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ABSTRACT

Microarray datasets typically contain large number of columns

but small number of rows. Association rules have been
proved to be useful in analyzing such datasets. However,
most existing association rule mining algorithms are unable
to efficiently handle datasets with large number of columns.
Moreover, the number of association rules generated from
such datasets is enormous due to the large number of possi-
ble column combinations.

In this paper, we describe a new algorithm called FARMER
that is specially designed to discover association rules from
microarray datasets. Instead of finding individual associa-
tion rules, FARMER finds interesting rule groups which
are essentially a set of rules that are generated from the same
set of rows. Unlike conventional rule mining algorithms,
FARMER searches for interesting rules in the row enumera-
tion space and exploits all user-specified constraints includ-
ing minimum support, confidence and chi-square to support
efficient pruning. Several experiments on real bioinformatics
datasets show that FARMER is orders of magnitude faster
than previous association rule mining algorithms.

1. INTRODUCTION

With recent advances in DNA chip-based technologies, we
can now measure the expression levels of thousands of genes
in cell simultaneously resulting in a large amount of high-
dimension data. These microarray datasets typically have a
large number of columns but a small number of rows. For
example, many gene expression datasets may contain up to
10,000-100,000 columns but only 100-1000 rows.

Recent studies have shown that association rules are very
useful in the analysis of microarray data. Due to their rel-
ative simplicity, they are more easily interpreted by biolo-
gists. Association rules can be applied in the following two
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scenarios: (1) it is shown in [9, 13] that classifiers built from
association rules are rather accurate in identifying cancer-
ous cell; (2) it is suggested in [7] that association rules can
be used to build gene networks since they can capture the
associations among genes.

In this paper, we focus on a special type of association rule
which takes the form of LHS — C, where LHS is a set of
items and C is a class label. We use the term “support of A”
to refer to the number of rows containing A in the database
and denote this number as sup(A). The probability of the
rule being true is referred to as “the confidence of the rule”
and is computed as sup(LHSUC)/sup(LHS). The number
of rows in the database that match the rule is defined as
“the support of the rule”. User-specified constraints such
as minimum support (a statement of generality) and mini-
mum confidence (a statement of predictive ability) are often
imposed on mining such association rules.

Microarray datasets pose a great challenge for existing
rule mining algorithms in both runtime and the number of
discovered rules. While there are a large number of algo-
rithms that have been developed for association rule mining
[1, 11, 18, 23], their basic approaches are all column enumer-
ation in which combinations of columns are tested system-
atically to search for association rules. Such an approach is
unsuitable for microarray datasets. This is because if i is
the maximum length of a row in a dataset, the search space
based on column enumeration could be as large as 2¢. Pre-
vious column enumeration methods work well for datasets
with small average row length (usually ¢ < 100). However,
for micorarray datasets, ¢ can be in the range of tens of
thousands. These high-dimension bioinformatics datasets
with thousands of columns render most of the existing algo-
rithms impractical.

On the other hand, the number of rows in such datasets is
typically in the order of hundreds to a thousand. If m is the
number of rows, the size of the row enumeration space will be
2™. In our application domain (e.g., microarray datasets),
the size of the row enumeration space is much less than the
size of the column enumeration space. Therefore, it seems
reasonable to devise the algorithm that does not perform
column enumeration but row enumeration. To the best of
our knowledge, none of existing studies investigate the pos-
sibilities of discovering rules by row enumeration.

A large number of long frequent itemsets may be discov-
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columns. As a result, large number of association rules may
be generated due to the combinatorial explosion of frequent



itemsets [3]. For example, given a dataset with one row,
five columns and one class label: {a,b,c,d, e, Cancer}, we
could have 31 rules of the form LHS — Cancer since any
combination of a, b, ¢, d and e could be the LHS for the
rule. These 31 rules all cover the same row and have the
same confidence (100%). Such a large set of rules contains
a lot of redundancy and is difficult to interpret. Instead of
generating all 31 rules, we propose to discover these rules
as a rule group whose consequent is Cancer, and which can
be identified by a unique upper bound plus a set of lower
bounds. The upper bound of a rule group is the rule with
the most specific LHS among the rules. In our example, the
upper bound rule is abcde — Cancer. The lower bounds
of the rule group are the rules with the most general LHS
in the rule group. For our example, the rule group has 5
lower bounds (a — Cancer, b — Cancer, ¢ — Cancer,
d — Cancer, and e — Cancer). Given the upper bound
and the lower bounds of the rule group, other rules within
the group can be easily derived.

We further reduce the number of rules by finding inter-
esting rule groups only. Consider two rules abcd — Cancer
with confidence 90% and ab — Cancer with confidence 95%,
it is obvious that ab is a better indicator of Cancer since
ab — Cancer has a higher confidence and all rows covered
by abcd — Cancer must be covered by ab — Cancer. With
ab — Cancer, rule abcd — Cancer is not interesting’.

In this paper, we describe a novel algorithm FARMER
2 that is specially designed to mine interesting rule groups
from microarray datasets. FARMER discovers upper bounds
of interesting rule groups by performing depth-first row-
wise enumeration instead of the usual column-wise approach
taken by existing rule mining algorithms. This basic idea is
combined with efficient search pruning strategies based on
user-specified thresholds (minimum support, minimum con-
fidence and minimum chi-square value), yielding a highly
optimized algorithm. We also describe an efficient algorithm
for computing the lower bounds. Our experiments show that
FARMER substantially outperforms other rule mining algo-
rithms described in [2], [23](CHARM) and [21](CLOSET+)
To further illustrate the usefulness of the discovered interest-
ing rule groups in biology, we build a simple classifier based
on these interesting rule groups, which outperforms the well-
known CBA [14] and SVM [12] on 5 real-life datasets.

The rest of this paper is organized as follows: In the next
section, we will introduce some preliminaries and give our
problem definitions. The FARMER algorithm will be ex-
plained in Section 3. Experimental results will be given
in Section 4 on real-life microarray datasets. Section 5 in-
troduces some of the related work for this paper. We will
conclude our discussion in Section 6.

2. PRELIMINARY

In this section, we introduce some basic notations and
concepts that are useful for further discussion.

2.1 The Basics

Dataset: the dataset (or table) D consists of a set of rows,
R={r1, ..., rn}. Let I={i1,42,...,im } be the complete set of

'Rules like abed — Cancer are simply pruned off in methods
like CBA [14] when they are building classifier with associ-
ation rules.

2FARMER stands for Finding Interesting Association Rule
Groups by Enumeration of Rows.

items of D, and C = {C1,Cq, ..., Ci} be the complete set of
class labels of D, then each row r; € R consists of one or
more items from I and a class label from C'.

As an example, Figure 1(a) shows a dataset where items
are represented with alphabets from ‘a’ to ‘t’. There are
altogether 5 rows, ri,...,r5, in the dataset, the first three of
which are labeled C' while the other two are labeled —=C. To
simplify the notation, we use the row id set to represent a set
of rows and the item id set to represent a set of items. For
instance, “234” denotes the row set {r2,rs, 74}, and “acf”
denotes the itemset {a,c, f}.

Given a set of items I’ C I, we define the row support
set, denoted R(I') C R, as the largest set of rows that
contain I'. Likewise, given a set of rows R’ C R, we define
item support set, denoted Z(R') C I, as the largest set of
items that are common among the rows in R’.

ExampPLE 1. R(I') and I(R')

Consider again the table in Figure 1(a). Let I' be the itemset
{a,e,h}, then R(I') = {ra,r3,r4}. Let R’ be the row set
{ra2,73}, then T(R')={a, e, h} since this is the largest itemset
that occurs in both ro and rs3. O

Association Rule: an association rule v, or just rule
for short, from dataset D takes the form of A — C, where
A C I is the antecedent and C' is the consequent (here, it is a
class label). The support of v is defined as the |[R(AUC)|,
and its confidence is |R(A U C)|/|R(A)|. We denote the
antecedent of v as .4, the consequent as ~.C', the support
as ~.sup, the confidence as 7.conf and the chi-square value
is y.chi.

As discussed in the introduction, in real biological appli-
cations, people are often interested in rules with a specified
consequent C' that meet specified thresholds, like minimum
support and minimum confidence.

2.2 Interesting Rule Groups (IRGSs)

The interesting rule group is a concept which helps to
reduce the number of rules discovered by identifying rules
that come from the same set of rows and clustering them
conceptually into one entity.

DEerFINITION 2.1. Rule Group

Let D be a dataset with itemset I and C be a specified class
label. G = {A; — C|A; C I} is a rule group with antecedent
support set R and consequent C, iff (1) VA; — C € G,
R(Ai) = R, and (2) VR(Ai) = R, Ai — C € G. Rule
Yu € G (yu: Ay — C) is an upper bound of G iff there
exists no v € G (y/:A' — C) such that A’ D A,. Rule
Y €G (qi: Ai — C) is a lower bound of G iff there exists
noy € G (v': A" — C) such that A’ C A,. O

LEMMA 2.1. Given a rule group G with the consequent C
and the antecedent support set R, it has a unique upper
bound vy (y: A— C).

Proof: Assume there exists another upper bound ~'(A’ —
C) € G such that A" # A and A’ € A. Let A” = AUA'.
Because of R(A') = R(A) = R, we get R(A") = R, and
then A” — C € G and A” D A. Therefore, v(A — C)
cannot be an upper bound of G. So the upper bound of a rule
group must be unique. O

Based on lemma 2.1, a rule group G can be represented
with its unique upper bound ~,,.
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ExampLE 2. Rule Group
A running example is shown in Figure 2 in which R({e}) =

R({h}) = R({ae}) = R({ah}) = R({eh}) = R({aeh}) =

{re,r3,74}. They make up a rule group {e — C,h — C,...,ach —

C} of consequent C, with the upper bound aeh — C and the
lower bounds e — C' and h — C. a

It is obvious that all rules in the same rule group have the
same support, confidence and chi-square value since they are
essentially derived from the same subset of rows. Based on
the upper bound and all the lower bounds of a rule group, we
can identify its remaining members according to the lemma
below.

LEMMA 2.2. Suppose rule group G with the consequent C
and antecedent support set R has an upper bound A, — C
and a lower bound A; — C. Rule v(A — C), where A C A,
and A D A, must be a member of G.

Proof: Since A C Ay, R(A) D R(Au). Likewise, R(A) C
R(A)). Since R(A) = R(Au) = R, R(A) = R. Sov(A—
C) belongs to G. O

DEFINITION 2.2. Interesting Rule Group (IRG)

A rule group G with upper bound 7, is an interesting rule
group iff for any rule group with upper bound ., C u,
~u.conf < ryu.conf. For brevity, we will use the abbrevi-
ation IRG to refer to interesting rule group. a

Our algorithm FARMER is designed to find IRGs that
satisfy user-specified constraints including minimum sup-
port, minimum confidence and minimum chi-square value
3. FARMER finds the upper bounds of all IRGs first, and
then gathers their lower bounds. This makes it possible for
users to recognize all the rule group members as and when
they want to.

3. THE FARMER ALGORITHM

30ther constraints such as lift, conviction, entropy gain, gini
and correlation coefficient can be handled similarly

To illustrate our algorithm, we first give a running ex-
ample (Figure 1). Table TT (Figure 1(b)) is a transposed
version of the example table (Figure 1(a)). In T'T, the items
become the row ids while the row ids become the items. A
row id r,, in the original table will appear in tuple i, of TT
if and only if the item 4,, occurs in the row 7, of the original
table. For instance, since item d occurs in row r2 and rs of
the original table, row ids “2” and “5” occur in tuple d of
TT. To avoid confusion, we hereafter refer to the rows in
the transposed table as tuples while referring to those in
the original table as rows.

We provide a conceptual explanation of FARMER algo-
rithm to discover upper bounds of interesting rule groups in
Section 3.1, the pruning strategies in Section 3.2, and the
implementation details in Section 3.3. In Section 3.4, we de-
scribe subroutine MineLB of FARMER to discover the lower
bounds of interesting rule groups.

3.1 Enumeration

Unlike existing column-wise rule mining algorithms which

perform their search by enumeration of columns [18], FARMER

performs search by enumeration of row sets to find interest-
ing rule groups with consequent C'. Figure 3 illustrates the
enumeration tree which represents the search of FARMER
conceptually for the interesting rule groups in the absence
of any pruning strategies. Each node X of the enumeration
tree corresponds to a combination of rows R’ and is labeled
with Z(R') that is the antecedent of the upper bound of a
rule group identified at this node. For example, node “12”
corresponds to the row combination {ri,r2} and “al” indi-
cates that Z({r1,r2}) = {a,!}. An upper bound al — C can
be discovered at node “12”. This is correct because of the
following lemma.

LEMMA 3.1. Let X be a subset of rows from the original
table, then Z(X) — C must be the upper bound of the rule
group G whose antecedent support set is R(Z(X)) and con-
sequent is C'.

Proof: First, according to Definition 2.1, Z(X) — C be-
longs to rule group G with antecedent support set R(Z(X))
and consequent C. Second, assume that Z(X) — C 1is not
the upper bound of G, then there must exist an item i such
that i ¢ Z(X), and Z(X) U {i} — C belongs to G. So
we get R(Z(X)) = R(Z(X) U{i}). Since rows in X con-
tain all items of Z(X), we get X C R(Z(X)), and then
X C R(Z(X) U {i}). This means that i is also found in
every row of X, which contradicts the definition that Z(X)
is the largest set of items that are found in every row of X.
So Z(X) — C is the upper bound of the rule group with
antecedent support set R(Z(X)). O

FARMER performs a depth-first search on the enumera-
tion tree by moving along the edges of the tree. By imposing
an order ORD, in which the rows with consequent C are or-
dered BEFORE the rows without consequent C(this is done
to support efficient pruning which will be explained later),
we are able to perform a systematic search by enumerating
the combinations of rows based on the order ORD. For
example, let “1 < 2 < 3 < 4 < 5" according to ORD, the
order of search in Figure 3 will be {“17, “127, 123”7, “1234”,
“12345”, “1235”,...,“45”, “5”} in absence of any optimiza-
tion and pruning strategies. Note that the order also serves
for confidence pruning purpose (explained in section 3.2.3).
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Figure 3: The Row Enumeration Tree.

Next, we prove that the complete rule groups can be dis-
covered by a complete row enumeration.

LEMMA 3.2. By enumerating all possible row combinations
on the row enumeration tree, we can obtain the complete set
of upper bounds and the corresponding complete set of rule
groups in the dataset.

Proof: With Lemma 2.1, we know that each rule group can
be represented by a unique upper bound. Based on the defi-
nition of rule group (Definition 2.1), all possible antecedent
support sets of rule groups can be obtained by enumerating
all possible row combinations. Each antecedent support set X
corresponds to a rule group with upper bound “Z(X) — C”.
Hence the proof. a

It is obvious that a complete traversal of the row enumer-
ation tree is not efficient. Various pruning techniques will
be introduced to prune off unnecessary searches in the next
section. We will next introduce the framework of our algo-
rithm for discovering the upper bounds of rule groups. We
first introduce two concepts.

DEFINITION 3.1. Conditional Transposed Table (T7|x)

Given the transposed table TT (used at the root of the enu-
meration tree), a X -conditional transposed table (TT|x ) at
node X (X is the row combination at this node) is a subset of
tuples from TT such that for each tuple t of TT thatt D X,
there exists a tuple t’' =t in TT)x. m]

EXAMPLE 3. Let TT be the transposed table in Figure 1(b)
and let X = {2,3}. The X-conditional transposed table,
TT|x 1is shown in Figure 2. O

DEFINITION 3.2. Enumeration Candidate List (TT|x.E)
Let TT|x be the X -conditional transposed table and Tmin €
X be the row id with the lowest ORD order in row combina-
tion X. Let Ep = {r|r =0rD "min N 7 € R(C)} (all rows
of consequent C ordered after Tmin ), and Exn = {r|r »=orp
Tmin A 1 € R(=C)} (all rows with class C ordered after
Tmin). The enumeration candidate list for TT|x, denoted
as TT|x.E, is defined to be Ep U Ex. O

Notation | Description

TT|x.E | enumeration candidates;

TT|x.Ep | enumeration candidates with label C;

TT|x.En | enumeration candidates without label C;

TT|x.Y | enumeration candidates that occur in each
tuple of TT|x.

Figure 4: Notations for Conditional Transposed Ta-
ble

In the rest of this paper, we will use the notations in
Figure 3.1 to describe various operations on the conditional
transposed table, TT|x.

Our formal algorithm is shown in Figure 5. FARMER
involves recursive computations of conditional transposed
tables by performing a depth-first traversal of the row enu-
meration tree. Each computed conditional table represents
a node in the enumeration tree of Figure 3. For example,
the {2, 3}-conditional table is computed at node “23”. After
initialization, FARMER calls the subroutine Minel RGs to
recursively generate X-conditional tables.

The subroutine Minel RGs takes in four parameters at
node X: TT'|x, supp, sup, and IRG. TT'|x is the X-
conditional transposed table at node X with enumeration
candidates TT'|x.Ep and TT'|x.En. sup, is the number
of identified rows that contain Z(X) U C while sup, is the
number of identified rows that contain Z(X) U —C before
scanning TT"|x. I RG stores the upper bounds of interesting
rule groups discovered so far.

Steps 1, 2, 4 and 5 in the subroutine Minel RGs perform
the pruning. They are extremely important for the efficiency
of FARMER Algorithm and will be explained in the next
subsection. Step 3 scans the table TT'|x. Step 6 moves on
into the next level enumerations in the search tree. Step 7
checks whether Z(X) — C is the upper bound of an IRG
that satisfies the user-specified constraints before inserting
it into IRG. Note that step 7 must be performed after
step 6 (the reason will be clear later). We first prove the
correctness of the two steps by two lemmas as follows:

LEMMA 3.3. TT‘X|” = TT|X+T” T € TTlx.E. ]

Lemma 3.3 is useful for explaining Step 6. It simply states
that a X 4+ r; conditional transposed table can be computed
from a X conditional transposed table TT|x in the next
level search after node X.

Lemma 3.1 ensures that at Step 7 only upper bounds
of rule groups are possibly inserted into IRG. To deter-
mine whether an upper bound ~ discovered at node X rep-
resents an interesting rule group satisfying user-specified
constraints, we need to compare ~y.conf with all v’.conf,
where 74'.A C v.A and 7/ satisfies user specified constraints.
FARMER ensures that all such 4/ have already been discov-
ered and kept in TRG at Step 7 by lemma 3.4 below.

LEMMA 3.4. Let v : Z(X) — C be the upper bound rule
discovered at node X. The rule group with upper bound ' :
A’ — C such that A’ C I(X) can always be discovered at the
descendent nodes of node X or in an earlier enumeration.

Proof: Since A’ C I(X), and ' and v are the upper bounds
of two different rule groups, we see R(A") D R(Z(X)) 2 X.
Let RS = {r|lr e R(A") A v ¢ X} and rmin € X be the row
with the lowest ORD rank in row set X. If 3r' € RS such
that v’ < Tmin, then node R(A’) is traversed before node X ;
otherwise node R(A’) is traversed at a descendent node of
node X. a



Algorithm FARMER

Input: table D, specified consequent C, minsup, minconf, and
minchi.

Output: interesting rule groups with consequent C' satisfying
minimum measure thresholds.

Method:

1. Initialization: Let T'T be the transposed table of ORD or-
dered D; IRG = 0.

2.  Mine Interesting Rule Groups: MinelRGs(T'T|g, 0, O,
IRG).

3. Mine Lower Bounds of Interesting Rule Groups: Optional.

Subroutine: MinelRGs(TT”|x, supp, supn, IRG).
Parameters:

TT'|x: a X-conditional transposed table;

supp and supy,: support parameters;

IRG: the set of discovered interesting rule groups;
Method:

1. Apply Pruning 2: If Z(X) — C is already identified,
then return.

2. Apply Pruning 3: If prunable with the loose upper
bounds of support or confidence, then return.

3. Scan TT'|x and count the frequency of occurrences for each
enumeration candidate, r; € TT'|x.E,
Let U, C TT'|x.Ep be the set of rows from TT'|x.Ep
which occur in at least one tuple of TT"|x;
Let Uy, C TT'|x.En be the set of rows from TT'|x.En
which occur in at least one tuple T7T”|x;
Let Y, C TT'|x.Ep be the set of rows from TT'|x.Ep
found in every tuple of TT'|x;
Let Y, C TT'|x.EN be the set of rows from TT'|x.En
found in every tuple of TT"|x;
supp = supy + [Yp| (R(Z(X)UC)));
supn = supn + [Yn| (R(Z(X) U=C));

4. Apply Pruning 3: If prunable with one of the three tight
upper bounds, then return.

5. Apply Pruning 1: Update enumeration candidate list,
TT'|x.Ep =Up — Yp, TT'|x.Ex = Uy — Yn.

6. for each r; € TT'|x.E do

if r; € R(C) then
TT'|x|r-Ep = {rjlr; € TT'|x.EpA
ri =orp Ti}; TT |x|r; En = TT'|x .EN;
a = supp + 1; b = supn;

else
TT,|X|”.EP = g TT/|X‘7-1..EN = {7‘]“7‘]‘ (S
TT'|x.EN ATj =0ORD Ti};
a = supp; b= supn + 1;

MineIRGs(TT'|x|r;,a,b, IRG);

7. Let conf = (supp)/(supp + supn);
If (supp > minsup) A (conf > minconf)A (chi(supp,
supp+ supn) > minchi) then
if Vv, (y € IRG) A (v A CI(X)) =
(conf > ~y.conf)
then add upper bound rule Z(X) — C into IRG.

Figure 5: The FARMER Algorithm

Step 7 is done after Step 6 to ensure that all descendant
nodes of X are explored before determining whether the
upper bound rule v at X is an IRG. Together with Lemma
3.2, we know that the complete and correct set of interesting
rule groups will be in IRG.

Note that Step 6 implicitly does some pruning since it is
possible that the enumeration candidate list is empty, i.e.
TT'|x.E = 0. It can be observed from the enumeration tree

that there exist some combinations of rows, X, such that
Z(X) = 0 (an example is node “134”). This implies that
there is no item existing in all the rows in X. When this
happens, T'T'| x.E is empty and no further enumeration will
be performed.

3.2 Pruning Strategies

We next look at the pruning techniques that are used in
FARMER, which are essential for the efficiency. Our em-
phasis here is to show that our pruning steps do not prune
off any interesting rule groups while preventing unnecessary
traversals of the enumeration tree. Combining this with
our earlier explanations on how all interesting rule groups
are enumerated in FARMER without the pruning steps, the
correctness of our algorithm will be obvious.

3.2.1 Pruning Strategy 1

Pruning strategy 1 is implemented at Step 5 of MineIRGs
by pruning T'T|x.Y, the set of enumeration candidate rows
that occur in all tuples of the TT|x. We partition TT|x.Y
to two subsets: Y}, with consequent C and Y, without. The
intuitive reason for the pruning is that we obtain the same
set of upper bound rules along the branch X WITHOUT
such rows. The correctness of such a pruning strategy is
due to the following lemma.

LEMMA 3.5. Let TT'\X be a X -conditional transposed ta-
ble. Given any subset R', R' C TT'|x.E, we have I(X U
R)=I(XUTT|x.Y UR)).

Proof: By definition, Z(X U R') contains a set of items
which occur in every row of (X U R'). Suppose candidate
y € TT'|x.Y (y occurs in every tuple of TT'|x ), then ei-
thery € XUR' (ify € R') or y occurs in every tuple
of the TT |xur' (ify € R'). In either case, Z(X UR') =
T(XUR U{y}). Thus, I(XUR') = Z(XUTT'|x.Y UR'). O

With Lemma 3.5, we can safely delete the rows in T7T"|x.Y
from the enumeration candidate list TT'| x.F.

EXAMPLE 4. Consider TT|2,3y, the conditional transposed
table in Figure 2. Since enumeration candidate row 4 occurs
in every tuples of TT (2,3}, we can conclude that Z({2,3}) =
Z({2,3,4}) = {a,e,h}. Thus, we need not traverse node
2347 and create TT|(234. Row 4 can be safely deleted
from TT|23,.E. O

Since Z({2,3,4}) = Z({2,3}), the upper bound rule is
identified at node “23” and node “234” is redundant. We
say that node “234” is compressed to node “23”.

We argue here that Lemma 3.4 still holds after applying
pruning strategy 1. Without applying pruning strategy 1,
for each node X, A" — C, where A’ C Z(X), is identified at a
node X', which is traversed before node X or is a descendent
node of node X. With pruning strategy 1, X’ might be
compressed to a node X" (X" € X' and Z(X") = I(X') =
A"), and we can see node X"’ is either traversed before the
subtree rooted at node X, or inside this subtree.

3.2.2 Pruning Strategy 2

This pruning strategy is implemented at Step 1 of MineIRGs.
It will stop searching the subtree rooted at node X if the
upper bound rule Z(X) — C was already discovered previ-
ously in the enumeration tree because this implies that any
rules to be discovered at the descendants of node X would
have been discovered too.



LEMMA 3.6. Suppose pruning strategy 1 is utilized in the
search. Let TT'|X be the conditional transposed table of the
current node X. All upper bounds to be discovered in the
subtree rooted at node X must have already been discovered
if there exists such a row r’ that satisfies the following con-
ditions: (1)r' ¢ X; (2)r' ¢ TT'|x.E; (3)for any ancestor
node X; of node X, r' ¢ TT|x,.Y (pruned by strategy 1);
and (4)r" occurs in each tuple of TT'|x.
Proof: Let X = {ri,r2,....,7m}, where r1 <orp T2 <ORD

. <ORD Tm. Suppose that there is a node X" (X" = X U
{r'}), we can have the followmg properties: (1) I( ) =
Z(X"); (2) v <0RD Tm, sincer’ ¢ TT'|x.E and r' ¢ X;
(3) TT'|x.E =TT |x».E

X" is either enumemted or compressed to a node Xc,
where I(Xc) = I(X”) and TTI|X//.E g TTI|XC.E. We
can prove that either node X' or node X¢ is traversed be-
fore node X by considering the following two cases: (1) If
" <orp 71, node X" or node Xc falls in the subtree rooted
at node {r'}, which is traversed before node X. (2) If row
ids in X" follow the order r1 <orp T2 <ORD ... <ORD
re <O0RD 7' <ORD Ti+1 <ORD -.- <ORD Tm, node X" or
node X¢ falls in the subtree rooted at node X' = {r1,...,m¢,7r'},
which is also traversed before node X. Because TT'|X.E =
TT|x».E and TT'|xn.E C TT'|x..E, we can conclude that
all upper bounds to be discovered in the subtree rooted at node
X must have already been discovered earlier in the subtree
rooted at node X" or node Xc. a

In the implementation of pruning strategy 2, the existence
of such a r’ can be efficiently detected by a process called
back counting without scanning the whole TT”| x. Details
are explained in section 3.3.

ExXAMPLE 5. Consider node “23” in Figure 3 where the up-
per bound rule {a,e,h} — C is identified for the first time.
When it comes to node “347, we notice that row 2”7 oc-
curs in every tuple of TT|(34y, 2”7 ¢ TT|(s3,4y.E, and 27
¢ TT|(3.Y. So we conclude that all upper bounds to be dis-
covered down node “34” have already been discovered before
(Z({3,4}) = Z({2,3}) = {a,e,h}. Z({3,4,5}) = 0). We

can prune the search down node “34”.

3.2.3 Pruning Strategy 3

Pruning strategy 3 performs pruning by utilizing the user-
specified thresholds, minsup, minconf and minchi. We
estimate the upper bounds of the measures for the subtree
rooted at the current node X. If the estimated upper bound
at X is below the user-specified threshold, we stop search-
ing down node X. A important thing to note here is that
our pruning strategy is highly dependent on the order ORD
which rank all rows with consequent C' before rows with
consequent —C.

Pruning strategy 3 consists of 3 parts: pruning using con-
fidence upper bound, pruning using support upper bound
and pruning using chi-square upper bound. This strategy
is executed separately at Step 2 and Step 4 (Figure 5). At
Step 2, we will perform pruning using the two loose upper
bounds of support and confidence that can be calculated
BEFORE scanning TT"|x. At Step 4 we calculate the three
tight upper bounds of support, confidence and chi-square
value AFTER scanning T7T"|x.

For clarity, we will use the notations in Figure 3.2.3 to
explain our pruning strategy here.

Notation | Description
X the current enumeration node;
the upper bound rule Z(X) — C at node X;
X’ the immediate parent node of X;
~! the upper bound rule Z(X’) — C' at node X’;
T'm a row id such that TT|x = TT|x/|rm;

Figure 6: Notations for Search Pruning

Pruning Using Support Upper Bound
We have two support upper bounds for the rule groups iden-
tified at the subtree rooted at node X: the tight support up-
per bound Uy (after scanning TT'|x) and the loose support
upper bound Usz (before scanning 77| x). If the estimated
upper bound is less than the minimum support minsup, the
subtree can be pruned.

If r,,, has consequent C':

Usit =7 .sup+ 1+ MAX(|TT |x.Ep Nt|), t € TT|x;

USQ = 'y'.sup + 1 + |TT/|X.EP‘;

If 7., has consequent ~C then Us; = Usa = ~'.sup;

LEMMA 3.7. Usi and Usz2 are the support upper bounds for
the upper bound rules discovered in subtree rooted at node
X.

Proof: Because of the ORD order (Definition 8.2), if the
consequent of rp, is °C, the enumeration candidates of nodes
down node X will also have consequent ~C'. The support can
not increase down node X, so the support of upper bounds
discovered in the subtree Tooted at node X is less than ~'.sup.
If ry has consequent C, for node X and its descendent
nodes, the mazimum increase of support from ~'.sup must
come from the number of enumeration candidates with con-
sequent C (|TT'|x.Ep|) at node X plus 1 (1 for rm)(Usz),
or more strictly, from the mazimum number of enumera-
tion candidates with consequent C' within a tuple of TT'|x
(MAX(‘TT/|X.EPﬂtD,tGTT/|x) plus 1 (Usl). O

Note that we need to scan TT’|X to get Usi while Us2
can be obtained directly from the parameters sup, and X
passed by the parent node.

Pruning Using Confidence Upper Bound

Similarly, we estimate two confidence upper bounds for the
subtree rooted at node X, the tight confidence upper bound
U.1 and the loose confidence upper bound U.s. If the esti-
mated upper bound is less than minimum confidence mincon f,
the subtree rooted at node X can be pruned.

Given Us; and Uss, the two confidence upper bounds of
subtree rooted at node X, U1 (tight) and Uez(loose), are:

Uar = Ut /(Us + [R(7-AU=O)|);
U = Usz/(Usz + |R(’y AU-C)]) (rm has consequent C);
Ueo = Us2/(Us2 + |R(v'.AU=C)|+1) (1, has consequent

LEMMA 3.8. U and Uz are the confidence upper bounds
for the rules discovered in the subtree rooted at node X.

Proof: For a rule v discovered in subtree rooted at node
X, its confidence is computed as |[R(y".AUC)|/(IR(y".AU
O) +|R(".AU=C)|). This expression can be simplified as
x/(x+y), where z = |R(v".AUC)| and y = |R(y". AU-C)|.
This value is mazimized by choosing the maximum value for
z (Us1 and Usz) and minimum value for y. Suppose rule ~y
is discovered at node X. For any rule ~" discovered under
the enumeration tree under node X, v"'.A C ~.A because of
pruning strategy 1, so we can see |R(y".AU=C)| > |R(y.AU
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—C)|. Thus the minimum value for y is |R(y.AU=C)| or
loosely at |[R(y'.A U =C)| + 1(if rm has no consequent C)
and |R(yY'.AU=C)| (if rm has consequent C). O

ExXAMPLE 6.
At node “134”, the discovered upper bound rule is “a — C”
with confidence 0.75 < 0.95. Since row 4 has no consequent
C, any descendent enumeration will only reduce the confi-
dence. Thus we can stop next level searching.

Pruning Using Chi-Square Upper Bound
The chi-square value of an association rule is the normalized
deviation of the observed values from the expected values.
Let v be arule in the form of A — C of dataset D, n be the
number of rows in D, and m be the number of instances with
consequent C' in D. The four observed values for chi-square
value computation are listed in the following table. For ex-
ample, O4-c represents the number of rows that contain A
but do not contain C. Let x = O4 and y = Oac. Since m
and n are constants, the chi-square value is determined by
z and y only and we get chi-square function chi(zx,y).

C -C Total

A| Oac =y Oa-c Op =z
-A O-ac O_a-c O_a=n—=x
Total Oc=m Oc=n—m n

The following lemma gives an estimation of upper bound
of chi square value for rules down the node X.

LEMMA 3.9. Suppose rule v is discovered at enumeration
node X. The chi-square upper bound for the upper bound
rules discovered at the subtree rooted as node X is: maz{

chi(x(v)—y(y)+m,m), chi(y(y)+n—m,y(v)), chi(z(v),y(v))}

Proof: Suppose rule o' (A" — C) is identified in the sub-
tree rooted at node X, 2’ = Oy and y' = Ouc. Since
O(A) = |R(A)| and A’ C A. The followings are satisfied.

Dz<a <n (RA) < [RA))

2)y <y <m (IR(AUC)| < |R(A'UC)|)

5y <o’ (IR(A'UC)| < [R(A)])

Dn-m> —y >z—y (RA'V-C)| > [R(AU-C)|)
The value pair (z'(v'"),y' (7)) falls in the gray parallelogram
(), y(7)), (@(v)—y(v)+m,m), (n,m), (y(v)+n—m,y(v)
(Figure 7). Since the chi-square function chi(z,y) is a con-
vex function [15], which is mazimized at one of its vertexes,
and chi(n,m) = 0 (please refer to [15]), we only need to
consider the remaining three vertexes. a

Suppose minimum confidence minconf = 95%.

3.3 Implementation

In the implementation of FARMER, we use memory point-
ers [4] to point at the relevant tuples in the in-memory trans-
posed table to simulate the conditional transposed table.
Our implementation assumes that despite the high dimen-
sionality, the microarray datasets that we are trying to han-
dle are still sufficiently small to be loaded completely into
the main memory. This is true for many gene expression
datasets which have small number of rows.

Following is the running example. Suppose the current
node is node “1” (Figure 8(a)), and minsup = 1. The in-
memory transposed table is shown on the right hand side of
the figure. Memory pointers are organized into conditional
pointer lists.

In Figure 8(a), the “1”-conditional pointer list (at the
top left corner of the figure) has 6 entries in the form of
< fi, Pos > which indicates the tuple (f;) that contains r;
and the position of r1 within the tuple (Pos). For example,
the entry < a,1 > indicates that row r; is contained in the
tuple ‘a’ at position 1. We can extend the “1”-conditional
transposed table TT'\{l} by following the Pos. During one
full scan of the transposed table, FARMER also generates
the conditional pointer lists for other rows (i.e. r2, r3, 74
and r5). However, the generated “2”-conditional pointer
list is slightly different in that it contains an entry for each
tuple that contains ro BUT NOT r;. For example, although
the tuple ‘a’ contains rg, it does not appear in the “27-
conditional pointer list. It will be inserted subsequently as
we will see later.

A further scan through the “1”-conditional pointer list
will allow us to generate the “12”, “13”, “14” and “15” con-
ditional pointer lists. Figure 8(b) shows the state of memory
pointers when we are processing node {1, 2}.

Finally, we show the state of conditional pointer lists af-
ter node {1} and all its descendants have been processed
(Figure 8(c)). Since all enumerations involving row r; have
been either processed or pruned off, the entries in the “1”-
conditional pointer list are moved into the remaining con-
ditional pointer lists. The entries in the “2”-conditional
pointer list will be moved to the other conditional pointer
lists after node {2} and its descendants are processed, and
SO on.

Throughout all the enumerations described above, we need
to implement our three pruning strategies. The implemen-
tation of strategies 1 and 3 is straightforward. For pruning
strategy 2, we do a back scan through the conditional list
to see whether there exists some row that satisfies the con-
dition of Lemma 3.6. For example at node “2” in Figure
8(c), we scan from the position of each pointer to the head
of each tuple, instead of scanning the transposed table from
the position of each pointer to the end of each tuple. In this
example, there is no row that satisfies the pruning condi-
tion of Lemma 3.6. Such an implementation is proven to be
efficient for our purpose as shown in our experiments.

3.4 Finding Lower Bounds

In this section, we describe the algorithm, MinelLB, which
is designed to find the lower bounds of a rule group. Since
a rule group has a unique upper bound and the consequent
of a rule group is fixed, the problem can be regarded as
generating the lower bounds for the antecedent of the upper
bound rule. This antecedent could be regarded as a closed
set (Definition 3.3) and the problem can be solved as long



1-conditignal -

a [1] 2] 3] 4
a [ 1]2]|3 4 R
1-conditional L 1-conditionhl b= 1] 5] _ .-. a | 1|2 3‘ 4‘
E—— i —F 1] 3 A I TSI Y S B o e
f' [pp— - f T -1 S E—
ilalblc|l|ols|, =T 2| 5 i d | 2|5 c 13
Pos | 1) 1] 1] 1] 1) 1] ! -<>r Pos| 1] 1] 1] 1] 1] 1 e [2]3]4 4l ol 5l
1 e" 234 12-conditional ___ _T_ |- [ _. f s ‘ a 2| 5
_____ [ D
S iy ol O R T I f,,,,,,,,‘ o s e T2| 3] 4]
R I O 9_>>5 pos| 2] 2] l o[ 2] 3] 4 fas)
[ h1 2] 3 4 13-conditional  ———=—=—= T 2| 5| 9 |5
LI} 1 N
o T T12]s fi[e] o] ot1]3 b 2] 3 4]
2-conditiogaly = =[= 71 o=+ 1| 3 Pos p | 2| 4 3-conditional L T 5‘
f Ll : 14-conditional s o 13
i — i q Il
i|dle|h|lp|r ——-bk> 2 4 z_ﬁrli'?(’:g;:;?”al e 2l 4~conditional p T2 a
Pos | 1] 1| 1|11 3| 5 7 T
L T g s 115 5-conditional q | 35|
3~conditional [P S 3-conditional t [ 3] 5] T 2| 4
4—conditional s 115 4-conditional s |18
ondi Chele t | 3]s
5-conditional 5-conditional L2l 2]

(a) Node {1}

(b) Node {1,2}

(c¢) Node {2}
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as we can generate the lower bounds of a closed set.

DErFINITION 3.3. Closed Set

Let D be the dataset with itemset I and row set R. A (A C I)
is a closed set of dataset D, iff there is no A’ D A such that
R(A) = R(A"). A, A C A, is a lower bound of closed
set A, iff R(A;)) = R(A) and there is no A’ C A; such that
R(A") = R(A). O

MinelLB is an incremental algorithm that is initialized
with one closed set A, the antecedent of an upper bound
rule, A — C for a rule group. It then updates the lower
bounds of A incrementally whenever a new closed set A’ is
added, where A’ C A and A’ is the antecedent of the newly
added upper bound A" — C. In this way, MineLB keeps
track of the latest lower bounds of A. MinelLB is based on
the following lemma.

LEMMA 3.10. Let A be the closed set whose lower bounds
will be updated recursively and F be the set of closed sets
that are already added. Let A.T' be the current collection
of lower bounds for A. When a new closed set A C A is
added, A.T" is divided into two groups, A.T'l and A.T'2, where
AT1 ={l;|ly € AT ANl; C A"}, AT2 = AT — AT1. Then
the newly generated lower bounds of A must be in the form
of i U {i}, wherely € AT1l,iec A— A,
Proof:
Suppose 1 is a newly generated lower bound of A.
(1) we prove I D 1. Since R(l) = R(A) (Definition 2.1)
before A’ is added, there must exist a l; € A such that
li ClCA. Ifl; € AT2, | can not be a new lower bound,
since l; € A.T2 is still a lower bound of A after A’ is added.
SolDl, 1 € AT1.
(2) Obviously, the newly generated lower bound must contain
at least one item from the set (A — A').
(3) I = 11 U {i} is a bound for A after adding A’, where
li € AT1,i€ Aandi ¢ A'. Before A’ is added, I = l; U{i}
is a bound, so for any X € F, ' ¢ X. After A’ is added,
I'¢ A because i ¢ A'. So, I' =11 U{i} is a new bound for
A after adding A'.
Based on (1), (2) and (8), we come to the conclusion that
the newly generated lower bound for A after inserting A’
takes the form of li U{i}, wherely € AT1 andi € (A—A").
O

Itemset 1; U {i} described in Lemma 3.10 is a candidate
lower bound of A after A’ is added. If I; U {i} does not

cover any la € A.I'2 and other candidates, I; U {i} is a new
lower bound of A after A’ is added. MineLB adopts bit
vector for the above computation. Thus A.I' can be updated
efficiently. The detailed algorithm is illustrated in Figure 9.

We can ensure that the closed sets (those that cover all the
longest closed set A’ C A) obtained at Step 2 are sufficient
for the correctness of MineLLB because of Lemma 3.11

LEMMA 3.11. If a closed set A1 C A is already added and
the collection of A’s lower bounds, A.l', is already updated,
A.T" will not change after adding closed set A2, A2 C Al.
Proof:

After A1 C A is added, A.T' is updated so that no l; € A.T’
can satisfy l; € Al. So no l; € AT can satisfy l; C A2,
A2 C Al. Since A2 will not cover any l; € AT, AT will
not change, according to Lemma 3.10. a

ExamMpLE 7. Finding Lower Bound
Given an upper bound rule with antecedent A = abcde and
two rows, r1 : abcf and ra : cdeg, the lower bounds A.I' of
A can be determined as follows:

1)Initialize the set of lower bounds A.I' = {a,b,c,d,e};

2)add “abc” (= Z(r1) N A): We get AT1 = {a,b,c} and
AT2 = {d,e}. Since all the candidate lower bounds, “ad”,
“ae”, “bd”, “be”, “cd”, “ce” cover a lower bound from A.I'2,
no new lower bounds are generated. So AT = {d,e};

3)add “cde” (= Z(r2) N A): We get ATl = {d,e} and
AT2=(. The candidate lower bounds are “ad”, “bd”, “ae”
and ‘be”. Because none of them is covered by another can-
didate and AT2 =0, AT = {ad, bd, ae, be}. |

4. PERFORMANCE STUDIES

In this section, we will look at both the efficiency of FARMER

and the usefulness of the discovered IRGs. All our experi-
ments were performed on a PC with a Pentium IV 2.4 Ghz
CPU, 1GB RAM and a 80GB hard disk. Algorithms were
coded in Standard C.

Datasets: The 5 datasets are the clinical data on lung can-
cer (LC)*, breast cancer (BC) ®, prostate cancer (PC) ©,

“http://www.chestsurg.org
http://www.rii.com/publications/default.htm
Shttp://www-genome.wi.mit.edu/mpr/prostate



Subroutine: MineLB(Table:D, upper bound rule: 7).
1. A=~A; AT ={ilie A}; Z =10;

2. for each row r;q of D that r;q ¢ R(A):
if (Z(r;q) N A) C A then add (Z(r;q) N A) to X;

3. for each closed set A’ € X:

ATl =AT2=0;

for each lower bound I; € A.T":
if [; C A’ then add [; to A.T'1;
else add I; to A.T'2;

CandiSet = (;

for each I; € AT'l andeachi € A && i ¢ A”:
add candidate I; U {i} to CandiSet;

AT = AT2;

for each candidate ¢; € CandiSet
if ¢; does not cover any [; € A.I'2 and ¢; does
not cover any other c; € CandiSet
then add ¢; to A.T

4. Output A.T'.
Figure 9: MineLB

ALL-AML leukemia (ALL) 7, and colon tumor (CT) 8. In
such datasets, the rows represent clinical samples while the
columns represent the activity levels of genes/proteins in
the samples. There are two categories of samples in these
datasets.

dataset | # row | # col class 1 class 0 #row of class 1
BC 97 24481 relapse | nonrelapse 46
LC 181 12533 MPM ADCA 31
CT 62 2000 | negative positive 40
PC 136 12600 tumor normal 52
ALL 72 7129 ALL AML 47

Table 1: Microarray Datasets

Table 1 shows the characteristics of these 5 datasets: the
number of rows (# row), the number of columns (# col),
the two class labels (class 1 and class 0), and the number
of rows for class 1 (# class 1). All experiments presented
here use the class 1 as the consequent; we have found that
using the other consequent consistently yields qualitatively
similar results.

To discretize the datasets, we use two methods. One is the
entropy-minimized partition (for CBA and IRG classifier)®
and the other is the equal-depth partition with 10 buckets.
Ideally, we would like to use only the entropy discretized
datasets for all experiments since we want to look at the
classification performance of IRGs. Unfortunately, the two
rule mining algorithms that we want to compare against are
unable to run to completion within reasonable time (we ran
them for several days without results) on the entropy dis-
cretized datasets, although FARMER is still efficient. As
a result, we will report our efficiency results based on the
equal-depth partitioned data while our classifier is built us-
ing the entropy-discretized datasets.

4.1 Efficiency of FARMER

The efficiency of FARMER, will first be evaluated. We
compare FARMER with the interesting rule mining algo-
rithm in [2]. The algorithm in [2] is the one most related to
FARMER in terms of interesting rule definition (but not the
same, see related work). To our best knowledge, it is also

Thttp://www-genome.wi.mit.edu/cgi-bin /cancer
Shttp://microarray.princetion.edu/oncology/affydata
9the code is available at http://www.sgi.com/tech/mlc/

the most efficient algorithm that exists with the purpose of
mining interesting rules of our kind. We denote this algo-
rithm as ColumnkFE since it also adopts column enumeration
like most existing rule mining algorithms. We also compare
FARMER with the closed set discovery algorithms CHARM
[23] and CLOSET+ [21], which are shown to be more effi-
cient than other association rule mining algorithms in many
cases. We found that CHARM is always orders of magni-
tude faster than CLOSET+ on the microarray datasets and
thus we do not report the CLOSET+ results here. Note that
the runtime of FARMER includes the time for computing
both the upper bound and lower bounds of each interesting
rule group. Compared with CHARM, FARMER does ex-
tra work in: 1)computing the lower bounds of IRGs and 2)
identifying the IRGs from all rule groups. Unlike FARMER
that discovers both upper bound and lower bounds for each
IRG, ColumnE only gets one rule for each IRG.

4.1.1 Varying Minimum Support

The first set of experiments (Figure 10) shows the effect
of varying minimum support threshold minsup. The graphs
plot runtime for the three algorithms at various settings of
minimum support. Note that the y-axes in Figure 10 are
in logarithmic scale. We set both minconf and minchi as
ZERO, which disables the pruning with confidence upper
bound and the pruning with the chi-square upper bound of
FARMER.

For CHARM, minsup represents the least number of rows
that the closed sets must match. The runtime of CHARM
is not shown in Figures 10(a) and 10(b) because CHARM
runs out of memory even at the highest support in Figure
10 on datasets BC and LC.

Figure 10 shows that FARMER is usually 2 to 3 orders of
magnitude faster than ColumnE and CHARM (if it can be
run). Especially at low minimum support, FARMER out-
performs ColumnE and CHARM greatly. This is because
the candidate search space for ColumnE and CHARM, de-
pendent on the possible number of column combinations af-
ter removing the infrequent items, is orders of magnitude
greater than the search space of FARMER, dependent on
the possible number of row combinations, on microarray
datasets.

As shown in Figure 10(f), the number of interesting rule
groups discovered at a low minsup is much larger than that
at a high minsup. Besides the size of row enumeration space,
the number of IRGs also affects the efficiency of FARMER
due to two reasons. First, since FARMER, discovers IRGs
by comparison (see algorithm section, step 7), more time
will be spend when the number of IRGs to be compared
against increase. Second, the time complexity of computing
lower bounds in FARMER is O(n), where n is the number
of IRGs. We observe that at high minsup, the time used to
compute lower bounds takes 5% to 10% of the runtime of
FARMER while the time taken at low minsup can be up to
20%. ColumnE also does the comparison to get interesting
rules while all the runtime of CHARM is used to discover
closed sets.

We choose our minimum support such that the runtime
of FARMER is around 10 seconds. Although ColumnE and
CHARM could perform better that FARMER for higher
minsup, the absolute time difference however will be less
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Figure 11: Varying minconf

than 10 seconds and thus is not interesting for comparison.
This is negligible compared to the difference in runtime at
low minsup.

4.1.2 Varying Minimum Confidence

The next set of experiments (Figure 11) shows the effect
of varying minconf when minsup is fixed. The minchi
pruning is still disabled by setting it to ZERO. For all the
parameter settings in Figure 11, CHARM is unable to fin-
ish because of insufficient memory after several hours while
ColumnE always has a runtime of more than 1 day. This is

because we adopt a relative low minsup to study the effec-
tiveness of confidence pruning in the experiment. To show
the effect of various minconf clearly, we do not give the
runtime of ColumnE. We will first ignore the lines marked
with “minchi=10" here. We set minsup = 1, which means
that minimum support pruning is almost disabled.

Figure 11 shows that the runtime of FARMER, decreases
when increasing mincon f on all the 5 datasets (Figure 11(f)
lists the number of IRGs). This shows that it is effective to
exploit the confidence constraint for pruning. There is only



a slight decrease in runtime of FARMER when the mincon f
increases from 85% to 99% since there are few upper bound
rules with confidence between 85% and 99%. We observe
that nearly all IRGs discovered at confidence 85% on these
5 datasets have a 100% confidence. As a result, FARMER
does no additional pruning when minconf increases from
85% to 99%.

The result that many discovered IRGs have a 100% confi-
dence is interesting and promising. It means that the IRGs
are decisive and have good predictability.

4.1.3 Varying Minimum Chi-Square Value

The last set of experiments was performed to study the
effectiveness of the chi-square pruning. Minimum chi-square
constraint is usually treated as a supplementary constraint

of minimum support and minimum confidence. We set minchi =

10 and plot the runtime vs various mincon f in Figure 11 due
to the space limitation, where minconf is set the same as
in section 4.1.2.

The pruning exploited by constraint minchi = 10 is shown
to be very effective on datasets BC, PC, CT and ALL. In
some cases, the saving can be more than an order of mag-
nitude. The pruning effect is not so obvious on dataset LC.
By checking the identified IRGs, we found that discovered
IRGs from LC usually have higher chi-square value. If we
impose a tighter chi-square constraint by increasing minchs,
the minchi pruning will be more obvious. Due to space con-
straint, we do not discuss this further.

As can be seen, in all the experiments we conducted,
FARMER outperforms ColumnE and CHARM. Moreover,
the prunings based on minsup, minconf and minchi are
effective. In general, the runtime of FARMER correlates
strongly with the number of interesting rule groups that
satisfy all of the specified constraints. Our experimental re-
sults demonstrate that FARMER is extremely efficient in
finding IRGs on datasets with small number of rows and
large number of columns.

In additional to these experiments, we also look at how
the performance of FARMER varies as the number of rows
increase. This is done by replicating each dataset a number
of times to generate a new dataset. It is observed that the
performance of FARMER still outperform other algorithms
even when the datasets are replicated for 5-10 times. Due
to lack of space, we refer readers to [6] for these additional
experiments.

4.2 Usefulness of IRGs

In order to show the usefulness of the discovered IRGs,
we build a simple classifier called IRG classifier based on
those IRGs that we discovered. Note that our emphasis
here is not to build a new classifier but to provide some
evidence that the discovery of IRGs is at least useful for
such purpose.

We will compare our IRG classifier with two well-known
classifiers CBA [14] and SVM [12], both available through
the Internet. The open-source CBA algorithm (and all com-
petitors we look at in the earlier section) failed to finish run-
ning in one week. To go around this problem, we build the
CBA classifier by obtaining the frequent rules based on the
upper bounds and lower bounds generated by FARMER.
Our IRG classifier is similar to CBA but we use IRGs to
build classifiers instead of all rules. Due to space limitation,
we do not explain the details of the IRG classifier.

For CBA, we set the minimum support threshold as 0.7x%
number of training data of class C' for each class C' and set
the minimum confidence threshold as 0.8 (According to our
experiments, if we further lower the minimum confidence
threshold, the final CBA classifier is the same); For IRG
classifier, we use the same parameters as CBA; For SVM,
we always use the default setting of SV M9 [12].

dataset | #training | #test | IRG classifier CBA SVM
BC 78 19 78.95% 57.89% 36.84%
LC 32 149 89.93% 81.88% | 96.64%
CT 47 15 93.33% 73.33% 73.33%
PC 102 34 88.24% 82.35% 79.41%
ALL 38 34 64.71% 91.18% | 97.06%
Average Accuracy 83.03% 77.33% 76.66%

Table 2: Classification Results

Table 2 illustrates the percentages of correctly predicted
test data for the IRG classifier, CBA and SVM on the 5
microarray datasets. We can see that the IRG classifier has
the highest average accuracy. Although SVM performs very
well on LC and ALL, it fails on BC. No classifier outper-
forms the others on all datasets. Our IRG classifier is both
efficient and easily understandable and thus could be a good
reference tool for biological research.

5. RELATED WORK

Association rule mining has attracted considerable inter-
est since a rule provides a concise and intuitive description
of knowledge. It has already been applied on biological data,
such as [7, 8, 19].

Association rule can relate gene expressions to their cel-
lular environments or categories, thus available for build-
ing accurate classifiers on microarray datasets as in [9, 13].
Moreover, it can discover the relationship between different
genes, so that we can infer the function of an individual
gene based on its relationship with others 7] and build the
gene network. Association rules might reveal more patterns
than clustering [5], considering that a gene may belong to
many rules while it is usually grouped to one cluster (or a
hierarchy of clusters).

There are many proposals about rule mining in the data
mining literatures. They can be roughly divided into three
classes. The first two classes are related to association rule
mining. All existing association rule mining algorithms adopt
the column enumeration in the mining process, therefore
they are very time-consuming on microarray datasets. The
first class of rule mining algorithms identifies the interest-
ing (or optimal) rules with some interestingness measures
[2]. The interesting rule discussed in [2] is quite similar to
our interesting rule group. However, [2] randomly picks a
rule for each rule group while FARMER discovers the upper
bound and lower bounds for each interesting rule group.

The second class of rule mining algorithms aims to find
all association rules satisfying user-specified constraints by
identifying all frequent itemsets at the key step, such as [1,
11]. Recently the concept of closed itemset [18] is proposed
to reduce redundant itemsets and rules [22]. Several efficient
mining algorithms [18, 23, 21] are proposed to mine frequent
closed itemsets. On the other hand, there is some work [16,
20] that investigates incorporating item constraints to re-
duce the number of frequent itemsets. Other work [3, 15]
leverages the item constraint as rule consequent and utilizes




minimum thresholds of confidence, support and other statis-
tic constraints. FARMER differs from these approaches in
term of its enumeration method and pruning strategies.

The third class of algorithms aims at mining predictive
rules. One example is the decision tree induction algo-
rithm[10]. Alternatively, some work [9, 14] has been done to
build classifiers from association rules and has obtained bet-
ter classification results than decision trees in many cases.
It is obvious that these methods are also applicable based
on the concept of interesting rule groups.

In a short paper [17], the idea of using row enumeration for
mining closed patterns in biological datasets is introduced.
The idea is however restricted to finding frequent closed pat-
terns that satisfy a certain support threshold. FARMER
on the contrary finds IRGs that satisfy interestingness con-
straints like minconf and minchi. The effectiveness of
pruning with such constraints is evident in our experiments.

6. CONCLUSIONS

In this paper, we proposed an algorithm called FARMER
for finding the interesting rule groups in microarray datasets.
FARMER makes use of the special characteristic of microar-
ray datasets to enhance its efficiency. It adopts the novel ap-
proach of performing row enumeration instead of the conven-
tional column enumeration so as to overcome the extremely
high dimensionality of microarray datasets. Experiments
show that FARMER outperforms existing algorithms like
CHARM and ColumnE by a large order of magnitude on
microarray datasets.

Our IRG classifier built on interesting rule groups demon-
strates the usefulness of discovered IRGs. Our experiments
showed that it has the highest average accuracy compared
with CBA and SVM.
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