
String Join Using Precedence Count Matrix

Xia Cao Anthony K. H. Tung Beng Chin Ooi Kian-Lee Tan Shuai Cheng Li
Department of Computer Science
National University of Singapore

Email: {caoxia,atung,ooibc,tankl,lisc}@comp.nus.edu.sg

Abstract

In this paper, we propose a filter-and-refine string join
algorithm. While the filtering phase can rapidly prune
away strings that are not joinable, the refinement phase
employs a comprehensive algorithm to remove the remain-
ing false alarms. The efficiency of the proposed scheme
lies in the use of the precedence count matrix (PCM) for
computing the edit distance between two sequences. With
PCM, the complexity of sequence comparison is a constant
time. We also evaluated the proposed sequence join algo-
rithm, and our study shows that it outperforms the known
techniques.

1 Introduction

Many applications manipulate string data, for example
computational genomics, computational finance, and text
and audio processing. One of the most frequently used and
expensive operations is the string join that combines data
from two datasets with similar string values on the join
attribute. The similarity between two strings is typically
determined by the edit distance.

In this paper, we study the problem of string join in the
context of genomic applications, for example in sequenc-
ing by hybridization, a sequence is assembled from a set
of smaller and overlapping subsequences [3, 5, 10, 11].
In this context, two sequences are joinable if a prefix of
one sequence is similar to a suffix of the other. For the
sequence S1 and S2 with the length m and n, the best
suffix-prefix match of the pairs takes time O(mn) [3].
Researchers have started to consider some approaches to
speed up string join by skipping the dynamic programming
computation for those unattractive pairs [3, 1, 2, 8, 6, 4]. A
survey was done in [9] to present an overview of the cur-
rent techniques to cope with the problem of approximate
string matching. Here, we propose an efficient filter-and-
refine sequence join algorithm for this purpose. In the fil-
tering phase, the proposed scheme can rapidly prune away
sequences that are not joinable. In the refinement phase, a
more comprehensive alignment scheme is used to filter out

the false alarms.
In the filtering phase, the key operation is to determine

the similarity between two sequences. We propose to use
the precedence count matrix to estimate a lower bound
for the edit distance between two sequences. Given the
PCMs of two sequences, we derive an efficient algorithm
for computing a lower bound for the edit distance between
the two sequences. The complexity of this algorithm is
O(|Σ|2log|Σ|) where Σ is the alphabet of the sequences.
We conducted experiments to evaluate the proposed se-
quence join algorithm, and our results show that it outper-
forms existing techniques by a wide margin.

In the next section, we introduce the PCM and the algo-
rithm for approximating the edit distance of two sequences
using their PCMs. Section 3 presents the proposed se-
quence join algorithm. Results from a performance study
will be reported in Section 4. Finally, we conclude in Sec-
tion 6.

2 Approximating Edit Distance Using Prece-
dence Count Matrix

Definition 2.1 Precedence Count Matrix
Let alphabet Σ be the set of characters {A,C,G,T} and Q
be a sequence formed from the symbols in Σ. The prece-
dence count matrix of Q, denoted as PCMQ is a |Σ|× |Σ|
matrix where each element, represented as PCMQ[a, b],
a ∈ Σ, b ∈ Σ, is the number of unique occurrences of a
preceding b (not necessary consecutive) in the sequence Q.

For ease of discussion, denote Diag(PCMQ) =
{PCMQ[a, a]|a ∈ Σ} as the diagonal of the matrix
and other elements in the matrix which are not part of
Diag(PCMQ) will be referred to as non-diagonal ele-
ments. Before we describe the algorithm, we will first
highlight the following two properties of the PCM.

Property 2.1 Occurrence Count Property
Let NQ(a) denote the number of occurrences of a charac-
ter a in a sequence Q. Then PCMQ[a, a] = f(NQ(a))
where f(n) = n(n−1)

2 . Conversely, given PCMQ[a, a],

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

we will have NQ(a) = f ′(PCMQ[a, a]) where f ′(n) is
the inverse of the function f(n). 1

Property 2.2 Reverse Sum Property
Given a sequence Q and any two characters a and b, a �=
b, PCMQ[a, b] + PCMQ[b, a] = NQ(a) × NQ(b).

Given the PCMs of two sequences Q and R, an algo-
rithm for approximating the minimum edit distance be-
tween Q and R is sketched in Algorithm 1.

Algorithm 1 Estimate Edit Distance
Input: PCMQ and PCMR

Output: Lower bound of edit distance between Q and R.
Method:

1. Compute D1, the minimum number of operations (insert,
delete or replace) required to transform Diag(PCMQ) into
Diag(PCMR). An algorithm in [7] can be adopted for this
step. Let this set of operations be denoted as OPER and let
the transformed precedence count matrix of Q be PCM ′

Q.

2. Compute the maximum impact that OPER has on other
non-diagonal elements of PCM ′

Q. Let the new precedence
count matrix be PCM ′′

Q.

3. we need to compute D2, the minimum number of operations
needed to adjust PCM ′′

Q such that its other non-diagonal el-
ements are the same as PCMR. This must be done while
keeping the diagonal unchanged.

2.1 Adjusting Diagonal Elements

The diagonal elements directly correspond to the num-
ber of occurrences of each character in the sequence. We
can just adopt an algorithm from [7]. Denote vector V
as V [a] = f ′(PCMR[a, a]) − f ′(PCMQ[a, a]), a ∈ Σ.
Then it is not difficult to deduct the following lemma from
the algorithm in [7].

Lemma 2.1 D1 = (
∑

a∈Σ |V [a]| + ||R| − |Q||)/2.

Intuitively, to transform Q into R, we need to delete or
insert at least ||R| − |Q|| characters, and then perform at
least (

∑
a∈Σ |V [a]| − ||R| − |Q||)/2 replacement opera-

tions.

2.2 Computing Maximum Impact

In this phase, our aim is to assess how the various
edit operations in step 1 impact the non-diagonal values
of PCM ′

Q and derive PCM ′′
Q. Note that an operation

has an impact only if it brings the non-diagonal values of
PCM ′

Q closer to the non-diagonal values of PCMR. We
assess this impact individually for each non-diagonal value

1PCMQ[a, a] = 0, the value NQ(a) can be determined with the
frequency of other characters.

V [a] > 0 V [a] < 0 V [b] > 0 V [b] < 0
Insert a Delete a Insert b Delete b

Case (I) + 0 + 0
PCMR[a, b] ≥ PCM ′

Q[a, b]

Case (II) 0 - 0 -
PCMR[a, b] ≤ PCM ′

Q[a, b]

Figure 1. Assessing Impact of Edit Operations on Non-
Diagonal Element PCM ′

Q[a, b]

SubCases Conditions Computing PCM ′′
Q

(1) V [a] > 0 PCM ′′
Q[a, b] = min{PCMR[a, b],

V [b] > 0 PCM ′
Q[a, b] + NR[a]NR[b] − NQ[a]NQ[b]}

(2) V [a] ≤ 0 PCM ′′
Q[a, b] = min{PCMR[a, b],

V [b] > 0 PCM ′
Q[a, b] + V [b]N ′

Q[a]}
(3) V [a] > 0 PCM ′′

Q[a, b] = min{PCMR[a, b],

V [b] ≤ 0 PCM ′
Q[a, b] + V [a]N ′

Q[b]}
(4) V [a] ≤ 0 PCM ′′

Q[a, b] = PCM ′
Q[a, b]

V [b] ≤ 0

Figure 2. Subcases for Case (I)

PCM ′
Q[a, b], where a �= b. Two cases are shown in Fig-

ure 1 together with the edit operations involved and their
potential impact.

In Figure 1, ‘+’ means that inserting a or b can affect
Case (I), ‘−’ means that deleting a or b can affect Case
(II), and ‘0’ means that there is no influence on both Case
(I) and Case (II). Note that V [a] > 0 corresponds to an
insertion of at least one character a in sequence Q and
V [a] < 0 corresponds to a deletion of at least one char-
acter a in Q. Figure 2 shows the four subcases for Case (I)
and how PCM ′′

Q is to be computed for each of them.

2.3 Adjusting Non-Diagonal Elements

This phase will proceed to calculate the minimum num-
ber of edit operations that are needed to transform PCM ′′

Q

into PCMR. We only need to adjust the non-diagonal val-
ues of PCM ′′

Q to be the same as those of PCMR in the
minimum number of operations since Diag(PCM ′′

Q) =
Diag(PCMR). This must also be done while ensuring
that the diagonal values of PCM ′′

Q remain the same, fail-
ing which we undo the effect from earlier edit operations.

Theorem 2.1 Given that p pairs of replacement oper-
ations are performed to reduce the difference between
PCM ′′

Q[a, b] and PCMR[a, b], then the maximum reduc-
tion in the difference is p ∗ (NR(a) + NR(b) − p).

Theorem 2.2 The lower bound of edit distance between
two DNA sequences Q and R based on PCM is D1 +
D2. D1 + D2 can be computed in time complexity
O(|Σ|2log|Σ|).

With Theorem 2.1, we now describe the algorithm for
the last phase in Algorithm 2.

3 Approximate DNA Sequence Join
In this section, we will describe how the PCM is use-

ful in DNA sequence join. We assume there are two sets

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

Algorithm 2 Phase 3: Adjust Non-diagonal Elements
Input: PCM ′′

Q, PCMR

Output: D2

Method: D2 = 0;

1. Find all different non-diagonal elements between PCM ′′
Q

and PCMR, and compute the minimum number of opera-
tions MinOpr for each pair according to Theorem 2.1.

2. Find the non-diagonal element [a, b] with maximum
MinOpr; D2 = D2 + MinOpr.

3. Set PCM ′′
Q[a, b] and other affected non-diagonal elements

to be the same as the ones in PCMR.

4. Go to 2 until all the non-diagonal elements in PCM ′′
Q are

adjusted to the same as PCMR.

of sequences PSet and SSet, which are called prefix and
suffix DNA sequence sets respectively. The nested loops
approach is used to join two DNA sequence sets.

We will use Q[i, j] to denote the subsequence of Q that
includes entry in position i through j. Denote ith suffix of
a sequence Q (i.e. Q[i, |Q| − 1]) as suf(Q, i). Similarly,
denote the jth prefix of the sequence Q(i.e. Q[0, j]) as
pre(Q, j).

Let P be a sequence in PSet and S be a sequence in
SSet. Our objective here is to find all pairs of P and S in
which there exist i, j, min((|S| − i), (j + 1)) ≥ Minlen
such that edit(suf(S, i), pre(P, j)) ≤ e. Here, Minlen
and e are user specified threshold and edit(S, P) denotes
the edit distance of the two sequences S and P . The
method can be described as follow:

1. Transformation
In this step, for each DNA sequence, we generate two
sets of PCMs. For each S in SSet, the first set of PCMs
corresponds to the suffixes of S, i.e., each suffix of S
results in a PCM. For each P in PSet, the first set
of PCMs corresponds to the prefixes of P . For each
sequence (either from SSet or PSet), the second set
of PCMs is generated in the same manner as follows. A
set of w-tuples is obtained from a sequence by placing
a sliding window of size w over the sequence. Each
such w-tuple is transformed into a PCM.

2. Filtering
Potential candidates of DNA sequence joins are formed
by using PCM as part of the filter. Three filtering tech-
niques for efficient DNA sequence joins based on PCM
are proposed in the following:

• Distance Filtering
In the Distance Filtering scheme, the candidates of se-
quence joins are obtained by using the distance func-
tion based on the PCMs, which is the lower bound of
edit distance.
Firstly, for each prefix pre(P, j) and suffix suf(S, i)
with length no shorter than Minlen, the distance be-
tween the corresponding PCMs of the prefix and suf-

fix is computed. If the distance is greater than a
given threshold e, this pair of prefix and suffix is not
candidate. Otherwise, the PCMs of the disjoint sub-
windows of the prefix and the suffix will be used as an-
other layer of filtering. If all the distances between all
the corresponding PCMs of the sub-windows are not
greater than e + ||pre(P, j)| − |suf(S, i)||, pre(P, j)
and suf(S, i) will be accepted as a candidate, or else
this pair will be filtered out.

• Length Filtering
The sequence length can be used as a filter for sequence
joins. If ||S| − |P || > e then edit(S, P) > e.

3. Verification
For two DNA sequences of length m and n, the edit
distance computed by dynamic programming with time
complexity O(mn) can be used to process the candi-
dates pairs generated to obtain the final results pairs of
DNA sequence joins.

4 Experimental Results

We implemented and evaluated the proposed PCM
method with the filtering schemes. As references, we also
compared our scheme against the q-grams method (de-
noted qgram) and frequency vector (denoted FV) method.

Under qgram, an auxiliary file that stores the q-grams
information will be created beforehand. We also used the
length filtering, as well as the count filtering technique
proposed in [8]. For the FV method, we used the Fre-
quency Distance proposed in [7] as the distance filtering
in our implementation. In addition, the length filtering is
also deployed. We also looked at two integrated strate-
gies: PCM+qgram method and FV+qgram method. Both
methods extend their base method (i.e., PCM and FV re-
spectively) by using qgram method as a further filter for the
candidates pairs generated by the respective base methods.

We randomly generated two datasets, prefix data set and
suffix data set, from a complete sequence in ecoli.nt se-
quence database. Each sequence data set consists of 1000
DNA sequences with the length varying between 200 and
300. In the experiment, we study the effect of e on the five
join algorithms. We vary e from 1 to 5 for Minlen = 40
and q = 3. The size of q was set 3 for q-grams method
since it always gives the best performance for our algo-
rithm. We note that this is consistent with the observation
given in [8]. The sliding window size w for PCM and FV
is set as 40.

The filtering rate of the schemes is shown in Figure 3.
The efficiency of the schemes is shown in Figure 4 and
Figure 5 for the filtering and total processing, respectively.
The results show that qgram is very effective but least ef-
ficient. We also observe that PCM method is generally su-
perior over FV method. However, though they provide fast
filtering, the inability to prune away dissimilar sequences

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

e PCM PCM+qgram FV FV+qgram qgram
1 99.9985% 100% 99.81 % 100 % 100%
2 99.42 % 99. 998% 96.66% 99.998% 99.997%
3 92.47 % 99.986% 84.98% 99.98% 99.98%
4 75.17 % 99.918% 66.39% 99.91% 99.90%
5 54.42% 99.387% 47.25% 99.36% 99.28%

Figure 3. Filtering Rate for Minlen=40

results in high refinement computation overhead. On the
whole, they still outperform qgram. This is because the
distance function based on PCM can cause better effect of
filtering with low cost of computation. Finally, we note
that the integrated methods, PCM+qgram and FV+qgram
outperform qgram in terms of both effectiveness and effi-
ciency, with PCM+qgram being slightly more superior.

0

4000

8000

12000

16000

20000

0 1 2 3 4 5 6 7

tim
e(

se
cs

)

Edit Distance

Filter Time

PCM
FV

qgram
PCM+qgram

FV+qgram

Figure 4. Filter Time vs Edit Distance(DataSet
Size:1000, Minlen=40)

0

5000

10000

15000

20000

25000

30000

0 1 2 3 4 5 6 7

tim
e(

se
cs

)

Edit Distance

Total Time

PCM
FV

qgram
PCM+qgram

FV+qgram

Figure 5. Total Time (Filter and Refinement) vs Edit
Distance(DataSet Size:1000,Minlen=40)

We also note that with increasing e values, the perfor-
mance of all schemes degenerates. This is expected since
more false positives are being retained in the filtering step.

The effects of Minlen l are also studied on the schemes
on the same data set. As expected, the results show that
all the schemes are less effective for small Minlen as the
number of false candidates increases with smaller Minlen.
The relative performance of the five methods is consistent
with the results of the earlier experiments: PCM+qgram
is the best in terms of both filtering rate and total running

time, followed by FV+qgram, PCM, and qgram is superior
over FV when Minlen decreases.

5 Conclusions
In this paper, we have proposed a filter-and-refine string

join algorithm for genomic applications. In the filtering
phase, strings that are not joinable are pruned away rapidly.
The refinement phase employs an efficient algorithm to re-
move the remaining false alarms. The proposed scheme
employs the precedence count matrix (PCM) to compute
the edit distance between two DNA sequences efficiently.
We have evaluated the proposed sequence join algorithm,
and our study shows that it outperforms known techniques.

References

[1] T. Chen and S. Skiena. Trie-based data structures for se-
quence assembly. In Technical Report: Department of
Computer Science, Stony Brook N.Y, 1996.

[2] W. Cohen. Integration of heterogeneous databases without
common domains using queries based on textual similarity.
In In Proc. of the 1998 ACM SIGMOD Conf. on Manage-
ment of Data, pages 201–212, 1998.

[3] D. Gusfield. Algorithms on Strings, Trees and Sequences.
Cambridge University Press, 1997.

[4] G. R. Hjaltason and H. Samet. Incremental distance join
algorithms for spatial databases. In In Proc. of the 1998
ACM SIGMOD Conf. on Management of Data, pages 237–
248, 1998.

[5] R. Idury and M. S. Waterman. A new algorithm for dna
sequence assembly. Journal of Computational Biology,
2:291–306, 1995.

[6] L. Jin, C. Li, and S. Mehrotra. Efficient similarity string
joins in large data sets. In Technical Report: Department of
Information and Computer Science, University of Califor-
nia, 2002.

[7] T. Kahveci and A. K. Singh. An efficient index structure for
string databases. In Proc. 2001 Int. Conf. Very Large Data
Bases (VLDB’01), pages 351–360, Italy, Roma, Sept. 2001.

[8] L.Gravano, P.G.Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string
joins in a database (almost) for free. In Proc. 2001 Int.
Conf. Very Large Data Bases (VLDB’01), pages 491–500,
Italy, Roma, Sept. 2001.

[9] G. Navarro. A guided tour to approximate string matching.
ACM Computing Surveys (CSUR), 33:31 – 88, 2001.

[10] M. Peltola, H. Soderlund, J. Tarhio, and E. Ukkonen. Algo-
rithms for some string matching problems arising in molec-
ular genetics. In Proc. of the 9th IFIP World Computer
Congress, pages 59–64, 1983.

[11] M. Peltola, H. Soderlund, and E. Ukkonen. Sequaid: a
dna sequence assembly program based on a mathematical
model. Nucleic Acids Research, 12:307–321, 1984.

Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM’04)
1099-3371/04 $ 20.00 © 2004 IEEE

	footer1:

