseen items can
be easily computed. Once the score of the kth item detected
is no less than the upper bound, all the unseen items can be
directly pruned.

The second category of top-k query processing techniques
organize tuples of data sets in layers [5, 17, 19] based on the
dominating relationships (or convex hull) among tuples. As
a result, tuples with high preference scores are most likely in
the outer layers. The algorithms achieve efficiency on top-k
queries by pruning the I/O accesses for those tuples that
are dominated by a small number of tuples which have been
scanned. The dominating relationships of tuples, more pop-
ularly known as skyline queries, have been widely studied
[2, 6, 10], and the cardinality of skylines was examined and
studied in [11, 18].

In [8, 13, 12], a view is an inverted list created from the
results of a specific top-k query and the TA algorithm [9]
was adapted to scan high scoring tuples over the materialized
views for the top-k queries. However, effective views creation
has not been addressed. Approximate algorithms for top-k
queries have been tried [1, 16]. These algorithms try to give
a probabilistic evaluation of a newly seen item to be a top-k
item or the seen top-k items to be the exact top-k results so



that top-k queries can be efficiently processed with certain
accuracy guaranteed. The θ-approximation of top-k queries
is also introduced to speedup the processing of top-k queries
by early stopping [9]. It is guaranteed that the preference
scores of tuples not among the top-k results will not be larger
than θ (θ > 1) times of those of top-k results. Although top-
k query has been widely studied, efficient BPQ processing
has never attracted much attention from researchers.

Table 1 gives the notations used in this paper:

Table 1: Frequently used notations

q, q a query and its vector representation
v, v a view and its vector representation
t, t a tuple and its vector representation

qi, vi, ti the ith feature of a vector
d the dimensionality of queries

S(q, t) preference score of a tuple t for a query q
S(q, T ) the MPS of a data set T for a query q
U(q, T ) the upper bound of S(q, T )
L(q, T ) the lower bound of S(q, T )
v.s the MPS of a view v
v.t the outermost tuple of a view v
s the exact maximal preference score
s̄ the approximate maximal preference score
ε the tolerance on the uncertainty of S(q, T )
wi a weight satisfying 0 ≤ wi ≤ 1

g(v1, . . . , vk) the variance of a convex
δ maximal variance tolerable for a convex

hmax maximal height of the index tree

3. BASELINE SOLUTIONS FOR COMPUT-

ING THE MAXIMAL PREFERENCE SCORE
We first introduce two extended solutions of top-k algo-

rithms.

3.1 The extended TA algorithm
The first algorithm is the extended θ-approximation of the

TA algorithm (ETA, Algorithm 1) which is essentially a top-
1 algorithm based on TA [9]. As the TA algorithm for pro-
cessing top-k queries, inverted lists are sequentially scanned
in parallel. The computation of the preference score of a
scanned tuple requires a random I/O access. The approx-
imate MPS s̄ is updated when a higher score of a scanned
tuple is detected. The scanning of inverted lists terminates
when the preference scores of the unseen tuples cannot be
larger than θ (θ ≥ 1) times of the s̄ of the scanned tuples.
It is guaranteed that the exact MPS s satisfies s̄ ≤ s ≤ θs̄.
The exact MPS is computed when θ = 1. The cost of ETA is
highly affected by the number of tuples that require random
I/Os. We use the example in Figure 2(a) to illustrate this.
Assuming we only have two dimensions and two sorted lists
l1 and l2. When l1 and l2 are accessed, the minimal scanned
score (b1 and b2) of each list is updated. The ETA algorithm
terminates when Σd

i=1(q
i · bi) ≤ θs̄ satisfies. As a result, all

tuples within the square OABC are pruned. Comparatively,
each of the tuples in the shaded region requires one random
I/O access to get its exact preference score. Therefore, al-
though a large percentage of tuples can be pruned by ETA,

there are still a certain number of tuples requiring random
I/Os.

Algorithm 1 : The extended TA algorithm (ETA)

Input: q, a preference weighting vector.
Output: s̄, the approximate result of the exact MPS s.
1. V = ∅ {records the tuples having been scanned}
2. s̄ = −∞.
3. let l1, . . . , ld be the inverted lists for features 1, . . . , d.
4. let t1, . . . , td be the current tuple scanned on each in-

verted list. {tuples are scanned from head to end}
5. let b1, . . . , bd be the corresponding feature score of

t1, . . . , td in each inverted list.
6. while Σd

i=1(q
i · bi) > θs̄ do

7. for i = 1, . . . , d do
8. if ti /∈ V then
9. compute S(q, ti) by a random I/O access for ti.

10. insert ti into V .
11. if S(q, ti) > s̄ then
12. s̄ = S(q, ti).
13. end if
14. end if
15. scroll down the cursor ti in li.
16. update bi be the feature score of ti in li.
17. end for
18. if scan to the bottom of inverted lists then
19. break.
20. end if
21. end while

3.2 The skyline scan algorithm
The fact that a linear preference function is monotonic im-

plies that for a given query q, the MPS must be derived by
a tuple in the skyline of the data set. Therefore, the compu-
tation of S(q, T ) can be simplified as retrieving the highest
preference score from the skyline tuples of the data set. We
call such an approach as the Skyline Scan Algorithm (SSA).
The skyline tuples are assumed to be pre-computed offline
by applying some existing skyline computation algorithms
[10]. They are labelled in the dataset. The computation of
an MPS therefore requires many random I/O accesses for
retrieving relevant features of the skyline tuples. The cost
of the SSA algorithm will be highly dependent on the num-
ber of skyline tuples in the dataset. Figure 2(b) shows the
skyline tuples (in circles) of the running example.

There are also some other alternatives of computing the
MPSs. However, a certain number of random I/Os have to
be paid for computing the MPSs if no in-memory views or
indexes help to bounding the MPSs. The number of random
I/Os for the proposed solutions is somehow correlated to
the skyline cardinality of the data set. A large number of
random I/Os will be required if the skyline cardinality is
large.

Due to the expensive I/O cost, it will be a challenge for
computing the MPSs in applications where a large number
of BPQs need to be frequently processed. In this paper,
we avoid the expensive I/O cost incurred when computing
the MPSs by giving an approximate solution. In our ap-
proximate solution, we will return two bounds of S(q, T ),
(L(q, T ), U(q, T )) such that L(q, T ) ≤ S(q, T ) ≤ U(q, T )

and U(q,T )−L(q,T )
L(q,T )

≤ ε, where ε is a small positive tolerance



t1

1

q
sc

a
n

scan
O C

A
B

s

s

t1

t2

b1

b2

(a) ETA

t1

t1

t20

1

q

(b) SSA

t1

1

q

O C

A B

t1

t2

b1

b2

(c) Anticorrelated features

Figure 2: Tuples that cannot be pruned (in shade region) by exact solutions.

restricting the uncertainty of S(q, T ). The exact S(q, T ) will
be returned if U(q, T ) = L(q, T ).

4. BOUNDING THE MAXIMAL PREFER-

ENCE SCORES
When two query vectors are close to each other, the pref-

erence score of these two queries on the same tuple should
also be quite close. As a result, the MPSs of these two query
vectors will also be quite close. This motivates us to esti-
mate the MPS of an ad hoc query q by some nearby query
vectors which have been pre-computed. These sampled pre-
computed query vectors are called views.

4.1 The upper bound of MPSs
A view v is a query vector. The MPS of the view v over a

given data set T is v.s = S(v, T ). A view v also records the
tuple that achieves the MPS for the query vector v. Such
a tuple is called the outermost tuple of the view, denoted
as v.t. Therefore, S(v, v.t) = S(v, T ). If there are multiple
tuples achieving the same MPS for a view v, we randomly
choose one of them as the outermost tuple v.t. With the
concept of views, we have the following lemma to upper
bound the MPS of an ad hoc query vector q:

Lemma 1. Given a query q and k views v1, . . . , vk, if q =
Σk

i=1(wivi) for a set of wi, where 0 ≤ wi ≤ 1 and Σk
i=1wi =

1, then we have U(q, T ) = Σk
i=1(wivi.s) ≥ S(q, T ).

Proof : For any tuple t ∈ T :

U(q, T ) = Σk
i=1(wivi.s)

= Σk
i=1(wiS(vi, T ))

≥ Σk
i=1(wi(vi · t))

= (Σk
i=1(wivi)) · t = q · t

Therefore, U(q, T ) ≥ sup
t∈T

q · t = S(q, T )✷

Intuitively, Lemma 1 says that if the query vector q is lin-
early spanned (or within the spanning space) by v1, ..., vk in
the vector space with associated weights w1, ..., wk, then the
MPS of q will also be upper bounded by the weighted aver-
age of the MPSs for v1, ..., vk (with associated weights being
w1, ..., wk). In this paper, we call v1, . . . , vk (which form a

convex) the composite views of q. This also means that the
vector q is within the convex formed by views v1, . . . ,vk.
The weights w1, . . . , wk can be computed by solving the lin-
ear equation as: Σk

i=1wivi = q:

wi =
|v1 ... vi−1 q vi+1 ... vk|

|v1 v2 ... vk|
, (|A| = det(A))

4.2 The tightness of upper bounds
To derive an upper bound U(q, T ) from views based on

Lemma 1, we have to guarantee that for any ad hoc query
vector q, we can find k views to span q. A simple way to
achieve this is to apply d orthogonal unit vectors as basic
views, i.e., for the ith view vi, vi

i = 1, and vi
j = 0 where

j 6= i. With these basic views, given an ad hoc query q,
U(q, T ) can simply be expressed as U(q, T ) = Σd

i=1(q
i ·vi.s).

We use an example shown in Table 2 to illustrate the use
of orthogonal basic views. In this example, v1 = (1, 0, 0)T ,
v2 = (0, 1, 0)T , v3 = (0, 0, 1)T . The data set T has 7 tuples
t1 to t7. We have three materialized maximal interest scores
S(v1, T ) = 5.5, S(v2, T ) = 4.5, S(v3, T ) = 5.0. Given a
query vector q = ( 1

3
, 1
3
, 1
3
)T , we can compute U(q, T ) =

1
3
S(v1, T )+

1
3
S(v2, T )+

1
3
S(v3, T ) = 5.0. However, S(q, T ) =

2.9 which is achieved by t6 (i.e., S(q, t6) = 2.9). It is obvious
that the derived upper bound score U(q, T ) is rather loose.

Table 2: An example of a data set
tuple D1 D2 D3

t1 3.0 1.6 0.7
t2 0.7 0.9 5.0
t3 1.9 3.4 1.5
t4 1.1 4.5 0.5
t5 5.5 0.4 1.2
t6 2.6 2.9 3.2
t7 3.3 1.3 2.8

To estimate the MPSs more accurately, a tighter upper
bound U(q, T ) is required. Suppose that we have another
three views v′

1 = (0.5, 0.3, 0.2)T , v′
2 = (0.2, 0.5, 0.3)T , v′

3 =
(0.3, 0.2, 0.5)T , we should have q = 1

3
v′
1 + 1

3
v′
2 + 1

3
v′
3. By

materializing the three views, we have S(v′1, T ) = 3.11,



S(v′2, T ) = 2.93, S(v′3, T ) = 2.96. Therefore, U(q, T ) =
1
3
S(v′1, T )+

1
3
S(v′2, T )+

1
3
S(v′3, T ) = 3.0, which is very close

to S(q, T ) = 2.9. From the above example, we can see that
the tightness of the derived upper bound scores is highly
dependent on the applied views. It is important to select
effective views to linearly span a query q so that a tighter
upper bound U(q, T ) can be achieved. We have the following
lemma to help estimate the tightness of the derived U(q, T ):

Lemma 2. Given a query q and a view v, let k(q, v) be

k(q, v) = supi
vi

qi . Then, U(q, T ) ≤ Σk
i=1(wik(q, vi))·S(q, T ).

Proof : For any tuple t ∈ T :

S(v, t) = v · t = Σd
i=1(v

i × ti)

≤ Σd
i=1(k(q, v)q

i × ti) = k(q, v)Σd
i=1(q

i × ti)

= k(q, v)(q · t) = k(q, v)S(q, t)

Therefore, S(v, T ) ≤ k(q, v)S(q, T )

U(q, T ) = Σk
i=1(wiS(vi, T ))

≤ Σk
i=1(wik(q, vi)S(q, T ))

= Σk
i=1(wik(q, vi)) · S(q, T )

Therefore, S(q, T ) ≤ U(q, T ) ≤ Σk
i=1(wik(q, vi)) · S(q, T )✷

With Lemma 2, we have the following two corollaries.

Corollary 1. For a query q and a view v, k(q, v) ≥ 1.

Proof: ‖ q ‖1=‖ v ‖1= 1. There must exist an i such that

vi ≥ qi, i.e., vi

qi ≥ 1. Therefore, k(q, v) ≥ 1. Obviously,

k(q, v) = 1 only if q = v. ✷

Corollary 2. Given a query q and a view v, if there is
another view v1 in the line segment between q and v, i.e.,
v1 = λv+ (1− λ)q (0 ≤ λ ≤ 1), we have k(q, v1) ≤ k(q, v).

Proof: Let k(q, v1) =
v1

i

qi . According to Corollary 1, vi
1 ≥

qi. Because vi
1 = λvi + (1 − λ)qi, we have vi ≥ vi

1 ≥ qi.
Therefore,

k(q, v1) =
v1

i

qi
=

λvi + (1− λ)qi

qi

≤
vi

qi
≤ k(q, v)✷

We use an example of 2-dimensional vectors in Figure
3 to illustrate how k(q, v1) ≤ k(q, v) holds in Corollary 2.

In this example, k(q, v1) = ‖v1‖1
‖v′

1
‖1

= 1
‖v′

1
‖1
, and k(q, v) =

‖v‖1
‖v′‖1

= 1
‖v′‖1

. Obviously, ‖ v′
1 ‖1≥‖ v′ ‖1. Therefore,

k(q, v1) ≤ k(q, v). Based on Corollary 2, along the line seg-
ment between v and q, the closer v1 to q, the less k(q, v1).
k(q, v1) = 1 when v1 = q.

To achieve tighter upper bound score U(q, T ), lower k(q, vi)
is desired so that Σk

i=1(wik(q, vi)) could be closer to 1. We
therefore need to apply those views closer to q, which have
lower k(q, vi) (according to the Corollary 2). When the com-
posite views v1, . . . , vk are very close, they may have the
same tuple t as their outermost tuple. In this case, we have
the following lemma to guarantee that tuple t also achieves
the MPS for any query vector q falling in the convex of
v1, . . . ,vk. In such a case, S(q, t) is an exact result for
MPS.

D1

D2

2q

1q0

1

qv’

v

1

1v

1v’

Figure 3: An example of bounding factors.

Lemma 3. If q = Σk
i=1(wivi), where 0 ≤ wj ≤ 1 and

Σk
i=1wi = 1, and v1.t = v2.t = · · · = vk.t = t, then U(q, T ) =

S(q, t) = S(q, T ).

Proof : We first prove U(q, T ) = S(q, t):

U(q, T ) = Σk
i=1(wiS(vi, T ))

= Σk
i=1(wiS(vi, vi.t)) = Σk

i=1(wiS(vi, t))

= Σk
i=1(wivi · t) = Σk

i=1(wivi) · t

= q · t = S(q, t)

For any other tuple t′ than t, because vi.t = t, it is satisfied
that S(vi, t

′) ≤ S(vi, t). Then we have,

S(q, t′) = q · t′ = Σk
i=1(wivi) · t

′

= Σk
i=1(wi(vi · t

′)) = Σk
i=1(wiS(vi, t

′))

≤ Σk
i=1(wiS(vi, t)) = Σk

i=1(wi(vi · t)

= Σk
i=1(wivi) · t = q · t

= S(q, t)

Therefore, S(q, t) = S(q, T ))✷

4.3 The lower bound of MPSs
A lower bound of the MPS S(q, T ), L(q, T ), can be simply

given by computing the preference score of a randomly se-
lected tuple t from T . However, to provide tighter lower
bound for S(q, T ), those outermost tuples of views that
are near to q are preferred for computing the lower bound
L(q, T ) because they are more likely to be the outermost
tuples of q. In our solution, to maintain lightweight views
(i.e., each view only maintains one outermost tuple achiev-
ing MPS on it), we simply derive the lower bound L(q, T )
from those outermost tuples of its composite views. For a
query q and its composite views v1, . . . , vk, the lower bound
is computed as L(q, T ) = supki=1S(q, vi.t).

4.4 Evaluating the tightness of the bounds
Views are important in determining the tightness of the

upper bound score U(q, T ) and the lower bound score L(q, T ).
Given k composite views v1, . . . , vk which form a convex, we
define a measurement called the variance of a convex, de-
noted as g(v1, . . . , vk), to evaluate the tightness of the up-
per bounds and lower bounds for the MPSs of those query
vectors falling into the convex:

g(v1, . . . , vk) =
k

sup
i=1

k
sup
j=1

(S(vi, T )− S(vi, vj .t))

Lemma 4 estimates the tightness of U(q, T ) and L(q, T ):
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Lemma 4. Given a query q and its k composite views v1, . . . , vk,
U(q, T )− L(q, T ) ≤ g(v1, . . . , vk).

Proof : Let q = Σk
i=1(wivi). We have:

U(q, T ) = Σk
i=1(wiS(vi, T )) = Σk

i=1(wiS(vi, vi.t))

According to the definition of L(q, T ), there must be a j ∈
{1, . . . , k} such that:

L(q, T ) = S(q, vj .t) = q · vj .t

= Σk
i=1(wivi · vj .t) = Σk

i=1(wiS(vi, vj .t))

Therefore, U(q, T )− L(q, T )

= Σk
i=1(wiS(vi, vi.t))− Σk

i=1(wiS(vi, vj .t))

= Σk
i=1(wi(S(vi, vi.t)− S(vi, vj .t))

≤ Σk
i=1(wig(v1, . . . , vk)) = g(v1, . . . , vk)✷

The variance of a convex g(v1, . . . , vk) can therefore help
us to evaluate whether the composite views v1, . . . , vk are
accurate enough in approximating S(q, T ), for any query
vector q falling into the convex. If it is not enough, a further
partition of the convex may have to be conducted.

5. APPROXIMATE THE MAXIMAL PREF-

ERENCE SCORES BY CUBIC VIEWS
A number of views need to be created for effectively bound-

ing the MPSs. These views partition the query space (‖
q ‖1= 1) into convexes. We propose to address an ad hoc
query q by using the composite views of the convex which
q falls on. In our study, 3-dimensional views are created
for bounding the MPSs for some reasons: 1) the three di-
mensional query space provides an elegant partition strat-
egy (that cannot be achieved in higher dimensional space) so
that the partitions can be effectively indexed and retrieved;
2) many preference queries may simply focus on a small num-
ber of features, the views of more than three dimensions will
be redundant for queries of less than 4 dimensions; 3) our
solution is designed for practical BPQs of less than 6 rank-
ing features, which can be simply addressed by cubic views.
As such, we first mainly discuss query processing techniques
on queries of no more than three ranking features.

5.1 A simple representation of queries
Because all queries and views are normalized (i.e., ‖ q ‖1=

1), the queries and views will be within a plane of an equi-
lateral triangle in 3-dimensional space. An example of a
query vector with 3 features (x, y and z) is shown in Figure
4(a). As it is shown in Figure 4(b), a 3-dimensional query
vector can be simply represented by an equilateral triangle
in 2-dimensional space. A feature value of the query q (e.g.,
qx) can be represented as the distance of the query point
to the corresponding edge (e.g., vyvz for feature x) of the
feature, with the height of the triangle (i.e., the distance of
vx to the edge vyvz) normalized as 1. In this way, as long as
q is within the equilateral triangle vxvyvz, q

x +qy +qz = 1
always holds, because the sum of the areas of qvxvy, qvyvz,
qvzvx is exactly the area of vxvyvz. Because of the simpli-
fication in 2-dimensional representation, we present queries
and views directly over the 2-dimensional equilateral trian-
gle, where the triangle vxvyvz actually defines the space for
all possible queries. The goal is to partition vxvyvz into
small partitions by creating views so that queries can be
effectively bounded by some composite views.

5.2 Partitioning and indexing the query space
using cubic views

In our solution, we partition an equilateral triangle at the
three middle points of the three edges, so that the big tri-
angle is partitioned into four equal-sized equilateral trian-
gles. An example is shown in Figure 4(c), where the trian-
gle vxvyvz is divided into four equilateral triangles vxv3v2,
v3vyv1, v2v1vz and v1v2v3 by creating three views v1, v2, v3.
A partitioned triangle can be further partitioned to gener-
ate partitions of finer granularity. In such a way, the whole
query space is hierarchically partitioned into a number of
small equilateral triangles, as the example of Figure 4(c).
Along with the partition of the query space, a 4-way tree in-
dex is built to index those partitioned triangles. An example
of the tree index for the partition of Figure 4(c) is shown in
Figure 5(b). Each node in the tree records the three vertex
views. A non-leaf node also has links to its four child nodes.

However, generating a large number of fine granular parti-
tions will increase the number of views as well as the main-
tenance cost of the views and the index structure. Many
redundant partitions will be created if they are not well con-
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Figure 5: Query space partitioning and partition search.

trolled. We have two ways of controlling the granularity of
partitions (details are given in Algorithm 2). A parameter δ
defines the desired variance for a leaf partition. We therefore
do not further partition a triangle if the variance (function
g() defined in Section 4.4) of the triangle is no more than δ.
However, considering that the variance of some fine granular
partitions may still be larger than δ, we therefore also con-
trol the finest granularity of the partitions by constraining
the maximal height of the tree index as hmax. Consequently,
the size (i.e., width) of the finest granular partition would
be the 1/2hmax of that of the query space, while the volume
would be 1/4hmax of that of the query space. Therefore,
the space cost for views and tree index is O(4hmax ). The
complexity of creating indexes is also bounded as O(4hmax ),
which is not important as the indexes are built offline.

5.3 View-based approximate BPQ processing
An important step of the approximate BPQ processing is

to find the composite views for a given query q. We there-
fore need to search the tree index of partitions to find the
leaf node whose partition contains the query vector q. A
straightforward way of finding such a leaf node is to trace the
nodes from the root of the tree. However, the top-down ap-
proach of tracing nodes requires much comparison of vectors.
We propose a bottom-up solution for finding the composite
views of a query. We partition the whole space into equi-
lateral triangles with the highest resolution (determined by
hmax). An example is shown in Figure 5(a) where hmax = 3.
As a result, there are totally 4hmax cells. Those cells are or-
dered using a space filling curve. If we create a full index tree
for all these highest resolution cells, the order of the cells in
the filling curve will be exactly the order of leaf nodes in the
full index tree. With such a filling curve, a leaf node in the
index tree will correspond to an ordered cell in the fully par-
titioned space. For example, node v8v4v7 corresponds to the
ordered cell 27, and node v3vyv1 corresponds to the ordered
cell 32 in Figure 5(a). An ordered cell records a pointer if it
corresponds to a leaf node of the index. For the tree shown
in Figure 5, all the corresponding ordered cells of leaf nodes
are colored in red in Figure 5(a).

By using orders, we actually create links from the space
filling curve to the leaf nodes of the index tree. Given a

query, we can efficiently look up the ordered cell c that q
falls in based on its coordinates. If cell c has a pointer to a
leaf node, we have found the desired partition in the index.
Otherwise, we jump from cell c to another ordered cell which
corresponds to the parent of the partition (in the tree index)
corresponding to cell c. In this way, it is guaranteed that
within hmax jumps we can find a leaf node in the tree index
whose partition encloses q. For example, a query falls in a
cell 30 in Figure 5(a). Since the cell 30 has no pointer to a
leaf node, it jumps to cell 28 which has a pointer to the leaf
node v5v4v2 in the tree index of Figure 5.

Algorithm 3 describes the details of view-based approx-
imate BPQ processing (VBP), which is very efficient by
limiting the complexity as O(hmax). Once a leaf partition
containing the query vector is detected, the upper bound
U(q, T ) and lower bound L(q, T ) are computed based on
the composite views of the partition. A scan of the sky-
line tuples of T is required only if the relative error rate
U(q,T )−L(q,T )

L(q,T )
> ε, which may happen in those leaf parti-

tions having a large variance.

5.4 Lightweight view maintenance
A view in the VBP solution only maintains the outermost

tuple and its preference score on that view. Compared to
the views used in LPTA [8] (top-k results), the views in
VBP are more lightweight and therefore easy for mainte-
nance. The updates of tuples in the data set may cause the
materialized views to be updated. They therefore should be
addressed. The updates of views may change the variance
of some leaf nodes. This may result in the leaf node to be
not tight enough for deriving bounds. It therefore need to
be updated in two ways: 1) further partition on the node (to
achieve finer granular partitions); 2) combine sibling nodes
(to reduce the number leaf partitions). We only consider two
cases of tuple updates: insertion and deletion. An update
of a tuple can be treated as a delete operation followed by
an insert operation.

5.4.1 Tuple insertion

The insertion of a tuple may enlarge the MPS of a view.
Algorithm 4 is designed to address the tuple insertion. We
first compare the MPS u that can be achieved by the inserted



Algorithm 2 Create a tree index for the query space

Input: T , the given data set.
Input: x, y, z, three features for creating views.
Input: δ, the largest variance allowed for a leaf partition.
Input: hmax, the maximal height of the tree index.
Output: r, the root of the tree index.
Output: V , the set of materialized views.
1. V = ∅
2. let vx, vy, vz be the basic views for features x, y and z.
3. materializeView(vx)
4. materializeView(vy)
5. materializeView(vz)
6. return r = newNode(vx, vy , vz , 0)

newNode(v1, v2, v3, height):

1. n, initialize the new node.
2. for i = 1 to 3 do
3. n.vi = vi
4. end for
5. n.g = g(v1, v2, v3)
6. n.h = height
7. if n.h < hmax and n.g > δ then
8. partitionNode(n)
9. end if

10. return n

partitionNode(n):

1. materializeView(v4 = n.v2+n.v3
2

)

2. materializeView(v5 = n.v1+n.v3
2

)

3. materializeView(v6 = n.v1+n.v2
2

)
4. n.addAChild(newNode(v4, v5, v6, n.h+ 1))
5. n.addAChild(newNode(n.v1, v6, v5, n.h+ 1))
6. n.addAChild(newNode(v6, n.v2, v4, n.h+ 1))
7. n.addAChild(newNode(v5, v4, n.v3, n.h+ 1))

materializeView(v):

1. if v /∈ V then
2. materialize v by computing v.s = S(v, T ).
3. let v.t be outermost tuple for the view v.
4. insert v into V
5. end if

tuple with the minimal MPS b of all views. Those views are
further checked only if u > b. The affected leaf nodes of
the updated views will be recorded. They may be further
updated based on the their updated variance, to keep the
effective granularity of space partitions.

5.4.2 Tuple deletion

The deletion of tuples may reduce the MPS of a view.
Since the tuple achieving the MPS for each view has been
recorded, when a tuple is deleted, the affected views can
be easily found. For an affected view v, an update of v.s
requires an expensive scanning of all the tuples. However,
the original MPS of the view can still be applied as an up-
per bound of the MPS of the view. Therefore, the update
of v can be delayed. If a tuple t with S(v, t) ≥ v.s is in-
serted after some delayed operations, the outermost tuple
will be updated as t, so that the delayed updates of v can
be directly ignored because they will not affect the updated
v.s. However, when a certain number of tuples have been

Algorithm 3 View-based approximate BPQ process-
ing (VBP)

Input: T , the given data set.
Input: q, the query vector of at most 3 dimensions.
Input: r, the root of the tree index.
Output: U(q, T ), L(q, T )

1. X = ⌊ qx

2hmax
⌋, Y = ⌊ qy

2hmax
⌋, Z = ⌊ qz

2hmax
⌋

2. look up a table for the entry (X,Y, Z) to get the order
c of the partition that q falls in.

3. h = 1 {the level of the searched partition}
4. while h <= hmax do
5. if c.hasPointer then
6. n = c.pointer {the node c points to}
7. if n does exist then
8. use n.v1, n.v2 and n.v3 as the composite views of

q
9. compute U(q, T ) and L(q, T ) from these views

10. if U(q,T )−L(q,T )
L(q,T )

≤ ε then

11. return (U(q, T ), L(q, T ))
12. else
13. compute S(q, T ) by scanning the skyline of T .

{The same as the SSA.}
14. return U(q, T ) = L(q, T ) = S(q, T )
15. end if
16. break
17. end if
18. else
19. c = c− c MOD 4h++

20. end if
21. end while

removed from the data sets, many original MPSs of views
will be inaccurate. As a result, the derived bounds of MPSs
will be not sufficiently tight. We therefore need to maintain
a memo recording those delayed deletions, so that they can
be processed in batch by only scanning tuples of data set
once. The updates for the tree indexes in delete operations
will be the same as those in insert operations.

5.5 Supporting moderate dimensional query
The techniques introduced in Algorithm 3 are focused on

queries of no more than 3 ranking features (d ≤ 3). However,
it can be extended to support queries of moderate dimen-
sions (e.g., d ≤ 6) by sacrificing the pruning performance.
To achieve this, we need to first rank the weights of all query
features, and transform the query q into two sub-queries of
no more than three features. The first three largest fea-
tures form a feature group called the primary feature group
(q1 in Algorithm 5). The others (no more than 3 features)
form the secondary feature group (q2). For each of the two
feature groups, a decomposed query is generated and nor-
malized. The Algorithm 3 can then be applied to the de-
composed queries to find the upper bound scores of these
queries, from which the U(q, T ) can be finally evaluated by
the weighted sum of the two upper bound scores. Algorithm
5 is designed to support queries of moderate dimensions. In
terms of computational complexity, it can be reduced to Al-
gorithm 3 which has a complexity of O(hmax). However, the
pruning power of queries of moderate dimensions will be not
as good as that of no more than 3 dimensions. To support
queries of arbitrary features, the system need to materialize



Algorithm 4 Tuple insertion

Input: T , the data set T
Input: V , the set of views
Input: t, the inserted tuple
1. N = ∅, records leaf nodes affected
2. let b be the minimal maximal preference score of all

views in V over data set T .
3. u = (tx)2+(ty)2+(tz)2

tx+ty+tz
.{The maximal preference score can

be achieved by t.}
4. if u > b then
5. for each view v do
6. if S(v, t) > v.s then
7. v.s = S(v, t), v.t = t
8. for each leaf node n using v as its composite view

do
9. insert n into N

10. end for
11. end if
12. end for
13. end if
14. for each node n ∈ N do
15. update n.g
16. if n.g > δ and n.h < hmax then
17. further partition n based on Algorithm 2.
18. else
19. let n′ be the parent of n, update n′.g
20. if n′.g ≤ δ then
21. clear pointers of the ordered cells pointing to n′’s

children
22. remove the children of n′

23. make n′ as a leaf node. Create a pointer for the
ordered cell corresponding to the node n′, point-
ing to n′.

24. end if
25. end if
26. end for

views and indexes for all possible subsets of the data sets’
features with cardinality 3. Supporting preference queries
of high dimensions is however beyond the scope of the tech-
niques discussed in this paper.

6. PERFORMANCE EVALUATION

6.1 Experimental settings
We compare the performance of the VBP approach with

those of four baseline solutions: θ-ETA, ETA, SSA and
LPTA [8]. Among them, ETA, SSA and LPTA compute
the exact MPS. For θ-ETA, we compute the approximation
of MPS (where θ > 1 in Algorithm 1). We use two real-
life data sets: Household 1 and El Nino 2. The Household
data set (used in [18]) contains 127K tuples. Each tuple has
6 attributes recording the percentage of an American fam-
ily’s annual income spent on: gas, electricity, water, heat-
ing, insurance, and property tax. The El Nino data set
contains oceanographic and surface meteorological readings
taken from a series of buoys positioned throughout the equa-
torial Pacific. For the used data sets, we did a normalization
and transformation based on the domain of the features such

1available at www.ipums.org
2available at kdd.ics.uci.edu/databases/el nino/el nino.html

Algorithm 5 VBP for queries of moderate dimen-
sions
Input: T , the given data set.
Input: q, the query vector.
Input: R, the set of roots of the tree indexes.
Output: U(q, T ), L(q, T )
1. Rank all the features of q by their weights in the de-

scending order.
2. Decompose the ranked features into two groups. Let the

weights of the two groups be α1 and α2, which are the
sum of the weights of their features respectively.

3. Normalize the two feature groups as q1 and q2.
4. find the composite views for q1 and q2 based on R.
5. L(q, T ) = supi S(q, vi), where vi is a composite view.
6. U(q, T ) = α1U(q1, T ) + α2U(q2, T )

7. if U(q,T )−L(q,T )
L(q,T )

≤ ε then

8. return (U(q, T ), L(q, T ))
9. else

10. compute S(q, T ) by scanning over the skyline of T
11. return U(q, T ) = L(q, T ) = S(q, T )
12. end if

that larger values are considered better after the transfor-
mation. For scalability tests, data sets of different sizes are
generated from the prefix of the whole data set. The query
sets are randomly generated in the normalized query space.
The testing results are based on the average of the results
over 1000 queries.

The data are stored in relational tables (MySQL system).
They are retrieved through standard data access by SQL
clauses. We therefore do not count I/Os, but the overall
query execution time (note that the performance of SSA
can benefit from hot cache). Skyline tuples of data sets
are pre-computed and labeled by an additional attribute in
relational tables. They are retrieved by SSA using SQL
clauses like “select * from dataset where isskyline=1”. Our
experiments were conducted on a PC with a duo-core Intel
(1.8GHz) processor and 3GB RAM. We implemented all the
algorithms in C++. The database we use for storing and
retrieving data is MySQL 5.0.

6.2 Performance of query processing
We first compare the performance of the approaches us-

ing a query set of 3 dimension. Figure 6(a) and 6(b) re-
spectively give the results of efficiency and accuracy for the
Household data set. Correspondingly, Figure 6(c) and 6(d)
give the results for the El Nino data set. Because ETA,
SSA and LPTA compute the exact MPSs, they therefore do
not appear in Figure 6(b) and 6(d) for accuracy. From the
results, we can see that the VBP approach is faster than
the other approaches in one to three orders of magnitude.
The performance of the other approaches suffer when the
data sets are enlarged because large data sets typically have
large skyline cardinality. This can be easily observed from
the SSA approach. Comparatively, the performance of the
VBP approach does not suffer significantly when the data
set is enlarged mainly because the tight bounds derived from
views help to prune most I/O accesses for skyline tuples.

As shown in Figure 6(b) and 6(d), the accuracy of the
VBP approach is very good, with the average error rates
are controlled under 0.005. Comparatively, the average er-
ror rates for the θ-ETA can be as large as 0.05, which is



 1

 10

 100

10
3

10
4

10
5

a
v
e
ra

g
e
 c

p
u
 t
im

e
 (

m
s
.)

data set size

θ-ETA
ETA
SSA

LPTA
VBP

(a) Efficiency, Household

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

10
3

10
4

10
5

a
v
e
ra

g
e
 r

e
la

ti
v
e
 e

rr
o
r 

ra
te

data set size

θ-ETA
VBP

(b) Accuracy, Household

 1

 10

 100

10
3

10
4

10
5

a
v
e
ra

g
e
 c

p
u
 t
im

e
 (

m
s
.)

data set size

θ-ETA
ETA
SSA

LPTA
VBP

(c) Efficiency, El Nino

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

10
3

10
4

10
5

a
v
e
ra

g
e
 r

e
la

ti
v
e
 e

rr
o
r 

ra
te

data set size

θ-ETA
VBP

(d) Accuracy, El Nino

Figure 6: Performance comparison of best preference queries

much larger than that of VBP. We can also find from Fig-
ure 6(a) and 6(c) that, due to the approximation for com-
puting MPSs, the θ-ETA approach is faster than the ETA
approach. Similarly, the VBP approach is faster than the
SSA approach. There is no significant difference between
the results of the two test data sets.

In the experiments of Figure 6, the parameter ε of the
VBP approach is set as a default value of 0.05. Note that the
parameter ε will affect both the efficiency and the accuracy
of the VBP approach. We study the trade off of efficiency
and accuracy by adjusting ε for a number of values: 0.01,
0.02, 0.05 and 0.1. The impacts on the efficiency and the
accuracy are shown in Figure 7. As we can see (Figure
7(a) and 7(c)), with the enlargement of ε from 0.01 to 0.1,
the computational cost drops. However, the computational
costs change slightly for ε = 0.05 and ε = 0.1 because almost
all the queries can be effectively approximated when ε is
large enough. In contrast, when ε = 0.01, the computational
cost increases with the enlargement of the data set simply
because the skyline cardinality is also enlarged. For accuracy
(Figure 7(b) and 7(d)), obviously, the smaller the ε, the less
the average error rates. Even though ε is as large as 0.1,
the average error rates are still less than 0.015 in the tests
of both data sets.

Parameters hmax and δ (used in Algorithm 2) for creat-
ing views and indexes affect the granularity of the query
space partitioning. They therefore affect the tightness of
the bounds achieved by the VBP approach. In the above
experiments, we use the default values of these two parame-
ters as hmax = 3 and δ = 0.05. We further test the impacts
of these two parameters on the VBP approach by only using
the Household data set. The average error rate and CPU
time of the VBP approach under various parameter settings
are shown in Table 3. In general, the enlargement of hmax

generates more views, which helps to improve the accuracy
because finer partitions are achieved. The reduction of δ
can generate more views. This is only verified in Table 3
when hmax = 4 because of the number of views are mainly
controlled by hmax when hmax is small. We can also see
that the accuracy increases (the error rate drops and the
percentage of exact results increases) when more views are
generated. More interestingly, the computational cost drops
when hmax is enlarged. This is because less I/O accesses
are required for retrieving skyline tuples when queries can
be more effectively approximated.

6.3 Performance of updates
The update of a tuple may trigger the updates of some

Table 3: The impact of hmax and δ on the perfor-
mance of the VBP (ε = 0.02)

hmax δ views err rate exact results time (ms.)

2
0.05 33 0.0041 17.6% 4.64
0.02 33 0.0041 17.6% 4.63
0.01 33 0.0041 17.6% 4.63

3
0.05 71 0.0034 41.3% 0.55
0.02 71 0.0034 41.3% 0.53
0.01 71 0.0034 41.3% 0.55

4
0.05 140 0.0020 57.9% 0.31
0.02 163 0.0011 63.7% 0.31
0.01 163 0.0011 63.7% 0.30

views and indexes. In our tests, for the deletions of tuples,
the most pessimistic updating strategy is applied, i.e., once
an outermost tuple of a view is deleted, we re-materialize the
views by scanning all the tuples in the disk. The average up-
dating cost (a delete operation plus an insert operation) over
different size of data sets is shown in Table 4. We can see
that when the size of data sets is enlarged, the chance of
the re-materialization of views drops because the probabil-
ity of a deleted tuple being the outermost tuple of a view
also drops. However, the cost of one re-materialization pro-
cess increases with the enlargement of data set size. That
explains the phenomenon that the average update time in-
creases and then drops with the enlargement of the data set
size.

Table 4: The impact of the size of data sets on the
update efficiency of the VBP approach.

data set average update the ratio of
(number of tuples) time (ms.) re-materialization

1000 0.815 0.0922
3162 2.545 0.0771
10000 4.469 0.0535
31620 7.309 0.0387
100000 2.294 0.0015

The updating cost is also affected by the number of views
maintained. We evaluate such an impact in Table 5. When
the number of dimensions of data sets is increased, the num-
ber of views to be created increases. As a result, the aver-
age updating cost of tuples increases accordingly. This is
because the probability of a deleted tuple being the outer-
most tuple of a view is increased. However, if the optimistic
updating strategy is applied for the delete operations, the
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Figure 7: The trade off on efficiency and accuracy for the VBP approach

update cost will be much smaller (compared to the results
of Table 5) because no re-materialization is required for up-
dating the outermost tuples of those affected views. Those
affected views can be efficiently addressed by some succeed-
ing insert operations.

Table 5: The impact of the number of views on the
update efficiency of the VBP approach

data set total number avrg update the ratio of
dimensionality of views time (ms.) re-material.

3 71 0.52 0.0061
4 193 1.44 0.0162
5 756 2.71 0.0228
6 989 5.30 0.0409

6.4 Queries of moderate dimensions
Many studies [5, 8, 13, 15] of preference queries exam

the performance of their solutions using queries of less than
6 (although 2-3 dimensions are preferred) ranking features,
which are supposed to take the majority of practical prefer-
ence queries. We test the performance of the VBP approach
(Algorithm 5) for queries of moderate dimensions. We apply
a query set of 4 dimensions and a query set of 5 dimensions.
For the θ-ETA approach, we set θ = 1.1. For the LPTA
approach, we evenly created views in the whole query space
(54 views for the query set of 4 dimensions, and 45 views for
the query set of 5 dimensions). Like the test for 3 dimen-
sions, the number of views used for LPTA is larger than that
used for the VBP approach. For the VBP approach, we set
ε = 0.05 for the query set of 4 dimensions and ε = 0.1 for
the query set of 5 dimensions. The results for the two query
sets are given in Figure 8 and Figure 9 respectively.

As can be seen from Figure 8(a) and 8(c) for the query set
of 4 dimensions and Figure 9(a) and 9(c) for the query set
of 5 dimensions, the VBP approach outperforms the others
when the data set is not significantly large. The efficiency
of the VBP approach is surpassed by the LPTA approach
(whose cost is not sensitive to the size of data set) for two
tests when the data set has 100k tuples. Obviously, the
efficiency of the VBP and SSA approaches is affected by the
data set size, which actually affects the skyline cardinality.
Comparatively, the VBP approach works relatively better
for the El Nino data set than for the Household data set.
For the accuracy, the VBP approach can achieve an average
error rate of less than 0.02 for the query set of 4 dimensions
and 0.04 for the query set of 5 dimensions, which is much

better than that can be achieved by the θ-ETA approach.

7. CONCLUSION
In this paper, we have proposed a special preference query

called the best preference query, and a very efficient approx-
imate solution to efficiently process such a query. Given a
BPQ, the tight upper bound and lower bound of the MPS
can be efficiently derived from a few number of lightweight
cubic views surrounding the query vector. We designed a
space partitioning strategy and indexing structure for the
query space so that effective views for bounding the query
could be discovered efficiently. The indexing structure can
be adapted to the requirements of the tolerable error rate.
Being an approximate solution, the exact results however are
often returned. The experimental results show that, with a
small tolerable error rate, the efficiency of the BPQ pro-
cessing can be improved in 1-3 orders of magnitude by our
proposed approximate solution over the exact solutions.
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