




Based on the diverse neighbor set, we are particularly

interested in solving the following two problems:

Problem 1 (angular θ-diverse neighbors DS(D, q, θ)):
Given a data set D, a query q and an angular threshold θ,

compute DS(D, q, θ).
Though DS(D, q, θ) is useful on its own, the angular

threshold θ might be hard to specify for those users who

are not familiar with a data set. To address this, we propose

Problem 2, in which users just need to specify the cardinality

of the result set.

Problem 2 (sized k-diverse neighbors DS(D, q, k)): Given

a data set D, a query point q, and a specified integer k, find

a θ∗, such that |DS(D, q, θ∗)| = k, and output DS(D, q, θ∗)
as DS(D, q, k).

For ease of presentation, we summarize the important

notations in Table I.

B. Analysis

Given a query point q, for any two points a, b, the angle

∠aqb provides a way to measure the difference between a
and b. Firstly, the Euclidean distance between the two points

has a lower bound. The lower bound is decided by the farther

point and the angle. Moreover, when the angle is large, the

two points must differ a lot in at least one dimension. These

ideas are formally established next.

Theorem 2.1: Given three points a, b and q on R
n with the

dot product, where ∠aqb = θ and ‖ ~qa‖= la < ‖~qb‖= lb, then:

1) dist(a, b) ≥ lb · sin θ,

2) there exists a dimension i such that |a.si−b.si| ≥
√

2/d·
min(|la − lb · cos θ|, lb · sin θ).

Proof: (1) Since points q, a, b form a triangle in the d-

dimensional space, by the law of cosines,

dist2(a, b) = l2a + l2b − 2lalb · cos θ

= (la − lb · cos θ)
2 + l2b · (1− cos2 θ)

≥ l2b · sin
2 θ. (2)

Thus, dist(a, b) ≥ lb · sin θ.

(2) We prove by contradiction. Suppose for all i =
1, 2, . . . , d,

|a.si − b.si| <
√

2/d ·min(|la − lb · cos θ|, lb · sin θ). (3)

Then, 2‖ ~ab‖2 = 2

d
∑

i=1

(a.si − b.si)
2

<

d
∑

i=1

(
√

2/d · |la − lb · cos θ|)
2 +

d
∑

i=1

(
√

2/d · lb · sin θ)
2

= 2(l2a − 2lalb · cos θ + l2b · cos
2 θ + l2b · sin

2 θ). (4)

Hence, ‖ ~ab‖2 < l2a+ l2b −2lalb ·cos θ, which contradicts the

law of cosines. Therefore, there exists i such that |a.si−b.si| ≥
√

2/d ·min(|la − lb · cos θ|, lb · sin θ).
Next, we show three properties of the proposed diverse

neighbor set, i.e. Monotonicity, Existence and Uniqueness.

Monotonicity: the size of the diverse neighbor set decreases

monotonically with the increase of θ.

Lemma 2.1: Given θ′ ≥ θ, if p ≻S
q,θ p′, then p ≻S

q,θ′ p′.
Proof: By Definition 2.4, we have dist(p, q) < dist(p′, q)

and ∠pqp′ < θ. Thus, clearly, we have ∠pqp′ < θ ≤ θ′, again

by Definition 2.4, p ≻S
q,θ′ p′.

Theorem 2.2: Given θ′ ≥ θ, DS(D, q, θ′) ⊆ DS(D, q, θ).
Proof: (By contradiction) Consider a point p ∈

DS(D, q, θ′). Suppose p /∈ DS(D, q, θ), then ∃o ∈ D,

s.t. o ≻S
q,θ p. By Lemma 2.1, o ≻S

q,θ′ p. This contra-

dicts the assumption. Thus, p ∈ DS(D, q, θ), and we get

DS(D, q, θ′) ⊆ DS(D, q, θ)
From the last theorem, we can conclude that given the same

data set and the same query, the size of the diverse neighbor

set decreases monotonically with the increase of θ. Thus, for

different purposes, users can control the size of the diverse

neighbor set by choosing their own θ.

Existence: There always exists an answer to Problem 1.

Lemma 2.2: Given a data set D, a query point q, DS(D, q, θ)
is non-empty for any θ.

The above lemma is obvious, since DS(D, q, θ) will always

contain the first nearest neighbor of q among D. Besides, any

point satisfying Definition 2.6 will be included in the result

set. The existence of answer to Problem 2 will be discussed

in Section IV-A.

Uniqueness: Furthermore, given specific parameters, an-

swer to Problem 1 is unique.

Theorem 2.3: Given a data set D, a query point q,

DS(D, q, θ) is unique for a specific θ.

Proof: Suppose there exist two answer sets DS1(D, q, θ)
and DS2(D, q, θ). Consider a point p ∈ DS1(D, q, θ), by

Definition 2.6, there does not exist any point p′ 6= p such that

p ≺S
q,θ p′. Then, by Definition 2.7, p ∈ DS2(D, q, θ). Thus,

DS1(D, q, θ) ⊆ DS2(D, q, θ). Similarly, DS2(D, q, θ) ⊆
DS1(D, q, θ). Hence, DS1(D, q, θ) = DS2(D, q, θ).
Moreover, under certain assumptions, answer to Problem 2 is

also unique, and details will be shown in Section IV-A.

III. ANGULAR θ-DIVERSE SET

In this section, we present two algorithms, namely the

Sorted-Scan Algorithm, and the Two-Scan Algorithm, to com-

pute the angular θ-diverse neighbor set DS(D, q, θ).

A. Sorted-Scan Algorithm

The first approach to compute angular θ-diverse neighbor

set DS(D, q, θ) is to examine each point one by one. Given a

point o, we define the set of points that have smaller distance

to the query compared to o:

Definition 3.1 (Closer points T (o, q,D)): Given a data set D,

a point o ∈ D and a query point q, we use T (o, q,D) to denote

{p : p ∈ D ∧ dist(p, q) < dist(o, q)}.

Fact 3.1: According to Definition 2.4, a data point o can only

be dominated by another point in T (o, q,D).
Algorithm 1 shows the details of the Sorted-Scan algorithm,

and its correctness is based on the above fact. Each point p is

only compared to q’s nearer neighbors (steps 5 to 8). If there

exists a point p′ such that p′ θ-dominates p w.r.t q, then p is

surely not a diverse point, and we can jump to examine the



Algorithm 1: Sorted-Scan Algorithm DS(D, q, θ)

1 sort D in non-descending order of distance to q ;
2 initialize result set T ← ∅ ;
3 for every point p ∈ D do
4 initialize isDiverse ← true ;
5 for every point p′ ∈ T (p, q,D) do

6 if ∠pqp′ < θ then
7 isDiverse ← false ;
8 break out of inner for-loop ;

9 if isDiverse then
10 insert p into T ;

11 return T ;

Algorithm 2: Two-Scan Algorithm DS(D, q, θ)

1 initialize result set T ← ∅ ;
2 choose a set of reference points R from D ;
3 for every point p ∈ D do
4 if p is not θ-dominated by any point in R then
5 insert p into T ;

6 for every point p′ ∈ D do

7 for every point p ∈ T, p 6= p′ do

8 if p ≺S
q,θ p′ then

9 remove p from T ;

10 return T ;

next point. Otherwise, if none of the nearer neighbors can θ-

dominate p, then p can be safely added to T (steps 9 to 10).

Once all the points in D are checked, T is outputted as the

final answer, i.e. DS(D, q, θ). In general, the complexity of

the Sorted-Scan algorithm should be O(n log(n))+O(1+2+
. . .+ n) = O(n2) in worst cases.

Example 3.1: Consider the example in Figure 2. The Sorted-

Scan algorithm will first sort points as {p1, p2, p4, p3, p6, p5}
based on their Euclidean distance to q. Next, the algorithm

checks whether a point p is θ-dominated by another point

in T (p, q,D). As a result, the algorithm progressively adds

p1, p4, p6 into the result set. Finally, it returns DS(D, q, θ) =

{p1, p4, p6} after checking all points.

B. Two-Scan Algorithm

Although the Sorted-Scan algorithm is workable, its effi-

ciency is unsatisfactory: in the worst case, the total number of

comparisons is O(n2). Next, we present our second algorithm

(shown in Algorithm 2) which improves the efficiency.

This algorithm can be naturally divided into two parts. In

the first scan of D (steps 3 to 5), we quickly eliminate true

negatives with the help of a reference set R, which is chosen

beforehand. R here is static, and the comparisons against R
is one-way. Thus, we can progressively compute a set of

candidate diverse points by comparing each point p ∈ D to

R. A point p can become a candidate if and only if none of

the reference points in R θ-dominates p. T will contain all the

candidates after the first scan of D.

Due to the existence of false positives in T , it is necessary

to scan D once more (steps 6 to 9). If a candidate is a

false positive, it must be θ-dominated by some points in D.

Therefore, after the second scan, T is guaranteed to be the

diverse neighbor set.

Example 3.2: If R is initialized as {p1, p2, p4}, which are 3-

NNs of q, then after the first scan, points p2, p3, p5 will be

eliminated, since p2 ≺R
2

q,θ p1, p3 ≺R
2

q,θ p2, and p5 ≺R
2

q,θ p4.

Hence, T contains p1, p4, p6. Next, no false negative is found

in the second scan.

It is clear that the efficiency of the Two-Scan Algorithm

is highly dependent on the choice of R, the set of reference

points. If the total dominating areas of points in R can cover

most of D, then less candidates need to be checked in the

second scan. However, if R contains too many points, the first

scan will slow down. Here we provide three possible choices

of R. One natural choice can be the K-nearest neighbors

of the query among D. K-NNs have their own advantages

since they are nearer to the query than any other points.

Secondly, a simple choice can be K random points selected

from D. By randomly selecting, it is likely to eliminate bias.

Thirdly, points can be allocated into K different sections

based on their distances to the query, and R can select one

from each section randomly. In this way, R is expected to

capture the “distribution nature” of D. Detailed comparisons

of the proposed three choices of R are presented in Section

V. Although the complexity of the Two-Scan Algorithm is

O(|R|n + n2) in the worst case, it can perform much better

in practice with proper choice of R.

C. Acceleration Using GPU

From Fact 3.1, we can conclude that to determine whether

a point diverse or not is independent of the determination

process of any other point. This means we can parallel scan

the data set instead of checking each point sequentially.

In order to effectively parallelize the computations of the

diverse neighbor set, we choose to implement our algorithms

on the Graphics Processing Units (GPUs). It has become more

popular to use GPUs for data processing in recent years, since

GPUs have experienced a tremendous growth in terms of

computational power and memory capacity.

We adopt the most direct strategy to accelerate the compu-

tation. For Algorithm 1, firstly the computation of all distances

can be fully parallelized. Then, we use the thrust library to

sort all points based on their distances to the query. Next, we

use one block of threads to undertake the task of justifying

one point from D. Each thread takes charge of comparing

current point against one of those nearer neighbors. For each

block, isDiverse becomes a shared-memory variable so that

the whole block can stop in time when one thread finds a

dominating relationship.

For Algorithm 2, the parallelization methodology is similar.

In the first scan, each block of threads only need to compare

current point against all points in the reference set. In the

second scan, each block of threads further justify a candidate

by comparing it against all points in the data set.

The numbers of blocks and threads are adjusted, so that

the computation power is utilized. The strategy we adopt is



not the only but the most direct approach to parallelize the

algorithms. Since it is not the major problem of this paper,

we do not conduct further discussion.

IV. SIZE K-DIVERSE NEIGHBOR SET

It has been shown by Theorem 2.2 that the size of the

diverse neighbor set decreases with the increase of θ. How to

get the diverse neighbor set of a desired size by choosing the

right θ becomes a new problem. To address the DS(D, q, k)
problem, we first introduce a naive algorithm and then propose

our Two-Stage Algorithm.

A. A Naive Algorithm

Definition 4.1 (Minimum dominated angle, minθ(o, q,D)):
Given a data set D, a point o ∈ D and a query point q,

we use minθ(o, q,D) to denote the minimum dominated

angle of o, namely, minp∈T (o,q,D) ∠oqp. Specially, if o is q’s

nearest neighbor, we set minθ(o, q,D) = π.

minθ(o, q,D) =

{

minp∈T (o,q,D) ∠oqp if T (o, q,D) 6= ∅

π if T (o, q,D) = ∅

Based on the definition, we can derive the following lemma.

Lemma 4.1: If o ∈ DS(D, q, θ), then minθ(o, q,D) ≥ θ.

Example 4.1: Consider the example in Figure 2, we have

minθ(p1, q,D) = π, minθ(p2, q,D) = ∠p1qp2 = 19.44◦,

minθ(p3, q,D) = ∠p2qp3 = 18.43◦, minθ(p4, q,D) =
∠p2qp4 = 52.13◦, minθ(p5, q,D) = ∠p4qp5 = 3.01◦, and

minθ(p6, q,D) = ∠p1qp6 = 92.05◦.

Clearly, minθ(p5, q,D) < minθ(p3, q,D) < minθ(p2, q,D)
< θ = 20◦ < minθ(p4, q,D) < minθ(p6, q,D) <
minθ(p1, q,D).

Next, we illustrate a naive solution to compute DS(D, q, k).
Suppose points in the diverse neighbor set are sorted in

descending order of the minimum dominated angles, i.e.

DS(D, q, θ) = {o1, . . . , on}, where minθ(o1, q,D) > . . .
> minθ(on, q,D) ≥ θ. In this way, the size of the diverse

neighbor set can be reduced by simply increasing θ to a

specific value. Any θ′ ∈ (minθ(ok+1, q,D), minθ(ok, q,D)]
should be a feasible solution.

Therefore, one naive way to compute DS(D, q, k) is

to start with a small angular threshold θsmall such that

|DS(D, q, θsmall)| > k and keep track of the minimum

dominated angles for all points in the diverse neighbor set

when computing DS(D, q, θsmall). Once we finish comput-

ing DS(D, q, θsmall), we can immediately retrieve a diverse

neighbor set of a desired size k by increasing θsmall.

Ideally, if the minimum dominated angles of all points are

different, then the returned diverse neighbor set can have

any size by choosing proper angle threshold. Under such

assumption, it can be proved that the answer to Problem 2

exists and is unique for any specific k. The existence can be

directly proved using the Naive algorithm.

Theorem 4.1: Given a data set D, a query point q,

DS(D, q, k) is unique for a specific k if all points have

different minimum dominated angles.

Proof: (By contradiction) Suppose we have two

answer sets DS(D, q, θ∗1) and DS(D, q, θ∗2) such that

|DS(D, q, θ∗1)| = |DS(D, q, θ∗2)| = k and DS(D, q, θ∗1) 6=
DS(D, q, θ∗2). W.L.O.G assume θ∗1 ≤ θ∗2 . Since the two sets

are not same, they must differ at least one point. Assume p ∈
DS(D, q, θ∗2) but p /∈ DS(D, q, θ∗1). Then, there must exist a

point o such that o ≻S
q,θ∗

1

p. By Lemma 2.1, o ≻S
q,θ∗

2

p, which

contradicts p ∈DS(D, q, θ∗2). Hence, the answer is unique.

However, there may exist cases such that two or more

points share minimum dominated angles with the same value,

just like points can have same distance to the query when

performing K-NN search. In these cases, we can either expand

result sets to include all these points or break the tie randomly.

However, by bringing in randomness, the answers will then

become non-unique.

B. Two-Stage Algorithm

Although the naive approach can solve the problem, its

efficiency cannot be guaranteed. As mentioned before, if the

starting angle is too small, the returned diverse neighbor set

will have a lot of points, and more importantly, the computa-

tion cost will increase dramatically (for both comparing and

maintaining the order). Thus, given a specific integer k, an

ideal starting angle θstart should be close to θ∗ as much

as possible, where DS(D, q, θ∗) = DS(D, q, k). Then, the

question becomes how to find such a θ∗. Next we present

how to approximate such a θ∗.

Definition 4.2 (K-NNs, N (q,K,D)): We use N (q,K,D) to

denote the set of K nearest neighbors of q among D.

Theorem 4.2: If K1 < K2 and |DS(N (q,K1, D), q, θLK1
)|

= |DS(N (q,K2, D), q, θLK2
)|, then θLK1

≤ θLK2
.

Proof: Consider a point p ∈ DS(N (q,K1, D), q, θ).
Firstly, p cannot be θ-dominated by any point in N (q,K2, D)\
N (q,K1, D) (Fact 3.1). Secondly no point in N (q,K1, D)
can θ-dominate p w.r.t q (otherwise p can not be in

DS(N (q,K1, D), q, θ). Hence, p must be included in

DS(N (q,K2, D), q, θ), which implies

DS(N (q,K1, D), q, θ) ⊆ DS(N (q,K2, D), q, θ). (5)

Therefore,

|DS(N (q,K1, D), q, θLK2
)| ≤ |DS(N (q,K2, D), q, θLK2

)|

= |DS(N (q,K1, D), q, θLK1
)|

By Theorem 2.2, we conclude θLK1
≤ θLK2

.

Corollary 4.1: If |DS(N (q,K,D), q, θLK
)| = |DS(D, q, θ)|,

then θLK
≤ θ.

In summary, the above theorem and corollary show that:

1) θLK
can be used as a reliable lower bound for θ∗.

2) the larger K is, the tighter the angle lower bound is.

Consider a sequence of values, where Ki < Kj if i < j. If

for all i, |DS(N (q,Ki, D), q, θLKi
)| = |DS(D, q, θ∗)| = k,

then θLKi
≤ θLKj

≤ θ∗ where i < j. In particular, when

K = |D|, DS(D, q, θLK
) = DS(D, q, θ∗) = DS(D, q, k).

To compute DS(D, q, k), we propose Algorithm 3, which

can be divided into two stages: (1) compute the lower-bound



Algorithm 3: Two-Stage Algorithm (D, q, k,K)

1 initialize result set T ← ∅ ;
2 retrieve K-NNs of q among D to get N (q,K,D) ;
3 compute DS(N (q,K,D), q, 0) and record th k-th largest

minimum dominated angle minθ(ok, q,D) ;
4 input D,q and minθ(ok, q,D) into the Sorted-Scan

Algorithm or the Two-Scan Algorithm ;
5 select the first k points from DS(D, q,minθ(ok, q,D)), add

into T ;
6 return T ;

(steps 1-3); and (2) compute the diverse neighbor set (steps

4-6). Firstly, the algorithm retrieves N (q,K,D) from D.

Then, the algorithm inputs N (q,K,D), q, and an angular

threshold with value zero into Algorithm 1 or Algorithm 2.

The reason why we set the angular threshold to be zero is

that we can maintain the minimum dominated angle for every

point in N (q,K,D). In this way, we can obtain the k-th

largest minimum dominated angle minθ(ok, q,D), which is

proved to be a reliable lower bound in Corollary 4.1. As

mentioned before, the larger the value K takes, the tighter the

angle lower bound is. However, too large a K will slow down

the computation of DS(N (q,K,D), q, 0). We will discuss the

choice of K in the next section.

Next, we input the minθ(ok, q,D) we got from the last

step as well as D and q into the Sorted-Scan Algorithm

or the Two-Scan Algorithm. Once DS(D, q,minθ(ok, q,D))
is computed, we can retrieve points with the top-k largest

minimum dominated angles as the final result.

Example 4.2: Consider finding a diverse neighbor set con-

taining 3 points from Figure 2. With K = k = 3, points

p1, p2, p4 are retrieved as N (q, 3, D). Next, their minimum

dominated angles are computed and sorted in descending

order: minθ(p1, q,D) > minθ(p4, q,D) > minθ(p2, q,D).
The third largest angle minθ(p2, q,D) is then used as the

lower bound, and DS(D, q,minθ(p2, q,D)) is computed,

which contains p1, p6, p4, and p2. Again, they are sorted in

descending order of the minimum dominated angles. At last,

the first three points p1, p6, p4 can be returned.

V. EXPERIMENTS

In this section, we study the following two issues: (1) The

effectiveness of the proposed angular diverse neighbors com-

pared to the state-of-the-art methods of result diversification,

and (2) The efficiency of the proposed methods.

A. Experimental settings

1) Data Sets: In the experiments, both synthetic data sets

and real data sets are used. We focus on high dimensional data

sets. The properties of all the data sets are summarized in Table

II and III respectively, where d represents the dimensionality

and Card. denotes the cardinality of the data set.

MovieLens[14]: This data set describes free-text tagging

activity from MovieLens, a movie recommendation service. It

contains 465,564 tag applications across 27,278 movies. We

group all tags by each movie, i.e. each movie is described by

a set of tags. We further build a LDA topic model. The model

generates 100 topics, and within each there are 20 keywords.

Afterwards, each movie is inferred as a 100-dimensional point

by the trained model. The value of each dimension indicates

the probability of a movie belonging to corresponding topic.

Queries are firstly constructed using a limited number of

keywords, so that they are ambiguous. We then pass queries

to the trained LDA model to obtain the corresponding 100-

dimensional points.

Wine:[15]: Wine is a data set recording physicochemical

properties of red and white wines (e.g. residual sugar and pH

values). There are 11 attributes, and 5,318 unique records. We

randomly pick 500 records to serve as queries.

Motor[16]: Motor is a data set containing 58,509 records,

each of which consists of 48 features extracted from electric

current drive signal. The current signals are measured with a

current probe and an oscilloscope on two phases. 500 queries

are randomly picked from the data set.

Galaxy: This data set is generated from the Sloan Digital

Sky Survey (SDSS) with data release 14 1. We sample the

“PhotoObjAll” table with sampling ratio 1%. Sixteen numer-

ical columns are chosen, such as the galactic latitude and

longitude. At last, this data set contains 1.9 million tuples

with dimensionality 16. We further sample 500 tuples from

the base table extracting same columns as queries.

Sun[17]: Sun is a data set containing 88,903 images, each

of which is attached with a class label to indicate which

scene category the image belongs to. The GIST feature [18]

is obtained. SUN contains a test set of 19,850 points, and we

randomly choose 500 points as queries.

Synthetic data sets: Synthetic data sets are used to study

the influence of the dimensionality and the cardinality. We

consider three kinds of data distribution. In details, points

are generated with uniform distribution ([0, 1]), normal dis-

tribution (µ = 0, σ2 = 1) or skewed normal distribution

(µ = 0, σ2 = 1, α = 1) respectively. For each type of

distribution, we generate data sets by fixing a property as

default (underlined) and varying the other. For each parameter

setting, we randomly generate 50 points as queries.

Table II: Real data sets

Data set d Card.

MovieLens 100 27k
Wine 11 5.3k
Motor 48 58k
Galaxy 16 1.9m
Sun 512 89k

Table III: Synthetic data sets

Properties Values

Card.
100k, 200k, 400k,

800k, 1.6m

d
50, 100, 200,

400, 800

Distribution Uniform, Normal, Skewed

2) Evaluation Measures: We first adopt relevance and

vector diversity, which are existing evaluation measures [7].

Definition 5.1 (Relevance): Given a query point q, its k-

nearest neighbors N (q, k,D), and a set of results T , where

|T | = k, relevance is defined as:

Rel(q,N (q, k,D), T ) =

∑

pj∈N (q,k,D)‖ ~qpj‖
∑

pi∈T ‖ ~qpi‖
∈ [0, 1]. (6)

1http://www.sdss.org/dr14/



Definition 5.2 (Vector Diversity): Given a query point q and a

set of results T , vector diversity is defined as:

V Div(q, T ) = 1−
‖
∑

pi∈T
~qpi

‖ ~qpi‖
‖

|T |
∈ [0, 1]. (7)
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Figure 3: Diversity measures

The intuition is that if the result set is diverse, the sum

of the “forces” will be closer to the center [7], so that V Div
will be close to 1. However, Figure 3b shows an example such

that a good vector diversity could be insufficient. Although the

value of the vector diversity is nearly 1, there exist pairs such

as p1, p2 or p4, p5, which are not diverse enough. Thus, we

introduce the average angular diversity as below:

Definition 5.3 (Average Angle Diversity): Given a query point

q and a set of results T , the average angular diversity is:

AvgADiv(q, T ) =

∑

pi∈T minpj∈T,j 6=i ∠piqpj

|T |
. (8)

Each point in the result set has a most “similar” neighbor.

The similarity can be measured by the angle, whose endpoint

is the query. Intuitively, if AvgADiv is bigger, points of the

result set spread out more in the space centering at the query.

One can also use classical distance metric instead of angle to

measure the diversity:

Definition 5.4 (Average Distance Diversity): Given a query

point q and a set of results T , the average distance diversity

is computed as:

AvgDDiv(q, T ) =

∑

pi∈T minpj∈T,j 6=i dist(pi, pj)

|T |
. (9)

By considering V Div, AvgADiv and AvgDDiv, we are

more clear about how the result points are distributed around

the query, and how diverse they are.

3) Competitors: We choose four competitors from various

approaches to result diversification problem in the literature.

KNDN-IG (Immediate Greedy) and KNDN-BG (Buffered

Greedy) [9]. The KNDN methods are also known as Motely.

In our experiments, instead of using R-tree, points are sorted

directly based on their Euclidean distance to the query, which

allows the KNDN methods to handle high dimensional data.

The threshold parameter MinDiv is set to 0.1 as suggested.

GG (Gabriel Graph based method) [7]. Since generating

Gabriel graph for high dimensional data set efficiently is

challenging, we extract only the necessary Gabriel-edges as

the authors mentioned.

MMD (Maximize Minimum pairwise Distance) [10]. To

obtain a sized-k result set, we provide 5k-NNs to MMD for

a post-processing step to diversify results.

All the experiments were conducted on a CPU-GPU plat-

form with NVIDIA GeForce GTX TITAN X (with 12 GB

memory) GPU, Intel Core i7-3820 CPU, and 64GB main

memory, running CentOS 6.5. GPU is used to accelerate the

computation of distances and angles. All GPU codes were

implemented with CUDA 7. Other programs and competitors

were implemented in C++.

B. Effectiveness

To validate the statement that our angular diverse neighbors

provide more reasonable results compared to the distance-

based diversification methods, we first conduct a user study.

Then, we study the effectiveness of our proposed angular

diverse neighbors compared to the competitors in terms of Rel

(relevance), VDiv (vector diversity), AvgADiv (average angle

diversity) and AvgDDiv (average distance diversity) on other

real data sets.

1) User Study: In this study, we use MovieLens data set,

and there are 15 queries in total. We hire 20 students with

different backgrounds as the participants. For each query

consisting of some keywords, we generate six sets (each

containing 10 movies) of results using different methods, and

each participant is required to select the one which is most

relevant and diverse in his/her opinion. Table IV shows the

selection percentage. We also present the results of two sample

queries (“superhero” and “space and alien”) in Figure 4 and

Figure 5. Note the results of the KNDN methods are omitted

here, since they are nearly same as K-NN results. Possible

reasons are discussed in following experiments.

Table IV: User study results

DS GG MMD K-NN, KNDN-IG & KNDN-BG

57.58% 24.24% 18.18% 0%

Figure 4 and Figure 5 demonstrate the effectiveness of our

proposed diverse neighbors. The results are suggested to be

viewed in color mode. Our method consistently returns results

with diversely distributed topics.

2) Result Quality: Next, we study the effectiveness in terms

of Rel (relevance), VDiv (vector diversity), AvgADiv (average

angle diversity), and AvgDDiv (average distance diversity) on

the four real data sets. KNDN-IG and KNDN-BG require

MinDiv to be set. To ensure that enough results are returned,

we add a function to dynamically adjust MinDiv. For GG,

firstly it is very time-consuming to verify Gabriel-edges for

large-size data sets. Moreover, due to the sparsity of high

dimensional space, optimizing the last layer becomes very

slow. Thus, we do not apply GG on Galaxy and Sun due to

its own limitations.

Relevance: Figure 6 shows how the relevance of result

set changes when the size of result set varies. The horizontal

axis represents the size of result set. For all data sets, the size

varies from 5 to 50. It is observed that the relevance of our

proposed diverse neighbor set is better than GG on the two
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(d) MMD results

Figure 4: Query “superhero”: We use a color matrix to visually show the results. Each column of the matrix represents the probability
distribution of a movie among all 100 topics. The darker the color is, the higher the probability is. In the last column, we record the
maximum probability of all the 10 returned movies for each topic. A diverse result is expected to have more colors in the Max column. It
is clear that K-NN returns non-diverse results, which are mostly from Batman series and Superman series. Only the main topic is clear in
the Max column, while all other three sets of results are diverse. However, for MMD, there is a gap from topic around 50 to around 70,
i.e. no results cover this range. Indeed, movies, like The Incredible Hulk, Defendor, and The Amazing Spider Man 2, can be both related to
“superhero” and cover this range. Besides, there are movies returned by both GG and MMD, such as The Boondock Saints, which is not a
classic “superhero” movie, and hence the main topic has lighter color.
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(d) MMD results

Figure 5: Query “space and alien”: In this example, our angular diverse set returns more diverse results than the other three methods
from the view of the color matrices. Besides the main topic, our DS results cover at least 5 minor topics (dark gray color). Similar as the
above query, K-NN contains the largest area of white space. GG and MMD returns diverse results, but not as good as DS. Besides, the
main topic of their results are not as clear as DS.

available data sets. Depending on the data sets, there is no

all-time winner between MMD and DS in terms of relevance.

Another observation is that KNDN methods seem to return

nearly K-NNs when the size of results goes larger, especially

for higher dimensional data sets Motor and Sun. This may

due to the searching strategy of the KNDN methods. They

adopt distance browsing, and the criteria is sensitive to the

MinDiv threshold. In high dimensional spaces, classic distance

can hardly distinguish points well.

Vector diversity: Figure 7 shows how different methods

perform in terms of VDiv. Although our proposed method is

slightly worse than GG, it is more scalable than GG. It is also

observed that our method is consistently better than MMD

and KNDN methods. It achieves at least 15% improvements

in terms of VDiv.

Average angle diversity: Figure 8 plots the average angle

diversity of different result sets from different methods. Our

proposed diverse neighbor set has the largest average angle

diversity, which means the returned points spreads out more

around the query than results of other methods. The improve-

ments of our method is roughly 3% ∼ 7% comparing to the

second runner-up method.

Average distance diversity: By considering the average

distance diversity, both GG and MMD perform mostly better,

while KNDN methods are only slightly better than K-NN for

these high dimensional data sets. Our proposed DS has close

performance as GG and MMD, especially when the size of

retrieved points is large. It even outperforms others on Sun,

which has the largest dimensionality.

In summary, good performance in VDiv and AvgADiv

indicates that our method returns most well-spread results. It

is not surprising since these two measurements are more or

less related to directions. Furthermore, our method performs

well in terms of AvgDDiv. This also justifies Theorem 2.1.
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Figure 6: Relevance of result set on real data sets w.r.t required result size
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Figure 7: Vector diversity of result set on real data sets w.r.t required result size
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Figure 8: Average angle diversity of result set on real data sets w.r.t required result size
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Figure 9: Average distance diversity of result set on real data sets w.r.t required result size

Angular diversity can indeed imply distance-based diversity.

C. Efficiency

We first present how to tune the parameters for the proposed

algorithms, and then evaluate their performance.

1) Parameter Tunning: Choice of reference sets in Two-

Scan Algorithm: As mentioned before in Section III-B,

the efficiency of the Two-Scan Algorithm is dependent on

the reference set. Here, we evaluate three choices: (1) NN

(Nearest neighbors); (2) Rand (Random); (3) Dist (Distance-

based partitioned).

Figure 10 plots the average time costs w.r.t the size of

reference set for all the three approaches. For Wine and

Motor, nearest neighbors as the reference set can achieve

the best performance, while for Galaxy and Sun, random

points perform best. If points of a reference set lie in similar

directions relative to the query, then such a reference set may

not be able to prune true negatives in the first scan. Depending

on the dimensionality and the distribution of points in the

data sets, nearest neighbors are more likely to suffer this bad

case compared to the other two approaches. Thus, in general,

nearest neighbors are not recommended as a reference set,

especially for large-size and high dimensional data sets.

Size of K-NN to compute angle lower bound: Figure

11 plots the average time cost when answering the sized k-

diverse neighbor set problem w.r.t the number of K-NNs used

to compute the angle lower bound. As mentioned in Section

IV-B, the process is divided into two stages: (1) computing an

angle lower bound (LB); (2) computing the diverse neighbor

set (TSA, here we adopt the Two-Scan Algorithm). For small-

size data sets, hundreds of data points can provide a good

lower bound. Thus, to keep increasing the size of K-NNs will

not improve the TSA much, but will introduce extra cost in

the first stage. In contrast, it is worth adjusting the trade-offs

between two stages for large-size high dimensional data sets.

An optimized choice can save up to half of the time.
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Figure 10: Time costs on real data sets w.r.t size of reference set
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Figure 11: Time costs on real data sets w.r.t size of K-NN for angle lower bound

2) Performance Evaluation: We use synthetic data sets to

show the efficiency of our proposed algorithms w.r.t differ-

ent parameter settings. By answering Problem 2, the Naive

Algorithm and the Two-Stage Algorithm (TST) are directly

compared. In addition, by adopting different approaches in the

second stage of TST, the Sorted-Scan Algorithm (SSA) and

the Two-Scan Algorithm (TSA) are compared. Since it has

been shown that the KNDN methods lose their effectiveness

in high dimensional space (returning only K-NNs), while the

GG method is inefficient in high dimensional space, we do not

consider the competitors in this section. The default setting in

our experiments is: d = 200, |D| = 400k, and Result Size =

100. For TST, 1500-NNs are used to compute the angle lower

bound. For TSA, the set of reference points is chosen randomly

of size 0.3% of the data size.

Table V: Time costs (Seconds) w.r.t dimensionality

Dimensionality 50 100 200 400 800

Uniform

Naive 598.98 1504.4 9112.3 N.A.* N.A.

TST
LB 0.066 0.09 0.248 0.567 1.209

SSA 0.556 1.106 2.627 7.401 18.12
TSA 0.479 0.557 1.004 1.418 2.714

Normal

Naive 595.13 1492.5 9115.1 N.A. N.A.

TST
LB 0.057 0.089 0.248 0.564 1.203

SSA 0.571 1.162 2.627 9.064 22.12
TSA 0.596 0.811 1.512 1.918 4.011

Skew

Naive 599.39 1503.3 9113.3 N.A. N.A.

TST
LB 0.062 0.089 0.249 0.572 1.215

SSA 0.574 1.163 3.142 9.409 22.22
TSA 0.641 0.813 1.593 2.121 4.138

*It costs more than 24,000 seconds to run one query, thus, we omit the results here

Effect of the dimensionality: Table V shows the influence

of dimensionality on the efficiencies of the two algorithms.

An obvious observation is that TST is more scalable on high

dimensional data sets. The computation time of Naive grows

dramatically when dimensionality increases. Moreover, TSA

is superior to SSA for the second stage of TST.Effect of the data size: We observe from Table VI that

the results remain largely the same as that in the previous

experiment. TST turns out to be faster for all cases. The

Table VI: Time costs (Seconds) w.r.t data size

Data Size 100k 200k 400k 800k 1.6m

Uniform

Naive 147.01 720.84 9114.6 N.A. N.A.

TST
LB 0.107 0.113 0.251 0.43 0.734

SSA 0.532 1.077 2.631 7.332 17.64
TSA 0.316 0.567 1.032 1.868 3.746

impact of data size increasing is larger for the TSA stage

compared against the LB stage. This can be explained because

the number of nearest neighbors used to compute the angle

lower bound is fixed as 1500. For smaller data sets, 1500-

NNs may provide more accurate angle lower bound, and thus

save time for the second stage. Due to space limitations, we

report results for the “Uniform” data set. Similar results are

obtained for the other two as well.

Table VII: Time costs (Seconds) w.r.t result size

Result Size 25 50 100 200 400

Uniform

Naive 9113.3 9113.3 9113.3 9113.3 9113.3

TST
LB 0.247 0.249 0.249 0.248 0.249

SSA 2.504 2.511 2.631 3.093 4.982
TSA 0.747 0.822 0.988 1.376 2.22

Effect of the result size: Table VII presents how the

required result size influences the computing time. Since the

Naive Algorithm spends nearly all its time on computing

and sorting the minimum dominated angles for all points, its

computing time is almost constant. Similarly, the LB stage

adopts the same strategy but only on a small part of the whole

data set, thus its time also remains stable. However, to get a

larger result set, the angle lower bound becomes loose. Hence,

the second stage of TST costs more time.

VI. RELATED WORK

A. Result Diversification

There has been growing interest in the problem of result

diversification. Its goal is to find relevant but also informative

answers to users’ queries. The answers are expected to be

close to queries in the sense of relevance, and to be sufficiently

different from each other to provide users an informative view.



Researchers have attacked the problem in various ways. We

refer interested readers to these reviews [19], [20] for more

details. To summarize existing works in result diversification,

we divide them into the following categories:

Score optimization: One of the most popular approaches to

diversification is to transform the problem to an optimization

problem by associating a diversity score with each point

and then try to maximize the total score of a result set.

Jain et al. define the K-Nearest Diverse Neighbor (KNDN)

problem [9]. Two greedy algorithms are proposed: KNDN-

IG (Immediate Greedy) approach incrementally adds the next

nearest points to the result set only if they are diverse enough

from the existing results, while KNDN-BG (Buffered Greedy)

approach adopts some heuristic to delay the growing of the

result set so that it can include better answers in near future.

Both methods are integrated with the R-tree index, which can

only support up to 10 dimensions practically. The drawback

of IG and BG is that they are required to set a diversity

threshold, which is non-trivial for an ordinary user especially

when the dimensionality goes large. Yu et al. [21], [22],

from the perspective of recommendation systems, introduce

two heuristic algorithms. They either include new points

greedily like [9] or swap points with those are more likely

to contribute to the set diversity. Kucuktunc et al. [7] use a

linear combination of relevance and diversity measure as their

score function. They incrementally explore points around the

query by adopting geometric browsing. They also introduce an

index-based algorithm, which extends the distance browsing

feature of R-trees with diverse choices. Borodin et al. [23]

study the max-sum p diversification problem to find a diverse

subset, and propose two approximate algorithms for different

constraints. Their valuation functions are normalized, mono-

tone submodular set functions, which are general. However,

such problem is orthogonal to ours, since it is not query-based.

Representative approach: Another approach to diversific-

ation is to find representatives of the data set. A representative

is defined as a point that can represent other points. Liu and

Jagadish [24] solve the Many-Answers Problem by showing

users representatives of a data set, where they cluster points

and select k-medoids as representatives. A tree-based approach

is proposed to find representatives efficiently. Drosou et al. [8]

introduce the DisC diversity and the Minimum r-DisC Diverse

Subset problem. The representation relation is defined as: a

point can be represented by another point if their distance

is within a user-defined threshold r. The goal is to find a

minimum-sized subset of points that can represent the whole

data set given the user-specific threshold r, while the results

are not represented by each other. In machine learning, there

is also an important topic known as volume-based diversity,

whose goal is to sample a diverse subset of a data set. A

set S of k points are selected to maximize the volume of

the k-dimensional parallelepiped formed by the corresponding

vectors in S. The probability distribution over subsets of a

data set is studied as determinantal point processes (DPP).

Recently, Deshpande et al. [25] and Anari et al. [26] develop

efficient sampling methods for DPP. Above approaches are

orthogonal to our work, since their problems are not query-

based. Their goal is to find a diverse summary of a data set.

Kucuktunc et al. [7] bring the idea of geometric browsing

to result diversification. After finding the nearest point p1NN

to the query q, all other points are naturally clustered based

on their Gabriel neighbor degrees w.r.t p1NN . Points from

outer layers are treated to be represented by inner ones. The

Gabriel graph-based method (GG) browses the graph layer-

by-layer until enough points are retrieved. To return exactly

k results, one may need to further choose the most diverse

representatives from the last visited layer. There are some

drawbacks of the GG method: Firstly, to generate Gabriel

graph in high dimensional space is intractable, and GG may

not be effective in high dimensional space due to the sparsity.

Secondly, it is not appropriate for dynamic data sets.

Neighborhood approach: There also exist approaches of

diversifying query results in a post-processing step. A popular

approach is the MMD (Maximize Minimum pairwise Dis-

tance) method [10], which first includes the neighborhood of

the query as the candidate set, and then selects points in the

candidate set such that the minimum pairwise distance in the

result is maximized.

There may exist other techniques in the information retrieval

literature. However, they usually consider the ranking of

returned results as an additional problem, which is out of scope

of this paper. In the experiments, we compare our method

with KNDN-IG (Immediate Greedy), KNDN-BG (Buffered

Greedy), GG (Gabriel Graph), and MMD (Maximize Min-

imum pairwise Distance) because all these methods are query-

based: given different queries, the result sets are computed

accordingly. To cater for the computation of high dimensional

data, we abandon the R-tree-based indexes proposed for com-

petitors, because R-tree-based indexes are of limited use in

low dimensional data.

B. The Dominance Relation and Skyline

The dominance relation is widely used in the Skyline

operator [27]. Given two points p and q, p is defined to

dominate q if p is not worse than q in all dimensions and

better than q in at least one dimension. The points that are

not dominated by any other point are called Skyline points.

These Skyline points are expected to be informative, and the

Skyline operator is proposed to find all the Skyline points in

a data set. Skyline query processing has received considerable

attention in multidimensional databases and has been studied

extensively in recent years. Several efficient algorithms have

been proposed for the Skyline query. We refer interested

readers to this survey [28] for more information.

However, to compute Skylines in high dimensional data

sets becomes a non-trivial problem since the result could

still be cumbersome [29], [30]. There may be an excessive

number of Skyline points returned because as the number

of dimensions increases it is unlikely to find a point that

dominates another. Hence, several techniques are designed to

alleviate this problem. Chan et al. in [31] relax the problem

to k-dominant Skyline. A point p k-dominates another point



q if p is not worse than q in k out of d dimensions and

better than q in at least one. This relaxation allows more

point to be dominated when k is small, and thus reduces

the size of result. Another technique was proposed by Lin

et al. in [32]. They select Skyline points according to their

domination capabilities, and try to maximize the total number

of dominated points. In [33], Tao et al. studied a variation of

Skyline queries called representative Skyline. A subset of all

Skyline points are returned and any non-representative Skyline

point has a nearby representative.

Among those works in Skyline, the most relevant work is the

Dynamic Skyline [34], where the domination is defined with

respect to the query point. Points from original data space are

firstly mapped to a new space by a set of one-dimensional

functions. Then, the dynamic skyline query returns the or-

dinary skyline of the transformed points in the new space.

The major difference between our problem and the dynamic

skyline problem is the concept of angle using the query point

as the common endpoint. Any two points from the data set can

form one angle. This is different from the mapping in dynamic

skyline, where one point’s transformation is independent with

others. Moreover, unlike the coordinates’ comparison strategy

in classical skyline problem, our dominating relationship is

specially designed to support diversity search in the sense of

direction. It is influenced by either the angle threshold or the

required results’ size.

VII. CONCLUSION

In this paper, we proposed a novel view of diversity to in-

vestigate the result diversification problem in high dimensional

space. Aiming to find nearest neighbors in different directions

surrounding a given query q, we gave a definition of angular

dominance relation. Based on these concepts, we addressed the

angular diverse neighbor set problem and the sized diverse

neighbor set problem. For each problem, we presented two

algorithms. We conducted extensive experiments on synthetic

and real data sets. Experimental results showed that our diverse

set can capture relevant and diverse points surrounding the

query even in high dimensional space.
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[12] H.-P. Kriegel, P. Kröger, and A. Zimek, “Outlier detection techniques,”

in Tutorial at SIGKDD, 2010.
[13] N. Pham and R. Pagh, “A near-linear time approximation algorithm for

angle-based outlier detection in high-dimensional data,” in SIGKDD,
2012, pp. 877–885.

[14] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Transactions on Interactive Intelligent Systems (TiiS),
vol. 5, no. 4, p. 19, 2016.

[15] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Modeling
wine preferences by data mining from physicochemical properties,”
Decision Support Systems, vol. 47, no. 4, pp. 547–553, 2009.

[16] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[17] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun
database: Large-scale scene recognition from abbey to zoo,” in CVPR,
2010, pp. 3485–3492.

[18] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelope,” International journal of computer

vision, vol. 42, no. 3, pp. 145–175, 2001.
[19] M. Drosou and E. Pitoura, “Search result diversification,” SIGMOD

Record, vol. 39, no. 1, pp. 41–47, 2010.
[20] M. Drosou, H. Jagadish, E. Pitoura, and J. Stoyanovich, “Diversity in

big data: A review,” Big Data, vol. 5, no. 2, pp. 73–84, 2017.
[21] C. Yu, L. Lakshmanan, and S. Amer-Yahia, “It takes variety to make

a world: diversification in recommender systems,” in EDBT, 2009, pp.
368–378.

[22] C. Yu, L. V. Lakshmanan, and S. Amer-Yahia, “Recommendation
diversification using explanations,” in ICDE, 2009, pp. 1299–1302.

[23] A. Borodin, A. Jain, H. C. Lee, and Y. Ye, “Max-sum diversification,
monotone submodular functions, and dynamic updates,” ACM Transac-

tions on Algorithms (TALG), vol. 13, no. 3, p. 41, 2017.
[24] B. Liu and H. V. Jagadish, “Using trees to depict a forest,” VLDB, vol. 2,

no. 1, pp. 133–144, 2009.
[25] A. Deshpande and L. Rademacher, “Efficient volume sampling for

row/column subset selection,” in Foundations of Computer Science

(FOCS), 2010 51st Annual IEEE Symposium on. IEEE, 2010, pp.
329–338.

[26] N. Anari, S. O. Gharan, and A. Rezaei, “Monte carlo markov chain
algorithms for sampling strongly rayleigh distributions and determinantal
point processes,” in Conference on Learning Theory, 2016, pp. 103–115.
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