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ABSTRACT will always be a better choice when compared to B, C, D and E with

Recent research on skyline queries has attracted much interestin Qeing_an alternative if he/she wants to _tradeoff quality for pric_e.
database and data mining community. Given a database, an objfSWering such preference queries [14] is one reason why skyline
belongs to the skyline if it cannot be dominated with respect to thgomputation has emerged as a hot research topic.

given attributes by any other database object. Current methods have

only considered so-called min/max attributes like price and quality 6
which a user wants to minimize or maximize. However, objects can
also have spatial attributes like x, y coordinates which can be used 57 *E

to represent relevant constraints on the query results. In this pa-
per, we introduce novel skyline query types taking into account not
only min/max attributes but also spatial attributes and the relation-
ships between these different attribute types. Such queries support a

micro-economic approach to decision making, considering not only 2 - =B D
the quality but also the cost of solutions. We investigate two al-
ternative approaches for efficient query processing, a symmetrical 1 A c

one based on off-the-shelf index structures, and an asymmetrical
one based on index structures with special purpose extensions. Our

o 2 4 6 8 10
experimental evaluation using a real dataset and various synthetic x
datasets demonstrates that the new query types are indeed meaning - - — -
ful and the proposed algorithms are efficient and scalable. (a) Location of the 6 hotels in spatial dimensions x and y
1. INTRODUCTION 350
Recent research on skyline computation has attracted much in- | _ | o

terest in the database community [1, 2, 4, 14, 20]. Given a set of
attributes, and a databagk an object; is said to be in the skyline

of D if there is no objecp in D such thap is as good or better in

all dimensions and better in at least one dimension. If there exists
such ap, then we say thaj is dominated by or p dominates;.

ExaMPLE 1. Consider the six hotels listed in Table 1. If we com- JON non-profitable region
pare the quality of these hotels based on the price and quality at- 50 A
tributes as shown in Figure 1(b), then we can see that hotels A and
F are the only two skyline points among the six hotels. This is be- 1 2
cause hotels B, C, D and E are all dominated by hotel A in terms of
quality and price.

3.
quality

(b) Location of the 6 hotels in min/max dimensions quality
and price

From a customer’s perspective, the skyline of a set of hotels is
useful when selecting a hotel to stay since it is obvious that hotel A Figure 1: Spatial and Min/Max Attributes of Hotels
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Hotel X y | quality | price

A 258 1 1 80.2

. . . - . B 3 2 2 150
Permission to copy without fee all or part of this material is granted provided C 4 1 2 250
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publishe:r, A'CI,JVL ' au pecial permisst h'Iaable 1: Six hotels with their spatial locations, quality and price
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Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09. Besides quality and price, however, spatial location is also an im-



portant aspect that affects customer decision. Going back to ourlnspired by the above motivating applications, we call this new
running example, if the customer is attending a conference at léamily of query types considering the relationship between min/max
cation (8,2) on Figure 1(a), then he/she might consider staying end spatial attributesjeighborhood dominant querigdlHDQs).
hotel D although it is not in the skyline in term of quality and price.In order to process these NHDQs efficiently, this paper explores
Note that unlike the quality and price attributes in which “good” andwo alternative approaches. The symmetrical approach treats both
“better” are defined right from the start, the preferred values for amin/max and spatial attributes as equal and indexes them together
tributesx andy can be determined only with respect to some giverin one R-tree. This approach is essentially the same as the approach
reference point. To distinguish these two types of attributes, we withken by [11] which shows that their method is flexible enough to
call attributes such aguality and price min/max attributes and deal with many variants of the skyline problems. However, NHDQ
attributes such as andy spatial attributes. queries have a non-symmetrical nature. While the spatial dimen-
While previous research on skyline queries has investigated tlséons are used for capturing neighborhood information, the min/max
perspective of a customer who wants to find a good trade-off belimensions are used to compute the dominant relationship. There-
tween hotel price and quality, minimizing the price for a given qualfore, we also propose an asymmetrical approach in which an R-tree
ity, our research is motivated by the hotel management point d@fidex is built only on the min/max dimensions, and the spatial infor-
view. The objective of a hotel manager is to maximize the pricenation is captured as bitmaps which are associated with the R-tree
(and consequently, the profit) for a given quality within certain connodes.
straints given by the price and quality of competing hotels and their The contributions of this paper are as follows:
proximity. Thus, a hotel manager may want to answer the following

types of queries: e We introduce three novel types of skyline queries, which we

call neighborhood dominant querieshat exploit not only
min/max attributes but also spatial attributes. These queries
support a micro-economic approach to decision making, con-
sidering not only the quality but also the cost of solutions.

1. For my hotelg at location {,y), what is the nearest hotgl
that dominateg in the min/max dimensions? We callthe
nearest dominator of @nd the distance between them the

nearest dominator distanaenoted asdd(q). e To efficiently process the proposed neighborhood dominant

. Let us assume that, to run a hotel profitably, the management
must charge prices of at least $250, $210, $180, $140 and
$100 for1t, 274 37 4" andst" class quality, respectively. N

queries, we present symmetrical as well as asymmetrical meth-
ods, based on standard or extended index structures.

Our experimental evaluation on a real dataset and on a variety

Which hotelq is profitable according to that constraint while
having the largestdd(q), i.e. has the largest spatial distance
from all hotels who dominate it in the min/max dimensions?

of synthetic datasets demonstrates that the new query types
produce meaningful results and the proposed algorithms are
efficient and scalable.

3. Given the above profitability constraint and a distance thresh- 114 rest of the paper is organized as follows. Section 2 surveys

old 4, find a hotelg such thatudd(q) > ¢ and the difference 4 rejated work and Section 3 gives the problem statements. In Sec-
between the price charged and the minimal profitable price g5, 4 and Section 5, symmetry, asymmetry approaches on neigh-
the smallest. borhood dominant queries are presented respectively. We give our

) . ._experimental results in ion 6. W ncl h r with a in
ExXAMPLE 2. In Figure 1(a), the nearest dominator of hotel B is gegt?on7e tal results in section 6. We conclude the paper with a

hotel A while the nearest dominator of hotel D is hotel C. We can see

that ndd(D) > ndd(B) althoughB dominatesD in the min/max

attributes. The above profitability constraint is represented as 2 RELATED WORK
2.1 Skyline

plane in Figure 1(b). Hotels above this plane are profitable, other
are not, i.e. only hotels C and D are profitable. Sine&i(D) >
ndd(C), hotel D is the answer for the second example query. As- The skyline computation originates from the maximal vector prob-
sumings = 4.5, hotel E will be returned for the third query, since lem in computational geometry, proposed by Kung et al. [3]. The
its nearest dominator is A with a distance of 4.6 and E’s distance talgorithms developed [9, 15] usually suits for a small dataset with
the profitability plane is the smallest among all hotels whose nearespmputation done in main memory. One variant of maximal vector
dominator distance is not smaller than problem, which is related to but different from the notion of thick
skyline, is themaximal layersproblem[10, 16] which aims at iden-

To illustrate that the above query types are important in a broatifying different layers of maximal objects.
class of applications, let us discuss a second motivating scenario. ABorzsonyi et al. first introduce the skyline operator over large
survey of a group of consumers is done with their age, salary pldatabases [14] and also propose a divide-and-conquer method. The
the weight and price of the notebook they owned being recordethethod based on [3, 12] partitions the database into memory-fit par-
In this case, the age and salary are the spatial attributes while ttigons. The partial skyline objects in each partition is computed
weight and price of the notebook are the min/max attributes. Asing a main-memory-based algorithm [15, 9], and the final sky-
consumely with a largendd(q) own a notebook which is compa- line is obtained by merging the partial results. In [4], the authors
rable to many other consumers with similar age and salary. Obvyproposed two progressive skyline computing methods. The first
ously, a notebook manufacturer will be interested to find notebookmploys a bitmap to map each object and then identifies skyline
in the market which can cater to the biggest age-salary group $slarough bitmap operations. Though the bit-wise operation is fast,
that he/she can build a similar or a slightly better one to target thte huge length of the bitmap is a major performance concern. The
same group as well. However, this have to be done within the profiecond method introduces a specialized B-tree which is built for
constraint which correspond to the second query in the hotel examach combination list of dimensions that a user might be interested
ple. Alternatively, he/she might choose to incur some minimizeth. Data in each listis divided into batches. The algorithm processes
loss so that the notebook manufactured can cater to the need oéach batch with the ascending index value to find skylines.
sufficiently large salary-age group to extend his/her customer base Kossmann et al. present an online algorithm, NN, based on the
This correspond to the third query in the earlier example. nearest neighbor search. It gives a big picture of the skyline very



quickly in all situations. However, it has raw performance wherdimensions of the dataséf. Given an objeckh € H and a hy-
large amount of skyline needs to be computed. The current mgserplane P in the space oD, we sayP dominatesh, P > h if
efficient method iBBS (branch and bound skyline), proposed there exists a poinp in the planeP, such thatp = h in min/max
by Papadias et al., which is a progressive algorithm to find skylinattributes. m|
with optimal times of node accesses [2, 11]. Balke et al. [19] in their
paper show how to efficiently perform distributed skyline queries In the above definition, hyperplarfe is calledprofitability con-
and thus essentially extend the expressiveness of querying currstraint, which works as the input of a microeconomic query for eval-
Web information systems. They also propose a sampling schemating the degree of profits.
that allows to get an early impression of the skyline for subsequent
query refinement. Problem 2: Least Dominated, Pofitable Points Query (LDPQ)

. . .. Let S be a set of spatial dimensions afitibe a set of min/max
2.2 Microeconomic Data Mmmg dimensions of the dataséf. Given a hyperplane? 2 in the space

The microeconomic approach to data mining has been introducedi D, find the points € H,

by Kleinberg et al [7] formalizing the optimization problem of en-
terprises based on data allowing the enterprise to predict the utility 1. P > t.
of a customer w.r.t. a chosen decision. [7] focuses on a special . )
class of such optimization problems, so-called segmentation prob- 2- There does not exist any other poipts: 1 — {} such that
lems, and shows that all discussed segmentation problems are NP- P satisfies (i), andndd(p)[” > |ndd(t)|
complete. [6] also shows how sensitivity analysis of the microeco-
nomic optimization problem can distinguish interesting from unin- . ) ) ) ) =
teresting changes of the decision of the enterprise. In [7], the sameProblem 2 aims to find those objects which are profitable based
authors investigate segmentation problems in more details. As 8f aprofitability constraint and meanwhile locate in the area with
approximate algorithm for the catalog segmentation problem, thd})OSt competitive advantage i.e. cover the biggest area. While most
outline a sampling-based algorithm (enumerating and measuring §fmpPanies will like to ensure profitability, there are also companies

possible partitions of the customers in the sample) and prove proW-hiCh like to take some minimized loss in order to build a larger

abilistic bounds for its result quality and runtime.

customer base. This corresponds to the following query.

The existing methods on microeconomic data mining mainly fo- o . )
cus on the efficiency issues of extracting interesting patterns froffoblem 3: Minimal L oss and Least Dominated Points Query
raw data. As far as we know, the only attempt to link microeco ML2DQ)

nomic data mining with dominant relationship is in [8]. However,

Let S be a set of spatial dimensions afdbe a set of min/max

only min/max attributes are being considered. As shown in this pg_imensi_on_s of the datasét. Given a threshold and a profitability
per, spatial dimensions add a new level of complexity and power fgPnstraint in the form of a hyperplang, find the pointt, ¢ ¢ H

the analysis of dominant relationship.

3. PROBLEM STATEMENTS

Let S be a set of spatial dimensions afidbe a set of min/max
dimensions of the dataséf.

DerFINITION 1. Dominating Relationship

Let D be a set of min/max dimensiohof the dataset, p =
(p1,...,pa) € H dominatesanother objecy = (q1,...,q4) €
H, denoted ap > ¢, if p; < ¢;(1 < i < d) and at least for one
attribute say thejth attribute(! < 5 < d), p; < ¢;. On the other
hand,q is a dominated objecp is a dominator of;. a

DEFINITION 2. ND(q), ndd(q)

Letp, ¢ be two points inH such that 1) dominateg, 2)among all
points that dominate, p is nearest tg; in the space of. We callp
the nearest dominator af, N D(q). We will usendd(q) to refer to
the distance betweenand N D(q). O

such that
1. ndd(t) > ¢

2. There does NOT exist any other poipt& H — {t} such that
p satisfy (i) and distance qf to the planeP in the min/max
dimensional space is less than the distancetofP.

a

Note that LDPQ and ML2DQ are in fact constrained optimiza-
tion problem and are the dual problem of each other. LDPQ hope
to maximizendd(q) while satisfying the constraint that the solu-
tion must come from the profitable region. ML2DQ on the other
hand aims to minimize loss (i.e. the distance going into the non-
profit region) while satisfying the constraint enld(q). In addi-
tion, it should also be easy to define a topersion of LDPQ and
ML2DQ which can easily handle by our algorithms with some triv-
ial changes.

As a side note, it is also possible to define LDPQ and ML2DQ
using an analogous conceptndd(q) call further dominating dis-

We can now formally define the queries that we will look at ingance of g, fdd(q). The distancefdd(q) represents the largest

this paper.

Problem 1: Nearest Dominators Query (NDQ)

Given any arbitrary objectin H, find its nearest dominatd¥ D(q).
O

DEFINITION 3. Hyperplane Dominating Relationship
Let S be a set of spatial dimensions ade be a set of min/max

distance such that any point within a distancefdfi(q) is domi-
nated byg. This concept is a more aggressive measure compared to
ndd(q) which only guarantee that all points withitdd(¢q) cannot

2Although we use a linear hyperplane as the constraint here, other
non-linear constraints can easily be adopted as long as we have a
way to estimate the nearest/furthest distance between the constraint
and a point or a minimum bounding box. Non-linear constraint can
also be approximated by piecewise linear splines.

The original definition of dominating relationship [14] is based on’While we use only the nearest dominator in our definition here,
the minimum or maximum condition, that is, for corresponding dithe proposed techniques in this paper is still valid even if we al-
mension, the smaller/larger the value, the better the object in thisw the user the flexibility of using the distance to the nearé&t

dimension. Here without loss of generality, we adapt to the minidominators. We have however avoid doing so in order not to add

mum condition.

unnecessary complexity to the description.



dominateg. The two concepts ofidd(q) and fdd(q) are however LEMMA 4.3. Case 3
very similar and all algorithms that applied farid(q) will be ap-  Given a pointp = {ps1, ..., p~ } and an MBR,R, all points in R
plicable tofdd(q). As such, our studies will only focus omdd(q)  will dominatep if RZ, < p; for all min/max dimensiona

for thi r. . . . . . .
orthis pape PROOF The point with worst dominant power in this case is
D D

at{R2,...RL;,...RDx} which still dominatep. Furthermore, all
4. SYMMETRICAL METHODS other points in the MBR will dominat¢R.,,...R;,...R0x }. By

In thi§ section, we will first Iook. at a symmetrical approach totransitivity, all points inR will definitely dominatep. [J
answering the three types of queries that we have defined. In this
approach, we treat both types of dimensions to be the equal andrigyre 2 Jists the three cases corresponding to Lemma 4.1, 4.2
build an R-tree that index the points based on all the dimensions. A§q 4.3 respectively. Note that Case 1, Case 2 and Case 3 are in-

mentioned in [11], this approach is applicable for many variationgeasing restricted version of the previous case and as such in our
of the skyline problems. We will briefly touch on R-tree here toy14orithm, they will be handled in reverse order.

set the context for discussion. Interested readers can refer to [5] for
more details on this popular indexing structure. DEFINITION 4. MinDist(R,p)

An R-tree is a height balanced tree in which each node is a Mifhe minimum distance between an MBRand a pointp in the
imum bounding box(MBR) that most tightly bounds the MBRs ofgpatial dimensions is defined as:

its children nodes. This property applies recursively for all nodes >

in the tree until the leaf nodes where MBRs most tightly bound MinDist(R,p)= lps — n.|2

a set of spatial objects. In & dimensional space, an MBRR, i=|D|+1

can thus be represented by two poifits = {R1,.., Rin} and where

R, = {Ru1, .., Run} whereR;; and R,; is the lower bound and ri = RS if p; < RS,

upper bound value for the MBR along dimensiaespectively. We ri = R>,ifp; > R>; and

usesymmetrical R-treeto refer to an R-tree which is built on both r; = p; otherwise. 0O

spatial and min/max attributes. The MBRs in a R-tree satisfy the

following property as proven in [13] which will be useful for our  The algorithm first starts from the root MBR of the R-tree and
algorithm derivation later on. places its children MBRs into the heap by removing those that do
PROPERTY 4.1. MBR Face Property not correspond to any of the three cases. Within the heap, the MBRs

Every face of an MBR in an R-tree contain at least one pointy '€ ordered based on two criteria:

Since we need to distinguish the spatial attributes and min/max 1. All MBRs corresponding to Case 3 are ordered before all
attributes of the symmetrical R-tree in the context of our study, we MBRs corresponding to Case 2 while all MBRs from Case

will assume for ease of discussion that the fif3f attributes are the 1 are ranked last.

min/max attributes and the remaining§| attributes are the spatial

attributes. To further ensure clarity, we will ugg;, RZ; to rep- 2. With each group, MBRs with smaller MinDist gocomputed
resent the lower bound and upper bound of dimensidrit is a using spatial attributes are ordered before MBRs with larger
spatial attribute andk?, RZ, to do so if it is a min/max attribute. MinDist.

As and when needed, we will ug&’, R to represent the whole - _ o
set of lower bound and upper bound values for the spatial attributesThis is then repeated recursively beginning from the MBR at the

of RandRP, RP for the min/max attributes. top of the heap again by taking its children MBRs and inserting
. . those that potentially or definitely domingteinto the heap. The
4.1 NDQ with Symmetrical R-tree algorithm maintains a variablBest which is initially set toco and

Given a pointp in the databaséf, our algorithm for finding its are updated based on the following two rules:
nearest dominator is based obest first traversal of the nodes in
the symmetrical R-tree. In this approach, a heap is maintained for
storing every MBR,R that could potentially or definitely contain a DEFINITION 5. MaxDist(R,p)
point that dominateg in the min/max dimensions. The maximum distance between an MBRand a pointp in the

LEMMA 4.1 Case 1 spatial dimensions is defined as:

Given a ppingn = {p}j, .y DN} angl an MBR_R, somepqints jnR MaxDist(R,p)= pi — n-|2
could dominatey if R;; < p; < Ry; for all min/max attribute. i=|Dl+1
PROOF We take the extreme case where there is a pointat  where
{RA,..., R} and sinceRf < p; for all min/max attribute, the ri = Ry if pi > (R + R3;)/2,
point at that position will dominate. [ ri = R, otherwise. a

LEMMA 4.2. Case 2

Given a poinp = {p1, ..., p~ } and an MBR R, somepoints inR
would definitely dominatep if RS < p; for all min/max attribute
¢ and there exist exactlyD| — 1 min/max dimensiong such that

D
Ruj < ps- . MaxDist(R,p) here corresponds to the furthest distance between
PROOF. Based on Property 4.1 stated .egrlleDr, therg muslgbeﬁand any point inR. The rationale for this is that although there
point on the face containing the diagonal joinipg;y.......Rij .- Rin} exists one point irR that dominateg, we do not know its distance
to {Rf},...RL;....Rix }. Since the point with the worst dominant to p. Thus we can only assume that the point is furthest away from
power is at{Rﬁ,...,R%,...,RﬁV} which still dominate® based on p in the MBR and seBest to such a value only if it is still smaller
our condition, there must be at least one poinfitthat dominate thanBest.
p. O

Rule 1: If current MBR, R, being processed corresponds to Case 2
with respect tg then we assigmBest to be the minimum oBest
and MaxDist(R,p).
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DEFINITION 6. MinMaxDist(R,p)

The MinMax distance between an MBRand a pointp in the spa- ALGORITHM 1. A Symmetrical NDQ Method.

Input: An R-treeR of H, query pointp

tial d_|menS|qns is defined as: Output: NDQ answer infl
MinMaxDist(R,p)= > Method:
. 2 2
|D|ﬂ2}€gz\r(|pk rmgl”+ 4 [pi = rMi[) 1: Best := oo; E={};
IDI+1<ish 2:  Insert the root MBR of R-tree in the heap;
where 3:  WHILE exist MBRs in hﬁa@O
_ S s S S 4 Extract an MBRR in heap;
M = Rlsk' if pr < (R, + Rur)/2, 5 IF MinDist(R,p) > Best OR R notin all 3 cases
rmy = Ryy, otherwise. 6: Exit; % Handle next R on heap
and 7: ELSE IF R is Case 3 MBR and/inMaxzDist(R,p) < Best
rM; = Ry, ifp; > (Ri, + R5,)/2, 8: Best = MinMaxzDist(R, p);
rM; = Rfi otherwise. O 9 ELSE IF R is Case 2 MBR and/axzDist(R,p) < Best
10: Best = MaxzDist(R,p);
Rule 2: If current MBR, R being processed corresponds to Case 311: IF Ris not a leaf MBR
with respect tg, then we assigiBest to be the minimum ofBest 12 FOR each childc of R DO

and MinMaxDist(R,p). 13 IF cin one of 3 cases, addto heap;
' 14: ELSE FOR each pointz of R DO

. . L 15: IF z is dominated by, addx to £
MinMazxDist(R, p) here corresponds to a minimized upperyg: Compute nearest dominatgrmong points irf;

bound on the distance between a poinkiandp. If MinMazxDist  17: Outputy:
is smaller thanBest, then it is guarantee tha® contains at least
one dominator op which have a distance shorter th&ast. Note
that MinM ax Dist can only be applied for MBR corresponding to
Lemma 4.3 because it makes use of the property that each face o
the R contains at least a point and this is only true if all pointstin
dominatep.

Intuitively, the variableBest thus stores the minimum upper boun
on the distance between a point that dominataadp itself. Thus
any MBR, R that hasM inDist(p, R) greater tharBest will never
contain the nearest dominatorand can be removed without fur-
ther processing. Also, iR is not within any of the three cases we
shoyvn in Figure_ 2, then it can be removed as well since no pointsin ;- Potentially Dominated MBRs (PdMBR)
Ryrvrllliaeglegro?i(t)tq]r;n?ég)ﬁinates when there is no more MBRs in the  11€Se are the MBRs that are potentially dominated by some
heap. Note that iBest remains ato at the end of the algorithm, points and are candidates for the output answers.

f'l'o simplify discussion, we will assume that skyline points with
respect to the min/max attributes had been detected and a scan through
uch a list had been done to find those points that are in the valid
egion. If any of these point are in the skyline, then the solution is
found and no search need to be done.
Handling LDPQ is more complex than handling NDQ as two
types of MBRs must be monitored during the search.

this means there is no nearest dominatoryfare. p is a skyline 2. Potentially Nearest Dominator (PnrMBR)

point in the min/max dimensional space. These are the MBRs that potentially contain the nearest dom-
The pseudo-code a¥ DQ algorithm is listed as Algorithm 1. inators for those points in PAMBR.

4.2 LDPQ with Symmetrical R-tree Note that the set of PAMBRs and the set of PnrMBRs might not

Unlike NDQ in which a specified poing is given, LDPQ does be mutually exclusive since the points in PnrMBR are not restricted
not focus its search on any particular portion of the space formed iy only points in the valid region. For an MBR2, we denote
the spatial attributes. Instead a profitability constraint is given in thall its potential dominating MBRs aBnr M BR(R2) and for each
form of a planeP in the space formed by the min/max attributesMBR R1 we denote all the MBRs that it can potentially dominate
Since we assume all attributes are min attributes, it is assumed tkat PAMBR(R1). We determine that the dominant relationship be-
P is anti-correlated with respect to all the min attributes else we wilween MBRs from PdMBR and PnrMBR can be separate into 3
be able to always choose the minimum value otherwise. GRien cases based on the following lemmas.
the min/max dimensional space is divided into two regions, prof-
itable and non-profitable. LEMMA 4.4. Case 1
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Given two MBRsR1 and R», somepoints in R1 could dominate
somepoints inRs if R17 < R2E for all min/max attributei.

PROOF. Assuming this is not the case, théti? > R2Z for
somes. All points in Ry will always be better (i.e. lower) thaR1
in the i*" dimension making it impossible for any point i1 to
dominate them. []

LEMMA 4.5. Case 2

Given two MBRsR1 and Rz, somepoints in R1 definitely domi-
nateall points inRz if R1%; < R2f; for |D| — 1 min/max attribute
iand R1j; < R2] for the remaining min/max attributg

PrROOF. From Property 4.%, we know that each face of R1 will
consist of at least 1 point. We will prove our lemma by identify-
ing a face fromR1 which definitely consists of a point that dom-
inates all points inR;. Let dimension 1,2,.,...4-1,j+1,..|D| be
the set of dimensions in whicR1%; < R2f; for | D| — 1 min/max.
Let dimensiong be the dimension in whic®1]; < R2[. Con-
sider the face of21 which contain the pointg1;7, ..., R1/7,) and

(R131, ..,R1{},..., R1] ). Let us call this face ofz1, X. We
claim that any point onX will definitely dominates all point in
R2. This is because the weakest dominant point®ris (R12;,

o RIS, lelm) while the strongest dominant point i, is
(R2D, ..., R2D;, .., szm) and based on the conditions we set,
we can see that the weakest dominant poinKowill still dominate
the strongest dominant point R,. [

LEMMA 4.6. Case 3
Given two MBRsR1 and Ry, all points inR1 will definitely dom-
inate all points in R» if R1L, < R2f for all min/max attribute

ui
2.

PROOF Since the upper bounds @1 are all smaller than the
corresponding lower bounds @t., this means that all points in
R, will be dominated by any point ifR1 even if it is located at
(R231,...R2 p). O

ulse

eachR2 in PAMBR, we keep track of two variables as threshold

values for pruning and comparing with other MBRs from PdMBR.

1. Minimum Lower Bound, nddmi»(R2)
Let ND,,;»(R2) denoteR1 € PnrM BR(R2) which have
theminimum value among théower bound distanceof the
MBRs in PnrM BR(R2) to R2. The variableidd,,;»(R2)
represent the lower bound distanceftff to R»

. Minimum Upper Bound, ndd,.,(R2)
Let ND,,us(R2) denoteR1 € PnrM BR(R2) which have
theminimum value among thepper bound distanceof the
MBRs in PnrM BR(R2) to R2. The variablewdd,, ., (R2)
represent the upper bound distancerdfto R»

We will now explain how these two variables are update accord-
ing to the three cases and how pruning will be done accordingly.

DEFINITION 7. MinMinDist(R1,R2)

Let CORNERR)={p : p = {P|p|+1, PN}, i = R}, or p;
R?; } denote the set of corners for an MBR, The MinMinDist
between two MBRs21 and R2 based on their spatial attributes is
defined as:

MinMinDist(R1,R2)=
peE
DEFINITION 8. MaxMaxDist(R1,R2)
Let CORNERR)={ p : p = {pp|+1,--» PN}, pi = Rj or p;
RZ; } denote the set of corners for an MBR, The MaxMaxDist
between two MBRs21 and R2 based on their spatial attributes is
defined as:

MinDist(R1, p) |

min
CORNER(R2)

MaxMaxDist(R1,R2) m|
P

= MaxDist(R1,p)
ec )

max
ORNER(R2

Here, MinMinDist(R1,R2) and MaxMaxDist(R1,R2) are easily
understandable corresponding to the minimum and maximum dis-
tance between any pair of points from the two different MBRs re-

Figure 3(a), 3(b) and 3(c) depicts three examples to illustrate thapectively.
three cases that are stated in Lemma 4.4, 4.5 and 4.6 respectively.
Again, it is easy to see that the conditions for Case 1, 2 and 3 aRule 1: Update for Case 3

increasingly restrictive. Any pair of MBRR1 and R2 that belong
to any of the 3 cases will be monitored.

If R1 and R2 follow Case 3, thendd..;»(R2) will be updated
with MinMinDist(R1,R2) if the current value ofidd,.ip(R2) is

The above three cases provide different pruning types using difigher. This is becausedd.:; (R2) is suppose to contain the lower
ferent spatial measurements computed on the spatial attributes. Bound value ohwdd(p) for anyp in R2. For the upper bound value

“Note that although we are processing MBRs consisting of bo

ddmub
spatial and min/max dimensions while dominant relationship is on:é2

based on min/max dimensions, this property is still true as we a

(R2), we will use a different function, MaxMinMaxDist(R1,
2) and updatedd,».»(R2) with the value of MaxMinMaxDist(R1,
) if MaxMinMaxDist(R1,R2) is smaller than the current value of

projecting the points into a lower dimensional MBR consisting of2ddmus(R2)
only the min/max dimensions when we do the dominant reasoning.



DEFINITION 9. MaxMinMaxDist(R1,R2)

Let CORNERR)={ p : p = {p|p|+1s--»PN}, Pi = Ry orp; =
RS, } denote the set of corners for an MBR, The MaxMin-
MaxDist between two MBRs?1 and R2 based on their spatial
attributes is defined as:

ALGORITHM 2. A Symmetrical LDPQ Method.
Input: An R-tree off, a hyperplaneP

Output: LDPQ answer inH

Method:

1: heap = (); Best = 0;

%heap ordered by decreasimgld,,,;» (R)
Retrieve the first level of MBRs in R-tree;
FOR each MBRR in the first level

MaxMinMaxDist(R1,R2)=
MinMaxDist(R1,p) |

max
pECORN ER(R2)

oakrwn

Intuitively, MaxMinMaxDist(R1, R2) computes an upper boundg:
on the distance between any pojnin R2 to a nearest point i1 7;
thatdefinitely dominategp. Note that we can use such a measures:
because we know thail points in R1 definitely dominate R2 and 9:
thus each face of R1 definitely contains a point that domlnates]é)
point in each face of R2.
Rule 2: Update for Case 2 13
If R1 and R2 follow Case 2 (but not Case 3), the update of 015
nddmi(R2) is similar as in Rule 1 above. Fadd,,.,(R2) how-  16:

ever, since we are only sure that there are some poinflithat gf

19:

dominate all points inR2, we can only use MaxMaxDist(R1,R2)
as the minimum upper bound and updatél.,,.., (R2) with Max-

12.

Initialize(R), put R into theemplist;
IF R intersect profitable region
Insert R into heap;

WHILE heap not emptyDO

RetrieveR from top ofheap;
Best = max(Best,ndd,1(R));
FOR each MBRR' in thetemplist, heap DO
Remover, ND,,;,(R) from all PAMBRE'), PnrMBR®’);
IF R equals to ND,,; (R’)
Select a new N, for R’ from the children of R;
IF ND,,,;5 (R) equals to ND,;, (R’
Select a new NR;;, for R’ from the children of N, ;5 (R);
FOR each childr of R, NDmIb(RPO
Initialize(r), putr into thetemplist;
PdMBR= Children ofR U PAMBR(ND,,;5(R));
PnrMBR = Children of NQ,,;5 (R) U PNrMBRR);
FOR eachR2 € PAMBRDO

MaxDist(R1,R2) if MaxMaxDist(R1,R2) is smaller than the currentyq: FOR eachR1 € PnrMBRDO

value ofnddmus (R2). 22: IF R1 and R2 DOES NOT follow all 3 caseOR
MinMinDist(R1, R2)> ndd,,»(R2)
If R1 and R2 follow Case 1 (but not Case 2 and 3), we will not bggé ELSE IF Rl andR2 followCase3 =~ ,
ndd iy (R2)=min(ndd,,;» (R2),MinMinDist(R1,R2));
sure whether the point in R1 dominates any point in R2. As su nddoy(R2)=Min(ndd,p,;, (R2),MaxMinMaxDist(R1,R2)):;

both nddmi»(R2) andndd,..,(R2) cannot be updated. However 57
being in Case 1 mean that R1 cannot be removed as a potential dare-
inator of R2 and could be further expanded unless Rule 4 applies?9:

30:

ELSE IF R1 and R2 follow Case 2
nddy,p (R2)=min(ndd,,;, (R2),MinMinDist(R1,R2));
ndd b (R2)=min(ndd,,.» (R2),MaxMaxDist(R1,R2));
AddR1 into PnrM BR(R2);
31: AddR2 into PdM BR(R1);
Maintain ND,,;, (R2),ND,,, 5 (R2);
IF R2 intersect profitable region

Rule 4: Local Pruning
Given R1 and R2, R1 can be removed from PnrMBR(R2) if Mln-33
MinDist(R1,R2)> ndd...»(R2). The reason is thakl could never 34 Add R2 into heap;
contain the nearest dominator for any pointdifsince its nearest 35: Performglobal pruning on heap;
point to R; is already at a greater distance thafu,,., (R2). 36: OutputBest and best poinp;

Rule 4 is a local pruning in the sense that we are just pruning
off the potential nearest dominators of R2. We next describe how
a global pruning can be done for PAMBR. We maintain a variablesre expanded by retrieving their children nodes. This is done in two
Best which is always updated as the highestd,...;,(R2) for all  phases.
R2 € PAMBR that had been processed. Our pruning go as follows: First, we need update the variables of some MBRs in the temp

list and the heap (line 10-15). Since R and N R) are ex-
Rule 5: Global Pruning panded to their children, they can not be potential nearest domi-
An MBR R2 will be removed fromPdM BR as a potential answer nator or dominated MBRs any more. For each MBRin the temp
if nddmus(R2) < Best. This is because all points iR2 can never list, we need remove R and NP, (R) from all PdM BR(R') and
have a nearest dominator that is further away tBant. O PnrMBR(R'). If R happened to be the NR,(R'), we need
select a new ND,;, for R’ from the children of R. If ND.;»(R)

The pseudo-code of LDPQ algorithm is listed as Algorithm 2happened to be the ND,(R’), we need select a new N, for
To perform best first search, the algorithm maintain a heap whicR’ from the children of ND,;»(R). Once the ND,;;, is changed,
store allR in PAMBR sorted indecreasingvalue ofndd..;»(R).  the value of the variabledd,..;»( R) need to be changed at the same
Initially, MBRs at the first level of the R-tree are retrieved. For eachime. Obviously, all MBRs in the heap need to be updated also. To
MBR, R, the function Initialize() is called to compute the following simplify the implementation and keep one copy for the six variables
six variables: PAMBR(R), PnrMBR(R), NR:(R), ndd..s(R),  of each MBR, we can associate a unique ID with each MBR, and
ND,u(R) @andndd...»(R). This is done by comparing against just keep the IDs in the heap. In this case, only the temp list need to
the rest of the MBRs. The algorithm maintains a temp list to keep alie updated.
MBRs with their six variables. IR intersect the profitable region,  Next, we must compute the potential dominating and dominated
it is then inserted intdeap. MBRs for the children nodes dt and ND,,;, (R) respectively.Line

Once all the first level MBRs are processed. The algorithm theb6-17 is used to initialize the children & and ND,,;»(R). After
access the top MBRR, from the heap and updafgest if this give  this, the dominating relationship inside ttf& or ND,,,;(R) was
a better result i.e. the nearest dominator is guaranteed to be furtlvaptured. For the children of NR,(R), the MBRs that are poten-
away thanBest for some point inR. Next, R and ND,,;5(R) ® tially dominated by them are the children Bfand all those MBRs

®This is the node that potentially dominate all pointsirnwith at  least distancedd,.;, (R)) as define earlier



which are potentially dominated by NR»(R). These MBRs are

added into PAMBR at Line 18. Line 19 update PnrMBR, the set qf'—GO_R'THM 3. A Symmetrical ML2DQ Method.
. . . . nput: An R-treeR of H, a hyperplaneP
MBRs that potentially dominate the children &f using the same Output: ML2DQ answer inFl

reasoning. Line 20-34 then take each pair of MBRs from PdAMBRyethod:

and PnrMBR and compute the values of the six variables by con-

sidering the three cases of dominating relationship that we discubs ieap = 0; Best = oo,

earlier. Line 35 then perform a global pruning removingfalh the
heap withndd,,.»(R2) < Best.

The next item on the heap is then retrieved and the above proce-
dure is repeated until there is no more items in the heap. The objex:t
that last update the variablgest will then be output. 6:

4.3 ML2DQ with Symmetrical R-tree 8:

We next look at the handling of ML2DQ using the symmetricalg: )
R-tree. The query consists of a distance bodiraihd a profitability 74
constraintP. The aim of this type of query is to find a poiptn the 12
unprofitable region bounded by and the min/max attribute axes 13:
such that the distance t8 is minimized while satisfying the con- 14:
straints all thaidd(q) < é. Note that the use of ML2DQ is neces- 15
sary only if no points; in the profitable region satisfydd(q) < 4. 161
This can be trivially checked by issuing a LDPQ query right fromy g:
the start. As such in this section, we will only handle the case ifg:
which the top answer come from the non-profitable region. 20:

To answer ML2DQ, we adopt the same best first search approagk
as LDPQ. The pruning comes in three forms. First, only MBRs in22:
tersecting the non-profitable region are considered for reason mej;,
tioned earlier. Second, MBRs with nearest dominators that are legg.
than a distance of are removed. Third, MBRs which are too far 25:
away fromP to be the result are also removed. 26:

Performing the first form of pruning involves trivial geometry 27:
computation which we will not describe here. For the second forg8:

% heap ordered by increasing MinDist(R,P)
2: Retrieve the first level of MBRs in R-tree;
3: FOR each MBRR in the first leveDO

Initialize(R), put R into theemplist;
IF R intersect non-profitable region
Insert R into heap;

7. WHILE heap not emptyDO

RetrieveR from top ofheap;
Best = max(Best,M axzDist(R, P));
FOR each MBRR' in thetemplist, heap DO
Remover, ND,,;,(R) from all PAMBRE'), PnrMBR®’);
IF R equals to ND,,; (R’)
Select a new N, for R’ from the children of R;
IF ND,,,;5 (R) equals to ND,,;, (R’)
Select a new NR;;, for R’ from the children of N, ;;, (R);
FOR each childr of R, NDmIb(RPO
Initialize(r), putr into thetemplist;
PdMBR= Children ofR U PAMBR(ND,,;5(R));
PnrMBR = Children of NQ,,;5 (R) U PnrMBRR);
FOR eachR2 € PAMBRDO
FOR eachR1 € PnrMBRDO
IF R1 and R2 DOES NOT follow all 3 caseOR
MinMinDist(R1, R2)> ndd,,»(R2)
Exit; % Process nexk1
ELSE IF R1 and R2 follow Case 3

ndd b (R2)=min(ndd,,.» (R2),MaxMinMaxDist(R1,R2));

ELSE IF R1 and R2 follow Case 2

ndd b (R2)=min(ndd,,.» (R2),MaxMaxDist(R1,R2));

AddR1 into PnrM BR(R2);
AddR2 into PdM BR(R1);

of pruning, we again separate the MBRs into PAMBR and PnrMB o
and compute various bounds on the spatial distance between i€
MBRs based on the three possible cases of dominant relationshjp AddR2 into heap;

we described for LDPQ. 33: Performglobal pruning on heap;
34: OutputBest and best poinp;

Maintain ND,,,,5 (R2);
IF ndd b (R2) > 6 % Pruning by Constraint

Pruning by Constraint

An MBR R2, can be removed from PdAMBR ifdd,,., (R2) < 0.
Obviously, all points inR2 will never satisfy the constraint that the
nearest dominator must be a distancé afvay.

Global Pruning

To perform pruning, we monitor MaxDist(R,P) for all MBRs in
The third type of pruning is to remove MBRs that are too farPdMBR and maintain the smallest MaxDist among thenBast.

away fromP in the min/max dimensional space and thus can nevese then remove an MBR away from PdMBR if MinDist(R,P)

be among the best result. To achieve this goal, we again need Bast. Note thatBest are initially set tacc.

define the MinDist and MinMaxDist for an MBR, R2 to the plane

P, in time in the min/max dimensional space.

DEFINITION 10. MinDist(R2,P)

The minimum distance between R2 and the pl&re the min/max
dimensional space is the distance of the poi2{} ....R2}, ;) to
the planeP if P does not intersecP else MinDist(R2,P)=0. O

DEFINITION 11. MaxDist(R2,P)

The minimum distance between R2 and the plarie the min/max

dimensional space is the distance of the poiR2{,....R2//)) to
a

The pseudo-code of ML2DQ algorithm is listed as Algorithm 3.
The overall structure of the algorithm is generally similar to the
LDPQ algorithm except for the ordering of the heap and the use of
the two pruning methods i.e. the constraint and global pruning.

5. ASYMMETRICAL METHODS

While a symmetrical approach is attractive because it can reuse
a genericR-tree for supporting other forms of spatial and skyline
queries, it might not always be the best solution since the queries
the planep. that we are trying to handle are asymmetrical by nature; the spa-

As mentioned earlier, since we assume that all attributésame  tial attributes and min/max attributes play different roles and have
min attributes, the plan® will be anti-correlated compared against different characteristics in all the three types of queries.
all the axes of the min/max attributes. Given this fact, the min- In NDQ, it is important to determine dominant relationship for
imum distance between the and an MBR, R2 will be the dis- the query poinp before finding the nearest neighbors among the
tance from{RZfl,...RQﬁDl} to P unlessP intersect R2 in which  dominant points. In LDPQ and ML2DQ, the profitability constraint
case the MinDist is obviously 0. For the same reason, we compufeis only defined in terms of min/max attributes and the dominant
MaxDist(R2,P) to be the distance betwe{elmﬁ,...,R%:l’m} which  relationship must be determined before neighborhood relationship
is the maximum distance for a point R2 to move into the unprof- is evaluated.
itable region away fronP. On the other hand, there is also a difference in characteristic be-
tween dominant relationship and spatial closeness of two points. A



point p that dominates another poigtmight not be spatially close DeFINITION 18. MaxDist(R,p)
even in the multi-dimensional space formed by the min/max at-
tributes. For the spatial attributes however, neighborhood closenessviaxDist(R,p)=
is rather important and much more pruning can in fact be enforced maz{MaxDist(p, MCri), MCr; € MCin(R)} ad
in the early stage of the query answering if higher resolution spatial ) )
informa’[ion is provided. DEFINITION 19. MInMaXDISt(R,p)

In view of this, we will next propose our solution by making use ) )
of anasymmetrical R-tree. Before construction of the tree, a clus- MinMaxDist(R,p)=
tering of the points are first employed in the spatial dimensions by min{MazDist(p, MCri), MCri € MCin(R)} o
grouping the points int& microclusters [18]M C4,...,M Cy. This . — . .
step can be finished by a typical pre-processing algorithm BIRCH.By plugging the_se three new definitions into Algorithm 1, we
[17]. For each microclustedl/C;, we assign a cluster id, and will have an algorithm that answer NDQ based on asymmetrical
keep track of its mean valuéy C;.m and radius,M C;.r which approach.
is the distance betweel/ C';.;m and the furthest pointin the clus- 5 2 | DPQ and ML2DQ with Asymmetrical R-
ter. Given any two microclusterd/C; and M C;, we pre-compute tree
their maximum and minimum distance and store them in a lookup

table As can be seen from the previous section, it is relatively easy to

convert a NDQ algorithm on a symmetrical R-tree to a NDQ algo-
DEFINITION 12. MinDist(MC;, MC;) rithm on a asymmetrical R-tree. This is because for an asymmet-
The minimum distance\linDist(MC;, MC;), between two mi- rical R-tree, the MBR coordinates are maintained for the min/max
croclustersh C; and M Cj is dist(MCi.m, MCj.m) — MCy.r — attributes and as such all dominant inference on the MBRs in the
MCj.r if this is greater than 0, els@/inDist(MC;, MC;) = 0 previous section can be applied. The only difference is that spatial
o inferences on the spatial attributes need different processing strat-
egy. In an asymmetrical R-tree, the microclusters capture higher
DEFINITION 13. MaxzDist(MC;, MCj) resolution spatial information in a bid to prune off search space
The maximum distancé{ ax Dist(M C;, M Cy), between two mi- as early as possible. To adapt Algorithm 2 and 3 in the previous
croclustersM C; and M Cj is dist(M Ci.m, MCj.m)+MCi.r+  section for computing LDPQ and ML2DQ on a asymmetrical R-
MCj.r. O tree, we need to redefine the function MinMinDist, MaxMaxDist

During the construction of the asymmetrical R-tree, the MBRé’jlnd MaxMinMaxDist for two MBRs R1 and R2.

are formed by the min/max attributes while spatial information ar¢)grniTion 20. MinMinDist(R1,R2)

captured in a bitmap of size with bit ¢ representing the absence

and presence a¥/C; in the MBR. MinMinDist(R1,R2)=min{MinDist(M Cr1;,M Cr2;)
DEFINITION 14. MCin(R) MCri; € MCin(R1), MCgra; € MCin(R2)} O

Given an MBR, R, in an asymmetrical R-tree, we use MCi{R)= " ggsentially, given the two set of microclusters that are present
MCpra,...MCrjncin(r) } to denote the set of microclusters thati, \R R1 and R2, we pick a pair of microclusters froRl and
are mark as presentin R. U R2 with the smallest pairwise minimum distance and take such a

Now let us look at how to answer NDQs with an asymmetricaffistance to be MinMinDist.

R-tree. DEFINITION 21. MaxMaxDist(R1,R2)

5.1 NDQ with Asymmetrical R-tree _ :
MaxMaxDist(R1,R2)Fnaz{MaxDistM Cr1:;,M Cr2;)

Given the query poinp, we first define its minimum and maxi- _ ) _ .
mum distance with respect to any microclustér;. MCrii € MCin(R1), MCra; € MCin(R2)} D

MaxMaxDist on the other hand, computes the exact opposite of
MinMinDist. Given the two set of microclusters, it picks a pair
which maximize the maximum distance between them.

Given a microclustedV Crs; from MCin(R2), let us denote
the microcluster inM/Cin(R1) which has the smallest MaxDist
to M Cra; as NNMAX(M Cr2;,MCin(R1)) i.e. we are compar-
ing one single microcluster frod/ C'in(R2) against the whole set
of microcluster inR1 to find the nearest one from R1. We define
MaxMinMaxDist of two MBRs from the asymmetrical R-tree as

DEFINITION 16. MaxDist(p, MC;) follow:
The maximum distance betweeand M C; is define as: . .
*® DEFINITION 22. MaxMinMaxDist(R1,R2)

DEFINITION 15. MinDist(p, MC;)
The maximum distance betweeand M C; is define as:

MinDist(p, MC;) = dist(p, MC;.m) — MCj.r
if dist(p, MC;.m) > MC;.r

0 otherwise. O

MaxDist(p, MC;) = dist(p, MC;. MC;.r. . .
azDist(p, MC:) = dist(p, MCim) + MCir MaxMinMaxDist(R1,R2)=
Based on this, we can redefine the MinDist, MinMaxDist and ~ max{MaxDist( Cra;, NNMAXM Cra;, M Cin(R1)))

MaxDist of an MBR R in the asymmetrical R-tree with respect to a whereM Cre; € MCin(R2)} m|
oint p.
pointp In other word, MaxMinMax estimates the distance between each
DEFINITION 17. MinDist(R,p) microclusterM Cre; € M Cin(R2) to its nearest dominator in R1
based on pairwise MaxDist and then take the maximum one among
MinDist(R,p)= all these pairs to estimate an upper bound on pidid§ all pointsp

min{MinDist(p, MCr;), MCr; € MCin(R)} O  inthe MBR R2.



Once MinMinDist, MaxMaxDist and MaxMinMaxDist are de- spatial pruning is done at finer granularity in the earlier part of the
fined for MBRs in a asymmetrical R-tree, Algorithm 2 in the previ-R-tree search.
ous section can then be used for answer LDPQ query while Algo- Figure 4(c) shows the run time of the three algorithms as the num-
rithm 3 can be used for computing answers to ML2DQ queries. ber of points increases from 20,000 to 100,000. From the results, we
can see that both the symmetrical and the asymmetrical algorithms

6. EXPERIMENTAL EVALUATION are scalable with respect to the size of data sets. However, the asym-

. o . metrical method is more efficient than the symmetrical method
To evaluate the efficiency and scalability of our query processing

algorithms, we conducted extensive experiments. We implemente@.1.2 LDPQ
all algorithms using Microsoft Visual C++ V6.0, and conducted the
experiments on a PC with Intel Pentium 4 2.4GHz CPU, 3G mai
memory and 80G hard disk, running Microsoft Windows XP Pro
fessional Edition. We conducted experiments on both synthetic a
real life data sets.

In this experiment, we evaluated the performance of the three
ngorithms Naive, SYM-LDPQ and ASYM-LDPQ for answering a
LDPQ query. The default data size is 10,000. In this case, the Naive
Mgorithm perform a ASYN-NDQ search for all points in the prof-
itable region and select the point with the highest nearest dominator

6.1 Results on Synthetic Data Sets distance among them. To test the efficiency and the scalability of the

i i . . three algorithms, we choose a profitability hyperplane that roughly
We generate a set of synthetic data. For the min/max dlmensm%mting the data set into two parts of similar size.

we use the data generator that is used in [14] to generate data setgjgyre 5(a) shows the run time of the three algorithms for answer-
with three different distributions:Uniform(Uni), Correlated(Cor) anqng a LDPQ query on six types of data sets. We can find that ASYM-
Anti-correlated(Ant). For spatial dimensions, we generate data sqipp() js always the fastest one among the three algorithms. Among
with two different distributions: uniform(Uni) and clustered(Clu). ihe six distributions, we can see that the computation on the Ant-Clu
The clustered distribution consist of 8 Gaussian distributed clustegg;i; set gives the most improvement from symmetrical method to
which are randomly placed. By combining the three types of dis;qymmetrical method while that of the Cor-Uni data set is the most
tribution for min/max dimensions and the two types of distribution,ggest. This is because: 1) the domination relationship computa-
for spatial dimensions, we obtain 6 different types of data sets: Unjion on the anti-correlated min/max dimensions is the fastest since
Uni, Uni-Clu, Cor-Uni, Cor-Clu, Ant-Uni, Ant-Clu. Asan example, i, his case the number of skyline objects is the largest, and less
Uni-Clu refer to a dataset in which the data is uniformly distributeqyominating/dominated relationship needs to be maintained between
in the min/max d_lmenS|ons and clustered in the spatial dimensionggrg (points). 2) the distance computation on the clustered spatial
We generate 5 different data sets for each of the 6 types and take Hifensjons is the fastest since in this case spatial proximity can be

running time to be average over the 5 different data sets. explored and more pruning can be done in the early stage of query
The default values of dimensionality is 8, data size is 100k anHrocessing.
the default number of microclusters is S@or simplicity, we used Figure 5(b) shows the run time of each algorithm with increasing
the same number of_ mm/max attributes and _spatle}l attrlbute_s. Qﬁmensionality. Here we only show the results on the data sets with
an example, for 12 dimensions, we chose 6 dimensions as min/mgx.cjy distribution for the same reason mentioned earlier. Clearly,
and the other 6 dimensions as spatial attributes. we can find that with increasing number of dimension, the runtime
6.1.1 NDQ of Naive and symmetrical method increases more significantly than
e < o that of asymmetrical method. The difference between the run time
In thls_experlment, we evaluated the efflc[ency of our symmetripg SYM-LDPQ and ASYM-LDPQ increases with dimensionality.
cal algorithm (SYM-NDQ) and the asymmetrical algorithm (ASYM-Ths is again due to the fact that the R-tree is more effective in the
NDQ) for answering a NDQ query. We compare our algorithms,symmetrical approach because of the smaller number of dimen-
with a Naive method which returns the nearest dominator of a poifons peing indexed and because of the fine granularity of the mi-
by perform all pair comparison between the points. croclusters which support effective spatial pruning even with higher
Figure 4(a) shows the run time of the three algorithms for andimensionality.
swering a NDQ query on six types of data sets. Obviously, from Figyre 5(c) shows how the run time of each algorithm scales up
the results, we can see that SYM-NDQ outperforms Naive on a5 the number of points increase. We can find that although both
data sets. This is because pruning can reduce computation for th@gg symmetrical and the asymmetrical algorithms scale linearly, the
MBRs whose MinDist to the query point is greater than the curreny,, time of the asymmetrical algorithm scales better than that of
value of the variable3est. Among the algorithms, ASYM-NDQ ' the symmetrical algorithm. As the number of points increases, the
performs best as expected due to the separate index for differgyymmetrical approach only slightly worsens since smaller number
types of attributes. In addition, R-Trees only achieve high perfolsf gimensions means that the height of the R-tree increase slower

mance for low dimensionality (usually 5), and the R-tree in the  than the symmetrical approach when more points are added.
asymmetrical approach has smaller dimensionality.

Next, we look at the run time of the three algorithms as the num6.1.3 ML2DQ

ber of dimension increases.Since the trends are the same for all Si)\Ne performed similar experiments for ML2DQ queries. We set

data sets, we only show the results on the data sets with Ant-Cle jnnyt distance threshold as the average distance of points to their
distribution as it is the most efficient. We increase the number carest dominator.

dimension from 4 to 12. Figure 4(b) shows the run time of all three Figure 6(a) shows the run time of the three algorithms (Naive,

algorithms. We observe that with increasing number of dimenSio@YM-MLZDQ ASYM-ML2DQ) for answering a ML2DQ query

the runtime of Naive and symmetrical method increases more sig, gjx types of data sets. Figure 6(b) and 6(c) shows the run time of
nificantly than that of asymmetrical method. This is again due t0 thge three algorithms as the dimensionality and the number of points
fact that the R-tree is more effective in the asymmetrical approagficreases respectively. As expected, the asymmetrical approach per-
because of the smaller number of dimensions indexed and becay§gns the best in both the figures for similar reasons as LDPQ.

®In our full paper, varying number of microcluster size from 50 to
100 does not bring about significant changes in performance for 9'2 Results on NBA Data Set

datasets We downloaded from the NBA official website (www.nba.com)
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the Great NBA Players’ technical statistics from 2004 to 2005, ansalary can be estimated by a regression of different technical statis-
downloaded NBA players’ salary information from website: tics. This theory can be represented by our profitability hyperplane,
http://asp.usatoday.com/sports/basketball/nba/salaries/. which can be thought of as a measure for deciding a NBA basketball
The NBA data set has more than 20 attributes, from which wplayer’s payment. Any player under or on this profitability hyper-
chose the following foumin/max attributesthe number of games plane receives a salary that is well-deserved according to his talent.
played(GP), points per game(PPG), rebounds per game(RPG) andn our experiments, the profitability hyperplane was chosen ac-
assists per game(APG). For these attributes, the larger the valuesding to a simplified version of this superstar theory as follows:
are, the better. This mean that playedominates playeB if A’s  0.03*GP + 0.20*PPG + 0.32*RPG + 0.45*APG. We found the top-
attribute values are not less th&'s, and A has at least one attribute 3 LDPQ players as shown in Table 2. While these players are not the
better thanB. We selected weight, height and positionsgstial  absolute top players, they meet the profitability constraint and out-
attributessince these attributes are not performance measures to fperform other players with similar values for thpatial attributes
minimized or maximized but can be used to identify players thateight, weight and position. These players can only be “dominated”
are comparable in terms of their attributes and are expected to hawethose players with significantly differegpatial attributevalues,
similar performance. Weight and height are numerical attributese. by those players with much better physical conditions or play-
with canonical distance definitions, while the distance of positionsg different positions. For example, D. Wade, a guard in Miami
is defined to be 1 if two players are in different positions and 0, oth-leat, is best among all the guards with similar height and weight,
erwise. Finally, we used the salary attribute to define a profitabilitiput he has a “dominator” L. James (6.4 feet, 212 pounds) in Cleve-
constraint. land Cavaliers, who has the advantage of a height of 6.8 feet and
There are some very interesting results for the neighborhood domweight of 240 pounds. So from the point of performance-salary
inant queries. For example, let us consider Yao Ming, a 7.6 feetiade-off, it is desirable for a team to hire these players.
310 pounds all-star center in Houston Rockets, who had 80(GP),
18.3(PPG), 8.4(RPG) and 0.8(APG) for the NBA 2004-2005 sed&-Name GP PPG RPG| APG| Salary] Heighf Weight| position
son. His nearest dominator is neither the best center in the NBADWade | 77| 24.1 5.2 | 6.8 | 2.8m | 6.4f | 212b | guard
Shaquille O’'Neal, and or the NBA MVP, Kevin Garnett, a for-| S.Marion | 81| 19.4 11.3] 1.9 | 12m | 6.7f | 228b | forward
ward from Minnesota Timberwolves with 6.11 feet height and 220 E.Brand | 81| 20.0 95 | 2.6 | 12m | 6.8f | 254b | forward
pounds weight, and a statistics of 82(GP), 22.2(PPG), 13.5(RPG)

and 5.7(APG). Instead, he is a young center in Phoenix Suns, Amare Table 2: Top-3 LPDQ NBA players
Stoudemire. Amare is 6.10 feet high and weighs 245 pounds with a
record of 80(GP), 26.0(PPG), 8.9(RPG) and 1.6(APG). If we setd = 5, and keep the same hyperplane as before, the

Based on the Rosen-MacDonald's superstar tHedng players’  op-3 ML2DQ players are shown in Table 3. We can observe that
the results are quite interesting too. For example, R. Davis (6.7feet
"http:/iwww.westga.edu/ bquest/2005/nba/NBA1.htm 195pounds) is a guard in Minnesota Timberwolves whose nearest




Name GP PPG RPG| APG| Salary| Heightf Weight| position
C.Maggette 66| 22.2 6.0 | 3.4 | 7m 6.6f | 225b | forward
R.Hamilton 76| 18.7 3.9 | 4.9 | 7.8m | 6.7f 193b | guard

[7] C.H. Papadimitriou J. Kleinberg and P. Raghavan. A
microeconomic view of data mining. Data Min. Knowl.

RDavis | 82| 160 3.0 | 30 | 54m [ 6.7F | 195b | guard Discov, 2(4): 311-322, 1998.
[8] Cuiping Li, Beng Chin Ooi, Anthony K. H. Tung, and Shan
Table 3: Top-3 ML2DPQ players Wang. Dada: a data cube for dominant relationship analysis.

In SIGMOD Conferengepages 659—670, 2006.
[9] J. Matousek. Computing dominancesih In Inf. Process.
dominator is Kevin Garnett (6.11 feet,220 pounds). The distance of  Lett, 1991.
height and weight between these two players is large enatdh),( [10] F. Nielsen. Output-sensitive peeling of convex and maximal
which means Davis is a strong player among players with similar  layers. InThesis 1996.
physical condition and position. Only C.Maggette and R.Hamiltofi11] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger.
have similarly small difference between their actual salary and the  Progressive skyline computation in database syst&@m

profitability constraint. Trans. Database Sys80(1):41-82, 2005.
To conclude, our experiments on synthetic datasets demonstr ®] F. P. Preparata and M. |. Shamos. Computational geometry:
the efficiency and scalability of our methods for processing NDP, ~ An introduction. InSpringer-Verlag1985.

LDPQ and ML2DQ queries. In addition, we show that the asymr 3] Njick Roussopoulos, Stephen Kelley, anédic Vincent.

metrical algorithms consistently and significantly outperform their Nearest neighbor queries. 5GMOD Conferencepages
symmetrical counterparts. 71-79, 1995.

[14] D. Kossmann S. Borzsonyi and K. Stocker. The skyline
7. CONCLUSION operator. INCDE, 2001.

Skyline queries have recently emerged as a promising paradiddp] |- Stojmenovic and M. Miyakawa. An optimal parallel
for decision support. These queries find objects that are outstand- algorithm for solving the maximal elements problem in the
ing, i.e. cannot be dominated, in terms of a set of attributes to be  plane. InParallel Computing1988.
minimized or maximized. In this paper, we have introduced threfl6] R. L. Rivest T. Cormen, C. E. Leiserson and C. Stein.
novel types of skyline queries, so-called neighborhood dominant  Introduction to algorithms, second edition.The MIT Press
queries, that exploit not only min/max attributes but also spatial at-  2001.
tributes. Such queries support a micro-economic approach to defi7] R. Ramakrishnan T. Zhang and M. Livny. Birch:an efficient
sion making, considering not only the quality but also the cost of so-  data clustering method for very large databaseSIGMOD
lutions. To efficiently process the proposed neighborhood dominant  1996.
queries, we presented symmetrical as well as asymmetrical indg4:8] Anthony K. H. Tung W. Jin and J. Han. Mining top-n local
based methods. While the symmetrical approach has the advantage outliers in very large databases.KibD, 2001.
of using off-the-shelf index structures, our experimental evaluation 9] J. X. zheng W.-T. Balke, U. Guntzer. Efficient distributed
shows that the asymmetrical approach clearly performs better fora * skylining for web information systems. BBDT, 2004.
wide range of synthetic datasets. Our evaluation on the NBA Gre[ago] Wei Wang Xuemin Lin, Yidong Yuan and Hongjun Lu.
Players dat_aset demo_nstrates_ that the proposed new query types pro- Stabbing the sky:efficient skyline computation over sliding
duce meaningful and interesting results. windows. InICDE, 2005.

This paper suggests several promising directions for future re-
search. From a practical point of view, the integration of the pro-
posed query types into SQL and their treatment by the query opti-
mizer of a DBMS deserve further investigation. A more theoretical
guestion is what other query types may be defined in our framework
taking into account min/max and spatial attributes. Corresponding
efficient query processing algorithms will have to be developed. Fi-
nally, in the spirit of the micro-economic framework, methods for
ranking the usefulness of query results would be desirable, in partic-
ular in the case of large databases with long result lists. Such an ap-
proach could bridge the gap between the two alternative paradigms
of skyline queries and rank-aware query processing.
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