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Game theory is a powerful tool for the analysis of the competitions among manufacturers in
a market. In this paper, we present a study on combining game theory and data mining by
introducing the concept of domination game analysis. We present a multidimensional market
model, where every dimension represents one attribute of a commodity. Every product or customer
is represented by a point in the multidimensional space, and a product is said to “dominate” a
customer if all of its attributes can satisfy the requirements of the customer. The expected market
share of a product is measured by the expected number of the buyers in the customers, all of which
are equally likely to buy any product dominating him. A Nash Equilibrium is a configuration of
the products achieving stable expected market shares for all products. We prove that Nash
Equilibrium in such a model can be computed in polynomial time if every manufacturer tries to
modify its product in a round robin manner. To further improve the efficiency of the computation,
we also design two algorithms for the manufacturers to efficiently find their best response to other
products in the market.

Categories and Subject Descriptors: H.2.8 [DATABASE MANAGEMENT]: Database Appli-
cations—Data Mining

General Terms: Algorithms

Additional Key Words and Phrases: Domination Game, Game Theory, Data Mining

1. INTRODUCTION

In a classic paper, Kleinberg et al. [Kleinberg et al. 1998a] advocated a utility
oriented view of data mining driven by microeconomic considerations. They for-
mulated data mining as a problem of optimizing an objective function that helps an
organizational decision maker. They argued that a mined pattern is only useful to
the extent to which it can be used in the decision-making process of the enterprise
to increase utility.

Among the various example problem scenarios they used to illustrate their mi-
croeconomic problem formulation framework in [Kleinberg et al. 1998a] was the
problem of market segmentation in a model of competition. An example of this is
a so-called catalog war, wherein each of two1 corporations I and II has a strategy
space consisting of all possible catalogs with p pages to be mailed. Each corporation

1The problem can be generalized to n > 2 players.
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has a different set of alternatives for each page. Each knows which alternative a
customer will like and wants to maximize its payoff. The payoff for I for a given cus-
tomer is +1 if s/he likes more pages from I’s catalog than from II’s catalog, −1 for
vice versa, and is 0 upon a tie. Kleinberg et al. [Kleinberg et al. 1998a] motivated
game-theoretic questions regarding the existence and computational complexity of
Nash equilibria in this context.

Game theory [Osborne and Rubinstein 1994] is a powerful tool for modelling
such competitions and had been used extensively for predicting the outcome of
different business strategies. The concept of a Nash Equilibrium in game theory
is a stable configuration of the manufacturers in the market, i.e., no one can en-
large his own profit by changing his “positioning” in the “configuration” alone. A
Nash Equilibrium is called a randomized equilibrium if each player can play several
strategies with some probability. In [Nash 1950], Nash proved that at least one
randomized equilibrium exists for any such mixed strategies games. Nash however
did not provide any algorithm for finding equilibria.

Recently, many computer scientists are trying to consider the problem from an
algorithmic viewpoint. More specifically, they are concentrating on finding Nash
equilibria on pure strategy games (henceforth referred to as pure Nash equilibria)
in which each player plays only one strategy from the strategy set. The existence
of Nash Equilibria in this case is not guaranteed [Osborne and Rubinstein 1994;
Gottlob et al. 2003]. Examples of pure strategy games include congestion game
[Fabrikant et al. 2004; Koutsoupias and Papadimitriou 1999; Papadimitriou 2001],
exchange game [Deng et al. 2002; Devanur et al. 2002] and utility game [Vetta
2002].

Inspired by the seminal work of [Kleinberg et al. 1998a], in this paper, we consider
a different game that we call domination game. We give an intuitive description
of domination game below, using manufacturers and market share as a motivating
example. Suppose there are t manufacturers, all of which manufacture (different
instances of) one product. Each product has certain properties. For the purposes
of this paper, we consider properties as attributes with values ranging over real
numbers. Thus, each product is a point in a d-dimensional space, where d is the
number of properties of products. There are n customers in the market. Each
customer has certain preferences for the product they would like to buy, expressed
as constraints of the form Aθ r where A is an attribute, r ∈ R is a real number,
and θ is some binary relationship such as ’<’. A manufacturer’s product satisfies a
customer preference if it satisfies each of the constraints of the customer. Assume
that a customer is equally likely to buy any one of the products manufactured by
different manufacturers that satisfy his/her preferences. Each manufacturer would
like to maximize their market share, i.e., the expected number of customers who
will buy their product. To achieve this, a manufacturer would like to position
its product (i.e., locate the point in the d-dimensional space) so as to satisfy as
many customers as possible. That is, each manufacturer would like to dominate
as many customers as possible. Each manufacturer has a constraint, called the
manufacturing hyperplane, which constrains its product positioning to points on
the hyperplane.

By a configuration of the domination game model, we mean a tuple of product
ACM Journal Name, Vol. V, No. N, Month 20YY.
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positionings by the t manufacturers, say (p1, ..., pt), where pi represents the posi-
tioning of product p by manufacturer mi. A Nash equilibrium in this model is a
configuration such that no manufacturer can increase its profit, i.e., its expected
market share, by changing only its positioning. Thus, no manufacturer has a mo-
tivation to make a move from a Nash equilibrium. This property leads to a stable
market, a situation desired by both the government and the industry (the set of
manufacturers). Therefore, the efficient computation of such Nash Equilibria can
be crucial in decision making processes, such as business negotiation.

In this context, we study the following questions. (1) Does a Nash equilibrium
exist for the domination game and if so under what conditions? (2) What is the
computational complexity of finding one? (3) Different Nash equilibria may fare
very differently in terms of the number of customers covered (defined formally in
Section 5. What is the worst (i.e., maximum) ratio between customer coverage of
two different Nash equilibria? This question is important because for the industry
as a whole, it is expected to cover as many customers as possible and the industry
may be concerned about achieving at least a certain guaranteed minimum customer
coverage. (3) Given a configuration, in order for a manufacturer to respond to it, it
turns out it needs to answer a so-called “best response query” (defined in Section 3).
Intuitively, this asks what is the best response by the manufacturer, for moving its
product positioning along its hyperplane such that it will maximize its expected
market share. How can we efficiently compute the answer to this query?

We prove that a Nash equilibrium exists in any instance of our model and further
it can be found using an iterative algorithm. This algorithm keeps improving the
personal expected market share for each individual manufacturer in a round robin
manner from a randomly chosen initial configuration. We show that this algorithm
converges at a Nash equilibrium in polynomial time.

Since the initial configuration is randomly chosen, the next question is whether
the iterative algorithm can arrive at some arbitrarily bad equilibrium which has a
much poorer customer coverage compared with some other equilibria. By showing
that any such Nash Equilibrium is a 2-approximate maximum customer coverage
solution, we dispell any such doubts.

The efficiency bottleneck for finding the Nash Equilibrium lies in determining
the optimal positioning of a product against other products. We formalize this
as the best response query. We designed two branch and bound algorithms for
efficient answering of the best response query. We evaluate the performance of the
algorithms through extensive experiments on synthetic data sets.

Our contributions are as follows.

—We give a precise formulation of the domination game model (Section 3).
—We prove that a Nash equilibrium always exists. We also show that given an

arbitrary initial configuration, a Nash equilibrium that may be attained from
it can be computed in polynomial time in the number of manufacturers and
customers (Section 4).

—We prove that the ratio of customer coverage between any two Nash equilibria is
at most two (Section 5).

—Our algorithm for computing Nash equilibrium relies on answering the best re-
sponse query. While our algorithm in Section 4 for answering this is polynomial
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in the number of customers and manufacturers, it is exponential in the number
of product properties. We develop more efficient algorithms for this by exploiting
pruning strategies (Section 6).

—The algorithms in Section 6 have the same asymptotic complexity as the naive
algorithm for the best response query in Section 4. However, to measure their ef-
fectiveness in practice, we conducted an extensive set of experiments on synthetic
data sets as well as a real data set. Our results show that iterative algorithm
for finding a Nash equilibrium using our pruning strategies outperforms the al-
gorithm based on the naive approach by two orders of magnitude (Section 7).

Section 2 discusses related work. In Section 8, we summarize our contributions
and discuss promising directions for future research.

2. RELATED WORK

2.1 Game Theory

Game theory [Osborne and Rubinstein 1994] is an important topic in economics as
it provides a strong tool for the analysis of competitive behavior in market. While
Nash [Nash 1950] proved that any mixed strategies game must has at least one
randomized equilibrium, his proof is not constructive, i.e., it does not suggest an
algorithm for finding one. Here, we review several pure strategy games [Gottlob
et al. 2003] where every player chooses to play an action in a deterministic manner.
Note that Nash equilibria for pure strategy game (so called pure Nash Equilibria)
are not guaranteed to exist in general [Osborne and Rubinstein 1994; Gottlob et al.
2003].

Congestion game [Fabrikant et al. 2004; Koutsoupias and Papadimitriou 1999;
Papadimitriou 2001] stems from the competitive traffic problem. The traffic system
is modelled as a graph. Every player has some commodities to be transported from
one node in the graph to another. The delay of the commodities on every edge is a
function of the total commodities flowing through the edge. The Nash Equilibrium
is the set of paths for players where no one can reduce his own delay by switching
to another path alone.

Exchange game [Deng et al. 2002; Devanur et al. 2002] happens in a market with
some buyers and divisible goods. Every buyer has some cash and n different types
of goods in hand. There is an individual utility function on the the goods for every
buyer. The Nash Equilibrium in such a game is the set of prices of the goods in
the market such that no buyer has an incentive to change its price alone. With
such prices, the buyers can exchange the goods and cash to maximize their utility
functions.

Utility game [Vetta 2002] is a general framework for a special type of games, in
which every player tries to improve his own payoff, named utility. The authors of
[Vetta 2002] show that, if the utility function on personal action satisfies several
conditions, the Nash Equilibrium of the game can be found by iteratively improving
personal utility by every player. However, the authors do not prove that their game
can end in a polynomial number of iterations.

The first two types of games have been proved to have pure Nash Equilibria with
polynomial complexity. But they cannot be used to model the domination game
in this paper. The utility game is able to model our game but there is no known
ACM Journal Name, Vol. V, No. N, Month 20YY.
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algorithm for finding pure Nash Equilibria in polynomial time. As far as we know,
(polynomial time) algorithms for finding Nash equilibria for domination games in
a competitive setting have not been studied before.

2.2 Microeconomic View of Data Mining

Our work is in many ways inspired by the work in [Kleinberg et al. 1998a] which
proposes to view data mining from a microeconomic perspective, i.e., the authors
argue that the interestingness of knowledge being discovered should be measured
by their utility to the organization. Various examples are given in [Kleinberg et al.
1998a] to illustrate utility oriented mining. Of these, profit oriented association
discovery is studied in [Wang et al. 2002; Wong et al. 2003; Brijs et al. 1999],
customer oriented catalog segmentation is investigated in [Kleinberg et al. 1998b;
Ester et al. 2004], while [Yao 2003] explores data mining as sensitivity analysis.

Our work approaches competition games from a new perspective by using the
number of dominated customers as the measure of utility of a decision. As far as
we know, ours is the only work that explores computational issues of Nash equilibria
for domination games.

2.3 Skyline Query and Dominance Relationship Analysis

Skyline query is a well-studied topic due to their importance in multi-criteria deci-
sion making and related applications [et. al. 1975; Steuer 1986]. The skyline oper-
ator was first introduced to the database community in [Börzsönyi et al. ]. A large
number of computation methods have been proposed for conventional relational
databases. These methods can be divided into two general categories depending on
whether they use indexes (e.g., Index [Tan et al. 2001], Nearest Neighbor [Kossmann
et al. ], Branch and Bound Skyline [Papadias et al. 2003]) or not (e.g., , Divide and
Conquer, Block Nested Loop[Börzsönyi et al. ], Sort First Skyline[Chomicki et al.
2003; Godfrey et al. 2005]. Moreover, skylines have been studied in the context
of mobile devices [Huang et al. 2006], distributed systems [W.-T. Balke 2004], and
unstructured [Wu et al. 2006], as well as structured networks [Wang et al. 2007].
Subspace skyline query has been studied extensively in [Yuan et al. 2005; Xia and
Zhang 2006; Tao et al. 2007; Xia and Zhang 2006; Jin et al. 2007].

In addition, several papers focus on skyline computation when the dataset has
some specific properties. [Chan et al. 2005] extends Branch and Bound Skyline for
the case where some attributes take values from partially-ordered domains. [Chan
et al. 2005] focuses on skyline processing for domains with low cardinality. [Chan
et al. 2006] deals with high dimensional skylines. Finally, a number of interesting
variants of the basic definition have been proposed. Spatial skylines [Sharifzadeh
and Shahabi 2006] return the set of data points that can be the nearest neighbors
of any point in a given query set. A reverse skyline [Dellis and Seeger 2007] outputs
the records whose dynamic skyline contains a query point.

In [Li et al. 2006], some of the present authors proposed a method called DADA
to efficiently answer various forms of dominance relationship queries while in [Li
et al. 2007], spatial analysis are combined with dominance relationship analysis in
order to identify profitable region in a market that can be easily dominated by some
products. This work enhanced dominance relationship analysis with yet another
tool based on game theory.
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3. THE DOMINATION GAME MODEL

In this section, we introduce the basic concepts of domination game model and
formally define domination games.

General Settings
In Domination Game, we assume there are n customers C = {c1, c2, . . . , cn}, and
t manufacturers M = {m1, m2, . . . , mt} in the same market, both of which are
only interested in consuming and producing one type of product, say p. Every
manufacturer mi is allowed to produce only one model of the product, denoted pi

and the qualities of the products made by the same manufacturer should be stable.
There are d attributes associated with each product, {A1, A2, . . . , Ad}, all of

which can be measured by a real number. Without loss of generality, we assume
that a smaller value indicates better quality. A product pi is said to have qual-
ity vector (pi[1], pi[2], . . . , pi[d]) where pi[k] is the quality of pi on attribute Ak.
Every customer cj in the market has some requirement on the attributes, also rep-
resented by a vector (cj [1], cj [1], . . . , cj [d]). With such definitions, a product pi

satisfies (dominates) a customer cj , if pi[k] ≤ cj [k] for 1 ≤ k ≤ d. This amounts
to assuming that: (a) on every attribute, a smaller value represents better quality
and (b) the customer preference on every attribute Ak is expressed as a constraint
Ak ≤ cj [k], for some real number cj [k] ∈ R. When no confusion arises, we use pi

both to refer to the model of product p manufactured by mi and to the point in
the d-dimensional space corresponding to this model.

Profit Constraint Hyperplane
Since the resource for every manufacturer is limited and different, there is a profit
constraint hyperplane hi for every manufacturer mi in the market i.e. it is not prof-
itable to simply produce product with the highest quality just to attract customers.
The hyperplane hi thus divides the multidimensional space into two regions, a prof-
itable region and a non-profitable one. Each manufacturer mi can only position its
product on its hyperplane 2. Any profit constraint hyperplane satisfies the following
two conditions.

Property 1. Intersection Testable
Given a profit constraint hyperplane hi and a rectangle with two diagonal corners
at (l[1], . . . , l[d]) and (u[1], . . . , u[d]), we can test whether the cell intersect with part
of hi in constant time.

Property 2. Intersection Extensible
Given a profit constraint hyperplane hi and a point (p[1], p[2], . . . , p[d]), we can find
another point (p[1], . . . , p[k − 1], p′[k], p[k + 1], . . . , p[d]) exactly on hi in constant
time.

Intuitively speaking, the first property allows us to verify the intersection between
a rectangle and the hyperplane. While the second property gives any algorithm

2Strictly speaking, the product can be positioned anywhere in the profitable region, but once the
correct position on the hyperplane is determined, the best position in the profitable region that
dominates the same set of customers can be easily determined.
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Fig. 1. Example for Products and Customers

an option to find the projection of p on attribute Ak. With second property, it is
straightforward to test whether a given position in the space is above the hyperplane
or not. Both of the properties will be used in the proofs and the algorithm designs
later.

There are many hyperplanes satisfying the two properties above. Without loss
of generality, in the rest of the paper, we will simply use a special type of hyper-
plane, all of which are actually some (d−1)-dimensional plane. Such a hyperplane,
hi, can be represented using the parameters {bi1, . . . , bid, xi}. Any product pi on
the hyperplane satisfies the function

∑d
k=1 bikpi[k] = xi. Here we restrict that

xi > 0 and bik > 0 for all i and k, reflecting the assumption that a manufacturer
can improve the quality on one attribute only by sacrificing it over some other at-
tributes. The profitable region is the set of points q for which

∑d
k=1 bikq[k] ≥ xi.

It is not hard to prove that such hyperplanes immediately satisfy the two properties.

Commonly Dominated Customers
We define a configuration of the market as α = (p1, p2, . . . , pt), where mi places its
product at pi, for all i. We assume the customers are all rational, i.e., they only
buy the product satisfying their requirements. Furthermore, a customer buys only
one product. If there is only one product pi satisfying a customer cj ’s requirements
on all attributes, cj will definitely buy pi. If there are N products satisfying him,
cj will choose one product with equal probability 1/N . For a configuration α, we
denote by D(pi, r, α) (resp., D(p̄i, r, α)) the set of customers dominated by exactly
r products including (resp., excluding) pi. For a configuration α, we define the
expected market share (or expected number of buyers of the product) of a manu-
facturer mi as Si(α) =

∑t
r=1 |D(pi, r, α)|/r. The goal of the manufacturers in the

domination game is to gain as much expected market share as possible.

Example
In Figure 1, we show an example of a market with two manufacturers and ten
customers, where products and customers are denoted by square points and circle
points respectively. The product has two attributes of interest to the customer

ACM Journal Name, Vol. V, No. N, Month 20YY.
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and every manufacturer only produces products on their corresponding manufac-
turing line. α = (p1, p2) is the current configuration of the market. The customers
dominated by p1 and p2 are bounded by their corresponding rectangles. By the
definition of expected market share above, S1(α) = 4.5 since there are three cus-
tomers dominated only by p1 and another three customers dominated by both p1

and p2. Similarly, we have S2(α) = 3.5.

Nash Equilibrium
A configuration α is said to be a Nash Equilibrium if Si(α′) ≤ Si(α) for all
α′ = (p1, p2, . . . , p

′
i, . . . , pt) for all 1 ≤ i ≤ t. That is, manufacturer mi cannot

get any more expected market share if only mi changes its product quality. We
use α−i = (p1, ..., pi−1, pi+1, ..., pt) to denote a configuration obtained from α by
ignoring manufacturer mi. Then the best response query for mi on α−i, is the
query “find any positioning qi for the product manufactured by mi that maximizes
Si(β), where β = α−i ∪ {qi}.3 We let B(α−i) denote the set of answers to the best
response query for mi. Note that B(α−i) ⊆ hi, i.e., the positionings are restricted
to the hyperplane hi. Then, a Nash Equilibrium α = (p1, ..., pt) must have the
property that pi ∈ B(α−i), for all i. To improve the readability of the paper, we
summarize the notations in the paper in Table I.

4. THE EXISTENCE OF NASH EQUILIBRIUM

In this section, we study the existence and computability of Nash equilibria in
domination games. The first question is whether a Nash equilibrium exist and if so
under what conditions. Our first result answers this question in the affirmative.

Theorem 1. The domination game defined in the previous section always has a
Nash equilibrium.

Proof: Given a configuration α = (p1, ..., pt), define an (n × t) (0, 1)-matrix
Dα as follows. Dα[i, j] = 1 iff pj dominates ci. Define an equivalence relation on
configurations as follows: α ≡ β iff Dα = Dβ . It is easy to see that the number of
equivalence classes is finite, even though the number of configurations is infinite.
In fact, there are at most 2nt equivalence classes.

Now, define a graph G with equivalence classes as nodes as follows. Thereto,
define a potential function of a configuration as follows: Φ(α) := Σt

r=1Hr|L(r, α)|,
where L(r, α) is the disjoint union D(pi, r, α) ∪ D(p̄i, r, α), for any i and Hr =
Σr

j=11/j. That is, L(r, α) is the set of customers dominated by exactly r prod-
ucts. Note that the choice of i in the definition of L(r, α) is immaterial. The
graph G contains an arc ([α], [β])4 iff: (a) β is obtained from α by changing the
positioning of any one product pi and (b) Φ(β) > Φ(α). Notice that for equiv-
alent configurations, the Φ-value is the same so this is well defined. Further-
more, whenever Φ(β) > Φ(α), there must exist i, 1 ≤ i ≤ t: Si(β) > Si(α).
To see this, notice that Φ(β) − Φ(α) = Σt

r=1Hr(|L(r, β)| − |L(r, α)|). |L(r, β)| −

3For convenience, we abuse notation and use set notations with configuration vectors. The mean-
ing should be clear.
4[α] is the equivalence class containing α.
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Notation Description

hi profit constraint hyperplane for manufacturer
mi defined by the equation

∑d
k=1 bikpi[k] =

xi

D(pi, r, α) customers who are dominated by pi and ex-
actly r − 1 other products in α

D(p̄i, r, α) customers who are dominated by exactly r
products excluding pi in α

L(r, α) customers who are dominated by exact r
products in α

δi(r) |D(p′i, r, α
′)| − |D(pi, r, α)|, change in the

number of customers who are dominated by
pi and exactly r− 1 products after one itera-
tion

Hr Harmonic series, Hr =
∑r

k=1 1/k

Si(α) the expected market share of product pi ∈ α

Wi(α) customers who are dominated by product
pi ∈ α

R(α) customers who are dominated by at least one
product in α

e(pi, α) the effective dominating point of product pi ∈
α

λ(C′) A point e = (e[1], ..., e[d]) such that e[i] =
minc∈C′c[i]

U(e) an upper bound point for a point e in the
multidimensional space

X(e, Ω) the upper bound point for a point e and ex-
tensible dimension set ω

DS(cj , C
′) A set of dimensions along which a face of

λ(C′) ’s dominating region is touched by cj

Table I. Table of Notations

|L(r, α)| = |D(pi, r, β)|+ |D(p̄i, r, β)|−(|D(pi, r, α)|+ |D(p̄i, r, α)|) = (|D(pi, r, β)|−
|D(pi, r, α)|) + (|D(p̄i, r, β)| − |D(p̄i, r, α)|). Of these, the second difference is ex-
actly equal to (|D(pi, r + 1, α)| − |D(pi, r + 1, β)|). Denoting δi(r) = |D(pi, r, β)| −
|D(pi, r, α)|, we then have Φ(β) − Φ(α) = Σt

r=1Hr(δi(r) − δi(r + 1)). By simple
algebra, we can show that Σt

r=1Hr(δi(r)−δi(r+1)) = Σt
r=1δi(r)/r = Si(β)−Si(α).

We can see that Si(β) > Si(α) only when Φ(β)− Φ(α) > 0.
Next, since > is a strict partial order, it follows that G must be acyclic. Let

[α] be any node of G with zero outdegree. By definition, any movement of any
product position alone will not improve the potential of α. Since potential difference
coincides with the difference in expected market share for the product that was
moved, it follows that no product position can be moved alone on α so as to
improve its expected market share, implying that α is a Nash equilibrium. 2

Having settled the existence of Nash equilibria, the next question is what is the
computational complexity of finding one. We present a simple intuitive iterative
algorithm – Algorithm 1. It starts at a randomly chosen initial configuration α and
repeatedly makes moves on behalf of each manufacturer in a round robin fashion. A

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Algorithm 1 Iterative Best Response Algorithm
Input: Customers C = {c1, c2, . . . , cn} and
Product Hyperplanes H = {h1, h2, . . . , ht}.
Output: A Nash Equilibrium.

1: Construct configuration α by randomly choosing pi on hi for all i.
2: while At least one manufacturer has a move do
3: for every manufacturer mi do
4: Find any best response p′i for mi to α−i.
5: If a response was returned, then Update the configuration by α = α−i ∪ {p′i}.

move for mi is a change in the positioning of pi so that the new positioning improves
mi’s expected market share, if such a position exists. To find this position, it
invokes an algorithm for answering the best response query for mi. We will discuss
algorithms for answering this query later in this section as well as in later sections.
Finally, the algorithm terminates when no manufacturer can make a move.

Before we establish any properties of the algorithm, we note the following easily
verified identities.

L(r, α) = ∪D(pi, r, α)

|L(r, α)| =
∑
pi

|D(pi, r, α)|
r

Recall the potential function defined in the proof of Theorem 1: Φ(α) = Σt
r=1Hr|L(r, α)|.

In particular, recall that for any two configurations α β which differ only on the
positioning of any one product, say pi, Φ(β)− Φ(α) = Si(β)− Si(α), where Si(α)
is the expected market share of mi on configuration α. The following lemma shows
that Algorithm 1 terminates in polynomial time.

Lemma 1. Algorithm 1 will stop after at most O(nt log t) iterations.

Proof: By construction, before termination, in every step of the iteration, at
least one manufacturer, say pi, makes a move, i.e., change the positioning of pi to
increase its expected market share. Let αk−1 be the configuration at the beginning
of iteration k and α′ be the result after mi moves its product position from pi to,
say p′i. Then Si(α′) =

∑
r |D(p′i, r, α

′)|/r >
∑

r |D(pi, r, α)|/r = Si(α). From the
proof of Theorem 1, we know Si(α′)−Si(α) = Φ(α′)−Φ(α), which is now > 0. So
the value of the potential function is strictly increasing after every iteration.

Φ(α′)− Φ(α)

=
t−1∑
r=1

Hr(δi(r)− δi(r + 1)) + Htδi(t)

=
t∑

r=1

δi(r)/r

> 0

Since |L(r, α)| can only be an integer and the minimum difference of two harmonic
numbers is 1/t, the increase of Φ(α) after every iteration is at least 1/t. Since
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Φ(α) ≤ nHt ≤ n log t, the algorithm must stop after at most O(nt log t) iterations. 2

What can we say about where the algorithm stops? Recall the graph G intro-
duced in the proof of Theorem 1. Suppose the algorithm stops at configuration α.
Clearly there can be no outgoing arc from [α]. For if there were an arc ([α], [β]),
by construction, the algorithm would find a move for some manufacturer and move
from alpha to β.5 It follows from the proof of Theorem 1 that α is a Nash equilib-
rium. We have:

Lemma 2. Algorithm 1 must stop at some Nash Equilibrium of the game. 2

Proof: The algorithm stops when every manufacturer cannot find a better
position for its model pi on hi. By the definition of Nash Equilibrium, α =
(p1, p2, . . . , pt) must be a Nash Equilibrium. 2

So we know Algorithm 1 finds a Nash equilibrium in a polynomial number of
steps in n and t. However, its overall complexity depends on the complexity of
answering the best response query. In this section, we present a naive algorithm for
showing this query can be answered in time polynomial in n and t. More efficient
algorithms are the subject of Section 6.

Given the product position of all the remaining manufacturers, the best response
query for mi asks for an optimal product position for pi. The most straightforward
method for answering such query is to try all possible product positions on the
hyperplane hi and return the one with the largest expected market share. The
following lemma shows how this can be done.

Lemma 3. The best response query can be answered in O(nd(d + n)) time.

Proof: Since there are n customers in the market, there are at most n different
values of customer requirement on every attribute. So, we can split the whole
multidimensional space into (n+1)d cells by simply using the values of the customers
on every dimension as the splitting values. It is easy to verify that any two products
in the same cell must dominate the same set of customers. Thus we can just pick
a representative for each cell. Moreover, it takes at most O(d) time to find a
representative point in the cell as well as check the intersection between a cell and
a hyperplane hi by Property 1. We can find all the customers dominated by the
representative in O(nd) time, by comparing every customer requirement with the
representative point on each attribute. So, the total computation for trying all the
cells is at most O(nd+1(n + d)). 2

The following theorem immediately follows from Lemmas 1- 3.

Theorem 2. A Nash Equilibrium of the domination game can be found in poly-
nomial time with respect to the number of manufacturers and customers.

Proof: : By Lemma 1, there are at most O(nt log t) iterations. In every iteration,
the algorithm needs to invoke the best response query t times. By Lemma 3, this
query can be answered in O(nd+1(n + d)) time. So, the total complexity of Nash
Equilibrium problem in the market is at most O(nd+2(n + d)t2 log t), which is
polynomial with respect to both manufacturer number and customer number. 2

5To some configuration equivalent to β.
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While the complexity of finding a Nash equilibrium is polynomial in the number
of customers and products, it is exponential in the dimensionality d, i.e., number
of product properties. Indeed the naive algorithm for the best response query is
clearly exponential in d. In Section 6, we develop more efficient search algorithms
and pruning strategies to improve the efficiency of answering the best response
query, an important step of Algorithm 1.

5. CUSTOMER COVERAGE OF THE NASH EQUILIBRIA

Since there can be many different Nash Equilibria, an important question is whether
Algorithm 1 is likely stop at an arbitrary “bad” configuration in which many cus-
tomers could not find a satisfactory product, i.e., the overall number of customers
dominated by any product in the equilibrium is small. Such an equilibrium is clearly
undesirable for the industry which seeks to maximize the number of customers cov-
ered by the products via domination. We next prove that this is not the case for
our model.

Let R(α) represent the set of the customers who are dominated by at least one
product in the configuration α, i.e., R(α) = ∪t

r=1L(r, α). The maximum customer
coverage problem is to find a configuration α∗ such that |R(α∗)| ≥ |R(α)| for any
other configuration α.

Lemma 4. Any Nash equilibrium is a 2-approximate solution to the maximum
customer coverage problem.

Proof: Assume α∗ = (p∗1, p
∗
2, . . . , p

∗
t ) is the optimal solution to the maximum

customer coverage problem and α = {α1, α2, . . . , αt} is any Nash equilibrium. If
|R(α)| < |R(α∗)|/2, we will show that there is at least one manufacturer mi which
can improve its expected market share by moving only its product from pi ∈ α to
p∗i , contradicting the fact that α is a Nash equilibrium.

It is not difficult to verify that |R(α)| = ∑t
i=1 Si(α) and |R(α∗)| = ∑t

i=1 Si(α∗).
Remove all the customers in R(α) from C and consider the new market with the
same products but with customer set C − R(α). Let the expected market share
of mi with configuration α∗ on the new market be S′i(α

∗). Then,
∑t

i=1 S′i(α
∗) =

|R(α∗)| − |R(α)| > |R(α)| =
∑t

i=1 Si(α). By the pigeon hole principle, there is
at least one mi having S′i(α

∗) > Si(α). This means that mi can achieve better
expected market share by moving from pi to p∗i even without those customers in
R(α). This was to be shown. 2

The following is an example to show that the bound in Lemma 4 is tight asymp-
totically. Consider a market with m manufacturers with identical profit constraint
hyperplanes. We can construct a customer set with t groups of customers. The
groups are so far away from each other that any product can dominate only one
group. Let there be t customers in the first group, while there is only one customer
in the remaining groups. Then, an obvious Nash equilibrium is a configuration
where all products try to dominate the first group, which covers t customers over-
all. However, the maximum customer coverage can be achieved if every product
covers a single group giving a total cover of 2t− 1 customers. The ratio (2t− 1)/t
approaches 2 as t →∞.

Theorem 3. For any two Nash Equilibria α1 and α2, 1
2 ≤ |R(α1)|

|R(α2)| ≤ 2.
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Fig. 2. Example for effective dominating point

Proof: Assume α∗ is a solution to the maximum customer coverage problem.
By Lemma 4, 2|D(α2)| ≥ |D(α∗)|. So, |D(α1)| ≤ |D(α∗)| ≤ 2|D(α2)|. The other
side can be proved by simply exchanging the position of α1 and α2 in the proof
above. 2

From Theorem 3, we know that by choosing a random initial configuration and
running Algorithm 1 once, we can get a Nash equilibrium whose customer coverage
is at least half that of the best Nash equilibrium in terms of customer coverage.

6. ALGORITHMS FOR BEST RESPONSE QUERY

The naive algorithm for best response query, while polynomial in n and t, is expo-
nential in d. In this section, we propose two new best response algorithms based
on breadth-first and depth-first search in the customer lattice space. Some pruning
techniques are also developed to improve the efficiency of the algorithms.

6.1 Lattice Search Algorithms

6.1.1 Effective Dominating Point of a Product. We assume the customer set
C = {c1, ..., cn} and manufacturer set M = {m1, ..., mt}, with mi manufacturing pi.

Definition 1. Let α = (p1, ..., pt) be a configuration. Let Wi(α) ⊆ C be the set
of customers dominated by pi ∈ α. Then the effective dominating point of pi is a
point e(pi, α) = (e[1], e[2], . . . , e[d]) such that e[k] := mincj∈Wi(α) cj [k], 1 ≤ k ≤ d.

In Figure 2, we show an example of an effective dominating point, e(p, α) for the
point p. From the figure, we can see that the effective dominating point is actually
the top-most right-most position in the multidimensional space which can dominate
exactly same set of customers as the given point p.

Definition 2. Let e = (e[1], ..., e[d]) be an effective domination point. Then the
domination region of e is the subset of the d-dimensional product attribute space,
such that every point in it is dominated by e.

In Figure 2, the domination region of e(p, α) is right top part of the 2-dimensional
space bounded by two lines from e(p, α). The following lemma shows an important
property of effective dominating points.
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Lemma 5. Given a product pi and its effective dominating point e(pi, α), there
is at least one customer point on each face of the region dominated by e(p, α).

Proof: Follows from Definition 1. 2

In Figure 2, customer point c1 and c2 are the customer points on the two faces
of domination region of e(p, α) respectively.

Let C ⊆ C denote a subset of customers in the game, and λ(C) be the top-most
right point dominating all customers in C. We have:

Lemma 6. For any product point p located on the hyperplane hi, e(p, α) = λ(C)
for some C ⊆ C such that |C| ≤ d.

Proof: Let Wi(α) be set of customers dominated by p. For each dimension
Ak, we pick one of the customers from Wi(α), with the smallest value along the
dimension and add the customer into C. C thus contains at most d customers
and λ(C) is definitely able to dominate all customers in Wi(α), making it equal to
e(p, α). 2

When a customer has the smallest values on several different dimensions, the size
of set C will be smaller than d. We note that given any customer subset C of size
no larger than d, it is not necessary to have a plausible product point p on the
hyperplane hi to satisfy e(p, α) = λ(C). For a hyperplane Σd

k=1bikpi[k] = xi, we
say a point q is above hi if Σd

k=1bikq[k] > xi. Otherwise, it is below hi. We can
show:

Lemma 7. If p∗i is the best response for mi on a configuration α, any product po-
sitioning p̂i above hi and dominating e(p∗i , α) can achieve the same expected market
share as p∗i . 2

The proof of the lemma is straightforward. In Figure 2, for example, any product
dominating e(p, α) dominates at least the five customers dominated by e(p, α).

Lemma 7 shows that given the effective dominating point of an optimal response
pi, it is trivial to find a product achieving the same expected market share on the
hyperplane hi. This implies a new best response searching method. We can try
all combinations of customers with size no larger than d, find the combination C ′

which give the highest expected market share based on λ(C ′), and simply use the
projection of λ(C ′) on hi as the final optimal result.

6.1.2 Customer Search Tree. Based on the analysis earlier, we propose a new
concept, called Customer Search Tree, for finding a customer combination that gives
the maximum expected market share.

Assuming an arbitrary global order on the customers, C = {c1, c2, . . . , cn}, subsets
of C can be represented as strings in the obvious way. We assume this below. Given
two customer subsets Cq and Cr, Cr is the extension of Cq if Cr = Cq · c for some
customer c 6∈ Cq.

A search tree structure, L(C), is constructed based on the above definitions.
Every node in the search tree represents a customer set Cq ⊆ C of size no larger
than d. Without ambiguity, we use Cq to denote both a customer set and the node
in the search tree that represents it. There is a directed edge from Cq to Cr, iff
Cr is an extension of Cq. The nodes and edges form a tree with root at the empty
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 3. Example for customer search tree

Algorithm 2 Breadth/Depth First Search (Customer Search Tree L, Hyper-
plane hi)
1: while there is at least one node in L not pruned or not visited do
2: Find the next search tree node N in breadth/depth first order
3: Construct effective dominating point e = λ(N)
4: if e is above hi using Property 2 of profit constraint hyperplane then
5: Compute the expected market share of e (section 6.2)
6: Update the best response if e is better than current solution
7: Prune the children of N (section 6.3)
8: Project the best e onto hi and return the result

node. We say a node Cr is the descendant of Cq if there exists a directed path from
Cq to Cr in the search tree.

Thus, the searching process over all the combinations of customers can be ac-
complished by moving through the search tree nodes along the edges.

In Figure 3, we present an example of the customer search tree, on a data set
with 3 customers in 2 dimensional space. {c1, c2} and {c1, c3} are extensions of
{c1} by definition.

Lemma 8. If Cr is a descendant of Cq in L(C), the domination region of λ(Cr)
must cover the domination region of λ(Cq).

Proof: If e1 = λ(Cr) and e2 = λ(Cq), e1[k] = mincj∈Cr cj [k] and e2[k] =
mincj∈Cq cj [k]. Since Cq ⊂ Cr, e1[k] ≤ e2[k]. So, the domination region of λ(Cr)
must cover that of λ(Cq). 2

Given a node Cq and one of its descendants Cr, we say Cr extends Cq on dimen-
sion Ak, if e1[k] < e2[k] where e1 = λ(Cr) and e2 = λ(Cq).

6.1.3 Searching on Customer Search Tree. To find the customer combination C ′

such that λ(C ′) can achieve optimal expected market share, we employ two different
searching strategies over the search tree L(C), namely breadth-first search and
depth-first search (see Algorithm 2). Starting at the root of L(C), the algorithms
iterate through the nodes in the search tree in different order, but have the same
operations at any single node C ′. They compute e = λ(C ′) and calculate the
expected market share at e based on the configuration of other manufacturers. If
e is better than the current best response, e will become the best response. Some
pruning is conducted to reduce the number of nodes that must be visited. After all
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the nodes that are reachable from the root has been visited,
the algorithm projects the optimal position e onto hi to obtain the final result as
the best response.

In the rest of the section, we will discuss the detail on how the expected market
share at λ(C ′) can be efficiently computed (section 6.2), as well as how we can
prune children node which definitely cannot yield a better response (section 6.3).

6.2 Computing Expected Market Share Based on R-Tree

Given a node C ′ in the search tree with k customers, e = λ(C ′) is computed by
retrieving the smallest value of the k customers on every dimension. If e is below
the profit constraint hyperplane of the manufacturer, then e is not a valid position
since it violates the constraint. If e is above the hyperplane, we need to efficiently
determine the expected market share that e will bring.

To efficiently support such an operation, we use a modification of the R-Tree
index [Guttman 1984], called aggregation R-tree [Jürgens and Lenz 1998; Lazaridis
and Mehrotra 2001; Papadias et al. 2001]. Every point in the R-Tree is a customer
point in the data set. A weight is assigned to every point in the R-Tree representing
the expected market share it can provide if a product dominates it. If there are
already s products dominating a customer cj , the weight of cj is 1/(s + 1). Thus,
the expected market share λ(C) can be computed by summing up the weight of all
the customers that it can dominate. Since the details of such operations are well
studied in [Jürgens and Lenz 1998; Lazaridis and Mehrotra 2001; Papadias et al.
2001], we suppress further details here. By some analysis of the studies on such
indexing structures, the complexity of the computation is about O(log n), where n
is the number of customers indexed. To update the weights of the nodes because
of the changing number of dominators, the algorithm needs to iterate and update
every node in the indexing tree, after every iteration. The cost of such update is
affordable, since the update time depends on the number of nodes in the indexing
tree, typically O(n log n), which is much cheaper than the time spent on iterations
over the customer search tree.

6.3 Pruning Strategies

In order to reduce the number of nodes being visited in the search tree, we propose
two pruning conditions which will be applied in Line 7 of Algorithm 2.

6.3.1 Boundary Condition. Given an effective dominating point e, Lemma 5 has
already shown that there is at least one customer on every face of its domination
region. Here, provide a boundary condition which constrains the nodes visited in
the search tree.

We say a customer set C ⊆ C satisfies the boundary condition, if every customer
c ∈ C is the unique point with the minimum value in some dimension. That is,
there is at least one dimension, the boundary on which is only decided by this
customer. We have the following lemma.

Lemma 9. Given a node C not satisfying the boundary condition, there exists
another node D ⊆ C satisfying boundary condition, such that λ(D) = λ(C). For
any descendant C ′ of C, there exists a descendant node D′ of D, such that λ(D′) =
λ(C ′).
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Proof: Assume C has k different customer points c1, . . . , ck, and without gener-
ality ck is the only point not on any domination face of λ(C). Then, by removing
ck, we have a node D with k − 1 points, λ(D) = λ(C) since the removal of ck can
not increase the minimum value of D on any dimension. If C ′ is a descendant of C
by combining C with another customer subset F , that is C ′ = C ∪ F , we can find
the corresponding descendant D′ of D by combining D and F . It is easy to verify
that λ(D′) = λ(C ′). 2

The value of Lemma 9 is that it yields the following property of the customer
search tree, as Algorithm 2 visits the nodes of the search tree. Suppose the current
node does not satisfy the boundary condition. Then none of its descendants satisfies
the boundary condition either. This observation will be used later to develop a
pruning strategy.

6.3.2 Upper Bound Pruning. By extending from a customer set C to any of its
descendant C ′, the expected market share will definitely be non-decreasing since
the domination region of λ(C) will grow by Lemma 8. However, we will show that
it is possible to derive an upper bound on the expected market share of λ(C ′) based
on the current information in C.

Lemma 10. In computing the best response for manufacturer mi with profit con-
straint hyperplane hi given by

∑d
k=1 bikpi[k] = xi, let e = λ(C) = (e[1], e[2], . . . , e[d])

for a node C. Let C ′ be any descendant of C in the customer search tree and let
e′ = λ(C ′) = (e′[1], . . . , e′[d]). Then for any dimension k, e′[k] ≥ e[k]−(

∑
e[k]bik−

xi)/bik.

Proof: Since any descendant node C ′ must contain more customers than C,
the boundary of λ(C ′) on any dimension cannot be larger than that of λ(C),
i.e. e′[k] ≤ e[k]. If e′[k] < e[k] − (

∑
j e[j]bij − xi)/bik for some k, we have∑

e′[k]bik < e[k] − (
∑

j e[j]bij − xi) +
∑

j 6=k e[j]bij = xi, making the point λ(C ′)
below the hyperplane. 2

Thus, for a point e = λ(C) above hi, we define the upper bound point U(e) =
(eu[1], . . . , eu[d]) with eu[k] = e[k] − (

∑
e[k]bik − xi)/bik. It is obvious that U(e)

dominates λ(C ′) where C ′ is any descendant of C. Thus, the expected market
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Algorithm 3 ExtensibleUpperBoundTest (customer subset C ′, profit con-
straint hyperplane hi, R-Tree root r, threshold θ)
1: e = λ(C′)
2: for every dimension combination set ω do
3: if ω is extensible by Definition 11 then
4: Construct the upper bound point p′ = X(e, ω)
5: if DomCount(p′, r) > θ then
6: Return without pruning
7: Prune all the children of C′

share of U(e) is an upper bound on the expected market share achievable on the
descendants of C.

Note that Lemma 10 works only when the hyperplane follows the constraint∑d
k=1 bikpi[k] = xi. It is not hard to extend it to any hyperplane satisfying Property

2 in Section 3, by which the minimum possible value on each dimension can be
calculated in constant time.

In Figure 4, we show an example of the upper bound computation in 2-dimensional
space. The point e′ is U(e) for the point e above the hyperplane.

From the figure, we can see that the upper bound on the market share by directly
expanding along all dimensions can be very loose. Fortunately, we can tighten the
bound by combining Lemma 9 with the boundary condition since extension on all
dimensions can violate the boundary condition in Lemma 9.

Assume C = {c1, c2, . . . , ck} is the node being visited in the search tree. Let
DS(ci, C) = {Ao1 , Ao2 , . . .} 1 ≤ ok ≤ d, denoting the set of dimensions such that ci

is on the face of domination region for λ(C) along these dimensions. In Figure 5, for
example, there are three dimensions {x, y, z}. If C = {c1, c2}, where c1 = (1, 1, 2),
c2 = (2, 2, 1) and λ(C) = e = (1, 1, 1), then DS(c1, C) = {x, y} and DS(c2, C) =
{z} because c1 has minimum values on dimension x and y while c2 has minimum
value on dimension z.

Definition 3. A set of dimensions ω is an extensible dimension set for a cus-
tomer subset C if |DS(cj , C)− ω| > 0 for every cj ∈ C.

In the definition above, DS(cj , C)− ω is the set of the dimensions in DS(cj , C)
but not in ω. Recall the example in Figure 5. {x} is an extensible dimension set for
C = {c1, c2}, since DS(c1, C) − {x} = {y} and DS(c2, C) − {x} = {z}. However,
{x, z} is not, since DS(c2, C) − {x, z} = ∅. The extensible dimension set has the
property shown in the next lemma.

Lemma 11. If a descendant C ′ of C extends along some dimensions which are
not in the extensible dimension set ω, C ′ must violate the boundary condition. 2

Proof: If a dimension set ω is not an extensible dimension set, there is at least
one point cj ∈ C ′ that |DS(cj , C

′) − ω| = 0. Then, cj can not be on any face of
the domination region of C ′′, which contradicts boundary condition. 2

By the last lemma, the descendants of C can only extend the dominating re-
gion of λ(C) on those extensible dimension sets. Given an extensible dimension
set ω and e = λ(C), we propose the extensible upper bound point X(e, ω) =
(eω[1], eω[2], . . . , eω[d]), s.t. eω[k] = e[k] if k 6∈ ω and eω[k] = eu[k] otherwise. It is
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Fig. 5. Example of extensible dimension set

clear that the expected market share of X(e, ω) must be the upper bound of the
descendants of C by extending on ω.

Thus we propose the extensible upper bound computation algorithm in Algo 3.
In this algorithm, we iterate through all the possible 2d−1 dimension combinations,
and test the upper bound only when the dimension combination is extensible. For
example, in Figure 5, there are only two extensible dimension sets, {x} and {y},
for C ′ = {c1, c2}. For all extensible dimension sets, if the expected market share of
the corresponding extensible upper bound point cannot be larger than threshold θ
(the expected market share of the current best solution), the algorithm will prune
all the children of C ′. Since d is usually much smaller than n, the cost of iterating
all dimension sets is typically small.

6.4 Discussion on Discretization

Another possible optimization for best-response query is the discretization over
the dimensions with continuous values. Given a d-dimensional unit space [0, 1]d, a
customer cj is represented by a vector (cj [1], cj [2], . . . , cj [d]) in the original space.
Given the specified discretization parameter ∆, the original vector can be trans-
formed to a new vector (bcj [1]/∆c∆, . . . , bcj [d]/∆c∆). By such transformation,
the number of possible values on any dimensions is no more than d1/∆e, which can
be regarded as a constant number. Best response query can thus be answered by
employing some existing indexing technique, such as DADA-tree [Li et al. 2006].
Although beyond the scope of this paper, note that the efficiency of best response
query can be dramatically improved, as is shown in [Li ].

However, the customer data set has some loss on the detailed information of the
customers, which may lead to some sub-optimal result of the best response query.
The convergence result of the domination game depends on the exact solution
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of best response query, and the game may not converge if any approximate best
response is applied instead. Based on this observation, we only focus on testing the
algorithms outputting exact best response in the following experimental section.

7. EXPERIMENTS

We carried out an experimental study to verify the properties and test the perfor-
mances of the algorithms proposed in this paper. The programs are compiled by
gcc 3.4.3 and run on IBM x255 server with four Intel Xeon MP 3.0 GHz CPU, 18G
DDR memory and six 73.4GB Ultra320 SCSI hard disks.

In the experiments, we generate different types of synthetic data sets. All of the
points in the data sets are in [0, 1]d, where d is the dimensionality. The values on
every dimension are all float numbers. The size of the customer set ranges from
1000 to 10000. The dimensionality of the market varies from 2 to 4, while there
are at least 2 and at most 9 corporations in the market. The default setting of the
parameters above is 1000 customers, 3 dimensions and 2 corporations. There are
four optional distributions of customer set, including Anti-Correlated (A), Corre-
lated (C), Independent (I) and Clustered (L). In anti-correlated customer set, the
increase of the requirement on one dimension will lead to some decrease on the
others. In correlated customer set, a customer having high requirement on one
dimension is likely to have similar high standards on the others. In independent
customer set, all dimension are independent and obeys uniform distribution on the
range. In clustered data set, the points are generated from 5 different Gaussian
distributions in the space.

We also employ a real data based on the review comments collected from a hotel
review web site TripAdvisor 6. The users of the web site are supposed to rate
the hotels on 7 different attributes, as well as an overall score. All of the ratings
are integers between 1 and 5. However, only four attributes, including cleanliness,
value, service and rooms, are used in our data since most of users rate on all of
them. Based on the assumption that a good overall score is given only when the
hotel satisfies all requirements of the user, we transform the review data set to
requirement data set by using the review tuples with overall scores no smaller than
4. After crawling 50 hotels in Sydney, we retrieve 997 valid tuples, each attribute
of which is normalized to some real number between 0 and 1. These tuples are
regarded as customers in our experiments.

The profit constraint hyperplanes for the manufacturers are generated by uni-
formly choosing the parameters bij and xi in the range of [0.8, 1.2], on synthetic
data sets as well as on real data set.

In our experiments, we focus on the efficiency of the algorithms proposed in this
paper. In the rest of the section, we use NAIVE, DFS and BFS to denote the
iterative best response algorithm with naive, depth first search and breadth first
search as the underlying best response computation respectively. In Table II, we
first compare the speed of NAIVE, DFS and BFS on 3 dimensional space with 1000
customers and 3 manufacturers. NAIVE is much slower than DFS and BFS on
anti-correlated, correlated and independent data sets. This result indicates that
lattice search is a great improvement on the naive search scheme for best response

6www.tripadvisor.com
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Data Type A C I L

NAIVE 5326 472 2163 31

DFS 130 27 69 23

BFS 132 29 73 25

Table II. Speed comparison of NAIVE, DFS and BFS in seconds

query. Since NAIVE is not scalable to any larger or higher dimensional data sets,
we only compare our DFS and BFS algorithm in the rest of the experiments. On
clustered data set, however, naive algorithm is not so bad because the searching
space is not large, which constrains the pruning ability of DFS and BFS.
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Fig. 6. Tests on varying data size

In Figure 6, we show the computation cost of DFS and BFS on varying data
size from 1000 to 10000. The time spent by the two algorithms both increases
polynomially with the expansion of the data set. DFS algorithm is a little better
than BFS in all types of data sets, especially on clustered data sets.

As is shown in Figure 7, the computation times of DFS and BFS are still expo-
nential in the dimensionality d. However, by some simple linear regression on the
curves, we can verify that the empirical time complexity of DFS and BFS on di-
mensionality d is proportional to 100d. Since there are n = 1000 points in the data
set, the lattice search algorithm on DFS and BFS still achieve some improvement
on NAIVE.

We also conduct some experiments on varying the number of manufacturers in
the market. The result in Figure 8 shows that the linear increase of computation
time implies that the iteration number of the process also increases linearly. When
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Fig. 7. Tests on varying dimensionality
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there are 9 manufacturers, the computation cost even decreases on independent
and clustered data. This is because the data are so scattered or grouped in these
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data sets that the manufacturers can easily target a small group of customers in the
first iteration and find it hard to attract new customers with old customers kept.
Thus, the stability of the market can be achieved easily even when there are more
competitions in the same market.

Finally, the performance comparisons on the two algorithm over TripAdvisor
data set is presented in Figure 9. This group of test confirms the advantage of
DFS over BFS on efficiency. DFS algorithm is almost two times faster than BFS
algorithm when the number of manufacturers increases from 2 to 6.

8. CONCLUSION AND FUTURE WORK

In this paper, we proposed domination games for modelling competition among
manufacturers of a product for maximizing their expected market share. This work
was motivated by the seminal work of [Kleinberg et al. 1998a] motivating data min-
ing from a microeconomic, utility oriented perspective. For domination games, we
show that a Nash equilibrium always exists and showed that it can be computed in
polynomial time in the number of customers and products. The algorithm is expo-
nential in the number of product properties. We developed speeding up stratgies
for answering the best response query which forms the backbone of the algorithm
for finding equilibria. We showed that in terms of customer coverage any Nash
equilibrium is at most two times worse than the best one. Characterizing the com-
plexity of the best response query in terms of dimensionality is open. Extension
of this framework where a customer may buy more than one model, or a product
dominates a customer if it can satisfy the customer on k out of d dimensions, or
there are multiple product types, or a customer buys a product with a probability
determined by the proximity of the product to his preferences are all interesting
directions for future work.
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