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ABSTRACT
While database management systems offer a comprehensive
solution to data storage, they require deep knowledge of the
schema, as well as the data manipulation language, in or-
der to perform effective retrieval. Since these requirements
pose a problem to lay or occasional users, several methods
incorporate keyword search (KS) into relational databases.
However, most of the existing techniques focus on query-
ing a single DBMS. On the other hand, the proliferation
of distributed databases in several conventional and emerg-
ing applications necessitates the support for keyword-based
data sharing and querying over multiple DMBSs. In order
to avoid the high cost of searching in numerous, potentially
irrelevant, databases in such systems, we propose G-KS, a
novel method for selecting the top-K candidates based on
their potential to contain results for a given query. G-KS
summarizes each database by a keyword relationship graph,
where nodes represent terms and edges describe relation-
ships between them. Keyword relationship graphs are uti-
lized for computing the similarity between each database
and a KS query, so that, during query processing, only the
most promising databases are searched. An extensive exper-
imental evaluation demonstrates that G-KS outperforms the
current state-of-the-art technique on all aspects, including
precision, recall, efficiency, space overhead and flexibility of
accommodating different semantics.

1. INTRODUCTION
Users of conventional DBMSs should have good knowl-

edge of both the database schema and the data manipula-
tion language (e.g., SQL) in order to effectively issue queries.
Since the schema and the query language may be complex,
database systems are often limited to advanced users. Sev-
eral methods aim at decreasing this complexity by providing
keyword-search (KS) functionality over a single database [2,
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Figure 1: Running example of a music database

1, 13, 12, 14, 16, 11, 18]. In relational KS the basic unit of
information is a tuple and each result is a set of tuples that
(i) contain all (or most) keywords, and (ii) can be joined
together in a meaningful way (usually on Primary Key -
Foreign Key relationships). This contrasts traditional infor-
mation retrieval (IR), where each result is a single document
(i.e., a basic unit of information).

We illustrate relational KS using the music database DB1

of Figure 1, where edges between the tables correspond to
join conditions. Given the KS query q = {Anderson, love},
the system should return a result t1 ./ t8 ./ t3, signifying
that there is an artist called Anderson (t1) who performs
(t8) a song (t3) containing love in its title. Note that al-
though the term love also appears in t4 and t7, these tuples
do not generate results as they cannot be connected to a
record (i.e., t1) containing Anderson. In the general case,
there may exist numerous results, which can be ranked ac-
cording to various criteria. A common scoring criterion used
in all existing techniques is the distance 1, i.e., the number
of joins between two tuples containing the query keywords.
In DB1, the distance between t1 and t3 is 2. Intuitively,
the smaller the distance the more related the tuples, and
therefore, the higher the importance of the corresponding
result.

1Note that the distance is not constrained by the schema,
but depends on the specific table instances. For example, in
the schema of Figure 1 tuples could be connected by chains
of more than 3 joins through intermediate records that be-
long to the same table. Most relational KS systems (e.g.,
[13, 26]) use a distance threshold to eliminate long chains of
joins, which usually lead to uninteresting results.
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Relational KS liberates the user from having to learn
SQL and study the database schema (i.e., the tables, the
attributes, and their possible connections). On the other
hand, as keywords may appear in arbitrary columns (e.g.,
the term love may exist in the title of a song or an al-
bum, or even in the name of an artist), query processing is
significantly more expensive than conventional DBMSs be-
cause all possible combinations of keyword co-occurrences
have to be explored. The advantages (i.e., flexibility) and
shortcomings (i.e., efficiency) of relational KS are amplified
in distributed systems integrating multiple databases DB1,
..,DBD. For instance, consider a group of universities that
wish to share their library databases. Keyword based data
sharing and search render the different schemas transparent,
so that users can issue KS queries using a common interface
without any knowledge of the underlying structure of DB1,
..,DBD. However, processing each query in all the individ-
ual databases, and then combining the partial results, could
be very costly and potentially unnecessary, especially if the
final answers exist in a small subset of the databases.

In traditional IR, distributed systems alleviate the effi-
ciency issue by pre-computing a term summary for each
document repository. Given a query q, the system can se-
lect the most appropriate collections for processing q based
on the similarity between q and the summaries. In other
words, summaries act as documents in the corpus formed
by all repositories and provide a fast mechanism for filtering
out non-promising sources. However, IR methods are insuf-
ficient for relational KS as the mere presence of the query
keywords in a summary is not indicative of the existence of
results in the corresponding database; in addition, the tuples
containing these keywords should be connected in a mean-
ingful way. Assume for instance, a system integrating DB1

of Figure 1 with another database, say DB2, that includes
the same tables and tuples as DB1 except for t8. Given
q = {Anderson, love}, both summaries of DB1 and DB2

contain similar statistical information (e.g., frequency, in-
verse term frequency) for the keywords Anderson and love,
implying that they would be equally good candidates for
search. However, the absence of t8 in DB2 eliminates the
result t1 ./ t8 ./ t3. In general, IR-based methods do not
capture the inherent structure of a DBMS because they ig-
nore connectivity and distance information among tuples
containing terms.

In this paper, we aim at selecting the top-K databases
for processing a KS query, where K is an input param-
eter. In accordance with the methodology of distributed
IR techniques, we assume a system that pre-processes and
maintains summaries of several DBMSs DB1, DB2,..,DBD.
Given a KS query q, the system directs q only to the K < D
databases most likely to contribute results, in order to min-
imize to total processing cost of q without sacrificing preci-
sion and recall. The only existing technique focusing on the
same problem is M-KS [26], which is based on the concept
of the keyword relationship matrix (KRM ). Specifically, at a
pre-processing phase, M-KS builds a KRMl for every DBl,
which acts as its summary. For each term pair (ki,kj) there
is an entry KRMl(ki,kj) that records the frequencies of oc-
currences of the two terms at different distances. Given the
14 terms in DB1

2, KRM1 would contain 14x14 entries. The

2Terms start with capital letters in Figure 1. Note that let,
the, on, you, our, together, me, to are stop words, and hence
they are not considered terms.

entry KRM1(Olson,love) stores that the two terms can be
connected once at distance 2 (i.e., t2 ./ t9 ./ t4) and once
at distance 3 (t2 ./ t10 ./ t5 ./ t7). The similarity between
a query q and DBl is computed using the KRMl entries of
all possible keyword pairs in q; e.g., if q={k1, k2, k3}, the
score of DBl is based on KRMl(k1,k2), KRMl(k1,k3) and
KRMl(k2,k3).

Despite its significant performance gains with respect to
the naive solution of processing a KS query in all databases,
M-KS has several disadvantages. First, it uses only bi-
nary relationships between keyword terms to eliminate non-
promising databases. Consequently, it yields numerous false
positives for queries where all pairs of keywords are related,
but there is no join sequence linking the binary connections
in a single result. Second, since KRM records only the fre-
quency of term co-occurrences (but no additional statistics),
M-KS is unsuitable for ranking based on IR measures (e.g.,
those in [16]). Finally, M-KS does not include a mechanism
for handling OR semantics. Therefore, it cannot retrieve
(potentially interesting) answers even when a single keyword
is missing.

To overcome these shortcomings, we propose G-KS, a
graph based method for supporting keyword based data
sharing and search over multiple databases. G-KS sum-
marizes each database DBl as a keyword relationship graph
KRGl that captures the terms and their relationships with
weighted nodes and edges. KRGl minimizes the chance of
false positives by imposing more stringent conditions than
simple binary relationships. Based on KRGl, G-KS can ef-
fectively estimate the importance of DBl with respect to a
query under both the AND and the OR semantics. Our ex-
periments show that, compared to M-KS, G-KS (i) is more
effective (improving recall/precision by as much as 50%),
(ii) is more efficient (reducing query processing cost by as
much as 50%), (iii) incurs less pre-processing time (faster
by 30%), and (iv) has less space overhead (smaller by 17%).
Our contributions are summarized as follows:

• We propose G-KS, a novel graph-based method for
relational KS over multiple databases. We show how to
construct, maintain and compress the KRGs in order
to reduce the pre-processing and storage overhead.

• We present an IR-inspired method to compute the im-
portance of nodes and edges, and an algorithm to es-
timate the potential of a join solution containing all
query keywords.

• We confirm the efficiency and effectiveness of G-KS
through extensive experiments with real datasets in a
client-server architecture.

The rest of the paper is organized as follows. Section 2,
discusses related work. Section 3, presents the keyword rela-
tionship graph model. Section 4 describes the construction
and maintenance of KRGs. Section 5 introduces the query
processing algorithm and discusses the advantages of G-KS
over M-KS. Section 6 compares the two methods experimen-
tally and Section 7 concludes the paper.

2. RELATED WORK
Section 2.1 overviews related work on KS over a single

system. Section 2.2 surveys KS on multiple data reposito-
ries.
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Figure 2: Connection tree for query {Olson, keep,
eternal, love}

2.1 Keyword search over a single system
The majority of IR literature has focused on KS for un-

structured documents stored at a single repository. Most
methods are based on the Vector Space Model [24], which
represents documents as term vectors [22] in the Cartesian
Space. Each element in a vector captures a term and its
weight, defined as w = tf ·idf , where tf is the term frequency
in the document and idf is the inverse document frequency
reflecting the general importance of the term in the entire
corpus. Specifically, idf decreases the weight of terms that
occur in numerous documents and, therefore, have low dis-
criminating value (we refer to such terms as popular terms).
Queries are also represented as vectors of keywords. The
similarity of a query and a document is measured as the
Cosine of the angle between their vector representations.

Several systems apply KS on a single relational DBMS.
BANKS [2] creates a data graph, where each node represents
a tuple, and edges connect tuples that can be joined (e.g., ac-
cording to Primary Key - Foreign Key relationships). A KS
query is processed by a graph traversal that searches for con-
nection trees containing the query keywords. A connection
tree is a Steiner tree in which every leaf node corresponds
to a record containing at least one query keyword. Internal
nodes represent tuples that connect the leaf records and may
include no query keywords. Figure 2 shows a connection tree
for query q = {Olson, keep, eternal, love} on the example
database of Figure 1. Intuitively, the tree captures connec-
tivity information for a result, in this case t7 ./ t4 ./ t9 ./
t2. BANKS employs a backward search strategy from leaf
nodes containing the query keywords towards the root. On
the other hand, [14, 11] apply bi-directional search, which
improves efficiency. DBXplorer [1] and DISCOVER [13] use
a higher level of representation – candidate networks created
from the schema of the database by join operations. The sys-
tems use the candidate networks to generate operator trees
for evaluating the query. Both DBXplorer and DISCOVER
rank results based exclusively on the distance of the tuples
containing the query keywords, whereas [12, 16, 18] utilize
state-of-the-art IR measures to calculate scores.

Besides relational databases, KS has been applied in the
context of XML databases [10, 5, 15, 25, 17], where the
search space is represented by a tree structure. Query re-
sults are the subtrees (or a part of the subtrees) of the XML
document rooted at the lowest common ancestors (LCAs)
[10], the semantic interconnection LCAs [5], the meaningful
LCAs [15], or the smallest LCAs [25] of leaf nodes contain-
ing the query keywords. [17] presents a method to automat-
ically select meaningful nodes in these subtrees. Recently,
KS has also been extended to relational data streams [19],
which necessitate the incorporation of temporal semantics
and provision for frequent updates.

2.2 Keyword search over distributed systems
IR methods for KS over multiple repositories of docu-

ments generate summaries at a pre-processing phase. The
summaries are utilized during query processing to filter out
collections that cannot lead to good results. The existing
techniques differ mainly on the way that they construct sum-
maries. In the simplest form, GlOSS [9] and CVV [27] use
only term frequencies to form summary information of each
collection. CORI [3] adds a factor called inverse collection
frequency, which reflects the importance of a term in all
the repositories. Some other works [20, 8, 4] also consider
dependency relationships between terms (e.g., between oc-
currences of computer and programming). Although such
relationships exist in natural languages [7], they are not ap-
plicable in relational KS. [23] proposes a method for rela-
tional KS, where the tuples containing the query keywords
may belong to different databases, assuming that records of
distinct DBMSs can be joined. On the other hand, M-KS
[26] considers that the various databases are independent
and the keywords must exist in the same DBMS to form a
result. Since M-KS focuses on the same setting as G-KS
and is our only competitor, in the sequel we provide a more
detailed description.

M-KS summarizes every DBl with a keyword relation-
ship matrix KRMl capturing the binary relationships be-
tween terms at different distances. Specifically, each entry
KRMl(ki, kj) stores a vector d0d1..., where d0 is the num-
ber of times that terms ki and kj occur in the same tuple,
d1 is the number of times that they occur in tuples with
distance 1 and so on. In order to compute these vectors
(for all term pairs), M-KS scans DBl, parses each tuple, re-
moves stop words, stems the terms and inserts them into a
table T0 associating each term with the tuples that con-
tain it. The d0 values are obtained using T0. Then, it
joins all tables on foreign key relationships to generate a
table T1 with tuples at distance 1; based on T1 and T0,
M-KS derives d1 for all term pairs. Similarly, T2 is pro-
duced by self-joining T1, and is used to obtain d2. For
m > 2, Tm is the result of Tm−1 ./ T1 after excluding
tuples that exist in T1,..,Tm−1. The similarity between a
query q and DBl is based on the KRMl entries of all pos-
sible keyword pairs in q. Assuming that q={k1, k2, k3},
M-KS retrieves KRMl(k1,k2), KRMl(k1,k3), KRMl(k2,k3)
and assigns binary weights that reflect both the frequency
of the co-occurrences and their distances (co-occurrences at
smaller distance have a larger weight). The score of DBl is
computed as a function (e.g., sum, product, minimum) of
the binary weights.

3. KEYWORD RELATIONSHIP GRAPHS
G-KS summarizes the terms and their relationships in

each DBMS using a keyword relationship graph (KRG).
Figure 3 illustrates the KRG for the example database of
Figure 1. A node corresponds to a term and has a weight,
which reflects its significance relative to other terms in the
database. If two terms ki and kj exist in tuples tx and ty

that can be connected through a sequence of joins, there
is an edge between their corresponding nodes in the graph.
The distance d between tx and ty (in terms of join 3 op-
erations) is marked on the edge. When ki and kj can be

3Similar to [13, 26], we may use a threshold to avoid long
chains of joins.
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Figure 3: KRG for the example database

connected through multiple paths of variable distances, each
distinct value of d is recorded. For instance, the edge be-
tween Olson and love has two values: 2 due to the result
t2 ./ t9 ./ t4, and 3 due to t2 ./ t10 ./ t5 ./ t7. Every dis-
tance value in the graph is associated with a weight 4 that
measures the importance of the connection. As opposed
to M-KS that considers only frequency information, G-KS
utilizes IR-inspired measures to assign weights. Sections 3.1
and 3.2 discuss the computation of weights for nodes and
edges, respectively. Section 3.3 presents a method for com-
pressing the KRG. Table 1 summarizes the frequent symbols
used throughout this paper for easy reference.

3.1 Weight of a node
Let DB be a database and ki be a term appearing in a

tuple t of DB. We use ci(t) to denote the number of occur-
rences of ki in t. The size of tuple t is S(t) =

P
k ck(t). N is

the cardinality of tuples that include terms in DB, and Ni

is the number of tuples containing ki.

Definition 1. Term frequency, tfi(t)

The term frequency of ki in tuple t is tfi(t) = ci(t)
S(t)

. 2

Definition 2. Inverse tuple frequency, iufi

The inverse tuple frequency of term ki is iufi = ln N+1
Ni

. 2

Intuitively, tfi(t) and iufi are analogous to term frequency
and inverse document frequency in the Vector Space Model
[24]. For instance, the sample database of Figure 1 con-
tains N=7 tuples with terms (t1 to t7). The term Ander-
son has a single appearance in t1 (i.e., Nanderson=1 and
cAnderson(t1)=1), which contains 2 terms in total (i.e., S(t1)
= 2). Given the above, tfanderson(t1) = 1

2
and iufAnderson

= ln( 8
1
).

Definition 3. Term weight, wi(t), Node weight, wi

The weight of term ki in a tuple t is wi(t) = tfi(t) · iufi.

The weight of the node representing ki is wi =
PNi

t=1 wi(t)

Ni
.

2

Observe that wi(t) measures the importance of a term in
a tuple, whereas wi captures the average score for a par-
ticular term among all tuples that contain it. Continuing
the example, wAnderson(t1) = tfAnderson(t1) · iufAnderson =
1
2
· ln( 8

1
) = 1.040. Since there is only one occurrence of the

term in the database, the node representing Anderson in the
KRG of Figure 3 has a weight wAnderson = wAnderson(t1).
Similarly, the term love appears in Nlove=3 tuples t3, t4, t7.

4For simplicity, we omit the node and edge weights in Fig-
ure 3.

Table 1: Table of symbols
Symbol Definition

t tuple in a relational database
k term in a relational database
n node in a KRG
d distance relationship
tf term frequency
iuf inverse tuple frequency
pf pairwise term frequency
iwf inverse pairwise frequency
w weight (of term, node, edge)

The sizes of these tuples are S(t3)=3, S(t4)=2 and S(t7)=2,
respectively. Consequently, the weight of the term in the
KRG is wlove = average( 1

3
· ln( 8

3
) + 1

2
· ln( 8

3
) + 1

2
· ln( 8

3
)) =

0.436. The intuition behind wAnderson > wlove is that since
Anderson exists in a single tuple, it has a larger discriminat-
ing value (and weight) than love, which occurs in 3 records
(i.e., it is a popular term).

3.2 Weight of an edge
Let tx and ty be two tuples containing terms ki and kj , re-

spectively. These tuples may be connected by several paths
of equal distances that pass through different intermedi-
ate records: nc(tx, ty, d) is the number of unique connec-
tions between tx and ty at distance d, and cij(tx, ty, d) =
nc(tx, ty, d) · ci(tx) · cj(ty) is the number of connections be-
tween ki and kj in tx and ty. The values of cij(tx, ty, d) and
nc(tx, ty, d) differ only if there are multiple occurrences of
ki (kj) in tx (ty). Sij(tx, ty, d) = nc(tx, ty, d) ·S(tx) ·S(ty) is
the number of connections between all term pairs in tx and
ty at distance d.

Definition 4. Pairwise frequency, pfij(tx, ty, d)
The pairwise frequency of two terms ki and kj in tuples

tx and ty at distance d is pfij(tx, ty, d) =
cij(tx,ty,d)

Sij(tx,ty,d)
=

ci(tx)·cj(ty)

S(tx)·S(ty)
= tfi(tx) · tfj(ty). 2

Consider the terms Olson appearing in t2 and love ap-
pearing in t4. Recall that the two terms can be combined
by two join operations connecting: t2 ./ t9 ./ t4. Given that
tfOlson(t2) = tflove(t4) = 0.5, we obtain pfOlson,love(t2, t4, 2) =
0.25. Note that nc is canceled out in the computation of
pfij(tx, ty, d), and therefore, its existence is not necessary
for the definition of pairwise frequency. We chose to include
nc for consistency with the previous section. Specifically,

the fraction
cij(tx,ty ,d)

Sij(tx,ty ,d)
corresponds to ci(t)

S(t)
used in the def-

inition of the term frequency. Next, let Nij(d) be the total
number of cases where two tuples containing ki and kj can
be connected at distance d. Similarly, N(d) is the total num-
ber of cases where two tuples containing any terms can be
connected at distance d.

Definition 5. Inverse pairwise frequency, iwfij(d)
The inverse pairwise frequency of two terms ki and kj at

distance d is iwfij(d) = ln N(d)+1
Nij(d)

2

Definition 6. Pairwise weight, wij(tx, ty, d), Edge weight,
wij(d)
The pairwise weight of two terms ki and kj in tuples tx and
ty at distance d is wij(tx, ty, d) = pfij(tx, ty, d) · iwfij(d).
The weight of the edge connecting ki and kj at distance d is

wij(d) =
PNij

1 wij(tx,ty,d)

Nij(d)
. 2

4
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Figure 4: Compressed KRG

Intuitively, wij(d) is the average weight among all pairs
of tuples in the database that are connected at distance d
and include ki and kj , respectively. Continuing our exam-
ple, there is a single way to relate Olson and love at d=2;
thus, Nolson,love(2) = 1. The total number of cases where
tuples (containing terms) are connected by 2 join operations
is N(2) = 4 (t1 ./ t8 ./ t3, t2 ./ t9 ./ t4, t2 ./ t10 ./ t5, and
t4 ./ t7 ./ t5). Given the above: iwfOlson,love(2) = ln 5

1
.

Consequently, wOlson,love(t2, t4, 2) = 0.25 · ln 5
1

= 0.402.
Since there is no other result involving these terms at d=2,
the corresponding weight for edge of the KRG in Figure 3
is wOlson,love(2) = wOlson,love(t2, t4, 2).

3.3 Graph compression
Typically, a large percentage of the terms in a DBMS

(around two thirds in our experiments) appear only once. If
such terms occur in the same tuple: (i) they have the same
weight; (ii) they have the same set of connections to other
nodes; and (iii) these connections are of equal weight. Based
on these observations we propose the following method for
KRG compression. During pre-processing, G-KS identi-
fies, for each tuple, the terms that appear only once in the
database and inserts them in a compound node. Thus, the
KRG has two types of nodes: single nodes containing one
term and compound nodes consisting of multiple terms. The
weight of a compound node, or an edge involving a com-
pound node, is calculated using any of the included terms.
This simple method decreases significantly the size of the
graph without incurring any information loss. Figure 4
shows the compressed graph for the KRG of Figure 3. For
instance, the terms Johny and Olson, which appear in DB1

a single time in t2, generate a compound node. Similarly, all
three terms please, hold, heart of t5 are unique and map to
another compound node. In total, the reduced graph con-
tains 8 nodes and 16 edges, compared to 14 nodes and 49
edges in the original KRG.

4. GRAPH CONSTRUCTION AND MAIN-
TENANCE

Section 4.1 describes the initial construction of the key-
word relationship graph. Section 4.2 discusses its mainte-
nance in the presence of database updates.

4.1 Graph construction
The KRG of a database is constructed in three steps. Ini-

tially, G-KS extracts terms from the data tuples to create
nodes for the KRG. In this step, the system creates a com-
pound nodes for terms that occur only once in the database
and in the same tuple. The remaining terms generate single

nodes. At the end of this phase, weights are assigned based
on the definitions of the previous section.

In the second step, the system constructs relationships
between tuples in the database at different distances d ≥ 1.
We denote with RT (d) the set of tuple pairs (tx, ty) that
can be connected at distance d. G-KS inserts a pair (tx, ty)
in RT (1) if they have a Primary Key - Foreign key (PK-
FK) relationship. For d > 1, (tx, ty) is added to RT (d), if
there exists a tuple tz such that (i) tz has a relationship with
either tx or ty in RT (d − 1) and (ii) tz can be joined with
the other tuple of the pair. For instance, (tx, ty) ∈ RT (d),
if (tx, tz) ∈ RT (d − 1) and there is a PK-FK relationship
between tz and ty.

Finally, based on the relationships of tuples at different
distances, G-KS creates edges between nodes at the KRG.
For each pair of nodes (ni, nj), where ni represents a term
in tx, nj represents a term in ty, and (tx, ty) ∈ RT (d), there
is an edge between ni and nj at distance d. Note that if the
nodes correspond to terms in the same tuple, the distance
is 0.

4.2 Graph maintenance
When new tuples are inserted or old tuples are deleted, the

KRG should be modified accordingly to reflect the current
instance of the database. Since an update can be consid-
ered as a deletion followed by an insertion, we only discuss
the maintenance of KRG in case of insertions and deletions.
When a tuple t is inserted into the database, G-KS extracts
all the included terms. New terms lead to the creation of
nodes in the KRG, while existing terms lead to recalculation
of the weights of the corresponding nodes. Then, the sys-
tem computes the distance relationship for all pairs (t, tx)
using PK-FK relationships. Additionally, a new entry for
each pair (tx, ty) is created in RT (d1 + d2), if there exist
(t, tx) ∈ RT (d1) and (t, ty) ∈ RT (d2).

Similar to the process of graph construction, based on the
updated relationships of tuples at different distances, G-KS
creates new relationships for the corresponding nodes. If
these nodes were already connected at that distance, the
corresponding weight is re-computed. Otherwise, a new (dis-
tance, weight) pair is added to the edge. If this is the first
connection between the nodes, this is equivalent to adding
an edge to the KRG. Finally, the system creates new rela-
tionships and updates the weight of the existing relation-
ships at distance 0 for nodes representing terms in the in-
serted tuple.

When an existing record t is deleted, G-KS first extracts
all terms in t and identifies the set I of nodes containing
these terms. Let I(d) be the set of nodes that have rela-
tionships with nodes in I at distance d. For each value of d,
G-KS retrieves I(d) and deletes relationships between nodes
ni and nj at distance d satisfying one of the following con-
ditions (i) ni, nj ∈ I ∧d = 0 or (ii) ni ∈ I ∧nj ∈ I(d) or (iii)
ni ∈ I(d1) ∧ nj ∈ I(d2) ∧ d = d1 + d2. For the third case,
note that although the deletion of t may not affect (ni, nj)
(if the two tuples have multiple connections at d), this can-
not be known since the KRG does not maintain information
about the specific paths. However, if ni and nj can be con-
nected through a path not containing t, their relationship is
recreated in the next step.

Next, all nodes that represent exclusively terms of t are
removed from the KRG (i.e., the corresponding terms do not
appear anywhere else in the databases) and the weights of
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the remaining nodes in I are updated. Finally, let TI be the
set of tuples containing the terms represented by nodes in I.
Similarly, TI(d) is the set of tuples containing the terms cor-
responding to nodes in I(d). G-KS computes new distance
relationships between all tuple pairs (tx, ty) such that (i)
tx ∈ TI and ty ∈ TI(d), or (ii) tx ∈ TI(d1) and ty ∈ TI(d2)
and d = (d1 + d2). Then, it updates edge weights based on
the new tuple relationships. Finally, G-KS recreates rela-
tionships at distance 0 for nodes in I representing terms in
the same tuple.

In order to avoid the cost of frequent revisions, the KRG
may be updated in a batch mode periodically (e.g., at the
end of each working day) or after the database modifica-
tions accumulate to a certain level. G-KS processes batch
insertions using the same method as for a single record, ex-
cept that the extracted terms exist in any of the new tuples.
For batch deletions, the system applies the methodology of
single deletion considering all terms of the deleted tuples.

5. QUERY PROCESSING
Given a KS query q and a set of KRGs, each created for a

database, the goal of query processing is to find the top-K
databases for directing the query. Section 5.1 introduces the
concepts of join keyword trees and candidate graphs used to
evaluate the potential of a database. Section 5.2 proposes
an algorithm for finding candidate graphs. Section 5.3 de-
scribes the ranking mechanism, and Section 5.4 discusses
the advantages of G-KS over M-KS.

5.1 Join keyword trees and candidate graphs
Let KRG be the keyword relationship graph of a database

DB, and SG be a sub graph of KRG. We evaluate the po-
tential of DB with respect to query q based on the structure
of the KRG. Towards this direction we define the concept of
the join keyword tree (JKT ). To avoid confusion, we refer
to a JKT node as a vertex.

Definition 7. Join keyword tree, JKT (SG)
Given SG, JKT (SG) is a tree satisfying the following prop-
erties:

1. Each tree vertex tni maps to a non-empty set of nodes
of SG, and the tree vertices should collectively contain
all nodes in SG.

2. Edges connecting two vertices are associated with a sin-
gle distance d.

3. If two SG nodes (ni, n
′
i) map to the same tree vertex

tni, they must co-exist in some tuple of DB. If there is
an edge between two vertices (tni, tnj) with distance d
in JKT, then all pairs of corresponding nodes ni ∈ tni

and nj ∈ tnj must be related at d in SG. If two vertices
(tni, tnj) are not directly connected in JKT, then for
each pair of nodes ni ∈ tni and nj ∈ tnj, there must
be a relationship in SG at distance equal to that of the
path connecting tni and tnj . 2

Figure 5 shows a JKT of an SG containing four nodes
njohny,olson, nkeep, neternal and nlove of the KRG in Fig-
ure 4. This tree is a JKT because (1) each vertex covers
some node(s) existing in the SG and all nodes appear in
the tree vertices; (2) each edge has exactly one distance;
(3) Eternal and love are in the same vertex tneternal,love as
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Figure 5: Mapping from SG to JKT(SG)

they are related at distance 0 in the SG (they co-exist in
t7). Vertices tneternal,love and tnkeep are directly connected
by an edge with d = 1 and there is a relationship at dis-
tance 1 for pairs (neternal, nkeep) and (nlove, nkeep) in the
SG. Similarly, vertices tnjohny,olson and tnkeep are directly
connected by an edge with d = 2 and there is a relationship
at distance 2 for the pair (njohny,olson, nkeep) in the SG.
Finally, the length of the path between tneternal,love and
tnjohny,olson is 3, and there is a relationship at distance 3
for both (neternal, njohny,olson) and (nlove, njohny,olson) in
the SG.

Let q be a query that contains exactly the keywords repre-
sented by nodes in SG ⊆KRG and assume that the database
corresponding to the KRG has query results. A JKT(SG)
serves as a model for the construction of a connection tree
of a result. In particular, a connection tree containing the
query keywords can be built from JKT by adding interme-
diate nodes between JKT vertices connected through edges
with distance greater than 1. For example, given q = {Olson,
keep, eternal, love}, if we insert an intermediate node be-
tween tnkeep and tnjohny,olson in the JKT in Figure 5, we
derive a graph that has the same structure with the connec-
tion tree of Figure 2. This indicates that if KRG has an SG
containing the query keywords, and there exists a JKT(SG),
it is likely that the database contains a query result. Follow-
ing this fact, we give a definition of the Candidate Graph
(CG) as follows.

Definition 8. Candidate graph, CG(KRG, q)
Given a query q and a KRG, CG(KRG, q) is an SG of
KRG satisfying the following properties

1. SG includes all nodes of KRG containing the query
keywords, and only these nodes.

2. SG is complete (i.e., there is an edge between each pair
of nodes).

3. There exists at least one JKT (SG). 2

The KRG of Figure 4 has a candidate graph with respect
to the query q = {Olson, keep, eternal, love} because it
includes a complete SG containing the four keywords and
there is a JKT for this SG as shown in Figure 5. Next we
discuss the relationship between the existence of candidate
graphs in KRG and results in the corresponding database.

Theorem 5.1. If a database contains a result with all key-
words of query q, then the corresponding KRG must have a
candidate graph CG(KRG, q).
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Proof: Assume a database containing a result t1 ./ t2 ./
... The existence of the result implies that the correspond-
ing KRG has an SG, that contains a node for each query
term. Since all keywords appear in t1 ./ t2 ./ .., then all
possible keyword pairs must be connected in SG. Therefore,
SG satisfies the first two properties of a candidate graph.
Next we show how to generate a JKT of SG.

Based on the join sequence t1 ./ t2 ./ .., we create a JKT
using the following procedure. (i) Select a random tuple as
a root. (ii) Pick another record, which can be joined with
the first one, and insert it as a child of the root. (iii) While
there are still unused tuples, pick a record ti (among the
remaining ones) that can join with an inserted tuple tj and
add ti as a child of tj . (iv) Set the distance of each link
in the tree to 1. (iv) Replace each tuple with the set of
query keywords inside. (v) For every record tk that does
not contain any keyword, remove tk from the tree, connect
its parent and its children, and increase the distance of these
links by 1. The final output is a JKT (SG). 2

Note that a join sequence may create multiple JKTs de-
pending on the order of insertions in the tree. These JKTs
are equivalent in the sense that they correspond to the same
result. Theorem 5.1 can be used to filter out databases
that are guaranteed not to include results (i.e. databases
not having a candidate graph). Although the existence of
CG(KRG, q) is a necessary condition in order for KRG
to contain results, as shown in the following theorem, it is
not sufficient. Furthermore, the proof of Theorem 5.2 pro-
vides important insight about the structure of false positives
in G-KS, i.e., candidate graphs that fail to produce actual
results.

Theorem 5.2. The existence of a candidate graph CG(KRG, q)
in KRG does not guarantee that the corresponding database
has results for q.

Proof: Let nx be a node of CG(KRG, q) representing
a query keyword kx, which is mapped to a vertex tnx of
a JKT(CG); ny is a KRG node for term ky that does not
belong to CG (i.e., ky is not a query keyword). Assume
that for each node ni 6= nx, ni ∈ CG, if ni is mapped to
the same tree vertex tnx as nx, there exists a relationship
between ni and ny at distance 0. If ni is mapped to a
tree vertex tni 6= tnx, there exists a relationship between ni

and ny at distance equal to the distance between tni and
tnx in the tree structure. In other words, if we replace nx

with ny we obtain JKT(SG’), where SG′ = (CG \ nx)∪ ny.
We further assume that: (1) nx and ny appear at different
tuples tx and ty that are not connected; and (2) there are
two nodes ni, nj in CG(KRG, q) related by a join through
tuple ty. Consequently, the actual join sequence forming the
JKT may be due to SG′. In this case, there may not exist
any result in the database containing all the keywords even
though the KRG has a candidate graph. 2

Figure 6(a) shows an updated instance of the music database
of Figure 1, where there are new tuples t11 to t14. These
tuples indicate that artist Paulo Anderson (t11) performs
(t14) a song Wish (t12) in a CD entitled Something in my
heart (t13). Now, let us consider a query q = {Anderson,
love, heart}. The KRG includes a candidate graph because
the SG containing the query keywords is complete and has
a JKT(SG) as shown in Figure 6(b). However, although
CG(KRG, q) exists, the database does not have a result
for this query. Observe that any join sequence originating
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(a) The updated music database
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(b) CG and JKT

Figure 6: Candidate graph without result

from Paulo Anderson (t11) does not contain Love, whereas
any sequence from Smith Anderson (t1) does not include
heart. We demonstrate the reason for the failure by setting
kx = love and ky = wish in the above proof. The vertices
tnAnderson, tnheart corresponding to Anderson and heart are
related with tnlove at distances 2 and 1 in JKT, respectively.
In KRG, nanderson, nheart are connected with nwish at the
same distance. Furthermore, wish and love exist in different
tuples that are not connected at any distance. This implies
that there is not way to distinguish if nanderson and nheart

are connected through nlove, or through nwish (as is the case
here) because KRG (and consequently JKT(SG)) does not
represent the paths between nodes, but only their distances.
We refer to KRGs that contain candidate graphs, but not
query results, as false positives.

Even though a candidate graph does not provide certainty,
it does generally indicate a high probability of the database
having results. Let us consider a query with κ keywords and
assume that each keyword is represented by a node in KRG.
There are totally C2

κ relationships between pairs of nodes
in the SG containing the query keywords. To determine if
the SG is a candidate graph, we need to find a JKT(SG).
The third condition of the JKT definition goes beyond the
binary relationships in KRG and tests collectively all rela-
tionships as the whole. This is due to the fact that a test on
a pair of vertices in the JKT involves both (i) checking their
direct relationship, and (ii) relationships between vertices in
the path connecting them. Therefore, for a false positive to
occur, the node ny of Theorem 5.2 has to satisfy κ − 1 re-
lationships to other nodes (to form a complete graph) and
also C2

κ−(κ−1) hidden relationships between the remaining
nodes. In most cases this probability is low and decreases
as the number of query keywords increases. On the other
hand, recall that M-KS simply involves binary relationships
and the chance of false positives increases with the query
size.
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5.2 Search for candidate graphs
Given a query q, G-KS retrieves the subgraph SG of KRG

that contains all the query keywords and checks whether it
is complete. If either keyword coverage, or completeness is
violated, then SG cannot be a candidate graph, implying
that the corresponding database cannot lead to any result.
This is similar to the filtering mechanism of M-KS. How-
ever, whereas M-KS would consider successful all SGs that
feature keyword coverage and completeness, G-KS provides
an additional level of filtering by verifying whether SG is a
candidate graph.

Algorithm 1, hereafter referred to as ValidateSG, deter-
mines whether a valid join keyword tree can be induced in
SG. Since we only need a single JKT, we employ a depth-
first traversal 5. Specifically, ValidateSG initializes a list L
containing all nodes in SG, randomly picks a node in L as
the root of a tree T , and pushes a pair of (T, L) to a stack
S (lines 1-6 ). Then, it iteratively pops out (T, L) from S
until either S or L is empty (lines 7-23 ). If S is empty, no
solution JKT exists, and hence SG is not a candidate graph.
On the other hand, if L is empty, all nodes have been as-
signed to a JKT T , and SG is a candidate graph. In each
of the repeated steps, ValidateSG selects a node nx among
the remaining in L and considers all positions for nx at the
existing tree T . In particular, if there are Sn vertices in T ,
there are (3·Sn−1) possible locations for nx: (i) Sn cases for
inserting nx in the same vertex as an existing node ni (lines
14-16 ), (ii) Sn cases of assigning nx as a child of a existing
vertex (lines 17-19 ) and (iii) Sn − 1 cases of inserting nx

between two parent-child vertices in the tree (lines 21-23 ).
If after the addition of nx, the tree can lead to a JKT i.e.
vertices in the tree satisfy the third condition of a JKT, T
and L are pushed to the stack S.

For simplicity, the pseudo-code presents only the basic
functionality of ValidateSG. In addition, we employ two
strategies to speed up the process of finding a JKT. First,
instead of selecting nodes randomly, we sort them by their
total number of different distances with respect to other
nodes in SG. Then, at each step, we select the node with
the minimum number of distances. This strategy reduces
the possible valid positions for a new node (to be inserted
in the tree) and minimizes the number of potential JKTs
in the stack. Consequently, if the graph has no JKT, the
process can stop after exploring a small number of potential
trees. Furthermore, the first nodes in the list form a sta-
ble solution; therefore, when backtracking is necessary, the
number of backtracking steps is relatively low. Second, in-
stead of trying all possible positions when inserting a node
into a tree, we only attempt to add nx around the existing
node ny with the smallest distance to nx. Recall that for the
new tree to satisfy the requirements of the JKT definition,
the distance between nx and ny has to exceed the distance
between nx and every intermediate node nz in the path con-
necting nx and ny. This requirement cannot be satisfied if
nx is attached to nz.

As an example of the optimizations, consider searching
for a JKT in the graph of Figure 5. Each of nkeep, neternal,
njohny,olson has 4 possible distances to other nodes, while
nlove has 6. We insert the nodes in a priority list LP =

5There may exist numerous JKTs because two nodes can be
connected at different distances, each leading to a different
JKT.

Algorithm 1 : ValidateSG (Graph SG)

1: Create an empty tree T
2: Create an empty stack S
3: Create a list L containing all nodes in SG
4: nR = Remove a node from L
5: Set nR as the root of T
6: Push (T, L) to S
7: while S is not empty do
8: Pop out (T, L) from S
9: if L is empty then

10: return TRUE
11: else
12: nx = Remove a node from L
13: for each node ni in T do
14: T1 = Add nx to the same vertex as ni in T
15: if T1 can lead to a JKT then
16: Push (T1, L) to S
17: T2 = Add nx as a child of ni in T
18: if T2 can lead to a JKT then
19: Push (T2, L) to S
20: for each child nc of ni in T2 do
21: T3 = Remove nc from ni and add it as a child

of nx in T2

22: if T3 can lead to a JKT then
23: Push (T3, L) to S
24: return FALSE

(nkeep, neternal, njohny,olson, nlove) (the first three nodes
are ordered at random). Given LP , the root of the tree is
nkeep. Next, neternal is inserted as a child of nkeep. Note
that neternal cannot be added to the same vertex as nkeep

because they are not related at distance 0 (therefore the re-
sulting tree could not lead to JKT ). During the insertion
of njohny,olson, the second optimization considers the posi-
tions around nkeep (i.e., the node with the minimum distance
to njohny,olson). Observe that if we add njohny,olson as a
child of neternal, the distance between njohny,olson and nkeep

must be greater than the distance between njohny,olson and
neternal violating the JKT conditions. Thus, njohny,olson

can only be appended as a child of nkeep. Finally, nlove is
inserted in the same vertex as neternal, yielding the JKT of
Figure 5.

5.3 Selection of top-K databases
We describe the selection of the top-K databases, consid-

ering both AND and OR semantics. AND semantics require
each result to contain all query keywords. According to OR
semantics a result may include only a subset of the keywords.
Let κ be the term cardinality of a query q, and |cg| be the
largest number of query keywords that yield a candidate
graph in the KRG of a database DB. If |cg| < κ, then ac-
cording to Theorem 5.1, DB cannot produce any result for q
based on AND semantics, and can be safely eliminated. On
the other hand, for OR semantics, DB may still constitute
a candidate for search. For two databases DB1 and DB2,
if |cg1| > |cg2|, then DB1 is, in general, expected to be a
better candidate than DB2. However, in certain cases DB2

may rank higher, if the query keywords have large weights
in its KRG, and occur in tuples close to each other.

The basic functionality of database selection is shown in
Algorithm 2, hereafter referred to as SelectDB. SelectDB
uses a set S|cg| to store the ids of all databases that con-
tain candidate graphs with |cg| keywords (|cg| ≤ κ). The
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Algorithm 2 : SelectDB(Query q)

1: Create an empty list LDB

2: |cg| = κ = number of keywords in q
3: repeat
4: Create an empty set S|cg|
5: for all databases DB except for those in LDB do
6: if there is a candidate graph of |cg| keywords in DB

then
7: Add DB to S|cg|
8: Add S|cg| to LDB

9: if “AND semantics” then
10: break
11: |cg| = |cg| - 1
12: until termination condition
13: return LDB

individual sets for various values of |cg| are maintained in a
set list LDB . The algorithm first finds databases containing
candidate graphs with all query keywords. The ids of these
databases are inserted into Sκ and LDB . If the query is
based on AND semantics, SelectDB terminates and returns
LDB to a scoring mechanism (to be discussed shortly).

In case of OR semantics, the termination condition is flex-
ible. At one extreme, a user may want to rank all databases
containing one or more keywords. At the other extreme, an-
other user may wish to rank only the K databases that con-
tain the maximum number of keywords. To accommodate
this flexibility, line 12 does not specify an explicit termina-
tion condition 6. Assume that after finding databases with
|cg| = κ, we want to retrieve databases with |cg| = κ − 1.
SelectDB derives κ new queries of length κ-1, by removing
each keyword in turn from q (for simplicity, the details of this
process are omitted from the pseudo-code). All databases,
except for those already in LDB , are evaluated against the
new queries, and those containing candidate graphs are in-
serted into Sκ−1 and LDB . This process is repeated for
κ-2 and so on, until the termination condition. The list
LDB contains the candidate databases in decreasing order
of their |cg|, for facilitating ranking based on the size of the
candidate graphs.

Given the wealth of information maintained by the KRG,
G-KS can integrate a wide variety of scoring mechanisms.
Adopting an IR-based methodology, we calculate the simi-
larity between a database and a query as:

Score(DB, q) =
X

{ki,kj}⊆q,i6=j

Score(ki, kj) (1)

where {ki, kj} is a pair of terms in q, and Score(ki, kj) is
their accumulated score calculated as:

Score(ki, kj) = wi · wj ·
X

d

wij(d) (2)

Recall from Section 3, that wi and wj are the weights of
nodes ni and nj , representing terms ki and kj , respectively,
while wij(d) is the weight of the edge connecting ni and nj

at distance d. G-KS computes the score of each database
in LDB based on the above equations and returns the top-
K with the highest scores. Note that, for AND semantics,
LDB may contain contain fewer than K databases. In such

6Details about the concrete implementation are discussed in
Section 6.

cases, the benefits of G-KS are even more important as it
saves redundant search in numerous databases that cannot
contain any results.

5.4 Comparison ofG-KS and M-KS

In this section, we discuss the differences between G-KS
and M-KS, assuming, for consistency, that M-KS uses the
SUM function 7 to calculate the similarity score between
a database and a query. Specifically, Score(DB, q) is also
given by Equation 1, but the score of a keyword pair is:

Score(ki, kj) =
X

d

pfSUMij(d)

d + 1
(3)

where pfSUMij(d) is the total number of occurrences of the
pair (ki, kj) at distance d calculated as:

pfSUMij(d) =
X
tx,ty

pfij(tx, ty, d) (4)

M-KS considers all keyword terms to be equally impor-
tant, and simply counts the number of term co-occurrences
to compute the weights of distance relationships in the ma-
trix. Therefore, it cannot deal with the problem of popular
terms, mentioned in Section 2.1. For instance, a database
that contains frequent co-occurrences for a pair of query
terms would achieve a large score, although these co-occurrences
do not have high discriminating value (indeed, because of
their frequency). In contrast, G-KS normalizes the weights
of nodes and edges, solving the problem of popular terms.

The second difference between the two methods is due to
the use of compound nodes in KRG. Compound nodes repre-
sent multiple terms that occur a single time in the database,
and at the same tuple. This concept leads to effective com-
pression of the KRG, since all terms in a compound node
share the same set of distance relationships. In contrast, M-
KS explicitly represents the distance relationship between
all pairs of terms, without utilizing any compression mecha-
nism. The resulting KRM has more entries than the corre-
sponding KRG, consumes more space and incurs higher cost
during query processing.

The third, and most important, difference regards the ef-
fectiveness of pruning. M-KS simply uses the binary rela-
tionships of queried keywords in KRM to calculate similar-
ity scores. Consequently, it incurs a large number of false
positives for queries with more than two keywords. In con-
trast, the concept of the candidate graph allows G-KS to
rise above binary relationships, and treat the query terms
holistically. As we show in the next Section, this leads to
significant gains in terms of precision and recall.

6. EXPERIMENTAL EVALUATION
We assume a client-server architecture where the server

stores summaries of several databases. A client issues a
query q to the server, which returns the part of the sum-
mary that is relevant to q, i.e., the weights of the query
terms and their distance relationships. Given this informa-

7[26] suggests using the SUM, PROD, MAX or MIN func-
tions for combining the pairwise scores. PROD and MAX
have a similar effect to SUM, while MIN cannot capture OR
semantics.
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Figure 7: Recall, precision, and query response time versus κ

tion, the client selects the top-K databases locally8. In ad-
dition to responding to queries, the server has to construct
and maintain the summaries in the presence of database up-
dates. The server uses MySQL 4.1.7 to store and retrieve the
summaries. Specifically, each KRG is represented by: (1) a
node table where a tuple (ni, wi) signifies that the weight
of node ni is wi, (2) a term table where a tuple (kj , ni) rep-
resents that term kj is mapped to node ni, and (3) an edge
table, where a tuple (ni, nj , d, w) indicates that nodes ni

and nj are connected at distance d; w is the weight of the
distance relationship. The client is an Intel Pentium 4 CPU
2.4 GHz and the server is an Intel Xeon MP CPU 3.00 GHz.
The simulator is implemented using Java JDK 5.0.

Due to the unavailability of multiple real databases, we
follow a methodology similar to [26]. Specifically, we de-
compose DBLP [6] into distinct databases according to bib-
liography types such as articles, proceedings, books. Since
some of the resulting databases (e.g., articles, proceedings)
are rather large, we decompose them further, to derive a
total of 81 databases, each containing in the order of 50,000
records residing in 4-5 tables. We evaluate G-KS against
M-KS [26] as there is no other competitor in the literature.
The client-server framework remains the same, except that
the server maintains KRMs instead of KRGs. G-KS ap-
plies the compression technique of Section 3.3 to reduce the
KRG size. Section 6.1 compares the two methods on the pre-
processing overhead. Section 6.2 focuses on the effectiveness
and efficiency of query processing. Section 6.3 investigates
the effect of delayed updates on the data summaries.

6.1 Pre-processing overhead
Table 2 illustrates the average construction time and space

consumption per summary, assuming that the maximum dis-
tance relationship δ preserved in each summary is 4. G-KS
is faster (31.54%) and requires less disk space (17.24%) than
M-KS because of the compression of KRGs. For instance,
given a database of 22,423 distinct terms and 53,214 tuples,
G-KS creates a total of 20,308,927 distance relationships
in the compressed KRG, whereas M-KS creates a total of
24,661,881 relationships in the KRM.

6.2 Query processing
Since the probability for two random keywords to have an

interesting association is very low, we generate queries con-

8We chose this architecture because of its flexibility, e.g.,
each client may implement the scoring mechanisms of its
choice. Alternatively, query processing can take place at
the server.

Table 2: Pre-processing cost
Time (Hours) Space (MB)

M-KS 7.26 438.12
G-KS 4.97 362.59
Improvement 31.54% 17.24%

taining terms that are pair-wisely related in at least some
KRGs. Furthermore, we assume OR semantics, so that a
result may miss some query keywords. G-KS uses the tech-
niques of Section 5.3 to rank the databases. The termination
condition of Algorithm 2 is: |LDB | ≥ K, i.e., SelectDB stops
at a value of |cg| such that the number of databases with
candidate graphs is at least K. We also apply SelectDB for
M-KS since the original version of the method cannot han-
dle OR semantics. M-KS implements the scoring functions
of Section 5.4.

The experiments focus on the efficiency and the effective-
ness of the methods. Efficiency refers to the query response
time, which is the duration from the instance that the client
sends a query q to the server, until the time it produces the
top-K databases for q. This includes (1) the retrieval of
summaries at the server, and the extraction of the relevant
information for q, (2) the network latency for transmitting
this information to the client, and (3) the processing cost
at the client. The network latency is very small and similar
in both G-KS and M-KS ; thus, the response time and the
performance difference between the techniques is dominated
by the other two factors.

Effectiveness refers to the concepts of precision and recall.
In order to measure effectiveness, we use a brute-force (BF)
method that, given q, receives the top-50 results from every
database using the method of [16]. Let M be the maximum
number of keywords in any result (M ≤ κ). BF selects
the top-K databases based on the cardinality of the results
containing M keywords. For instance, if DB1 returns 10
results with M=5 keywords, and DB2 returns 20 results
with 4 keywords, then DB1 obtains a higher score than DB2.
Let KBF (M), KGKS(M) be the total number of results with
M keywords in BF and G-KS, respectively. Then, recall
is defined as KGKS(M)/KBF (M). Precision is the ratio
of the number of selected databases having results with M
keywords in G-KS over K. The recall and precision of M-KS
are defined in the same way.

The experiments involve three parameters: the query length
κ, the maximum distance δ between any two terms in the
summary, and the number K of selected databases. Table 3
summarizes the default and range of values of these param-

10



 0

 0.2

 0.4

 0.6

 0.8

 1

 2  3  4  5  6  7  8  9  10

R
ec

al
l

Number of selected databases

G-KS
M-KS

(a) Recall

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 2  3  4  5  6  7  8  9  10

P
re

ci
si

on

Number of selected databases

G-KS
M-KS

(b) Precision

 0

 5

 10

 15

 20

 2  3  4  5  6  7  8  9  10

T
im

e(
s)

Number of selected databases

G-KS
M-KS

(c) Query response time

Figure 8: Recall, precision and query response time versus K
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Figure 9: Recall, precision and query response time versus δ

Table 3: Query parameters
Parameter Default value Range of values
δ 4 1 - 4
κ 5 2 - 10
K 3 2 - 10

eters. For each experiment we vary one parameter, while
setting the other two to their default values. A number of
100 queries are executed and the displayed results are the
average results from executing these queries.

Figure 7 evaluates recall, precision and response time as
a function of κ. When the number of query keywords in-
creases, the recall of M-KS drops due to false positives in-
curred by the binary filtering mechanism. On the other
hand, G-KS checks relationships holistically through Val-
idateSG and its recall grows with κ. Note that for large
values of κ, there may be less than K databases with the
maximum number of keywords, leading to relatively low pre-
cision. However, the high value of recall implies that G-KS
obtains most of these databases. In addition to effective-
ness, G-KS outperforms M-KS in terms of the efficiency.
This result may initially appear counter-intuitive since G-KS
performs the additional step of filtering through candidate
graphs. However, the total processing cost is dominated
by the retrieval of keyword relationships in the summaries.
Since each KRG is significantly smaller that the correspond-
ing KRM, the retrieval cost of G-KS is lower.

Figure 8 measures the effect of the number K of selected
databases. As expected, the recall increases with K since
more databases are likely to produce more results. On the
other hand, the precision drops since a larger percentage of
these results is irrelevant. Again G-KS has an important ad-
vantage over M-KS on both measures. The total processing

cost is insensitive to the value of K, because the server trans-
mits the same amount of information to the client, indepen-
dently of the number of databases to be selected. Therefore,
the overhead of summary retrieval, which is the dominant
factor on the response time, does not change.

Figure 9 studies the effect of δ. A large δ implies de-
tailed information in the summary. G-KS utilizes the ad-
ditional information to improve both precision and recall.
On the other hand, the same is not necessarily true for M-
KS, as more relationships at higher distances may increase
the number of false positives, misleading the system to over-
estimate the usefulness of a database. The efficiency drops
because the summary size is proportional to δ and larger
summaries lead to longer retrieval times for keywords rela-
tionships.

6.3 Effect of delayed updates
As discussed in Section 4.2, to avoid the cost of frequent

revisions, the KRG of a database may be updated in batches,
instead of after every record insertion and deletion. This
experiment evaluates the effectiveness as a function of the
number of updates that have not been reflected in the sum-
mary. An update deletes a random record from one database,
and inserts it in another one. Figure 10 shows precision and
recall versus the percentage of the database size that has
been modified. As expected, the effectiveness of both M-KS
and G-KS decreases with the percentage of the modified
data. Note that the results of G-KS when 10% of the data
have been modified, are better than those of M-KS before
any updates.

7. CONCLUSION
This paper proposes G-KS, a method that selects the
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Figure 10: Recall and precision versus data modifi-
cation

top-K databases for processing a relational keyword search
query. G-KS summarizes each database as a keyword rela-
tionship graph, where nodes correspond to terms, and edges
capture distance relationships. Both nodes and edges are
weighted according to state-of-the-art IR techniques in or-
der to support a variety of scoring functions. Based on the
KRG, G-KS applies an intricate algorithm to identify and
eliminate non-promising databases. As opposed to the pre-
vious work that is based only on binary relationship be-
tween terms, G-KS considers all query keywords as a whole
in order to minimize the number of false positives. An ex-
tensive experimental evaluation confirms the superiority of
G-KS in terms of effectiveness, efficiency, processing and
pre-processing overhead.
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