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ABSTRACT

In this paper, we propose a novel algorithm to discover the top-
k covering rule groups for each row of gene expression profiles.
Several experiments on real bioinformatics datasets show that the
new top-k covering rule mining algorithm is orders of magnitude
faster than previous association rule mining algorithms.

Furthermore, we propose a new classification method RCBT.
RCBT classifier is constructed from the top-k covering rule groups.
The rule groups generated for building RCBT are bounded in num-
ber. Thisisin contrast to existing rule-based classification meth-
ods like CBA [19] which despite generating excessive number of
redundant rules, is still unable to cover some training data with
the discovered rules. Experiments show that the RCBT classifier
can match or outperform other state-of-the-art classifiers on severa
benchmark gene expression datasets. In addition, the top-k cover-
ing rule groups themselves provide insights into the mechanisms
responsible for diseases directly.

1. INTRODUCTION

Microarray technology makes it possible to measure the expres-
sion levels of tens of thousands of genes in cell simultaneously
and has been widely used in post-genome cancer research stud-
ies. Meanwhile, mass spectrometry technology is also increasingly
being used in cancer research by measuring the mass/charge ra-
tios of molecular proteinsin tumor tissues. Both technologies typi-
cally generate only tens or hundreds of very high-dimensional data.
The generated high-dimensional datasets naturally require power-
ful computational analysis tools to extract the most significant and
reliable rules, which reveal the important correlation between gene
expression patterns and disease outcomes and translate the com-
plex raw data into relevant and clinically useful diagnostic know!-
edge. In this paper, we focus on gene expression profiles while our
proposed techniques are also applicable to data generated by mass
spectrometry technol ogy.
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Considering the above requirements, we define arule as a set of
items, or specifically a set of conjunctive gene expression level in-
tervals (antecedent) with a single class label (consequent). The
general form of arule is. geneilai,b1], ..., genenfan,bn] —
class, where gene; is the name of the gene and [as, b;] is its ex-
pression interval. For example, X95735_at[—o00,994] — ALL is
onerule discovered from the gene expression profilesof ALL/AML
tissues.

Recent studies have shown that such association rulesthemselves
arevery useful inthe analysis of gene expression data. Dueto their
relative simplicity, they can be easily interpreted by biologists, pro-
viding great help in the search for gene predictors (especially those
still unknown to biologists) of the data categories (classes). More-
over, itisshown in [6, 9, 18] that classifiers built from association
rulesare rather accurate in identifying cancerous cell. Thisisexcit-
ing because classification is one of the most important applications
of microarray technology. Unfortunately, two challenges remain.

First, it hasbeen shownin [6, 7] that huge number of ruleswill be
discovered from the high-dimensional gene expression dataset even
with rather high minimum support and confidence thresholds. This
makesit difficult for the biologiststo filter out rules that can encap-
sulate very useful diagnostic and prognostic knowledge discovered
from raw datasets. Although recent row-wise enumeration algo-
rithmslike FARMER [6] can greatly reduce the number of rules by
clustering similar rules into rule groups, it is still common to find
tens of thousands and even hundreds of thousands of rule groups
from gene expression dataset, which are rather hard to interpret.

Second, the high dimensionality together with the huge number
of rules results in extremely long mining process. Rule mining al-
gorithms using column enumeration (combinations of columns are
tested systematically to search for rules), such as CHARM [31] and
CLOSET+ [30], are usualy unsuitablefor gene expression datasets
because searching in the huge column enumeration space resultsin
extremely long running time. Although FARMER efficiently clus-
ters rules into rule groups and adopts an anti-monotone confidence
pruning with a delicate row ordering strategy, it is still very slow
when the number of rule groupsis huge.

These two challenges greatly limit the application of rulesto an-
alyze gene expression data. It will beideal to discover only asmall
set of the most significant rules instead of generating a huge num-
ber of rules. To address this basic problem, we propose to discover
the most significant top-k covering rule groups (TopkRGS) for
each row of agene expression dataset. Wewill illustrate thiswith
an example.

EXAMPLE 1.1. TopkRGS

For the running example shown in Figure 1(a), given minsup = 2,
the top-1 covering rule group for rows 1 and 72 is {abc — C}
with confidence 100%, the top-1 covering rule group for row r3 is
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Figure 1: Running Example

{ede — C?} with confidence 66.7%, and the top-1 covering rule
group for rows r4 and r5 is { fge — —C'} with confidence 66.7%.
The support values of the above top-1 covering rule groups are all
2, which is equal to minsup.

While formal definition will be given later, we summarize the
task of finding top-k covering rule groups as essentially doing the
following:

o Define an interestingness criterion that ranks the rule groups
in certain order.

e Based on the ranking, for each row r in the dataset, find the
k highest ranked rule groups of the same class as r such that
the antecedent of the & rule groups are dl found in r (i.e.
is covered by these k rule groups).

The top-k covering rule groups are beneficial in several ways, as
listed below:

e TopkRGS can provide a more complete description for each
row. Thisisunlike previous proposal of interestingness mea-
sure like confidence which may fail to discover any interest-
ing rules to cover some of the rows if the mining threshold
is set too high. Correspondingly, information in those rows
that are not covered will not be captured in the set of rules
found. This may result in the loss of important knowledge
since gene expression datasets have small number of rows;

e Finding TopkRGS helps us to discover the complete set of
useful rules for building a classifier while avoiding the ex-
cessive computation adopted by algorithms like the popular
CBA classifier [19]. These algorithms first discover a large
number of redundant rules from gene expression data most
of which will be pruned in the later rule selection phase. We
will prove later that the set of top-1 covering rule group for
each row contains the complete set of rules required to build

the CBA classifier while avoiding the generation of huge re-
dundant rules,

e \We do not require users to specify the minimum confidence
threshold. Instead only the minimum support threshold and
the number of top covering rule groups, &, arerequired. Such
an improvement is useful since it is not easy for users to set
an appropriate confidence threshold (we do not claim that
specifying minimum support is easy here) while the choice
of k is semantically clear. In fact, the ability to control &
allows us to balance between two extremes. While rule in-
duction agorithms like decision tree typicaly induce only
1 rule from each row and thus could miss interesting rules,
association rule mining algorithms are criticized for finding
too many redundant rules covering the same rows. Allow-
ing users to specify & gives them control over the number of
rulesto be generated.

e Thenumber of discovered top-k covering rule groupsisbounded

by the product of k and the number of gene expression data,
whichisusually quite small.

In addition to building CBA classifier with top-1 covering rule
groups of each row, we try to address an open problem of CBA.
When the generated CBA classifier does not cover atest data, CBA
uses a default class to classify test data. Such case happens quite
often for CBA on gene expression data. In fact, discussion with
biologists has reveaded that they are usually reluctant to believe in
the classification made by selecting a default class which is done
without giving any deciding factors. In this paper, we try to refine
the classification of such test data by building standby classifiers.
We also improve CBA by aggregating the discriminating powers of
asubset of rules.

In this paper, we develop an efficient algorithm to mine the top-
k covering rule groups for each row of the gene expression data.
We build CBA classifier from the set of top-1 covering rule groups
and develop a new classifier called RCBT. We identify our main
contributions as follows.

First, we propose the concept of top-k covering rule groups for
each row of a gene expression dataset, which is useful as discussed
above.

Second, we design an efficient algorithm to discover the top-
k covering rule groups for each row. Extensive experiments on
real-life gene expression datasets show that our algorithm can be
several order of magnitudes better than FARMER, CLOSET+ and
CHARM which uses diff-sets.

Third, we propose a new classification technique using top-k

covering rulegroups. Experiments on several gene expression datasets

show that our classifier outperforms or is competitive with CBA
[19], IRG classifier [6], SYM [15], and C4.5 family agorithms
[27] (single tree, bagging and boosting) on real-life datasets. Fur-
thermore, we show that our method does provide knowledge of bi-
ological significance.

Therest of this paper isorganized asfollows: in the next section,
wewill introduce the concept of top-k covering rule groupsfor each
row and its application in building CBA classifier. The proposed
algorithm will be presented in Sections 3 and 4. Section 5 will
present our classification methods. To illustrate the performance of
our proposed algorithm and our classifier, experimental resultswill
be given in Section 6. Section 7 reviews some related work. We
will conclude our discussion in Section 8.

2. PRELIMINARY
TopkRGS and RCBT work on discretized gene expression data.



Dataset: the gene expression dataset (or table) D consists of a set
of rows, R={r1, ..., 7 }. Let I={i1, 42, ..., %m } bethe complete set
of items of D (each item represents some interval of gene expres-
sionlevel), and C' = {C4, C>, ..., C } bethe complete set of class
labels of D, then each row r; € R consists of one or more items
from I and aclass label from C.

Asan example, Figure 1(a) showsadataset with5rows, r1,...,75,
the first three of which are labelled C while the other two are la
belled =C'. To simplify the notation, we use the row id set to rep-
resent a set of rows and the item id set to represent a set of items.
For instance, “134” denotes the row set {r1,r3, 74}, and “cde”
denotes theitemset {c, d, e}.

As amapping between rows and items, given aset of items I’ C
I, we define the Item Support Set, denoted R(I') C R, asthe
largest set of rows that contain I’. Likewise, given a set of rows
R’ C R, wedefine Row Support Set, denoted Z(R') C 1, asthe
largest set of items common among the rowsin R'.

ExAMPLE 2.1. R(I') and Z(R')

Consider again the table in Figure 1(a). Let I’ be the itemset
{c,d,e}, thenR(I') = {r1,rs,ra}. Let R’ betherowset {r1, 73},
then Z(R')={c, d, e} since thisis the largest itemset that appears
in both 1 and rs.

Based on our definition of item support set and row support set,
we can redefine the association rule.
Association Rule: an association rule ~, or just rule for short,
from dataset D takes the form of A — C, where A C I isthe
antecedent and C' is the consequent (here, it is a class label). The
support of v is defined as the [R(A U C)|, and its confidence is
IR(AU C)|/IR(A)|. We denote the antecedent of v as v.A, the
consequent as +.C', the support as ~v.sup, and the confidence as
y.conf.

As discussed in the introduction, in real biological applications,
biologists are often interested in rules with a specified consegquent
C, which usually indicates the cancer outcomes or cancer status.

2.1 Top-k Covering Rule Groups (TopkRGS)

The rule group is a concept which helps reduce the number of
rules discovered by identifying rules that come from the same set
of rows and clustering them conceptually into rule groups.

DEFINITION 2.1. RuleGroup

Let D be the dataset with itemset 7 and C be the specified class
label. G = {A; — C|A; C I} isarule group with antecedent
support set R and consequent C, iff (1) VA; — C € G, R(4;) =
R, and (2) VR(A;) = R, A; — C € G. Rue~r, € G (7u:
A, — C)isan upper bound of G iff there existsno v' € G
(v:A" — C)suchthat A’ D A,. Ruley; € G (yi: 4, — C)is
alower bound of G iff thereexistsnoy’ € G (y': A’ — C) such
that A" C A;.

LEMMA 2.1. Given a rule group G with the consegquent C' and
the antecedent support set R, it has a unique upper bound ~ (v:
A—C).

Based on lemma 2.1, we use upper bound rule ., to refer to a
rule group G in the rest of this paper.

ExampLE 2.2. RuleGroup

Given thetablein Figure 1(a). R({a}) = R({b}) = R({ab}) =
R({ac}) = R({bc}) = R({abc}) = {ri,7m2}. They make up
arulegroup {a — C,b — C,...,abc — C} of consequent C,
with the upper bound abc — C' and the lower bounds a — C' and
b—C.

It is obvious that all rules in the same rule group have the same
support and confidence since they are essentially derived from the
same subset of rows. Based on the upper bound and all the lower
bounds of a rule group, it is easy to identify the remaining mem-
bers. Besides, we evauate the significance of rule groups consis-
tently with the individual rule ranking criterion.

DEFINITION 2.2. Significant
Rulegroup; ismoresignificantthan s if (yi.conf > y2.conf)V
(y1.-sup > Y2.5up A y1.conf = y2.conf).

The top-k covering rule groups, as defined below, encapsulate
the most significant information of the dataset while enabling users
to control the amount of information in a significance-top-down
manner.

DEFINITION 2.3. Top-k covering Rule Groups (TopkRGS)

Given the database D and a user-specified minimumsupport minsup,
the top-k covering rule groups for a row r; isthe set of rule groups
{5} @ < j < k), where ~,,j.sup > minsup, vyr,;.A C 14
and there exists no rule group v’ " ¢ {~.,,} such that o is more
significant than .., ;. For brevity, we will use the abbreviation Top-
kRGS to refer to top-k covering rule groups for each row.

2.2 Usefulnessof TopkRGSin Classification

In this subsection, we prove that the set of top-1 covering rule
groups for each row contain the set of rules required to build CBA
classifier. The basicideaof CBA classification method can be sum-
marized as the following steps:

Step 1: Generate the complete set of class association rules CR
for each class that satisfy the user-specified minimum sup-
port and minimum confidence.

Step 2: Sort the set of generated rules C'R according to the re-
lations " <". Given two rules, r; and r;, 7; < r; if and
only if one of the following three conditions is satisfied (1)
ri.conf > rj.conf; (2) ri.conf = rj.conf A ri.sup >
rj.sup; or (3) r;.conf = rj.conf A r;.sup = r;.sup and
r; is discovered before r;. Because CBA discoversrulesin
breadth-first manner, this implies that CBA will select the
shortest one when several rules have the same support and
confidence.

Step 3: Select rules from sorted rule set CR. For each rule r in
CR, if it can correctly classify some training datain D, we
put it into classifier C”, remove those training data covered
by r and continue to test the rules after » in C'R. Meanwhile,
we select the mgjority class in the remaining data as the de-
fault class and compute the errors made by current C’ and
default class. This process continues until there are no rules
or no training data left.

Step 4: Locate therule r in C that results in the least errors and
discard those rulesin C” after r to get the final classifier C.

As can be seen, in CBA, the rule generation scheme using fixed
support and confidence thresholds at Step 1 and the rule selection
scheme based on coverage test at Step 3 are simply NOT compati-
ble with each other. Because of the extremely high dimensionality
of gene expression data, even when the confidence threshold is set
as high as 95%, CBA cannot finish running at Step 1 in severa
days. It is even more ridiculous that most of the time spent is used
to generate redundant rules which will eventually be pruned away
at Step 3. The following lemma proves that the rules selected by
CBA for classification are actually a subset of rules of TopkRGS
with & = 1.



LEMMA 2.2. Given a minimum support. Let ¥ be the set of dis-
covered top-1 covering rule groups for each training data, ¥, be
the set of shortest lower bounds of ¥, and C’ be the set of rules
selected at Step 3 of CBA method. We get C7 C .

Proof: For eachruler € C’, it must correctly classify some train-
ing data. Because of the sorting at step 2 of CBA method, r must
be thetop-1 covering rule of atraining data if it correctly classifies
the training data. This means that » must be in U;. We get the
proof.

Note that mining top-1 covering rule group does not require a
minimum confidence threshold while CBA algorithm needs onewhen
generating rules at Step 1. Setting too high a confidence threshold
will result in some rows not being covered by the discovered rule
while lowering the confidence threshold will result in substantial
increase in running time. This is unlike our approach which will
still find the most significant top-1 covering rule for each training
data without specifying the appropriate confidence threshold in ad-
vance.

2.3 Problem Statement

The first problem that we address is to efficiently discover the
set of top-k covering rule groups for each row (TopkRGS) of gene
expression data given a user specified minimum support minsup.

In addition to applying the top-1 covering rule groups to build
CBA classifier, we also propose a refined classification method
based on TopkRGS (RCBT). RCBT improves CBA method in two

aspects:

e RCBT reduces the chance that atest data is classified based
on adefault class;

e RCBT uses a subset of rules to make a collective decision.

3. EFFICIENT DISCOVERY OF TOPKRGS
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Figure 2: Row Enumeration Tree.

We first give a general review of how row enumeration takes
place using the (projected) transposed table first proposed in [6]
before proceeding to our TopkRGS discovery strategies. Imple-
mentation details will then be discussed.

Figure 1(b) isatransposed version T'T" of thetablein Figure 1(a).
InT'T, the items become the row ids while the row ids become the
items. The rows in the transposed tables are referred as tuples to
distinguish from the so-called rows in the original table. Let X be
a subset of rows. Given the transposed table 7T, a X -projected
transposed table, denoted as 77| x, is a subset of tuples from
TT such that: 1) For each tuple ¢t in T'T" which contains all the

row idsin X, there exists a corresponding tuple t' in TT'| x . 2) ¢/
contains al rowsin ¢ with row ids larger than any row in X. Asan
example, the {13}-projected transposed table, 77|13, is shown in
Figure 1(d).

A complete row enumeration tree will then be built as shown
in Figure 2. Each node X of the enumeration tree corresponds to
a combination of rows R’ and is labelled with Z(R') that is the
antecedent of the upper bound of a rule group identified at this
node. For example, node “12” corresponds to the row combina
tion {r1, 72} and “abc” indicates that the maximal itemset shared
by ry andry isZ({ri,r2}) = {a, b, c}. Anupper bound abc — C
can be discovered at node “12”. The correctness is proven by the
following lemmain [6].

LEMMA 3.1. Let X be a subset of rows from the original table,
then Z(X) — C must be the upper bound of the rule group G
whose antecedent support set is R (Z (X)) and consequent is C'.

By imposing a class dominant order order ORD on the set of
rows, FARMER [6] performs a systematic search by enumerating
the combinations of rows based on the order ORD. For exam-
ple let “1 < 2 < 3 < 4 < 5" bethe ORD order, then the
depth-first order of search in Figure 2 will be {“1”, “12”, 123",
“1234", “12345", “1235",...,45", “5"} in absence of any opti-
mization strategies. Ordering the rows in class dominant order is
essential for FARMER to apply its confidence and support pruning
efficiently. Class dominant order isalso essential for efficient prun-
ing based on the top-k dynamic minimum confidence, as we will
discuss later.

DerFINITION 3.1. Class Dominant Order

A class dominant order ORD of the rows in the dataset is an
order in which all rows of class C' are ordered before all row of
class—-C.

Given the row enumeration strategies introduced above, a naive
method of deriving the top-k covering rule groups s to first obtain
the complete set of upper bound rules in the dataset by running
the row-wise algorithm FARMER [6] with alow minimum confi-
dence threshold and then picking the top-k covering rule groups for
each row in the dataset. Obvioudly, this is not efficient. Instead,
our algorithm will maintain alist of top-k covering rule groups for
each row during the depth-first search and keep track of the k-th
highest confidence of rule group at each enumeration node dynam-
ically. The dynamic minimum confidence will be used to prune the
search space. That is, whenever we discover that the rule groups
to be discovered in the subtree rooted at the current node X will
not contribute to the top-k covering rule groups of any row, we im-
mediately prune the search down node X. The reasoning of our
pruning strategies is based on the following lemma.

LEMMA 3.2. Given a row enumeration tree 7', a minimum sup-
port threshold minsup, and an ORD order based on specified
classlabel C, suppose at the current node X, R(Z(X)) = X, X,
and X, represent the set of rowsin X with consequent C' and —=C
respectively, and R, and R,, are the set of rows ordered after rows
in X with consequent C' and —C' respectively in the transposed ta-
ble of node X, T'T'| x . Then, we can conclude that the maximal set
of rows that the rule groups to be identified in the subtree rooted at
node X can cover is X, U R,.

Proof: AsR(Z(X)) = X, the maximal antecedent support set of
the rule groups to be identified at the subtree rooted at node X is
(X UR,UR,). Inaddition, astherule groups are labelled C, the
maximal set of rows covered by these rule groupsis (X, U R),).



Combined with Definition 2.2, we compute mincon f and sup,
the cutting points of the TopkRGS thresholds for the rowsin (X, U
R,), where mincon f isthe minimum confidence value of the dis-
covered TopkRGS of all the rowsin X, U R,,, assuming the top-k
covering rule groups of each row r; is ranked in significance such
that 7,1 < Yri2 < oo < Vrsk

{’Yrik'conf}v (1)

minconf = min
T G(XpURp)
and sup is the support value of the corresponding covering rule
group with confidence mincon f,

SUP = Yr k-SUP, where Yy k.conf = minconf. 2

According to the definition of the top-k covering rule groups
(Definition 2.3), we can further obtain Lemma 3.3 below.

LeEMMA 3.3. Given the current node X, minconf and sup com-
puted according to Equations 1 and 2, if the rule group identi-
fied inside the subtree rooted at node X is less significant (ac-
cording to Definition 2.2) than ~y,.x (Yr.x-conf = mincon f and
Yrok-SUp = sup), then the rule group cannot become a rule group
in the top-k covering rule group list of any row.

Naturally our top-k pruning will proceed in the following way:

o |f the upper bound of the confidence value of the rule groups
to be identified in the subtree rooted at node X is below
mincon f which is dynamically calculated at node X, then
prune the search down node X;

o |f the upper bound of the confidence value of the rule groups
to be identified in the subtree rooted at node X is equal to
minconf which is dynamically calculated at node X and
the upper bound of the support value of the rule groups to
be identified in the subtree rooted at node X is smaller than
sup, then prune the search space down node X .

The reasoning of our TopkRGS discovery is clearly that the rule
groups to be discovered down node X will not contribute to the
TopkRGS of any row. The top-k pruning strategy introduced above
can be perfectly integrated with the backward pruning, loose and

tight upper bound pruning of confidence or support values of FARMER,

which further speeds up our mining process. The following is an
example.

ExampLE 3.1. Discovery of Top-1 Covering Rule Groups

For the running example in Figure 1(a) where k = 1, specified
classis C, and minsup = 2, when the depth-first traversal comes
to node {1, 2}, the top-1 covering rule group for both r1 and r,
is dynamically updated to abc — C' (conf: 100%, sup:2). At node
{1,3},when X, = {1,3} and R, = ), astheidentified top-1 cov-
ering rule group for r; has confidence 100% while no top-1 cover-
ing rule group of r3 has been discovered yet, we get minconf = 0
and sup = 0. Snce the rule group cde — C' identified at node
{1, 3} has confidence 66.7% and support 2, which is above the
minconf and minsup thresholds, it is output to update the top-1
covering rule group of r3. The estimated upper bound of the con-
fidence values of the sub-level nodes down node {1, 2} and {1, 3}
are all below the corresponding mincon f and are simply pruned.
The consequent search down node {2} and {3} is pruned using the
backward pruning because of the rule groups down these nodes are
identified already in previous enumerations.

4. ALGORITHM

Our a gorithm performs adepth-first traversal of the row enumer-
ation tree, where each node X will be associated with X -projected
transposed table. As an example, when visiting node 1 in the enu-
meration tree, the 1-projected transposed table will be formed as
shown in Figure 1(c). Also, it is important to note that the pro-
jected transposed table at a node can in fact be computed from the
projected transposed table of its parent node. To compute the 13-
projected transposed table as shown in Figure 1(d), we can simply
scan 1'T'|; and extract those tuplesin T'T’|; that contain r3. Since
the enumeration order is such that parent node will always be vis-
ited before the child node, this gives rise naturally to a recursive
algorithm where each parent node will call its children passing the
relevant projected transposed table to the children nodes.

Formally, the algorithm is shown in Figure 3. There are four
input parameters of the algorithm, the original dataset D, class la-
bel C, the minimum support minsup and k. The algorithm will
scan through the dataset D to count the frequency of each item and
remove infrequent items from each row in D. D will then be trans-
formed into the corresponding transposed table. At the same time,
the top-k covering rule groups for each row r; with consequent C'
denoted as ¢, =[vr;1, ..., V%] Will be initialized. Then the pro-
cedure Depthfirst() is called to perform the depth-first traversal of
row enumeration tree.

The procedure Depthfirst() takes in six parameters at node X:
TT' |x, Xp, Xn» Rp, R, and minsup. TT' | x isthe X -projected
transposed table at node X. X, and X,, represent the the set of
rows in X with consequent C' and —C respectively. R, isthe set
of candidate enumeration rows with consequent C' that appear in
TT'|x and R,, isthe set of enumeration candidate rows with —-C
appearing in TT'|x. Among the steps in Depthfirst(), only steps
10, 12 and 14 are necessary if no pruning strategies are adopted.
Step 10 scans the projected table T7”| x and computes freq(r;),
the frequency of occurrence of each row r; in TT"|x. Based on
freq(r;), rows that occur in al tuples (i.e. freq(u) = Z(X)) of
TT'|x are found. These rows will appear in all descendant nodes
of X and are thus added directly into X . Correspondingly, X, and
X, are updated based on the consequent of these rows and they are
removed either from R, or R,, at step 12. Step 14 moves on into
the next level enumerationsin the search tree by selecting each row
r; that iseither in R, or R,,, creating anew {X U {r; } }-projected
transposed table and then passing the updated information to an-
other call of MineTopkRGS.

Note that Step 14 implicitly does some pruning since it is pos-
sible that there is no row available for further enumeration, i.e.
R, U R,, = (. It can be observed from the enumeration tree that
there exist some combinations of rows, X, such that Z(X) = 0.

4.1 Pruning Strategies

In MineTopkRGS, top-k pruning is the main pruning strategy,
and other pruning techniques first introduced in [6] are the supple-
mentary pruning that we have seamlessly combined with our top-k
pruning.

Wefirst briefly introduce how to estimate the support upper bounds
at an enumeration node X. At Step 9, it is obvious that the sup-
port of any rule groups enumerated along X cannot be more than
| Xp| + |Rp|. The maximal number of rows with consequent C,
denoted as m,(m, < Ry), among al the branches under node X
can be obtained at Step 10. Asaresult, we can get atighter support
upper bound at Step 11, i.e. | X,,| + myp.

The estimation of confidence upper boundsis a bit complicated.
For arule ~ discovered in the subtree rooted at X, its confidence is
computed as |R (7. AUC)|/ (R (v.AUC)|+|R(y.AU-C)|). This



Algorithm MineTopkRGS (D, C, minsup, k)

1. Scan database D to find the set of frequent items F' and remove the
infrequent itemsin each row r; of D;

2. Let Dy, be the set of rows in D with consequent C' and D,, be the
set of rowsin D without consequent C;

3. Convert table D into transposed table T'T|;

4. Initiate alist of k dummy rule groups with both confidence and sup-
port values of 0, G, =[Vr;1, ey Vr; 1], fOr €8Ch row r; in Dp;

5. Call Depthfirst (I'T'|g, 0, 0, Dp, Dy, minsup);
6. Return ¢, forVr; € D,.

Procedure: Depthfirst(TT” | x, Xp, Xn, Rp, Rn, minsup)

7. Backward Pruning: If thereisarow r’ that appearsin every tuple
w.r.t Z(X) and does not belong to X, Then return.

8. Threshold Updating: Check the kth covering rule group ., 5 for
each row r; € X, U R, to find the lowest confidence mincon f
and the corresponding support sup.

9. Threshold Pruning: If prunable with the loose upper bounds of
support or confidence, Then return.

10. Scan T'T’|x and count the frequency, freq(r;), for eachrow, r; €
Rp U Ry,
Let Y, C R, betheset of rowssuchthat freq(u) = |Z(X)|,u €
R, and Y,, C R, be the set of rows such that freq(u) =
|Z(X)],u € Rn;
Xp=XpUYp, Xp =X, UV, and X = X, U Xy;

11. Threshold Pruning: If prunable with the tight upper bounds of sup-
port or confidence, Then return.

12. Ry = Ry — Yp, Rn = Ry — Yo,

13. ¢=|Xp|/(|Xp| + | Xn|); //lcompute confidence
If (| Xp| > minsup) A (¢ > minconf)) V ((c = minconf)A
(| Xp| > sup)) Then
For eachr; € X, Do
If 3v,.,; € Griy j < K such that
(Yryj-conf < c)or
((yr;5-conf =€) A (Yr5-sup < |Xp|)),
Then update ¢,; withZ(X) — C;
14. For eachr; € R, U Ry, DO
Ifr; € Ry Then Ry =Rp — {r:} Xp=XpU {r:};
Ifr, € Rpn Then Ry, = Ry, — {ri}, Xn = Xn U{r:};
Depth first(TT'| xur;, Xp» Xn, Rp, Rn, minsup);

Figure 3: Algorithm MineTopkRGS

expression canbesimplifiedasz/(z+y), wherexz = |R(y.AUC)|
andy = |R(v.AU—C)|. Thisvalue is maximized with the largest
z and the smallest y. The smallest y is |R,.| a node X and the
largest = can be |R,| or m, as we just discussed. Therefore, we
can get aloose confidence upper bound | R, |/ (| Rp| + | R»|) et Step
9 and atight confidence upper bound m,, / (m,, + | R,|) at Step 11.

4.1.1 Top-k Pruning

Step 8 isavery important step in our algorithm. In this step, the
minconf threshold is dynamically set for enumeration down X,
which makesit possible to use the confidence threshold to prune the
search space at steps 9 and 11. The mincon f threshold is obtained
according to Equation 1. Steps 9 and 11 perform pruning by uti-
lizing the user-specified minimum support threshold, minsup and
the dynamic minimum confidence threshold, mincon f (generated
dynamically at step 8). If the estimated upper bound of either mea-
sureat X isbelow either minsup or mincon f, we stop searching
down node X. At Step 9, we will perform pruning using the two
loose upper bounds of support and confidence that can be calcu-

lated without scanning TT”| x. At Step 11, we compute the tight
upper bounds of support and confidence after scanning 77" | x .

The corresponding support sup information is aso recorded for
computation at Step 13. Note that sup > minsup. Whenever a
new rule group Z(X) — C is discovered at node X, a check is
made to see whether the new rule is more significant than one or
more rule groups in the list of top-k covering rule group for some
rows in X, the top-k covering rule groups of such rows will be
updated dynamically. Thisisdone at Step 13.

Two additiona optimization methods are utilized in our top-k
pruning.

e First, because we can easily know the confidence of the rules
whose antecedent is a single item at Step 1 of agorithm
MineTopkRGS, we use these confidence valuesto initiate the
confidence and support values of thelist of TopkRGS at Step
4 instead of initiating them with zero. Such an optimization
may cause a problem. That is, if a single item is a lower
bound of an upper bound rule, the result set will not include
the upper bound rule because they have the same support and
confidence. We need to update the singleitem with the upper
bound rule by adapting step 13 of agorithm MineTopkRGS.
Another technical detail here isthat we need ensure that any
two single items to be used to initiate the top-k rule groups
for one row cannot be the lower bounds of the same upper
bound rules.

e Second, we dynamically increase the user-specified minsup
threshold if we find that all TopkRGS have 100% confidence
and the lowest support value of the & rule groups is larger
than the user-specified one.

MineTopkRGS outputs the most significant information for each
row, as well as dramatically improves the efficiency and reduces
the memory usage, compared to FARMER.

4.1.2 Backward Pruning

Step 7 implements the backward pruning first introduced in [6].
If there existsarow r’ that appears in each prefix path w.r.t the set
of nodes contributing to Z(X') and does not belong to row set X,
therulegroupsZ(X) — C and all rule groups below X must have
already been discovered below some enumeration node containing
r’ as proved in [6]. The principle is the same but our integration
with the prefix tree makes TopkRGS more efficient. For example,
at node {2} in Figure 4 (b), we just need to do a back scan along
the corresponding pointer list of node {2} and can quickly find that
there exists no such r’.

In addition, in ORD, the rows from the same class are sorted in
the ascending order of the number of frequent items contained in
each row. This will improve the efficiency of algorithm MineTop-
kRGS.

4.2 Implementation

Next, we will illustrate how to represent (projected) transposed
tables with prefix trees. The transposed table in Figure 1(b) is rep-
resented with the prefix tree shown in Figure 4 (a) (corresponding
to the root node). The left head table in the figure records the list
of rows in the transposed table and their frequencies. At each node
of the prefix tree, we record row id and the count of the row in a
prefix path (separated by “:” in Figure 4 (8)). Additional informa-
tion recorded at each node but not shown in the figure is the set
of items represented at the node, such asitemsa, b, ¢, d and e at
node “1:5". Such information will help to determine quickly the
rule group w.r.t. a projected transposed table.



Figure 4: Projected Prefix Trees

EXAMPLE 4.1. Projected Prefix Tree

The part of nodes enclosed by dotted line in Figure 4(a) is the 1-
projected prefix tree, PT'|;. Note that there are pointers linking
the child nodes of the root with the corresponding rows in the head
table. By following the pointer starting from row 1 of the header
table, wecan getthe PT'|,. After PT'|, hasbeen mined recursively,
the child paths of the node with label 1 will be assigned to other
rows of the header table after row 1 (i.e. rows 2, 3, 4 and 5) and
we get the 2-projected prefix tree, PT'|2. In Figure 4(b), the part
enclosed by dotted lineis PT'|,. By following the pointer from row
2in the header table, we can get PT'|.

5. USEFULNESSIN CLASSIFICATION

In this section, we will first explain how a CBA classifier can
be built from the set of discovered top-1 covering rule groups for
each row, then describe our proposed classification method, Re-
fined Classification Based on TopkRGS (RCBT).

5.1 Building CBA Classifier

In order to build CBA classifier, we need to discover one of the
shortest lower bounds for each top-1 covering rule group. [6] pro-
posed a method to discover all lower bounds of arule group. How-
ever, in entropy-based discretized gene expression datasets, a rule
group may contain tens of thousands of lower bounds and discover-
ing all these lower boundsis not only unnecessary but also compu-
tationally expensive. Since we do not aim to discover all the lower
bounds, we give a straightforward but effective method to search
only a given number of lower bounds for classification purpose.

LEMMA 5.1. Rule+’ isalower bound rule of rule group G with

upper bound rule v iff (1) v'. A C 7.4, Q|R(Y".4)| = |R(y.4)]

and (3) there is no other rule member +” of G such that 4". 4 D
"

~".A.

With Lemma 5.1, we derive the algorithm FindLB() in Figure
5. It takes in four parameters: training data D, the upper bound
rule ~, the set of rows covered by ~ (denoted as rowset and can
be recorded when generating - in agorithm MineTopKRGS), and
the number of required shortest lower bounds nl (nl=1 for CBA
classifier). At Step 1, we first rank genes based on their discrim-
inant ability in classification measured by entropy score [3], and

then rank theitemsin an upper bound rule based on the rankings of
their corresponding genes (one gene may be discretized into sev-
eral intervals, each represented by an item). In this way, we dis-
cover the shortest lower bound rules that contain items from the
most discriminant genes to build CBA classifier. At step 2, for a
candidate lower bound combination c;;, we first test the condition
(3) in Lemma5.1; if condition (3) is satisfied, we continue to test
condition (2), which is satisfied only if there does not exist a row
r € D Ar ¢ rowset that ¢;; iscontained in . If both (2) and (3)
are satisfied, ¢; isalower bound. This process continues until we
get the nl lower bound rules.

Algorithm FindLB(D, v, rowset, nl)

1. Rank theitemsin ~.A according to the descending order of
the entropy scores of the corresponding genes,

2. Perform a breadth-first search in the search space formed by
thelist of items . A until we get nl lower bound rules;

Figure5: Algorithm FindLB

Both dataset D and candidate |lower bound combinations are rep-
resented with bitmap to speed up the containment test. The dis-
covered lower bounds usually contain 1-5 items while the upper
bounds usually contain hundreds of itemsin the data we tested. We
use one heuristic rule to speed-up the algorithm FindLB. Consider
two upper bound rules, y; and vo. Let A’ = 41.A N y2.A. The
lower bound rules of ~2 will contain at least oneiteminys. A — A’
if v2.A — A’ # 0, and the lower bound rules of v, will contain at
least oneiteminy;. A — A" if y1.A — A’ # (). We can prune the
search space when we find that it will not generate alower bound.

With the set of lower bound rules, we can build CBA classifier
using the method presented in Section 2.2. Note that a minimum
confidence threshold can be imposed on the set of lower bounds
to filter out rules that do not satisfy the threshold to be consistent
with CBA method in [19]. However, in this case, for some training
data, al the rules cover them may have confidences beneath the
specified confidence threshold and will be pruned off totally. So
some information will be lost.

5.2 RCBT

As discussed earlier, RCBT tries to reduce the chance of clas-
sifying test data based on the default class by building stand-by
classifiers to classify test data that cannot be handled by the main
classifier. Moreover, RCBT uses a subset of lower bound rules to
make a collective decision instead of selecting only one shortest
lower bound rule for classifier building like CBA. The subset of
lower bound rules are selected based on the discriminant ability of
genes.

Building Classifier: RCBT hastwo input parameters, k, the num-
ber of covering rule groups for each row and nl, the number of
lower bound rules to be used.

Let RG; denotethe set of rules groupsthat appear asatop-j rule
groupin at least one of thetraining data. We will thus have k sets of
rule groups RG'1,...,RGy. These k sets of rule groups are used to
build % classifiers C'L,...,C' Ly with C'L; being built from RG;.
We call C'L; the main classifier and C'Ls,...,C L. backup classi-
fiers. For each rule group in RG;, RCBT will find the ni shortest
lower bound rules by calling algorithm FindLB(). The union of the
lower bound ruleswill be sorted and pruned (asin Step 3 of Section
22)toform CL;.

Besides both main and backup classifiers, we set a default class



like in CBA. This default class is set as the majority class of the
remaining training data after step 4 in Section 2.2.

Prediction: Given atest datat, wewill go through CL; to C'Ly in
that order to seeif ¢ can be handled by any of these classifiers. The
first classifier that has matching rules for ¢ will determineits class.
If the test data cannot be handled by any of the classifiers, then the
default class will be used for the prediction.

Instead of predicting atest data with the class of the first match-
ing rule like in CBA classifier, RCBT tries to match all rules with
an individual classifier (the main classifier or individual standby
classifiers) and makes a decision by aggregating voting scores. We
design a new voting score for arule v“* by considering both confi-
dence and support as follows:

S(y%) =y .conf x v .sup/de,.

where d.., isthe number of training data of theclass~.C, i.e. ¢;.
Notethat 0 < S(y“*) < 1. By summing up the scores of all rules
in each class ¢;, we get a score Syi,..,,, for normalization purpose.
Given a test data ¢, we suppose that ¢ satisfies the following m;
rulesof classc;: y(¢)7", v(¢)5', ... (t)5%, .. Theclassification score
of class¢; for thetest data ¢ is calculated as:

Score(t)*t = (X1 S(Y(1){"))/Sttorm-

We make a prediction for ¢ with the highest classification score.

6. EXPERIMENTAL STUDIES

In this section, we will look at both the efficiency of our algo-
rithmin discovering TopkRGS and the useful ness of the discovered
TopkRGS in terms of both CBA classifier and our proposed RCBT
classifier. All our experiments were performed on a PC with a Pen-
tium 1V 2.4 Ghz CPU, 1GB RAM and a 80GB hard disk. Algo-
rithms were coded in Standard C.

Datasets: We use 4 popular gene expression datasets for experi-
mental studies. The 4 datasets are the clinical dataon ALL-AML
leukemia (ALL) %, lung cancer (LC)?, ovarian cancer(OC) 3, and
prostate cancer (PC) “. In such datasets, the rows represent clinical

sampleswhilethe columnsrepresent the activity levels of genes/proteins

inthe samples. There aretwo categories of samplesin these datasets.

We adopt the entropy-minimized partition ° to discretize gene
expression datasets. The entropy discretization algorithm also per-
forms feature selection as part of its process. Table 1 shows the
characteristics of the four discretized datasets: the number of orig-
inal genes, the number of genes after discretization, the two class
labels (class 1 and class 0), and the number of rows for training
and test data. All experiments presented here use the class 1 as the
consequent; we have found that using the other consequent consis-
tently yields qualitatively similar results.

6.1 Efficiency

Algorithms: In term of efficiency, we compare algorithm Mine-
TopkRGS with FARMER, CLOSET+ and CHARM (which uses
diff-sets). But CLOSET+ is usually unable to run to completion

within reasonabletime (for several hourswithout results) and CHARM

will report errors after using up memory on the entropy discretized
datasets. Therefore, we only report the runtime of MineTopkRGS
and FARMER in discovering the upper bounds of discovered rule

http://www-genome.wi.mit.edu/cgi-bin/cancer
2http://www.chestsurg.org

3http://clinical proteomics.steem.com/
http://www-genome.wi.mit.edu/mpr/prostate

Sthe codeis available at http://www.sgi.com/tech/mlc/

groups. The reported time here includes the 1/0 time. We should
point out that MineTopkRGS discoversdifferent kinds of rulesfrom
all these existing methods.

Figure 6 (a-d) shows the effect of varying minimum support
threshold minsup. The graphs plot the runtime for the two algo-
rithms at various settings of minimum support. Note that the y-axes
in Figure 6 are in logarithmic scale. We run agorithm MineTop-
kKRGS by setting the parameter & at 1 and 100 respectively on all the
datasets. For FARMER algorithm, we run it by setting minimum
confidence mincon f at 0.9 and 0 (which disables the pruning with
confidence threshold) on datasets ALL, and LC. Due to the rela
tively large number of rows in the other two datasets, FARMER is
sow even when we set mincon f a 0.9 and 0.95 respectively. For
dataset PC, the runtime curve of FARMER at mincon f =0.9isat
the upper right corner. We do not show the runtime of FARMER
on dataset OC because it cannot finish in several hours even at
mincon f =0.95. To further show the effect of prefix tree structure
on the runtime and thus the improvement of top-k prunning alone
on the runtime, we also implemented FARMER with prefix tree
structure and the runtime curve is labelled as “FARMER+prefix”.
Note that the minimum supports shown in Figure 6 are absolute
values. We usually vary minimum support from 95% to 60% when
measured with a relative value. We begin with a high minimum
support in order to allow FARMER to finish in reasonable time.

Figure 6 (a-d) shows that MineTopkRGS is usualy 2 to 3 or-
ders of magnitude faster than FARMER. Especialy at low mini-
mum support, MineTopkRGS outperforms both FARMER+Prefix
and FARMER substantially. Thisis because FARMER discovers a
large number of rule groups at lower minimum support while the
number of rule groups discovered by MineTopkRGS is bounded.
Thisalso explainswhy MineTopkRGSis not sensitiveto the change
of minimum support threshold as shown in Figure 6. Besides, Fig-
ure 6 (a-d) demonstrates that the combination of row enumeration
and the prefix tree technique speeds up the mining process suc-
cessfully, by which, FARMER+prefix can improve the efficiency
of FARMER by about one order of magnitude.

Figure 6 (€) shows the effect of varying k& on runtime. We ob-
serve similar tendencieson all datasets and report results on datasets
ALL and PC only. It is quite reasonable that MineTopkRGS is
monotonously increasing with &.

Theimpressive performance of MineTopkRGS can be contributed
to four main factors. First, TopkRGS bounds the number of discov-
ered rules. Second, the row enumeration strategy fitsthe problem of
mining TopkRGS very well. Third, the prefix tree structure speeds
up frequency computation. Fourth, the dynamically generated min-
imum confidence helpsin pruning search space although MineTop-
kRGS does not require users to specify minimum confidence.

6.2 Classification Accuracy

In term of classification accuracy, we compare the performance
of RCBT classifier with CBA, IRG classifier, the C4.5 family algo-
rithms (single tree, bagging and boosting), and the support vector
machine (SVM). For the C4.5 family algorithms, we use the open-
source software Weka version 3.2. We use SV M'9"t 50 for the
SVM agorithm. To keep the comparisons fair, SYM and the C4.5
family algorithms are run using the same genes selected by entropy
discretization, but with the original real values of the gene expres-
sion levels. Besides, we report the best accuracy of SVM when
varying between the linear and polynomial kernel functions. The
open-source-code CBA usually cannot finish after running several
days. We set the minimum support at 0.7 of the number of instances
of the specified class to generate top-1 covering rule group of each
row to build CBA classifier. The same minimum support is set for



Dataset # Original Genes | # Genes after Discretization | Class1 | Class0 # Training # Test
ALL/AML (ALL) 7129 866 ALL AML 38(27: 11) 34
Lung Cancer (LC) 12533 2173 MPM | ADCA | 32(16:16) 149
Ovarian Cancer (OC) 15154 5769 tumor | norma | 210 (133: 77) 43
Prostate Cancer (PC) 12600 1554 tumor | normal | 102 (52 : 50) 34
Table 1: Gene Expression Datasets
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Figure 6: Comparisons of Runtime on Gene Expression Datasets

IRG classifier and RCBT. We set minimum confidence 0.8 for IRG
Classier (the samethreshold is applied to CBA but wefind all top-1
covering rule groups satisfy the threshold in our experiments). We
set parameters k = 10 (TopkRGS) and nl = 20 (the number of
lower bound rules) for RCBT.

Because the test data of all the benchmark datasets are not bi-
ased, the classification accuracy on theindependent test dataisused
to evaluate these classification methods. Table 2 liststhe classifica
tion results on the five datasets.

We first ook at the last row of Table 2 to have a rough idea of
these classifiers on gene expression datasets by comparing their av-
erage accuracy on four datasets. We see that the RCBT classifier
has the highest average accuracy. Note that the result of IRG clas-
sifier on OC is not available since FARMER cannot finish in one
day on OC and the average is computed on the other three data.

Comparison with SYM: RCBT outperformsthe SVM significantly
on dataset PC. SVM achieves the best results on dataset ALL al-
though RCBT is still comparable to SVM on ALL. However, the
complexity together with the distance model of SVM ismuch more
complicated than our RCBT classifier and it is hard to derive un-
derstandabl e explanation of any diagnostic decision made by SVM.

No doubt, these problemslimit the practical use of SVM in biologi-
cal discovery and clinical practice. In contrast, the RCBT classifier
isvery intuitive and easy to understand.

Comparison with C4.5 family algorithms: RCBT usualy out-
performs the C4.5 family algorithms. The C4.5 family algorithms
fail on the PC datawhile RCBT classifier still performswell. This
is because C4.5 always considers the top-ranked genes first when
generating the rulesto construct the decision trees, and it missesthe
globally significant rules on the PC data containing lower-ranked
genes, as discovered by RCBT.

Comparison with CBA, IRG Classifier and RCBT: RCBT per-
forms better than both CBA and IRG Classifier. Compared with
CBA, RCBT classifies much fewer test data using default class.
CBA classifies 5 test data (2 errors) on OC and 16 test data (5 er-
rors) on PC using default class while RCBT classifies 1 test data (0
error) on OC, and 1 test data (0 error) on PC using default class.
There is no test data classified using default classon ALL and LC
for both CBA and RCBT.

For SVM and C4.5, we also try to use only the top 10, 20, 30,



Dataset RCBT CBA IRG Classifier C4.5 family SVM
singletree | bagging | boosting
AML/ALL (ALL) 91.18% | 91.18% 64.71% 91.18% 91.18% | 91.18% | 97.06%
Lung Cancer(LC) | 97.99% | 81.88% 89.93% 81.88% | 96.64% | 81.88% | 96.64%
Ovarian Cancer(OC) | 97.67% | 93.02% - 97.67% | 97.67% | 97.67% | 97.67%
Prostate Cancer(PC) | 97.06% | 82.35% 88.24% 26.47% | 26.47% | 26.47% | 79.41%
Average Accuracy | 95.98% | 87.11% 80.96% 74.3% 77.99% | 74.3% | 92.70%
Table 2: Classification Results
easy to understand. The parametersfor RCBT are also easy for tun-
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Figure7: Effect of Varying nl on Classification Accuracy

or 40 entropy-ranked genes when building the classifier. In both
cases, the performances of SVM and C4.5 often become worse.
There are two main reasons that contribute to the performance of
RCBT classifier. Thefirst isthat we build aseries of standby classi-
fiers besides the main classifier. The second is that we use a subset
of lower bound rules in building classifier. Next, we analyze the
effect of both factors in detail and explain how we can set the pa-
rameters for RCBT.

Usefulness of Standby Classifiersin RCBT: In our experiments,
we set £ = 10 for TopKRGS to build RCBT classifiers, which
means that we build 9 standby classifiers besides a main classifier
for each dataset. We find that the standby classifiers classify 2 test
data of OC (no error) and 2 test data of PC (no error). On datasets
ALL and LC, themain classifier makesall decision. Thisshowsthe
usefulness of standby classifiers. We would like to stress that these
standby classifiers not only improve the classification accuracy but
also make the results more convincing to biologists since most test
data are not classified by default class.

We aso find that only the first 4 standby classifiers are used to
classify sometest data on all the four datasets. Therefore, RCBT is
quiteinsensitiveto the value of k aslong as k is set to asufficiently
large value.

Sengitivity Analysis of nl for RCBT: We set nl = 20 to build
RCBT classifier. Figure 7 shows the effect of varying nl on the
classification accuracy on datasets ALL and LC. Both curves are
quite plain especially when nl > 15 ( changing nl! does not af-
fect accuracy). We observe similar trend on other datasets and only
report resultson ALL and LC. Again, aslong asnl is set to area
sonable large value, RCBT will not be affected by it.

We also study the effect of varying minimum support thresholds
from 0.6 to 0.8 on accuracy and find that the performance of both
CBA and RCBT are not affected for all datasets.

In summary, the discovered TopkRGS are shown to be useful for
classification for both CBA and RCBT. RCBT is both accurate and

ing. Besides, experimental results show that some important genes
used in RCBT arereally responsible for the cancer pathogenesis.
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Figure 8: Chi-square based Gene Ranks and the Frequencies
of Occurrence of the 415 Genes which Form the Top-1 Cover-
ing Rules of RCBT on the Prostate Cancer Data. Genes whose
Frequencies of Occurrence are Higher than 200 are L abelled.

Biological Meaning: As the lower bound rules RCBT selected
from the Prostate Cancer data contain genes of lower-ranks, it is
interesting to have a further study of the relationship between gene
ranks and usefulness in the lower bound rules. We assume that the
more important genes are morelikely to be used in the globally sig-
nificant rules. Figure 8 illustrates the chi-square based gene ranks
and the frequencies of occurrence of 415 genes (which areinvolved
in forming the top-1 rule groups) in the shortest lower bound rules
of top-1 rule groups. As can be seen, most of the genes that occur
frequently in the rules are those that are ranked high in the chi-
square based ranking (most are ranked 700" and above).

This includes six genes which occur more than 200 times in the
discovered lower bound rules of the Prostate Cancer data: M61916
(408 times), W72186 (1775 times), A1635895 (887 times), X 14487
(646 times), AB014519 (651 times), and AF017418 (997 times).
Among the lower ranked gene, only gene Y 13323 occursfor alarge
number of times (282).

This indicates that the genes of lower ranks generally serve as a
certain supplementary information provider for the genes of higher
ranks. The large proportion of lower-ranked genes also suggests
their necessity for globally significant rules. Based on the experi-



ment, we suspect that the 7 most active genes, M61916, W72186,
Al635895, X14487, AB014519, AF017418, and Y 13323, are most
likely to be correlated with the disease outcomes. Interestingly,
gene AF017418 of rank 671 corresponds to MRG1 which has been
reported to be useful in detecting glycosphingolipid antigen present
in normal epithelium and superficial bladder tumor in patients with
blood group A or AB, but absent in theinvasive type of bladder (es-
sentially prostate) tumor [17]. Also stated in [2, 10, 16, 5], MRG1
may function as a coactivator through its recruitment of p300/CBP
in prostate cancer cell lines and stimulate glycoprotein hormone
a-subunit gene expression. Gene AB014519 is related to Rock2
under certain cancer pathway known as the Wnt/planar cell polar-
ity pathway ©. X 14487 is also a cancer-related gene for acidic (type
I) cytokeratin. Asreported in [21], X 14487 shows consistently dif-
ferent expression levelsin OSCC tissues and is one of the potential
biomarkers for lymph node metastasis.

7. RELATED WORKS

Association rule mining has attracted considerable interest since
arule provides a concise and intuitive description of knowledge. It
has already been applied to analyze biological data, such as[7, 8,
26]. Association rule can relate gene expressions to their cellular
environments or categories, thus they can be used to build accurate
classifiers on gene expression datasets as in [9, 18]. Moreover, it
can discover the relationship between different genes, so that we
caninfer thefunction of anindividual gene based onitsrelationship
with others [7] and build the gene network.

Many association rule mining al gorithms have been proposed to
find the complete set of association rules satisfying user-specified
constraints by discovering frequent (closed) patterns as the key
step, such as[1, 11, 12, 22, 23, 24, 30, 31]. The basic approach of
most existing algorithmsis column enumeration in which combina-
tions of columns are tested systematically to search for association
rules. Such an approach is usually unsuitable for gene expression
datasets since the maximal enumeration space can be as large as
2¢, where i is the number of columns and isin the range of tens of
thousands for gene expression data. These high-dimensional bioin-
formatics datasets render most of the existing algorithms imprac-
tical. On the other hand, the number of rows in such datasets is
typically very small and the maximum row enumeration space 2™
(m isthe number of rows) isrelatively small.

CARPENTER [23] isthefirst row enumer ation algorithm which
uses this specia property of gene expression dataset to find closed
patterns. However, it is still unable to work well when large num-
bers of patterns are generated in the case of entropy-based dis-
cretized gene expression data. Following CARPENTER, various
groups have adopted the row enumeration 7 approach to find pat-
terns in microarray datasets. In[29], the transposition of the gene
expression table is proposed to facilitate efficient discovery of pat-
terns in microarray datasets. This is essentially the same as the
concept of a transposed table in CARPENTER. Likewise, in [25,
13, 14], the row-wise enumeration approach of CARPENTER is
adopted and their pruning strategies essentialy follow CARPEN-
TER aswell.

There are also many proposals about mining interesting rules
with various interestingness measures. Some of them do a post-

®http://www.csl.sony.co.jp/person/tetsuya/
Pathway/Cancer-related/cancer-related.html,
http://www.csl.sony.co.jp/person/tetsuya/
Pathway/Cancer-related/Wnt/Wnt-planar

"Some groups refer to row enumeration as sample enumeration
since the rows in the gene expression datasets are essentialy tis-
sue samples of patients.

processing to remove those uninteresting rules, such as [20]. Such
methods cannot work on gene expression data since it is usually
too computationally expensive to mine the huge association rules
from gene expression data. Other works [4, 28] try to mine in-
teresting rules directly. The proposed agorithm in [4] adopts col-
umn enumeration method and usually cannot work on gene expres-
sion data as shown in the experiments of [6]. FARMER [6] is de-
signed to mine interesting rule groups from gene expression data
by row enumeration. But it is still very time-consuming on some
entropy based discretized gene expression datasets. Although we
also adopt the row enumeration strategy, our algorithm is different
from FARMER: (1) we discover different kinds of rule groups; (2)
we use top-k pruning; (3) we use a compact prefix-tree to improve
efficiency while FARMER adopts in-memory pointer.

Our work is also related to those work on gene expression data
classification. Traditional statistical and machine learning methods
of classifying gene expression data usually select top-ranked genes
(ranked according to measures such as gain ratio, chi-sguare and
etc.) to aleviate the computational problems of high-dimensional
data. However, such methods have two main problems. First, it is
difficult to determine how many top-ranked genes to be used for
classification model; Second, as observed in [18] and our exper-
iments, low-ranked genes are often contained in significant rules
that are sometimes necessary for perfect classification accuracy.
Our proposed methods do not rely on the feature selection to re-
duce the number of dimensions for computational efficiency.

Our work is closely related to the classification methods [6, 9,
19] based on association rules. These algorithmsfirst try to mineall
rules satisfying minimum support and minimum confidence thresh-
olds, and then sort and prune the discovered rules to get the classi-
fication rules. The high-dimensional gene expression data renders
these algorithmsimpractical because of the huge number of discov-
ered rules. Our proposed RCBT method addresses an open problem
of these methods, that is to refine the classification of the test data
when it matches no rules of the main classifier. Thisproblemises-
pecialy severe since biologist may not accept the default class re-
sults for important cancer diagnosis. RCBT also improves CBA by
aggregating the discriminating powers of a subset of rules selected
by considering the gene discriminant ability. The IRG classifier [6]
issimilar to CBA except that it uses upper bound rules.

8. DISCUSSIONS AND CONCLUSIONS

Although it is true that current gene expression datasets have
small number of rows, we may extend TopkRGS to other large
datasets that are characteristic of both long columns and a large
number of rows by utilizing column-wise mining first, then switch-
ing to row-wise enumeration in later levels to mine top-k covering
rules in the partition formed by column-wise mining, and finaly
aggregating the top-k covering rulesin all partitions.

This method could also help MineTopkRGS to deal with those
datasets too large to fit in memory, as it is well known that some
column-wise mining algorithms have linear scalability with dataset
size. Another method for MineTopkRGS to deal with the memory
limitation problem isto utilize the database proj ection (disk-based)
techniques as suggested in [11].

In this paper, we proposed the concept of top-k covering rule
groupsfor each row of gene expression dataand an algorithm called
MineTopkRGSto find the TopkRGS. Experiments showed that Mine-
TopkRGS outperformsexisting algorithmslike CHARM, CLOSET+
and FARMER by a large order of magnitude on gene expression
datasets.

This paper also show that the set of top-1 covering rule group
for each row makes it feasible to build CBA classifier. Moreover, a



classification method RCBT is proposed based on TopkRGS dis-
covered by MineTopkRGS. Both kinds of classification demon-
strated the usefulness of discovered TopkRGS. Our experiments
showed RCBT has the highest average accuracy compared with
CBA, IRG classifier, SYM and C4.5 family. Moreover, RCBT clas-
sifier ismore understandablefor biologiststhan SVM because rules
themselves are intuitive.
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