Finding Diverse Neighbors in High Dimensional
Space

Qi Guo #!, H. V. Jagadish *?, Anthony K. H. Tung #3, Yuxin Zheng #%5

National University of Singapore, Singapore
{1qiguo, 3atung, 4yuxin}@ comp.nus.edu.sg

* Univ. of Michigan, Ann Arbor, M1, USA

2

Abstract—Given a d-dimensional point query g, finding data
items similar to g is a crucial task in many information retrieval
and data mining applications. The typical approach is to find
K items in a data set most similar to ¢, known as K nearest
neighbors. Often, it is valuable to avoid too many answers that are
too similar, and the importance of diversity has been considered
in recent research. There are many different ways to characterize
diversity, most of which depend on a notion of distance between
points. In this paper, we propose a novel view of diversity
based on spatial angles. This approach captures relevant and
diverse results surrounding ¢ from distinct directions even in high
dimensional space. We present several algorithms to compute
the diverse neighbor set, and show that it has several desirable
properties. Extensive experiments demonstrate the effectiveness
and efficiency of our methods on both real and synthetic data sets.

I. INTRODUCTION

Similarity search has been studied extensively since it is a
crucial task in many information retrieval and data mining
applications. Usually, objects are represented as points in
multi-dimensional space. Given queries in the form of points
in this space, similarity search requires finding K nearest
(most similar) neighbors to each query. Similarity between two
points is often measured by a score function, such as cosine
similarity or the inverse of Euclidean distance. Two objects
are considered to be similar if their similarity score is high.

In addition to similarity, diversity has been demonstrated
as a valid means to add value to the query results. Recent
literature in information retrieval has extensively considered
diversity when ranking text documents or web search results
[11, [21, [3], [4], [5]. Search engines and recommender systems
prefer relevant yet diverse results. In some scenarios, similarity
search only may return redundantly similar results, while
diversified results are more informative, especially when the
queries are ambiguous. A keyword “Apple” may not only refer
to the company, but also the fruit. The ambiguity problem is
engendered because users’ true intentions are unclear. Return-
ing a collection of diverse results, which can cover various
conjectures about the query, could be a reasonable strategy
to resolve the problem. The importance of diversity in many
scenarios is described in a recent survey [6].

Example 1.1: [7] (Figure la) Suppose a criminal is spotted at
location CO. The police have access to all cameras around CO,

§Current affiliation: Tencent Inc.

Jag@umich.edu

2 D (7,4,1.8)
@48

216 C(47,1.6)
>1.4
(3]
1.2
2]

1
7 A(551)
6

B (6,4,1.3)

6

5
Defense

(b) NBA Player Trade

4 4 Offense

(a) Camera Access
Figure 1: Introduction Example

but have a limited number of screens (say k = 5) to display
the view of different cameras simultaneously. Returning closest
cameras (blue squared) may lead to information loss (no
information from North and Northeast), while diverse results
(red circled) can capture almost all surrounding environment.

In the above example, the criminal’s whereabouts are
unknown, but guessed roughly. Cameras well-spread in the
region of interest can cover the region better than a cluster of
cameras close to the center..

Example 1.2: (Figure 1b) Consider a simplified example of
trading NBA players. Each player is represented by three
attributes (offense, defense ability scores and salary). Trading
player A for player B (direction from A to B) indicates the
preference of paying a little more to improve offense but
sacrificing defense. Player D is another choice, which will
improve offense even more but paying more. On the other
hand, trading player A for player C (direction from A to C)
indicates an alternative preference of paying more to greatly
improve defense but sacrificing offense. A large angle between
AD and AC distinguishes two very different preferences.

In both examples, diversity in the sense of direction plays
an important role. A well-spread result set to cover many
directions can help users elicit their preferences. The popu-
lar distanced-based diversity [8], [9], [10], however, has no
guarantees on the coverage of directions. Recall in Example
1.1, two distant points might lie in a similar direction (con-
sider cameras C2 and C9). Furthermore, it was observed
that distances lose their ability to distinguish points in high
dimensional space due to the concentration phenomenon [11].
All distances between pairs of data points seem to be very

similar. An intuitive way to measure differences between
directions is to consider spatial angles. Moreover, angles are
shown to be more stable than distances [12], [13]. In this paper,
we propose a novel view of diversity, which is based on spatial
angles. Given a query point ¢, we aim to find a set of close
points of ¢ that encircles ¢ in different directions. We refer to
points in this set as angular diverse neighbors.

To find angular diverse neighbors, we first define the angular
dominance relation as follows: Given a query point ¢, we say
a point p angular dominates another point p’ if the following
two conditions hold: (1) p is closer to ¢ than p’; (2) the
angle of /pqp’ is smaller than an angular threshold. Then,
angular diverse neighbors are defined as all points that are not
dominated by any other point.

Given an angular diversity threshold, we propose two al-
gorithms to find angular diverse neighbors. The first is the
Sorted-Scan algorithm which uses the property that a point
can only be dominated by the query’s nearer neighbors. To
improve the efficiency, we propose the Two-Scan algorithm,
which prepares a set of reference points beforehand and uses
them to quickly prune true negatives during the first scan. As
compensation, the Two-Scan algorithm needs a second scan
of the data set to eliminate the false positives.

The angular threshold might be hard to set for users not
familiar with a data set. One can also request for a diverse
neighbor set of a specific size. To support this, we propose
the Two-Stage algorithm to compute a near-optimal angular
threshold and return a result set of the desired size.

We summarize the contributions of this paper as follows.

« We introduce a new concept based on spatial angles,
called #-dominance to investigate the result diversification
problem in high dimensional space.

e« We propose two different algorithms to compute the
diverse neighbor set given the angular threshold.

e« We provide an additional algorithm to compute the di-
verse neighbor set of the desired size without requiring
specification of the angular threshold.

o We experimentally verify the effectiveness and efficiency
of our proposed methods using various data sets.

II. DEFINITION AND ANALYSIS
A. Problem Definition

Definition 2.1 (Point): Given a d-dimensional space S =
{s1,82,...,84}, and a d-dimensional point p, we use p.s;
to denote the j** dimension value of point p.

Definition 2.2 (Distance): The distance between two points p
and ¢ is defined as the norm of the vector ¢p, i.e. dist(p,q) =
llgpll = /{db, Gb), where (-,-) is an inner product.
Definition 2.3 (Angle): An angle /pqp’ represents the angle
between vectors ¢p and q;)/ , which can be computed as:

<<ﬁ), qfo’>
lapll - llap'|
Specifically, if ¢ and p or p’ coincide, Zpgp’ is defined as 7.

Zpqp’ = arccos € [0, 7], (1)

Table I: Table of Notations

d | dimensionality

S | d-dimensional space {s1, s2, ...
D | data set of d-dimensional points
[-T | size of a set

,8d}

D.S; " dimension value of point p
dist(p,q) | distance between points p and ¢
0 | angular threshold

pq | directional vector from point g to point p

Zpqp’ | angle between vector pg and p'q
p 59 p | pO-dominates p” w.rt g
p’ <. p | p' is O-dominated by p w.rt g
DS(D,q,0) | angular 6-diverse neighbor set
DS(D,q,k) | sized k-diverse neighbor set

k number of points in the diverse neighbor set
number of nearest neighbors

N(q, K, D) set of /(-NNs of ¢ in data set D
T (o0,q,D) | set of points nearer to g than o in data set D
minf(o,q, D) | minpe7(o.q.0)(£0gp)

Definition 2.4 (0-dominate »;1979): Given a query point ¢ and
an angular threshold 6, a point p §-dominates p’ w.r.t. ¢ on
space S, denoted as p >, p' if

(1) dist(p,q) < dist(p’,q) and

(2) Zpgp’ < 0.

Please note that p >;i9 p’ is equivalent to p’ 459 .
Definition 2.5 (0-dominating Area): Given a query point ¢ and
an angular threshold 6, the #-dominating area w.r.t ¢ on space
S of a point p is the set of points: {z : x € S and p >§79 x}.
Note the #-dominating area of one point increases faster when
getting further to the query due to the sectorial shape.
Definition 2.6 (Diverse Point): A point p in D is a diverse
point w.r.t ¢ and € on space S, if and only if there does not
exist any point p’ # p in D such that p <% 0.0 p.

Definition 2.7 (Diverse Neighbor Set DS(D q,0)): Given a
data set D, a query point ¢, a threshold 6, and the space S,
the diverse neighbor set, denoted as DS(D, ¢, 0), is the set of
all diverse points w.r.t ¢ and 6 on space S.

Point | coordinates | dist(-,q) | min(-,q,D)
. | (2,4 | 447 180°
De Ds P2 | (1,8) | 8.06 19.44°
ps | (2,10) | 1020 | 18.43°
pa | (6,6) 8.49 52.13°
ps | (10,9) | 13.46 3.01°
Pe | (-11,-6) | 12.53 | 92.05°

Pe

Figure 2: An illustrative example, where 6 = 20°

Example 2.1: Consider a data set D = {p1,...,pe}, and a
query point ¢ = (0,0) on R? equipped with the dot product,
shown in Figure 2. The diverse neighbor set DS(D,q,0)
contains three points: p1, p4, and pg. The gray area represents
the 0- dommatmg area of each point. Specifically, py < 0.0 P1»
p3 <q o D2, and ps <q o D4 It is clear that only p1,p4,pe are
not contained in any gray area, which implies they are not
0-dominated by any points in D w.r.t q.

Based on the diverse neighbor set, we are particularly
interested in solving the following two problems:

Problem 1 (angular 0-diverse neighbors DS(D, q,0)):
Given a data set D, a query ¢ and an angular threshold 6,
compute DS(D, q,0).

Though DS(D,q,0) is useful on its own, the angular
threshold 6 might be hard to specify for those users who
are not familiar with a data set. To address this, we propose
Problem 2, in which users just need to specify the cardinality
of the result set.

Problem 2 (sized k-diverse neighbors DS(D, q,k)): Given
a data set D, a query point ¢, and a specified integer k, find
a 0%, such that |DS(D, q,0*)| = k, and output DS(D, ¢, 6*)
as DS(D, q, k).

For ease of presentation, we summarize the important
notations in Table I.

B. Analysis

Given a query point ¢, for any two points a,b, the angle
Zagb provides a way to measure the difference between a
and b. Firstly, the Euclidean distance between the two points
has a lower bound. The lower bound is decided by the farther
point and the angle. Moreover, when the angle is large, the
two points must differ a lot in at least one dimension. These
ideas are formally established next.

Theorem 2.1: Given three points a,b and ¢ on R™ with the
dot product, where Zagb = 0 and ||Gi||= I, < ||gb||= Iy, then:
1) dist(a,b) >l - siné,
2) there exists a dimension ¢ such that |a.s; —b.s;| >
min(|l, — Iy - cos |, 1, - sin).

2/d-
Proof: (1) Since points ¢,a,b form a triangle in the d-
dimensional space, by the law of cosines,
dist®(a,b) = 12 + 12 — 21,1, - cos
= (lg —lp-cos0)? + 12 - (1 — cos? 0)

> 12 -sin? 6.)
Thus, dist(a,b) > 1 - sin 6.
(2) We prove by contradiction. Suppose for all i =
1,2,...,d,
la.s; —b.s;| < v/2/d-min(|lg — Iy - cosb|,lp -sinB). (3)

d
Then, 2||ab||> = 2 Z(a.si — b.s;)?

i=1

d
Z (vV2/d-|lg — 1y - cos b)) —|—Z (\/2/d -1, - sin 0)?

= (3—25 Iy -cos + I - cos 9—|—l -sin? 0). 4)

Hence, [|ab|? < 12 +12 — 21,1, - cos 6, which contradicts the
law of cosines. Therefore, there exists ¢ such that |a.s;—b.s;| >
V2/d - min(|lg — I - cos 8,1 - sin0). [|

Next, we show three properties of the proposed diverse
neighbor set, i.e. Monotonicity, Existence and Uniqueness.

Monotonicity: the size of the diverse neighbor set decreases
monotonically with the increase of 6.

Lemma 2.1: Given 6’ >0, if p >§,9 p’, then p >qs)0, p.

Proof: By Definition 2.4, we have dist(p, q) < dist(p’, q)
and /pgp’ < 6. Thus, clearly, we have Zpqp’ < 6 < @', again
by Definition 2.4, p >59, p. []
Theorem 2.2: Given 6' >0, DS(D,q,0") C DS(D,q,0).

Proof: (By contradiction) Consider a point p €
DS(D,q,0"). Suppose p ¢ DS(D,q,0), then Jo € D,
s.t. o >qs)0 p. By Lemma 2.1, o >qs79, p. This contra-
dicts the assumption. Thus, p € DS(D,q,0), and we get
DS(D,q,0") C DS(D,q,9)]

From the last theorem, we can conclude that given the same
data set and the same query, the size of the diverse neighbor
set decreases monotonically with the increase of . Thus, for
different purposes, users can control the size of the diverse
neighbor set by choosing their own 6.

Existence: There always exists an answer to Problem 1.

Lemma 2.2: Given a data set D, a query point ¢, DS(D, ¢, 6)
is non-empty for any 6.
The above lemma is obvious, since DS(D, ¢,) will always
contain the first nearest neighbor of ¢ among D. Besides, any
point satisfying Definition 2.6 will be included in the result
set. The existence of answer to Problem 2 will be discussed
in Section IV-A.

Uniqueness: Furthermore, given specific parameters, an-
swer to Problem 1 is unique.

Theorem 2.3: Given a data set D, a query point g,
DS(D,q,0) is unique for a specific 6.

Proof: Suppose there exist two answer sets DSy (D, ¢,0)
and DS5(D,q,0). Consider a point p € DSl(D,q,H), by
Definition 2.6, there does not exist any point p’ # p such that
p <54 p'. Then, by Definition 2.7, p € DSy(D, q,0). Thus,
DS, (D q,0) C DS3(D,q,0). Similarly, DS5(D,q,0) C
DS,(D,q,0). Hence, DS{(D, q,0) = DS2(D, q,0). []
Moreover, under certain assumptions, answer to Problem 2 is
also unique, and details will be shown in Section IV-A.

III. ANGULAR 0-DIVERSE SET

In this section, we present two algorithms, namely the
Sorted-Scan Algorithm, and the Two-Scan Algorithm, to com-
pute the angular 6-diverse neighbor set DS(D, ¢, 0).

A. Sorted-Scan Algorithm

The first approach to compute angular §-diverse neighbor
set DS(D, q,0) is to examine each point one by one. Given a
point o, we define the set of points that have smaller distance
to the query compared to o:

Definition 3.1 (Closer points T (0,q,D)): Given a data set D,
a point 0 € D and a query point ¢, we use 7 (0, ¢, D) to denote
{p:p€ D Adist(p,q) < dist(o,q)}.

Fact 3.1: According to Definition 2.4, a data point o can only
be dominated by another point in 7 (o, g, D).

Algorithm 1 shows the details of the Sorted-Scan algorithm,
and its correctness is based on the above fact. Each point p is
only compared to ¢’s nearer neighbors (steps 5 to 8). If there
exists a point p’ such that p’ #-dominates p w.r.t ¢, then p is
surely not a diverse point, and we can jump to examine the

Algorithm 1: Sorted-Scan Algorithm DS(D, g, 6)

1 sort D in non-descending order of distance to ¢ ;
2 initialize result set T < 0 ;
3 for every point p € D do
4 initialize isDiverse < true ;
for every point p’ € T (p,q,
if Zpgp’ < 6 then
L isDiverse < false ;

D) do

®w 9 W

break out of inner for-loop ;

if isDiverse then
10 L insert p into 7T ;

o

11 return 71 ;

Algorithm 2: Two-Scan Algorithm DS(D, ¢, 6)

1 initialize result set 7' < () ;

2 choose a set of reference points R from D ;

3 for every point p € D do

4 if p is not 0-dominated by any point in R then
5 | insert p into T";

6 for every point p' € D do
7 for every point p € T,p # p’ do

8 if p <>, p then
9 | remove p from T ;

10 return 71" ;

next point. Otherwise, if none of the nearer neighbors can 6-
dominate p, then p can be safely added to T (steps 9 to 10).
Once all the points in D are checked, T is outputted as the
final answer, i.e. DS(D,q,0). In general, the complexity of
the Sorted-Scan algorithm should be O(nlog(n))+O(1+2+
.+ n) = O(n?) in worst cases.

Example 3.1: Consider the example in Figure 2. The Sorted-
Scan algorithm will first sort points as {p1, P2, P4, D3, D6, D5}
based on their Euclidean distance to q. Next, the algorithm
checks whether a point p is 0-dominated by another point
in T(p,q,D). As a result, the algorithm progressively adds
D1, P4, P into the result set. Finally, it returns DS (D, q,0) =
{p1,pa,p6} after checking all points.

B. Two-Scan Algorithm

Although the Sorted-Scan algorithm is workable, its effi-
ciency is unsatisfactory: in the worst case, the total number of
comparisons is O(n?). Next, we present our second algorithm
(shown in Algorithm 2) which improves the efficiency.

This algorithm can be naturally divided into two parts. In
the first scan of D (steps 3 to 5), we quickly eliminate true
negatives with the help of a reference set R, which is chosen
beforehand. R here is static, and the comparisons against R
is one-way. Thus, we can progressively compute a set of
candidate diverse points by comparing each point p € D to
R. A point p can become a candidate if and only if none of
the reference points in R #-dominates p. T' will contain all the
candidates after the first scan of D.

Due to the existence of false positives in 7', it is necessary
to scan D once more (steps 6 to 9). If a candidate is a

false positive, it must be #-dominated by some points in D.
Therefore, after the second scan, 7' is guaranteed to be the
diverse neighbor set.

Example 3.2: If R is initialized as {p1,p2,pa}, which are 3-
NNs of q, then after the ﬁrst scan, pomts P2, D3, P5 wzll be
eliminated, since po <q9 P1, D3 <q9 P2, and ps <q9 Pa.
Hence, T' contains p1,p4, pe. Next, no false negative is found
in the second scan.

It is clear that the efficiency of the Two-Scan Algorithm
is highly dependent on the choice of R, the set of reference
points. If the total dominating areas of points in 12 can cover
most of D, then less candidates need to be checked in the
second scan. However, if R contains too many points, the first
scan will slow down. Here we provide three possible choices
of R. One natural choice can be the K-nearest neighbors
of the query among D. K-NNs have their own advantages
since they are nearer to the query than any other points.
Secondly, a simple choice can be K random points selected
from D. By randomly selecting, it is likely to eliminate bias.
Thirdly, points can be allocated into K different sections
based on their distances to the query, and R can select one
from each section randomly. In this way, R is expected to
capture the “distribution nature” of D. Detailed comparisons
of the proposed three choices of R are presented in Section
V. Although the complexity of the Two-Scan Algorithm is
O(|R|n + n?) in the worst case, it can perform much better
in practice with proper choice of R.

C. Acceleration Using GPU

From Fact 3.1, we can conclude that to determine whether
a point diverse or not is independent of the determination
process of any other point. This means we can parallel scan
the data set instead of checking each point sequentially.

In order to effectively parallelize the computations of the
diverse neighbor set, we choose to implement our algorithms
on the Graphics Processing Units (GPUs). It has become more
popular to use GPUs for data processing in recent years, since
GPUs have experienced a tremendous growth in terms of
computational power and memory capacity.

We adopt the most direct strategy to accelerate the compu-
tation. For Algorithm 1, firstly the computation of all distances
can be fully parallelized. Then, we use the thrust library to
sort all points based on their distances to the query. Next, we
use one block of threads to undertake the task of justifying
one point from D. Each thread takes charge of comparing
current point against one of those nearer neighbors. For each
block, isDiverse becomes a shared-memory variable so that
the whole block can stop in time when one thread finds a
dominating relationship.

For Algorithm 2, the parallelization methodology is similar.
In the first scan, each block of threads only need to compare
current point against all points in the reference set. In the
second scan, each block of threads further justify a candidate
by comparing it against all points in the data set.

The numbers of blocks and threads are adjusted, so that
the computation power is utilized. The strategy we adopt is

not the only but the most direct approach to parallelize the
algorithms. Since it is not the major problem of this paper,
we do not conduct further discussion.

IV. SIZE K-DIVERSE NEIGHBOR SET

It has been shown by Theorem 2.2 that the size of the
diverse neighbor set decreases with the increase of 6. How to
get the diverse neighbor set of a desired size by choosing the
right 6 becomes a new problem. To address the DS(D, ¢, k)
problem, we first introduce a naive algorithm and then propose
our Two-Stage Algorithm.

A. A Naive Algorithm

Definition 4.1 (Minimum dominated angle, minf(o,q, D)):
Given a data set D, a point o € D and a query point g,
we use minf(o,q,D) to denote the minimum dominated
angle of o, namely, min,c7(, q,p) Zogp. Specially, if o is ¢’s
nearest neighbor, we set minf(o,q, D) = .

) min 0.0.D) 20qp if T (o, q,
minb(o,q, D) = {ﬂ_ pET (0,q,D) if TEO .

D)#0
D)=

Based on the definition, we can derive the following lemma.
Lemma 4.1: If o € DS(D, q,0), then miné(o,q, D) > 6.
Example 4.1: Consider the example in Figure 2, we have
mind(p1,q,D) = 7w, mind(p2,q,D) = Lpigpe = 19.44°,
mind(ps,q, D) = Zpagps = 18.43°, minb(ps,q,D) =
Zpagqpy = 52.13°, minb(ps,q, D) = Zpaqps = 3.01°, and
mind(ps,q, D) = Lp1gpe = 92.05°.

Clearly, min®(ps, q, D) < miné(ps,q, D) < minb(p2,q, D)
< 0 = 20° < minf(ps,q,D) < minb(ps,q,D) <
mind(p1,q, D).

Next, we illustrate a naive solution to compute D.S(D, g, k).
Suppose points in the diverse neighbor set are sorted in
descending order of the minimum dominated angles, i.e.
DS(D,q,0) = {o1,...,0,}, where minf(o1,q,D) > ...
> minb(o,,q,D) > 0. In this way, the size of the diverse
neighbor set can be reduced by simply increasing 6 to a
specific value. Any 0’ € (minf(ok+1,q, D), mind(ox,q, D)]
should be a feasible solution.

Therefore, one naive way to compute DS(D,q,k) is
to start with a small angular threshold 6y,,,; such that
|DS(D, q,0sman)] > k and keep track of the minimum
dominated angles for all points in the diverse neighbor set
when computing DS(D, g, 0smai). Once we finish comput-
ing DS(D, q,0sman), we can immediately retrieve a diverse
neighbor set of a desired size k by increasing 0,411

Ideally, if the minimum dominated angles of all points are
different, then the returned diverse neighbor set can have
any size by choosing proper angle threshold. Under such
assumption, it can be proved that the answer to Problem 2
exists and is unique for any specific k. The existence can be
directly proved using the Naive algorithm.

Theorem 4.1: Given a data set D, a query point g,
DS(D,q,k) is unique for a specific k if all points have
different minimum dominated angles.

Proof: (By contradiction) Suppose we have two
answer sets DS(D,q,07) and DS(D,q,03) such that
DS(D,4,07)| = |DS(D,q,63)| = k and DS(D, q,67) #
DS(D,q,0%). WL.O.G assume 6] < 63. Since the two sets
are not same, they must differ at least one point. Assume p €
DS(D,q,0%) but p ¢ DS(D q,07). Then, there must exist a
point o such that o =2 2.0 p By Lemma 2.1, 0 =° 2,05 P> which
contradicts p €DS (D q, 63). Hence, the answer 1s unique. W

However, there may exist cases such that two or more
points share minimum dominated angles with the same value,
just like points can have same distance to the query when
performing K -NN search. In these cases, we can either expand
result sets to include all these points or break the tie randomly.
However, by bringing in randomness, the answers will then
become non-unique.

B. Two-Stage Algorithm

Although the naive approach can solve the problem, its
efficiency cannot be guaranteed. As mentioned before, if the
starting angle is too small, the returned diverse neighbor set
will have a lot of points, and more importantly, the computa-
tion cost will increase dramatically (for both comparing and
maintaining the order). Thus, given a specific integer k, an
ideal starting angle g4, should be close to #* as much
as possible, where DS(D,q,0*) = DS(D,q,k). Then, the
question becomes how to find such a 6*. Next we present
how to approximate such a 6*.

Definition 4.2 (K-NNs, N'(q, K, D)): We use N(q, K, D) to
denote the set of K nearest neighbors of ¢ among D.
Theorem 4.2: 1f Ky < Ko and |[DS(N(q, K1, D), q,0L,)|
= ‘DS(/\/’(Q,K%D),(],GLKQ)‘, then 0LK1 < QLKQ'

Proof: Consider a point p € DS(N(q,K1,D),q,0).
Firstly, p cannot be #-dominated by any point in N'(q, K3, D)\
N(q, K1, D) (Fact 3.1). Secondly no point in N (q, K1, D)
can f-dominate p w.rt ¢ (otherwise p can not be in
DS(N(q,K1,D),q,0). Hence, p must be included in
DS(N(q, K>, D), q,0), which implies

DS(N(q7K17D)7q79)gDS(N((LKQaD)?(Le) (5)

Therefore,

IDS(N(q, K1,D),q,01,,) < |DS(N(q, K2,D),q,01,,)|
= |DS(./\/((],K17D)7Q;9LK1)‘

By Theorem 2.2, we conclude QLK < GLK l
then 67, < 9.

In summary, the above theorem and corollary show that:

1) 01, can be used as a reliable lower bound for 6*.

2) the larger K is, the tighter the angle lower bound is.

Consider a sequence of values, where K; < K if i < j. If
for all i, [DS(N(q, Ki, D),q,0r,,)| = |DS(D,q,0%)| = k,
then Ok, < OLK < 6* where ¢ < j. In particular, when

|D| DS(D qngK) - DS(D’qvg*) - DS(D7q7)

To compute DS(D, q, k), we propose Algorithm 3, which

can be divided into two stages: (1) compute the lower-bound

Algorithm 3: Two-Stage Algorithm (D, g, k, K)

1 initialize result set 7' <+ 0 ;

2 retrieve K-NNs of ¢ among D to get N'(q, K, D) ;

3 compute DS(N (g, K, D), q,0) and record th k-th largest
minimum dominated angle minf(ox, q, D) ;

4 input D,q and miné(ok, g, D) into the Sorted-Scan
Algorithm or the Two-Scan Algorithm ;

s select the first k points from DS(D, q, miné(ok, q, D)), add
into T ;

6 return 7T ;

(steps 1-3); and (2) compute the diverse neighbor set (steps
4-6). Firstly, the algorithm retrieves N (q, K, D) from D.
Then, the algorithm inputs N (¢, K,D), ¢, and an angular
threshold with value zero into Algorithm 1 or Algorithm 2.
The reason why we set the angular threshold to be zero is
that we can maintain the minimum dominated angle for every
point in N (g, K, D). In this way, we can obtain the k-th
largest minimum dominated angle minf (o, q, D), which is
proved to be a reliable lower bound in Corollary 4.1. As
mentioned before, the larger the value K takes, the tighter the
angle lower bound is. However, too large a K will slow down
the computation of DS(N(q, K, D), q,0). We will discuss the
choice of K in the next section.

Next, we input the miné(ok,q, D) we got from the last

step as well as D and ¢ into the Sorted-Scan Algorithm
or the Two-Scan Algorithm. Once DS(D, q, mind(ox, q, D))
is computed, we can retrieve points with the top-k largest
minimum dominated angles as the final result.
Example 4.2: Consider finding a diverse neighbor set con-
taining 3 points from Figure 2. With K = k = 3, points
p1, P2, s are retrieved as N'(q,3, D). Next, their minimum
dominated angles are computed and sorted in descending
order: min®(p1,q, D) > minb(ps,q, D) > minb(ps,q, D).
The third largest angle minf(p2,q, D) is then used as the
lower bound, and DS(D,q,minb(p2,q,D)) is computed,
which contains p1, ps, pa, and po. Again, they are sorted in
descending order of the minimum dominated angles. At last,
the first three points p1,pg, p4 can be returned.

V. EXPERIMENTS

In this section, we study the following two issues: (1) The
effectiveness of the proposed angular diverse neighbors com-
pared to the state-of-the-art methods of result diversification,
and (2) The efficiency of the proposed methods.

A. Experimental settings

1) Data Sets: In the experiments, both synthetic data sets
and real data sets are used. We focus on high dimensional data
sets. The properties of all the data sets are summarized in Table
IT and III respectively, where d represents the dimensionality
and Card. denotes the cardinality of the data set.

MovieLens[14]: This data set describes free-text tagging
activity from MovieLens, a movie recommendation service. It
contains 465,564 tag applications across 27,278 movies. We
group all tags by each movie, i.e. each movie is described by
a set of tags. We further build a LDA topic model. The model

generates 100 topics, and within each there are 20 keywords.
Afterwards, each movie is inferred as a 100-dimensional point
by the trained model. The value of each dimension indicates
the probability of a movie belonging to corresponding topic.
Queries are firstly constructed using a limited number of
keywords, so that they are ambiguous. We then pass queries
to the trained LDA model to obtain the corresponding 100-
dimensional points.

Wine:[15]: Wine is a data set recording physicochemical
properties of red and white wines (e.g. residual sugar and pH
values). There are 11 attributes, and 5,318 unique records. We
randomly pick 500 records to serve as queries.

Motor[16]: Motor is a data set containing 58,509 records,
each of which consists of 48 features extracted from electric
current drive signal. The current signals are measured with a
current probe and an oscilloscope on two phases. 500 queries
are randomly picked from the data set.

Galaxy: This data set is generated from the Sloan Digital
Sky Survey (SDSS) with data release 14 '. We sample the
“PhotoODbjAll” table with sampling ratio 1%. Sixteen numer-
ical columns are chosen, such as the galactic latitude and
longitude. At last, this data set contains 1.9 million tuples
with dimensionality 16. We further sample 500 tuples from
the base table extracting same columns as queries.

Sun[17]: Sun is a data set containing 88,903 images, each
of which is attached with a class label to indicate which
scene category the image belongs to. The GIST feature [18]
is obtained. SUN contains a test set of 19,850 points, and we
randomly choose 500 points as queries.

Synthetic data sets: Synthetic data sets are used to study
the influence of the dimensionality and the cardinality. We
consider three kinds of data distribution. In details, points
are generated with uniform distribution ([0, 1]), normal dis-
tribution (& = 0,02 = 1) or skewed normal distribution
(u = 0,02 = 1, = 1) respectively. For each type of
distribution, we generate data sets by fixing a property as
default (underlined) and varying the other. For each parameter
setting, we randomly generate 50 points as queries.

Table II: Real data sets ~ Table III: Synthetic data sets

Data set d Card. Properties Values
MovieLens | 100 27k Card 100k, 200k, 400k,
Wine 11 5.3k) 800k, 1.6m

Motor 48 58k d 50, 100, 200,
Galaxy 16 1.9m 400, 800

Sun 512 89k Distribution | Uniform, Normal, Skewed

2) Evaluation Measures: We first adopt relevance and
vector diversity, which are existing evaluation measures [7].
Definition 5.1 (Relevance): Given a query point g, its k-
nearest neighbors N (g, k, D), and a set of results 7', where
|T| = k, relevance is defined as:

ij €N (q,k,D) ll5; |l

= (6)
2p,erllapill

Rel(q,N(q,k,D),T) = € [0,1].

Uhttp://www.sdss.org/dr14/

Definition 5.2 (Vector Diversity): Given a query point ¢ and a
set of results T, vector diversity is defined as:

qp;
125 e am

|
T

VDiv(q,T) =1— e0,1. @

min £p,qp,
19D mindist (py, p;)

min dist (s, p;)
P3

min £pzqp;

s | J Ps

i
Ps n- n-

(a) VDiv (b) AvgADiv (c) AvgDDiv
Figure 3: Diversity measures

The intuition is that if the result set is diverse, the sum
of the “forces” will be closer to the center [7], so that V Div
will be close to 1. However, Figure 3b shows an example such
that a good vector diversity could be insufficient. Although the
value of the vector diversity is nearly 1, there exist pairs such
as pp,p2 Or pyg,ps, which are not diverse enough. Thus, we
introduce the average angular diversity as below:

Definition 5.3 (Average Angle Diversity): Given a query point
q and a set of results 7, the average angular diversity is:
> pier MiNy et j2i £Digp;

AvgADiv(q,T) = 7])]

Each point in the result set has a most “similar” neighbor.
The similarity can be measured by the angle, whose endpoint
is the query. Intuitively, if AvgADiv is bigger, points of the
result set spread out more in the space centering at the query.
One can also use classical distance metric instead of angle to
measure the diversity:

Definition 5.4 (Average Distance Diversity): Given a query
point ¢ and a set of results 7, the average distance diversity
is computed as:

> pier Wiy, e j2i dist(pi, pj)

AvgDDiv(q,T) = T

(€))

By considering V Div, AvgADiv and AvgD Div, we are
more clear about how the result points are distributed around
the query, and how diverse they are.

3) Competitors: We choose four competitors from various
approaches to result diversification problem in the literature.

KNDN-IG (Immediate Greedy) and KNDN-BG (Buffered
Greedy) [9]. The KNDN methods are also known as Motely.
In our experiments, instead of using R-tree, points are sorted
directly based on their Euclidean distance to the query, which
allows the KNDN methods to handle high dimensional data.
The threshold parameter MinDiv is set to 0.1 as suggested.

GG (Gabriel Graph based method) [7]. Since generating
Gabriel graph for high dimensional data set efficiently is
challenging, we extract only the necessary Gabriel-edges as
the authors mentioned.

MMD (Maximize Minimum pairwise Distance) [10]. To
obtain a sized-k result set, we provide 5k-NNs to MMD for
a post-processing step to diversify results.

All the experiments were conducted on a CPU-GPU plat-
form with NVIDIA GeForce GTX TITAN X (with 12 GB
memory) GPU, Intel Core i7-3820 CPU, and 64GB main
memory, running CentOS 6.5. GPU is used to accelerate the
computation of distances and angles. All GPU codes were
implemented with CUDA 7. Other programs and competitors
were implemented in C++.

B. Effectiveness

To validate the statement that our angular diverse neighbors
provide more reasonable results compared to the distance-
based diversification methods, we first conduct a user study.
Then, we study the effectiveness of our proposed angular
diverse neighbors compared to the competitors in terms of Rel
(relevance), VDiv (vector diversity), AvgADiv (average angle
diversity) and AvgDDiv (average distance diversity) on other
real data sets.

1) User Study: In this study, we use MovieLens data set,
and there are 15 queries in total. We hire 20 students with
different backgrounds as the participants. For each query
consisting of some keywords, we generate six sets (each
containing 10 movies) of results using different methods, and
each participant is required to select the one which is most
relevant and diverse in his/her opinion. Table IV shows the
selection percentage. We also present the results of two sample
queries (“superhero” and “space and alien”) in Figure 4 and
Figure 5. Note the results of the KNDN methods are omitted
here, since they are nearly same as K-NN results. Possible
reasons are discussed in following experiments.

Table IV: User study results

DS GG MMD K-NN, KNDN-IG & KNDN-BG
57.58% | 24.24% | 18.18% 0%

Figure 4 and Figure 5 demonstrate the effectiveness of our
proposed diverse neighbors. The results are suggested to be
viewed in color mode. Our method consistently returns results
with diversely distributed topics.

2) Result Quality: Next, we study the effectiveness in terms
of Rel (relevance), VDiv (vector diversity), AvgADiv (average
angle diversity), and AvgDDiv (average distance diversity) on
the four real data sets. KNDN-IG and KNDN-BG require
MinDiyv to be set. To ensure that enough results are returned,
we add a function to dynamically adjust MinDiv. For GG,
firstly it is very time-consuming to verify Gabriel-edges for
large-size data sets. Moreover, due to the sparsity of high
dimensional space, optimizing the last layer becomes very
slow. Thus, we do not apply GG on Galaxy and Sun due to
its own limitations.

Relevance: Figure 6 shows how the relevance of result
set changes when the size of result set varies. The horizontal
axis represents the size of result set. For all data sets, the size
varies from 5 to 50. It is observed that the relevance of our
proposed diverse neighbor set is better than GG on the two

0.8

0.7
20
0.6

0.5 40

Topics

03 60

0.2 80

0.1

100

Topics

IS
S

)
S

80

100

&Y KO KA L GO N A & QYU XL E & S A & B G A BN N e A 54 58 Q8K O S
‘9%4% % %o‘o,%‘%,:’%%,& %&60,(3 % ‘f*/%"/%’5@(?9 %%, %, 7, 2 %0 % %, % %%, 7 ’5@%’%7;0,@ o, ’507@‘%4/%%(9,% %j@e%ﬁ%r?% Z/% 5
Y.y SO, %, b S G, O 8, SO, %, %% %, % D, %, D D, RN 0, % G, 0, 9, 0, 05 %, 2, D 0, % Y,
N N A NN NG R R AT KN 2 e Zon T B 2y % P %, B 70 2% 20, B 1oy oy R, % S, 1
% %, & 7o % K G, e Y o %, 70 %, B 6, g A 7y B, 5 % 0, G, %, U e 2 %%, 72 % %, Y 7, %, 4
A YRR N A S Gy A8 G, % s , S %, C 0 > % %, S0, G o Q. %, G
% e, R, %, % B 00 9 4,10,0, 7 %2 0 %%, % %, %977 %y k)

& % %% B % %, e, S0, B 602 B %, 2, %, % %
%, 7%, AN %% 7, %, 2, %, @00%’) 27 %, %
s 2 R b % % % 2% Y

) 0,
%, S A %, "%, % %,
% /@0/@0/9 % C %, K
0, S v g
7. v v 4
)
<

(a) DS results

(b) KNN results

(¢) GG results

(d) MMD results

Figure 4: Query “superhero”: We use a color matrix to visually show the results. Each column of the matrix represents the probability
distribution of a movie among all 100 topics. The darker the color is, the higher the probability is. In the last column, we record the
maximum probability of all the 10 returned movies for each topic. A diverse result is expected to have more colors in the Max column. It
is clear that K-NN returns non-diverse results, which are mostly from Batman series and Superman series. Only the main topic is clear in
the Max column, while all other three sets of results are diverse. However, for MMD, there is a gap from topic around 50 to around 70,
i.e. no results cover this range. Indeed, movies, like The Incredible Hulk, Defendor, and The Amazing Spider Man 2, can be both related to
“superhero” and cover this range. Besides, there are movies returned by both GG and MMD, such as The Boondock Saints, which is not a

classic

0.6

a
S

“superhero” movie, and hence the main topic has lighter color.

20

40

7 @ @ 2
L ° 8 °
03 o a a a
= ° © e
60 60 60 60
0.2
80 80 80 80
0.1
100 100 100 100
A A A Ry . A
S 8 Q% %D e $ S8 L GG BYY & SRANG LS L LE % 25%%9%55457% %
% % % %, 0 % C % 9, WL Y, 0 % Y 0 B % B L B % Ly B, B, 0 0, B % % 2 0 8%,
2 g 2 2
B %7 5%, %% T, % 70, %, 2.5, 0, 0 0%, %00, %,26, % %, 6. %, %, % 0 %, % 7, % O
A NG R) T) o, . % S % On B 2 Z 5N Y 75 770 % U S, 1) %00 B 20, 2%, B, <0y
%02 8,0, B % O % XN %% % 3.8, By 00D, % % 2. 09, B, % "% o % s,
) % D, 8, 5 0, % B, 2y % % 7% 2 0, 20 o 5 %, AN G 0% B, 6 % 0 L
% % 720 D, 0, 9D o9, % % %0 QY Y %, Ly W L, X B 0 D s T s & 9, 0, 7 % % s 7B
0 9 2 4 0, () LN (o)) CRE IR o) 0.3, 9 Q. Q. %% SO,
3, % % Z. O Q% % 9 % %Y ‘o B 9 9% Y o 9% ‘9 9, B D %y & 2 %, %% 0% O o
% B ® Sy %% 7 % B, © N4) ENRUNC R A NS 2. ONISY % 7oy . 2
() . % % O 0, (o 4 Z 7 (o) AT Y > % Q7 O % 75 T T2
Q& B, o 73 S 9 2 S G 8. &Y % 8 % 2 CNT)
% % 0, % G . Gy, %, %, % . © % O % D %, % %, % 2, %, G %o, %.
. 2 %, Y B, . % & 24 8 7 R, 2 %, %, Q"R 2,8 %, %
S, % S, % L >4 L) © T Z o, % 9 <
’%72% @%4/‘30 O‘%‘@ %729’) @% %'zp @% 2, ‘;@o A % %5
)
5% N %% > 5, %, 4 A %
S @ %, 5. 5. 2 CN
% v % %, Ed
£/ % %

(a) DS results (b) KNN results

(c) GG results (d) MMD results

Figure 5: Query “space and alien: In this example, our angular diverse set returns more diverse results than the other three methods
from the view of the color matrices. Besides the main topic, our DS results cover at least 5 minor topics (dark gray color). Similar as the
above query, K-NN contains the largest area of white space. GG and MMD returns diverse results, but not as good as DS. Besides, the

main topic of their results are not as clear as DS.

available data sets. Depending on the data sets, there is no
all-time winner between MMD and DS in terms of relevance.
Another observation is that KNDN methods seem to return
nearly K-NNs when the size of results goes larger, especially
for higher dimensional data sets Motor and Sun. This may
due to the searching strategy of the KNDN methods. They
adopt distance browsing, and the criteria is sensitive to the
MinDiyv threshold. In high dimensional spaces, classic distance
can hardly distinguish points well.

Vector diversity: Figure 7 shows how different methods
perform in terms of VDiv. Although our proposed method is
slightly worse than GG, it is more scalable than GG. It is also
observed that our method is consistently better than MMD
and KNDN methods. It achieves at least 15% improvements
in terms of VDiv.

Average angle diversity: Figure 8 plots the average angle
diversity of different result sets from different methods. Our

proposed diverse neighbor set has the largest average angle
diversity, which means the returned points spreads out more
around the query than results of other methods. The improve-
ments of our method is roughly 3% ~ 7% comparing to the
second runner-up method.

Average distance diversity: By considering the average
distance diversity, both GG and MMD perform mostly better,
while KNDN methods are only slightly better than K-NN for
these high dimensional data sets. Our proposed DS has close
performance as GG and MMD, especially when the size of
retrieved points is large. It even outperforms others on Sun,
which has the largest dimensionality.

In summary, good performance in VDiv and AvgADiv
indicates that our method returns most well-spread results. It
is not surprising since these two measurements are more or
less related to directions. Furthermore, our method performs
well in terms of AvgDDiv. This also justifies Theorem 2.1.

02 ©DS -AKNN -x-BG 02 DS -AKNN BG 02 ©DS AKNN -x-BG 02 DS -AKNN -%-BG
*1G ~<MMD —+ GG *1G “©"MMD + GG *1G ~<-MMD *1G ~>-MMD
0 - 0 0 [
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Result Size Result Size Result Size Result Size
(a) Wine (b) Motor (c) Galaxy (d) Sun
Figure 6: Relevance of result set on real data sets w.r.t required r
1 1 1
0.8 0.8 0.8
0. < 0.6 06 1~ ___gxl,;_x.
& S AR A A 5 e S S g T B
Sa AT E TR X T e L 4
02 ©DS -AKNN -x-BG 02 DS -AKNN BG 02 ©Ds AKNN -%-BG
*1G “MMD —+ GG *1G “©MMD + GG *1G > MMD
0 0 0+ t
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Result Size Result Size Result Size Result Size
(a) Wine (b) Motor (c) Galaxy (d) Sun
Figure 7: Vector diversity of result set on real data sets w.r.t required result size
90 90 90 75
75 =
75 75 60 o - 3 [- —
— -
gs g50 - _ gsu . —— § us * * X —X
% 4 —~ - == 345 R et SHE %45 [e S %30
<30 o E—— e <30 <30 <
©DS AKNN -%BG ©DS AKNN %BG ©DS AKNN BG 15 ©DS -AKNN BG
15 15 15
*1G <©-MMD —+ GG *1G <>MMD —+ GG *1G ~>-MMD *1G <>-MMD
0 -+ 0+ 0 [
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Result Size Result Size Result Size Result Size
(a) Wine (b) Motor (c) Galaxy (d) Sun

Figure 8: Average angle diversity of result set on real data sets w.r.t required result size

0 30
Result Size

0 30
Result Size

14

12

>
208
S
206
0.4
©DS AKNN %BG 5 ©DS AKNN xBG
02
*IG <-MMD *IG o-MMD
04 0

40 50 10 40 50

20 30 0 30
Result Size Result Size

(a) Wine (b) Motor
Figure 9: Average distance diversity of result set on real data sets w.r.t required result size

Angular diversity can indeed imply distance-based diversity.

C. Efficiency

We first present how to tune the parameters for the proposed
algorithms, and then evaluate their performance.

1) Parameter Tunning: Choice of reference sets in Two-
Scan Algorithm: As mentioned before in Section III-B,
the efficiency of the Two-Scan Algorithm is dependent on
the reference set. Here, we evaluate three choices: (1) NN
(Nearest neighbors); (2) Rand (Random); (3) Dist (Distance-
based partitioned).

Figure 10 plots the average time costs w.r.t the size of
reference set for all the three approaches. For Wine and
Motor, nearest neighbors as the reference set can achieve
the best performance, while for Galaxy and Sun, random
points perform best. If points of a reference set lie in similar
directions relative to the query, then such a reference set may
not be able to prune true negatives in the first scan. Depending

(c) Galaxy (d) Sun

on the dimensionality and the distribution of points in the
data sets, nearest neighbors are more likely to suffer this bad
case compared to the other two approaches. Thus, in general,
nearest neighbors are not recommended as a reference set,
especially for large-size and high dimensional data sets.

Size of K-NN to compute angle lower bound: Figure
11 plots the average time cost when answering the sized k-
diverse neighbor set problem w.r.t the number of K-NNs used
to compute the angle lower bound. As mentioned in Section
IV-B, the process is divided into two stages: (1) computing an
angle lower bound (LB); (2) computing the diverse neighbor
set (TSA, here we adopt the Two-Scan Algorithm). For small-
size data sets, hundreds of data points can provide a good
lower bound. Thus, to keep increasing the size of K-NNs will
not improve the TSA much, but will introduce extra cost in
the first stage. In contrast, it is worth adjusting the trade-offs
between two stages for large-size high dimensional data sets.
An optimized choice can save up to half of the time.

0.052 o 0.12 4.5 NN 18
0.05 o 01 g8 41 @Dist gD 16 g & = B_»_g_..g
- oz ”E],..E].. 3.5 1 _A-Rand DE] 14 e ,.-0-—-0'"“0 »
F0.048 o 30.08 | B 33 =) T2 | =R RR D A=
g Ei-“»D 5 \ - 825 o 0___0 g1
D N R) M IV S Y ¢, B o Sos
Eo.0a4 N Eo.oa E1s o Eos
NN <NN 1 - 04 <NN
0.042 aDist 002 o Dist o 2R A e A=A A=A o & Dist
004 | -A-Rand o1 - Rand ol o0 2 Rand
01051 152253354455556657 01051152 253354455556657 01051 152 253354455556 657 01051152 253354455556 657
Percent (%) Percent (%) Percent (%) Percent (%)
(a) Wine (b) Motor (c) Galaxy (d) Sun
Figure 10: Time costs on real data sets w.r.t size of reference set
0.06 0.16 12 +1B 3 T
0.05 0.14 1 l H*TSA 25 H*TSA
F—K—K—K—F—Fk—*—*—K 0.12 m ALL ' ALL
goo g 01 gos B 2g
3003 o008 § 06 § 15
o +LB o +LB > >
Eoo2 KTSA £ 006 KTSA Eoa £
ALL 004 ALL
0.01 0.02 0.2 0.5
—tt+—t—+—+— "
0 0 f f
50 100 150 200 zio 300 350 400 450 100 300 500 700 920 1100 1300 1500 1700 01200 1800 2400 3000 36é)0 4200 4800 5400 6000 0300 900 1500 2100 27K00 3300 3900 4500 5100
(a) Wine (b) Motor (c) Galaxy (d) Sun
Figure 11: Time costs on real data sets w.r.t size of K{-NN for angle lower bound
2) Performance Evaluation: We use synthetic data sets to Table VI: Time costs (Seconds) w.r.t data size
show the efficiency of our proposed algorithms w.r.t differ- Data Size 100k 200k 400k | 800k | 1.6m
t t tti B . Probl 2 the Nai Naive 147.01 | 720.84 | 9114.6 | N.A. N.A.
en pe.lrame er settings. By answerlng roblem 2, the ‘ aive Uniformn 1B 0107 0113 0751 043 T 0734
Algorithm and the Two-Stage Algorithm (TST) are directly ! TST [SSA | 0532 | 1.077 | 2.631 | 7332 | 17.64
compared. In addition, by adopting different approaches in the TSA | 0316 [0567 | 1032 | 1.868 | 3.746

second stage of TST, the Sorted-Scan Algorithm (SSA) and
the Two-Scan Algorithm (TSA) are compared. Since it has
been shown that the KNDN methods lose their effectiveness
in high dimensional space (returning only /-NNs), while the
GG method is inefficient in high dimensional space, we do not
consider the competitors in this section. The default setting in
our experiments is: d = 200, |D| = 400k, and Result Size =
100. For TST, 1500-NNs are used to compute the angle lower
bound. For TSA, the set of reference points is chosen randomly
of size 0.3% of the data size.

impact of data size increasing is larger for the TSA stage
compared against the LB stage. This can be explained because
the number of nearest neighbors used to compute the angle
lower bound is fixed as 1500. For smaller data sets, 1500-
NNs may provide more accurate angle lower bound, and thus
save time for the second stage. Due to space limitations, we
report results for the “Uniform” data set. Similar results are
obtained for the other two as well.

Table VII: Time costs (Seconds) w.r.t result size

Result Size 25 50 100 200 400
G : : . Naive 9113.3 | 9113.3 | 9113.3 | 91133 | 91133
Table V: Time costs (Seconds) w.r.t dimensionality nit 5 0247102290249 T 02480249
Dimensionality 50 100 200 400 | 800 niorm | T [TSSA | 2504 | 2511 | 2.631 | 3.093 | 4.982
Naive 598.98 | 1504.4 | 91123 | NA* | NA. TSA | 0.747 | 0822 | 0988 | 1.376 222
Uniform LB 0.066 0.09 0.248 0.567 1.209
TST | S5A | 0556 | L1106 | 2.627 | 7401 | 18.12 Effect of the result size: Table VII presents how the
TSA 0.479 0.557 1.004 1.418 | 2.714 red It si infl th i i Si th
e 5503 [12925 [oI5 | NA | Na_ reduired result size influences the computing time. Since the
Normal IB | 0057 | 0089 | 0243 | 0564 [1203 Naive Algorithm spends nearly all its time on computing
O | TST [TSSA | 0571 | 1162 | 2.627 | 9064 | 2212 and sorting the minimum dominated angles for all points, its
T5A | 0% | O8I1 | 1512 | 1918 | 4011 computing time is almost constant. Similarly, the LB stage
Naive 59939 | 15033 | 91133 | NA | NA o0t the same strategy but only on a small part of the whole
Sk LB | 0062 | 0080 | 0249 | 0.572 | 1215 p ¢ strategy y p
ew TST [SSA | 0574 1.163 3142 | 9400 | 2222 data set, thus its time also remains stable. However, to get a
TSA | 0.641 0.813 1593 | 2121 | 4138 larger result set, the angle lower bound becomes loose. Hence,

* .
It costs more than 24,000 seconds to run one query, thus, we omit the results here

Effect of the dimensionality: Table V shows the influence
of dimensionality on the efficiencies of the two algorithms.
An obvious observation is that TST is more scalable on high
dimensional data sets. The computation time of Naive grows
dramatically when dimensionality increases. Moreover, TSA

1S FUPEEIOBAINS Al e seoprdotiags Ofib Table VI that

the results remain largely the same as that in the previous
experiment. TST turns out to be faster for all cases. The

the second stage of TST costs more time.

V1. RELATED WORK
A. Result Diversification

There has been growing interest in the problem of result
diversification. Its goal is to find relevant but also informative
answers to users’ queries. The answers are expected to be
close to queries in the sense of relevance, and to be sufficiently
different from each other to provide users an informative view.

Researchers have attacked the problem in various ways. We
refer interested readers to these reviews [19], [20] for more
details. To summarize existing works in result diversification,
we divide them into the following categories:

Score optimization: One of the most popular approaches to
diversification is to transform the problem to an optimization
problem by associating a diversity score with each point
and then try to maximize the total score of a result set.
Jain et al. define the K-Nearest Diverse Neighbor (KNDN)
problem [9]. Two greedy algorithms are proposed: KNDN-
IG (Immediate Greedy) approach incrementally adds the next
nearest points to the result set only if they are diverse enough
from the existing results, while KNDN-BG (Buffered Greedy)
approach adopts some heuristic to delay the growing of the
result set so that it can include better answers in near future.
Both methods are integrated with the R-tree index, which can
only support up to 10 dimensions practically. The drawback
of IG and BG is that they are required to set a diversity
threshold, which is non-trivial for an ordinary user especially
when the dimensionality goes large. Yu et al. [21], [22],
from the perspective of recommendation systems, introduce
two heuristic algorithms. They either include new points
greedily like [9] or swap points with those are more likely
to contribute to the set diversity. Kucuktunc et al. [7] use a
linear combination of relevance and diversity measure as their
score function. They incrementally explore points around the
query by adopting geometric browsing. They also introduce an
index-based algorithm, which extends the distance browsing
feature of R-trees with diverse choices. Borodin et al. [23]
study the max-sum p diversification problem to find a diverse
subset, and propose two approximate algorithms for different
constraints. Their valuation functions are normalized, mono-
tone submodular set functions, which are general. However,
such problem is orthogonal to ours, since it is not query-based.

Representative approach: Another approach to diversific-
ation is to find representatives of the data set. A representative
is defined as a point that can represent other points. Liu and
Jagadish [24] solve the Many-Answers Problem by showing
users representatives of a data set, where they cluster points
and select k-medoids as representatives. A tree-based approach
is proposed to find representatives efficiently. Drosou et al. [§]
introduce the DisC diversity and the Minimum r-DisC Diverse
Subset problem. The representation relation is defined as: a
point can be represented by another point if their distance
is within a user-defined threshold r. The goal is to find a
minimum-sized subset of points that can represent the whole
data set given the user-specific threshold r, while the results
are not represented by each other. In machine learning, there
is also an important topic known as volume-based diversity,
whose goal is to sample a diverse subset of a data set. A
set S of k points are selected to maximize the volume of
the k-dimensional parallelepiped formed by the corresponding
vectors in S. The probability distribution over subsets of a
data set is studied as determinantal point processes (DPP).
Recently, Deshpande et al. [25] and Anari et al. [26] develop
efficient sampling methods for DPP. Above approaches are

orthogonal to our work, since their problems are not query-
based. Their goal is to find a diverse summary of a data set.
Kucuktunc et al. [7] bring the idea of geometric browsing
to result diversification. After finding the nearest point pi
to the query g, all other points are naturally clustered based
on their Gabriel neighbor degrees w.r.t piyn. Points from
outer layers are treated to be represented by inner ones. The
Gabriel graph-based method (GG) browses the graph layer-
by-layer until enough points are retrieved. To return exactly
k results, one may need to further choose the most diverse
representatives from the last visited layer. There are some
drawbacks of the GG method: Firstly, to generate Gabriel
graph in high dimensional space is intractable, and GG may
not be effective in high dimensional space due to the sparsity.
Secondly, it is not appropriate for dynamic data sets.

Neighborhood approach: There also exist approaches of
diversifying query results in a post-processing step. A popular
approach is the MMD (Maximize Minimum pairwise Dis-
tance) method [10], which first includes the neighborhood of
the query as the candidate set, and then selects points in the
candidate set such that the minimum pairwise distance in the
result is maximized.

There may exist other techniques in the information retrieval
literature. However, they usually consider the ranking of
returned results as an additional problem, which is out of scope
of this paper. In the experiments, we compare our method
with KNDN-IG (Immediate Greedy), KNDN-BG (Buffered
Greedy), GG (Gabriel Graph), and MMD (Maximize Min-
imum pairwise Distance) because all these methods are query-
based: given different queries, the result sets are computed
accordingly. To cater for the computation of high dimensional
data, we abandon the R-tree-based indexes proposed for com-
petitors, because R-tree-based indexes are of limited use in
low dimensional data.

B. The Dominance Relation and Skyline

The dominance relation is widely used in the Skyline
operator [27]. Given two points p and ¢, p is defined to
dominate ¢ if p is not worse than ¢ in all dimensions and
better than ¢ in at least one dimension. The points that are
not dominated by any other point are called Skyline points.
These Skyline points are expected to be informative, and the
Skyline operator is proposed to find all the Skyline points in
a data set. Skyline query processing has received considerable
attention in multidimensional databases and has been studied
extensively in recent years. Several efficient algorithms have
been proposed for the Skyline query. We refer interested
readers to this survey [28] for more information.

However, to compute Skylines in high dimensional data
sets becomes a non-trivial problem since the result could
still be cumbersome [29], [30]. There may be an excessive
number of Skyline points returned because as the number
of dimensions increases it is unlikely to find a point that
dominates another. Hence, several techniques are designed to
alleviate this problem. Chan et al. in [31] relax the problem
to k-dominant Skyline. A point p k-dominates another point

q if p is not worse than ¢ in k out of d dimensions and
better than ¢ in at least one. This relaxation allows more
point to be dominated when k is small, and thus reduces
the size of result. Another technique was proposed by Lin
et al. in [32]. They select Skyline points according to their
domination capabilities, and try to maximize the total number
of dominated points. In [33], Tao et al. studied a variation of
Skyline queries called representative Skyline. A subset of all
Skyline points are returned and any non-representative Skyline
point has a nearby representative.

Among those works in Skyline, the most relevant work is the
Dynamic Skyline [34], where the domination is defined with
respect to the query point. Points from original data space are
firstly mapped to a new space by a set of one-dimensional
functions. Then, the dynamic skyline query returns the or-
dinary skyline of the transformed points in the new space.
The major difference between our problem and the dynamic
skyline problem is the concept of angle using the query point
as the common endpoint. Any two points from the data set can
form one angle. This is different from the mapping in dynamic
skyline, where one point’s transformation is independent with
others. Moreover, unlike the coordinates’ comparison strategy
in classical skyline problem, our dominating relationship is
specially designed to support diversity search in the sense of
direction. It is influenced by either the angle threshold or the
required results’ size.

VII. CONCLUSION

In this paper, we proposed a novel view of diversity to in-
vestigate the result diversification problem in high dimensional
space. Aiming to find nearest neighbors in different directions
surrounding a given query ¢, we gave a definition of angular
dominance relation. Based on these concepts, we addressed the
angular diverse neighbor set problem and the sized diverse
neighbor set problem. For each problem, we presented two
algorithms. We conducted extensive experiments on synthetic
and real data sets. Experimental results showed that our diverse
set can capture relevant and diverse points surrounding the
query even in high dimensional space.

ACKNOWLEDGMENT

This research is supported by the National Research Found-
ation, Prime Ministers Office, Singapore under its International
Research Centre in Singapore Funding Initiative.

REFERENCES

[1] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong, “Diversifying
search results,” in WSDM, 2009, pp. 5-14.

[2] G. Capannini, F. M. Nardini, R. Perego, and F. Silvestri, “Efficient
diversification of web search results,” VLDB, vol. 4, no. 7, pp. 451-
459, 2011.

[3] J. Carbonell and J. Goldstein, “The use of mmr, diversity-based rerank-
ing for reordering documents and producing summaries,” in SIGIR,
1998, pp. 335-336.

[4] C. L. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan,
S. Biittcher, and I. MacKinnon, “Novelty and diversity in information
retrieval evaluation,” in SIGIR, 2008, pp. 659-666.

[5] V. Dang and W. B. Croft, “Diversity by proportionality: an election-
based approach to search result diversification,” in SIGIR, 2012, pp.
65-74.

[6]
[7]

[8]
[9]
(10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

[18]

[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]

[31]

[32]
[33]

(34]

M. Drosou, H. Jagadish, E. Pitoura, and J. Stoyanovich, “Diversity in
big data: A review,” Big Data, vol. 5, no. 2, pp. 73-84, 6 2017.

O. Kucuktunc and H. Ferhatosmanoglu, “A-diverse nearest neighbors
browsing for multidimensional data,” TKDE, vol. 25, no. 3, pp. 481-
493, 2013.

M. Drosou and E. Pitoura, “Disc diversity: result diversification based
on dissimilarity and coverage,” PVLDB, vol. 6, no. 1, pp. 13-24, 2012.
A. Jain, P. Sarda, and J. R. Haritsa, “Providing diversity in k-nearest
neighbor query results,” in PAKDD, 2004, pp. 404—413.

S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi, “Heuristic and special
case algorithms for dispersion problems,” Operations Research, vol. 42,
no. 2, pp. 299-310, 1994.

D. Francois, V. Wertz, and M. Verleysen, “The concentration of frac-
tional distances,” IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 19, no. 7, pp. 873-886, 2007.

H.-P. Kriegel, P. Kroger, and A. Zimek, “Outlier detection techniques,”
in Tutorial at SIGKDD, 2010.

N. Pham and R. Pagh, “A near-linear time approximation algorithm for
angle-based outlier detection in high-dimensional data,” in SIGKDD,
2012, pp. 877-885.

F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Transactions on Interactive Intelligent Systems (TiiS),
vol. 5, no. 4, p. 19, 2016.

P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Modeling
wine preferences by data mining from physicochemical properties,”
Decision Support Systems, vol. 47, no. 4, pp. 547-553, 2009.

M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun
database: Large-scale scene recognition from abbey to zoo,” in CVPR,
2010, pp. 3485-3492.

A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelope,” International journal of computer
vision, vol. 42, no. 3, pp. 145-175, 2001.

M. Drosou and E. Pitoura, “Search result diversification,” SIGMOD
Record, vol. 39, no. 1, pp. 41-47, 2010.

M. Drosou, H. Jagadish, E. Pitoura, and J. Stoyanovich, “Diversity in
big data: A review,” Big Data, vol. 5, no. 2, pp. 73-84, 2017.

C. Yu, L. Lakshmanan, and S. Amer-Yahia, “It takes variety to make
a world: diversification in recommender systems,” in EDBT, 2009, pp.
368-378.

C. Yu, L. V. Lakshmanan, and S. Amer-Yahia, ‘“Recommendation
diversification using explanations,” in /CDE, 2009, pp. 1299-1302.

A. Borodin, A. Jain, H. C. Lee, and Y. Ye, “Max-sum diversification,
monotone submodular functions, and dynamic updates,” ACM Transac-
tions on Algorithms (TALG), vol. 13, no. 3, p. 41, 2017.

B. Liu and H. V. Jagadish, “Using trees to depict a forest,” VLDB, vol. 2,
no. 1, pp. 133-144, 2009.

A. Deshpande and L. Rademacher, “Efficient volume sampling for
row/column subset selection,” in Foundations of Computer Science
(FOCS), 2010 51st Annual IEEE Symposium on. 1EEE, 2010, pp.
329-338.

N. Anari, S. O. Gharan, and A. Rezaei, “Monte carlo markov chain
algorithms for sampling strongly rayleigh distributions and determinantal
point processes,” in Conference on Learning Theory, 2016, pp. 103—-115.
S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline operator,” in
ICDE, 2001, pp. 421-430.

K. Hose and A. Vlachou, “A survey of skyline processing in highly
distributed environments,” The VLDB Journal, vol. 21, no. 3, pp. 359—
384, Jun. 2012.

D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky: An
online algorithm for skyline queries,” in VLDB, 2002, pp. 275-286.

Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang, “Efficient
computation of the skyline cube,” in VLDB, 2005, pp. 241-252.

C.-Y. Chan, H. Jagadish, K.-L. Tan, A. K. Tung, and Z. Zhang, “Finding
k-dominant skylines in high dimensional space,” in SIGMOD, 2006, pp.
503-514.

X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang, “Selecting stars: The k most
representative skyline operator,” in /CDE, 2007, pp. 86-95.

Y. Tao, L. Ding, X. Lin, and J. Pei, “Distance-based representative
skyline,” in /ICDE, 2009, pp. 892-903.

D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and progressive
algorithm for skyline queries,” in Proceedings of the 2003 ACM SIG-
MOD international conference on Management of data. ACM, 2003,
pp. 467-478.

