
An Efficient Parallel Keyword Search Engine on
Knowledge Graphs

Yueji Yang #1, Divykant Agrawal ∗, H.V. Jagadish†, Anthony K. H. Tung #2, Shuang Wu #3

School of Computing, National University of Singapore
{1 yueji,2 atung,3 wushuang}@comp.nus.edu.sg

∗ Department of Computer Science, University of California at Santa Barbara
∗ agrawal@cs.ucsb.edu

† Department of Electrical Engineering and Computer Science, University of Michigan of Ann Arbor
† jag@umich.edu

Abstract—Keyword search has recently become popular as
a way to query relational databases, and even graphs, since
it allows users to issue queries without learning a complex
query language and data schema. Evaluating a keyword query is
usually significantly more expensive than evaluating an equivalent
selection query, since the query specification is less complete, and
many alternative answers have to be considered by the system,
requiring considerable effort to generate and compare. Current
interest in big data and AI are putting even more demands
on the efficiency of keyword search. In particular, searching of
knowledge graphs is gaining popularity. As knowledge graphs
often comprise tens of millions of nodes and edges, performing
real-time search on graphs of this size is an open challenge.

In this paper, we attempt to address this need by leveraging
advances in hardware technologies, e.g. multi-core CPUs and
GPUs. Specifically, we implement a parallel keyword search
engine for Knowledge Bases (KB). To be able to do so, and
to exploit parallelism, we devise a new approach to keyword
search, based on a concept we introduce called Central Graph.
Unlike the Group Steiner Tree (GST) model, widely used for
keyword search, our approach can naturally work in parallel and
still return compact answer graphs with rich information. Our
approach can work in either multi-core CPUs or a singe GPU.
In particular, our GPU implementation is two to three orders of
magnitudes faster than state-of-the-art keyword search method.
We conduct extensive experiments to show that our approach is
both efficient and effective.

I. INTRODUCTION

Keyword queries have become popular in recent years, for
use against relational databases, graphs, and other structured
data stores. This is because keyword queries are easy for a
non-technical user to specify, removing the burden of un-
derstanding database structure (or schema) in addition to the
burden of learning a query language. The query only comprises
keywords; the corresponding output is one or more subgraphs,
each of which cover the input keywords and are embedded in
the original data graph. Much excellent work has been done
to support keyword queries, as we discuss in Sec. II. The
solution technique is, roughly, to identify matches for each
keyword individually and then to combine matches based on
an appropriate notion of proximity (such as shortest join path).
A Group Steiner Tree (GST) is the data structure commonly
used for this purpose. Top-k answers for GST consists of top-

ranked trees (according to some scoring function) embedded
in the original data graph.

Since there can be many possible join paths between any
pair of matches, and since combinations of paths must be
considered, keyword query evaluation is typically expensive.
If keyword queries can be evaluated in “interactive” time, then
users can re-submit keyword queries to retrieve better answers,
just as they do in Google web search. Unfortunately, this turns
out to be challenging to do, particularly as the size of the
database increases. The efficiency issues become particularly
challenging for knowledge graphs, which are often very large
today. At the same time, the heterogeneity of knowledge
graphs makes keyword querying particularly valuable. In this
work, we show how to make this primary need. To make
matters concrete, we focus on one specific important knowl-
edge graph, Wikidata Knowledge Base [1], [2]. We provide an
online query service and name it WikiSearch. Interested read-
ers can try it out at http://dbgpucluster-2.d2.comp.nus.edu.sg.
Note that our approach applies to other knowledge graphs as
well, such as Freebase and Yago. Note that these knowledge
graphs can all be represented in an RDF graph.

As the size of knowledge graphs grows rapidly, the ef-
ficiency issues naturally come up. Unfortunately, there are
few approaches that can respond to keyword queries in real-
time on a KB with hundreds of millions of edges. Current
approaches that adopt the GST model [6], including BANKS-
I [3], BANKS-II [4] and BLINKS [5]. Nodes containing
the same keyword form a group and the answer is a tree
embedded in the data graph and covers one leaf node from
each group. Since GST is known to be NP-hard and there
exists no polynomial approximate algorithm with constant
approximation ratio, the above methods only conceptually
approximate GST without any error bound [6], [7]. In view
of the hardness of traditional keyword search models, we are
motivated to seek a solution to keyword search problem that
can work in real-time.

Having witnessed great advances in computer hardware (e.g.
multi-core CPUs and GPUs), we are inspired to think whether
we can make use of parallel computational power of modern
hardware to address the efficiency issues. Unfortunately, it

0
2 1

8

9

7 6 3

4

5

Facebook Query Language

SQL
{SQL}

Query language

XPath
{XML}

XPath 2
XPath 3

XQuery

SPARQL query language for RDF
{RDF}

SPARQL 1.1
RDF query language

{RDF}

Fig. 1. Example answer graph by our proposed approach for input keywords
XML, RDF, SQL. Edges’ types are omitted. For tree-shaped answers rooted
at v2, there are multi-paths from keyword nodes, four paths from v9 and
two from v4 and v5. Different combination of these paths give different tree
answers, which are repetitive.

turns out to be very difficult for traditional approaches as
mentioned [3], [4], [5], since their search procedures are based
on shortest paths and have many intrinsic dependencies during
traversal. Specifically, a priority queue is used to decide which
node to explore next based on current status. Therefore, we
are motivated to develop a new model, called Central Graph,
which can work in parallel and still return meaningful compact
answers.

In addition to the efficiency improvement, our model is par-
ticularly suitable searching knowledge bases which typically
have richness and heterogeneity of information. Different from
the typical GST methods that produce trees as answers, our
model returns graphs as answers. Often, tree-shaped answers
are too condensed to be able to convey the rich information
contained in a KB. In consequence, tree-shaped answers tend
to be verbose and repetitive. For example, as shown in Fig. 1,
a graph-shaped answer can not only include cycles (from v9
to v2), but also admit more than one node containing the same
keyword (eg. v4 and v5 containing “RDF”). It needs several
tree-shaped answers to convey the same information included
in such a graph answer. As can be seen, graph-shaped answers
can convey much more information with fewer repetitions.

Contributions. To overcome the challenges brought about
by both volume and variety of today’s huge Knowledge Bases,
in this paper we make the following contributions:

First, we introduce the novel concept of Central Graphs
to model the answers of a keyword search problem. The
final answers are then pruned and ranked by a keyword co-
occurrence based novel approach, called level-cover strategy.
Central Graphs can naturally work in parallel and still return
compact answers. In addition, Central Graphs allow multi-
paths from one keyword, leading to much more expressive
answers than tree-shaped ones, e.g. Fig. 1.

Second, we develop a two-stage parallel algorithm frame-
work that can work not only on multi-core CPUs, but also
GPUs. Our algorithm works in a lock-free way during traver-
sal, which is critical for efficiency. In the first stage, we
find a set of potential Central Graphs in a bottom-up manner
starting from nodes containing keywords (keyword nodes). In
the second stage, we extract, prune and select the top-ranked
Central Graphs derived from the first stage in a top-down
manner starting from Central Nodes, which are centers of
respective Central Graphs.

Third, we conduct extensive experiments to evaluate both
efficiency and effectiveness of proposed algorithm.

Organization. Sec. II discusses the related work. Sec. III
introduces the problem definitions and also introduces as well
as the novel concept of a Central Graph. Then we show the
definition of minimum activation level and how it affects the
search procedure in Sec. IV. Sec. V reveals the details of the
proposed two-stage parallel algorithm. Lastly, Sec. VI shows
the experiment results. We conclude our work in Sec. VII.

II. RELATED WORK

Keyword search. Early works on keyword search, like
DBXplorer [8] and Discover [9], conduct a BFS over the
schema graph of tables in targeted relational databases. The
schema graphs are connected through foreign-and-primary key
relations and tend to be quite small. These works are limited
to relational databases. ObjectRank [10] is an authority-based
method and the output is top-k relevant nodes. BANKS-I
[3], BANKS-II [4] and BLINKS [5] model keyword search
problem by approximating Group Steiner Tree (GST) Prob-
lem. However, the GST Problem is NP-Hard and difficult to
approximate with an ideal bound in polynomial time [11]. As
mentioned, to produce top-k results, the search steps of these
methods have sequential dependency and thus have difficulties
making use of the parallel approaches. Although there are a
few works [12], [13], [14] trying to harness parallelism, they
mainly focus on RDBMS or XML datasets.

Aditya et al. [3] propose a backward search algorithm,
which is applicable to both relational data and graph data. As
the graph size increases, the scalability problem of backward
search algorithm becomes salient. There are works [5], [15],
[16] trying to partition graphs and search only necessary parts
of a whole graph in the hope of improving scalability problem.
BLINKS [5] needs to pre-compute keyword-node lists and
node-keyword map, which are infeasible on Wikidata KB with
30 million nodes and over 5 million keywords after stopping
word filtering and word stemming. These algorithms have
to rely on either on Dijkstra’s Algorithm or complex index
structures to find the nearest node to traverse, since storing
all-pair shortest distances is too expansive.

There are dynamic programming algorithms that try to
directly solve the Group Steiner Tree problem. [7] is effective
when number of keywords is small, but is not very scalable in
terms of the number of keywords as pointed by [6]. Specifi-
cally, the complexity of [7] is O(3ln+ 2l((l+ log n)n+m)),
where l is the number of keywords and n,m the number
of nodes and edges, respectively. However, [6] needs to
pre-compute all-pair shortest distances between super nodes,
which inevitably needs a huge storage. In addition, it is not
clear how to collect top-k answers by [6].

There are several approaches adopting graph-shaped an-
swers to keyword search problem. EASE [17] proposes r-
radius Steiner Graph for structure, semi-structure and un-
structured datasets. However, EASE is not scalable for large
graphs. Moreover, Kargar et al. [18] point out that EASE may
miss some highly ranked r-radius Steiner Graphs if they are

TABLE I
SUMMARY OF NOTATIONS

Notations Meaning
G(V,E) undirected node-weighted graph G
wi the weight of node vi
ai the minimum activation level of vi
eij the undirected edge between vi and vj
r a relationship type
Ri the set of relationship types incident to vi
rij the relationship between vi and vj
Q, ti a keyword query, a keyword term
Ti the set of nodes containing it
Bi a BFS instance w.r.t. ti
hbj the hitting level of vj w.r.t. Bb

P b
i the set of all hitting paths of vi w.r.t. Bb

C, d(C) Central Graph, the depth of Central Graph
A average shortest distance of graph G
α a tunable parameter to control ai
l, lmax BFS level and the max expansion depth (level)
M,mij node-keyword matrix, the value for vi and tj

included in some other Steiner Graphs with larger radius. They
propose r-clique problem to model keyword search. However,
r-clique is not efficient if keywords correspond to large number
of nodes. In addition, the output of r-cliques method is a set of
keyword nodes. Although, the author provides an algorithm to
extract Steiner Trees from a r-clique, the two procedures may
cost too much time to return top-k answers. In addition, since
the Steiner Trees are generated from already found r-cliques,
they may not be global optimal. In other words, there may
exists better Steiner Trees that cross two r-cliques. In addition,
like aforementioned methods, for efficiency purpose, instead
of maintaining a distance matrix, r-clique method maintains a
neighbor index that records shortest distances that are smaller
than R, where R should be larger than r. These parameters may
be difficult to fix in a graph with large variety. Qin et al. [19]
propose a graph-shaped answers to keyword queries. However,
they target relational datasets and may produce redundant
answers, as pointed by [18]. Our answers are also modeled by
graphs, which are more expressive than tree-shaped answers.

BFS on modern hardwares. Our methods are partly in-
spired by Breadth First Search (BFS) on multi-core systems.
There are many works that use multi-core hardwares to im-
plement efficient graph processing algorithms, e.g. [20], [21]
for CPUs and [22], [23], [24], [25] for GPUs. In particular,
[23], [24] are typical approaches that focus on using GPUs to
accelerate BFS. Merrill et al. [26] studies various scheduling
policies and parallel algorithms that facilitate BFS over large
graphs on GPUs. To the best of our knowledge, we are not
aware of any works that propose an algorithm framework that
harnesses multi-core CPUs or GPUs to address keyword search
problem on Knowledge Bases.

III. PROBLEM AND CENTRAL GRAPH DEFINITION

To enhance the connection between nodes, we model Wiki-
data KB as a bi-directed node-weighted graph with both nodes
and edges labeled, denoted as G = (V,E), where V and E are
the sets of nodes and edges respectively. We use wi to denote
the weight of a node vi ∈ V . For each edge eij = (vi, vj) ∈ E,

0 1 2

43

𝐵𝐵0 𝐵𝐵1

Fig. 2. A simple example to illustrate definitions.

rij denotes the relationship (label) of eij . In our settings, a
BFS instance starts from a set of nodes and proceeds level
by level with initial expansion level 0. Every node can only
be hit once in terms of one BFS instance. A keyword query
consists of a set of keywords Q = {t0, t2, .., tq−1}. For each
keyword ti, we denote the set of nodes that contain ti as Ti. In
our approach, every keyword ti corresponds to an independent
BFS instance Bi with source node set Ti. Every BFS instance
expands at the same global expansion level.

A. Hitting Level and Hitting Path

Definition 1. (Hitting Level) Given a BFS instance, Bb, the
hitting level of a node vj w.r.t Bb, denoted by hbj , is defined
as the first BFS expansion level l where vj becomes a frontier
(to expand) in Bb.

Example 1. As shown in Fig. 2, there are two BFS instances,
B0 starting from v0 and B1 from v1 and v2. For B1, v1 and
v2 have hitting level h11 = h12 = 0, since they are source nodes
and expand at level 0. h13 = h14 = 1, because v3 and v4 are
hit at BFS level 0 and become frontiers at level 1. v3 will not
expand to v4 in B1, since v4 has already been hit.

Definition 2. (Hitting Path) Given a BFS instance Bb, the
hitting path of a node vj is any expansion path (from source
nodes) that hits vj and makes vj a frontier in the next
expansion level. We denote the set of all hitting paths of vj
w.r.t Bb as P bj .

Example 2. In Fig. 2, for B1 and v4, only v1 → v4 and
v2 → v4 are hitting paths. v1 → v3 → v4 is not, since it is
not an expansion path. There is no expansion from v3 to v4.

In the next section, we introduce a constraint, called min-
imum activation level, that lower bounds hitting levels of a
node, i.e. a node cannot be hit until the constraint is satisfied.
In this way, we can let hitting levels reflect semantic relevance
between keywords and nodes, so that nodes with smaller
hitting levels can be considered more relevant.

B. Central Graph and Top-(k,d) Central Graph Problem

We first give the definition and then explain the rationale.

Definition 3. (Central Graph) Given a keyword query Q =
{t0, t2, .., tq−1}. For a node vj , if P ij 6= ∅ (w.r.t. Bi and

Ti) for every i, then we define C =
q−1⋃
i=0

P ij as the Central

Graph centered at vj . We denote vj as Central Node. The
size, or equivalently depth, of Central Graph C is defined as
the largest hitting level of Central Node vj by Equation 1.

d(C) = max
i∈{0,1,..,q−1}

hij (1)

We formalize Central Graph model from three perspectives.
First, a Central Graph should contain hitting paths from all
input keywords and thus connects every keyword. Second, for
one keyword, a Central Graph contains all hitting paths to
the Central Node, i.e. it allows multi-paths for one keyword.
Furthermore, these hitting paths are “shortest” in terms of
hitting levels of the Central Node. Third, the depth of Central
Graphs is bounded by the maximum hitting level of the
respective Central Node. Thus, Central Graphs with smaller
depth tend to be more compact.

Example 3. In Fig. 2, there are two Central Graphs. One
centered at v3 with depth 1, covering hitting paths v0 → v3
and v1 → v3. The other is centered at v4 with depth 2,
covering hitting paths v0 → v3 → v4, v1 → v4 and v2 → v4.

Definition 4. (top-(k,d) Central Graph Problem) Given a
keyword query Q and k, find all Central Graphs with depth
no larger than d, s.t. d is the smallest possible value to obtain
at least k Central Graphs.

The set of all top-(k,d) Central Graphs is a super set
of final top-k answers and reduces search space to only
consider Central Graphs with smallest depths. In our two-stage
algorithm, the first stage is to solve the top-(k,d) Central Graph
Problem in Definition 4, given the value k in top-k. Then,
the second stage is to further prune and select the final top-k
Central Graphs from the set of top-(k,d) Central Graphs. To
avoid repetition, once a node is identified as a Central Node,
it becomes unavailable for future expansion.

IV. MINIMUM ACTIVATION LEVEL

In order to generate meaningful answers, we have to prop-
erly weight the graph. Otherwise, in an unweighted graph,
our search procedure reduces to multiple independent stan-
dard BFSes. The resulting Central Graphs would be arbitrary
and meaningless. Therefore, we introduce for every node a
constraint, called minimum activation level (denoted as ai
for vi), that lower bounds the hitting level of it. Roughly
speaking, minimum activation level acts like a “switch”, it
gradually turns nodes active for search. Early active nodes have
more chances appearing in the final answers. Those nodes are
expected to be informative and interesting. In this section, we
first introduce minimum activation level in Sec. IV-A. Then,
we show the effect of minimum activation level in search.
Lastly, we explain the intuition behind a parameter α, which
is tunable in run time and allows users to control the effect of
minimum activation level.

A. Calculation of Minimum Activation Level

In Wikidata KB, there are many summary nodes that easily
become a shortcut during search. For example, human node
(with over 2M in-edges) connects any two nodes representing
people by edge instance of, and a conference node would
connect any two papers that publish in that conference (usually

with around hundreds of in-edges) by edge published in.
Such nodes are pointed to by a large number of same-labeled
edges. These summary nodes only summarize some trivial
commonality of a lot of nodes and tend to be a shortcut
that leads to meaningless connections. We use degree of
summary to denote the extent to which a node tends to be
a summary node. In this setting, human node has a large
degree of summary. We quantify this degree of summary by
two observations. First, a node with large number of same-
labeled in-edges tend to be a summary node. Second, a node
with small number of different labels of in-edges tend to be
a summary node. For example, data mining node has over
1000 in-edges but only 11 different labels of in-edges. It has
a large degree of summary and it is indeed a summary node
representing very general topic. Thus, the connection of two
papers via data mining may not be informative by edge main
topic. We use degree of summary as weight of nodes. Let Ri
denote the set of in-edge labels incidental to vi, and for r ∈ Ri,
let r denote the number of in-edges of label r pointing to vi.

wi =

∑
r∈Ri

r log2 (1 + r)∑
r∈Ri

r
(2)

The term log2 (1 + r) rescales the number of in-edges with
label r and represents the contribution from those edges to
degree of summary of the node. Then the average over all
edges is taken to be the total degree of summary of that
node. By averaging over all edges, we take into consideration
the diversity of in-edge labels. That is, if a node has many
different in-edge labels, it may still be meaningful even if it
has a relatively large number of in-edges with certain label.
For ease of processing and explanation, we further normalize
wi by w′i = wi−min(w)

max(w)−min(w) and use wi to denote w′i.
After obtaining node weight (degree of summary), we pro-

pose a Penalty-and-Reward mapping to obtain minimum ac-
tivation level ai from wi, with a tunable parameter α ∈ (0, 1)
that allows users to set preference for degree of summary in
run time. In fact, other mapping strategies may also work. The
intuition behind the mapping strategies is to grant informative
nodes with small weight and low minimum activation level so
that they have higher search priorities over summary nodes.

To apply Penalty-and-Reward mapping, specifically, we
first compute the average distance (hops) between two nodes in
the graph by sampling. Then based on the weight of nodes and
α, we calculate ai by either increasing (penalty) or decreasing
(reward) the average distance to some extent. In this way,
we can make ai in a reasonable range to control search. Let
A denote the average shortest distance. The sampling data is
shown Table II of Sec. VI. The mapping process is reflected
by Equation 3, 4 and 5.

Penalty(vi) = A× (wi − α)

1− α
, if wi > α (3)

Reward(vi) = A× (α− wi)
α

, if wi < α (4)

ai =


Rounding(A−Reward(vi)) wi < α

Rounding(A) wi = α

Rounding(A+ Penalty(vi)) wi > α

(5)

Equation 3 and 4 scale wi according to A. If wi > α, we
use the part of wi exceeding α as a penalty to be added to
A. If wi < α, then we use the part of α exceeding wi as a
reward to be subtracted from A. In Equation 5, we round the
resulting value to its nearest integer, since minimum activation
level controls search by comparing with BFS expansion level.

B. Effect of Minimum Activation Level

During search, nodes with small minimum activation level
become active and available for search in an early stage.
Specifically, for non-keyword nodes, their hitting level is lower
bounded by their minimum activation level, i.e. they are only
available for search when the global BFS expansion level
reaches their minimum activation level. For keyword nodes,
we make a compromise by allowing keyword nodes to be hit
without restriction of minimum activation level but to expand
only when the BFS expansion level matches its minimum
activation level. This adjustment makes it possible to return
keyword nodes with high minimum activation level.

C. Intuition behind α

0 1 2 3 ≥4
minimum activation level

0%

20%

40%

60%

80%

di
st
rib

ut
io
n
of
 n
od

es

α-0.05
α-0.1
α-0.4

Fig. 3. Nodes’ distribution for different α’s. Total number of nodes is over
30 millions.

Fig. 3 shows the distribution of nodes for three different
α values on Wikidata KB with estimated average distance
A = 3.68. As α becomes larger, nodes with large weight
can also map to a relatively small minimum activation level.
This shows users can adjust the effect of minimum activation
level by changing α. Nodes with larger weight tend to express
general meanings or topics, such as conference nodes and
human node. These nodes can often lead to meaningless
answers but not always. The topic node data mining has over
1000 in-edges and only 11 different in-edge labels. It is given
a relatively high weight. If the input keywords are {data,
mining, information, retrieval}, for users who are familiar with
these fields may wish to see answers containing specific works
related to data mining rather than the topic node, but for users
who do not know data mining or even do not have back ground
on Computer Science may wish to see the introduction of data
mining topic instead of specific research articles. In practice,
we observe that the node data mining does not appear in the
top answers when α = 0.1, but it does when α = 0.4. This

suggests that larger α maps more nodes to a smaller minimum
activation level and thus “decreases” the weight of data mining
to some extent. Therefore, users can use a larger α to retrieve
more nodes with higher degree of summary.

V. TWO-STAGE PARALLEL ALGORITHM

A. Overview

Algorithm 1: Two-stage Parallel Algorithm
/* Bottom-up Search to solve top-(k,d) Central

Graph Prblem. */
1 BFSLevel ← 0;
2 fork(); Initialize Bi for all ti in Q; join();
3 while not terminate do
4 Enqueue frontiers// Only parallelize on GPU
5 fork(); Identify Central Nodes; join();
6 fork(); Expansion; join();
7 BFSLevel++;
/* Top-down Processing */

8 fork();Extract, prune and rank every Central Graph;join();

The search is divided into two stages, bottom-up search
and top-down processing as illustrated in Algorithm 1. The
two-stage algorithm works in a fork-and-join manner. Threads
are synchronized between steps. The details of every step is
given in the following sections. In addition, we discuss the
complexity and load balancing problem for multi-core CPU
and GPU implementations, respectively. We store the graph in
Compressed Sparse Row (CSR) format and we do not need
any node distance index which may incur huge storage.

B. Bottom-up Search

Initialization. There are three data structures we maintain in
order to realize a lock-free procedure. First, FIdentifier records
1 for nodes becoming frontiers in the next iteration, otherwise
0. After enqueuing frontiers at every iteration, FIdentifier are
set to all 0 in parallel. Second, CIdentifier records 1 for node
already identified as Central Node, otherwise 0. Note that the
sum of all elements of CIdentifier gives the number of already
identified Central Nodes. Third, a node-keyword matrix, M for
short, is initialized. Its element, mij (i-th row and j-th column),
records the hitting level of vi for keyword tj . mij = 0 if vi
contains keywords otherwise ∞. The size of FIdentifier and
CIdentifier is Θ(|V |). The size of M is Θ(|V |q), where q is the
number of keywords. For GPU implementation,M is directly
initialized on GPU and transferred back to CPU after search is
done. The size of M is not a bottleneck for our problem. Here,
we give a concrete example. Given a graph of 30M nodes and
a query of 10 keywords, the total size of M is only 300MB,
since one byte is all we need to record a hitting level (mij).
Given a bandwidth of around 12GB/sec from GPU to CPU of
today’s hardware, the transfer time of M takes only around
25ms, which is small enough to produce real-time responses.

Enqueuing frontiers. At the beginning of each iteration
(a new expansion level), we extract and enqueue nodes into
frontier queue by examining the flags in FIdentifier which
was modified in last iteration or in initialization phase. This
enqueuing process is sequentially writing nodes with flag 1

in FIdentifier to frontier queue. On GPU, we parallelize the
process of checking FIdentifier and write nodes to frontier
queue with lock. However, we find that on CPU locked writing
is so expensive and the fastest way is to enqueue frontiers in a
sequential manner. This difference is due to the extremely high
bandwidth of GPU with DDR5X. Note that we only maintain
one frontier queue to record nodes to traverse at each BFS
expansion level for all BFSes. This is called joint frontier array
[27]. A node becomes a frontier as long as it is one in any
BFS instance. Therefore, different BFS instances may share a
frontier. In expansion procedure, we describe how a frontier
knows which BFS it belongs to.

Identifying Central Nodes. From M , it is easy to identify
whether vi is Central Node by checking mij for each keyword
tj . Note that we only need to check frontiers, since frontiers
are nodes that were just modified at last BFS level. In addition,
the depth of the Central Graph can be correctly obtained
according to Lemma V.1.

Lemma V.1. The depth d of a Central Graph centered at vi
equals the BFS level where vi is identified as a Central Node.

Proof. Suppose vi is identified at level l, then vi must be
modified by some BFS Bj at level l− 1, which means mij is
set to l, the maximum BFS level currently. Based on Equation
1, the depth d of a Central Graph centered at vi is l.

Expansion (Algorithm 2). After the previous steps, only
frontiers not identified as Central Nodes can be expanded
in this procedure. We explain the expansion procedure in
a sequential way and then introduce the parallelization of
Algorithm 2. There are three loops in the expansion procedure.
To put it simply, for every frontier vf (line 1), we iterate every
Bi to see if vf is a frontier of Bi (line 8). If vf satisfies
expansion conditions, then we iterate through all its neighbor
w.r.t. Bi (line 12). For a frontier vf to expand in Bi, af and
mfi should both be no larger than BFS expansion level l (line
5 and 9). For a neighbor vn to accept expansion, it should not
be visited in Bi and an should be at least l (line 14 - 20).

The parallelization is slightly different for CPUs and GPUs.
On GPU, we have far more threads than CPU. We let one warp
handle one Bi of a frontier vf (a warp is a group of threads
active simultaneously in SIMD model). The threads within
a warp handle different neighbors of vf . In comparison, on
CPU, we have fewer but more powerful threads. However,
the communication cost among threads on CPU is also more
expensive. If we parallelize the innermost loop as GPU, we
need to synchronize threads many times and schedule them
dynamically, which incurs a high time cost. Therefore, we use
a coarse-grained parallelism. We simply let threads on CPU
handle different frontiers with a dynamic scheduling, which
means once a thread finishes a frontier, it looks for another.
Note that the number of total frontiers is far smaller than
that of total neighbors. The communication cost for dynamic
scheduling is thus tolerable.

Algorithm 2: Expansion Procedure
Input : data graph G, M , frontiers, node weights, BFS expansion

level l, α
Output: modified M and FIdentifier
/* CPU threads parallel level */

1 foreach frontier f do
2 if CIdentifier[vf] = 1 then
3 continue;
4 calculate af from wf and α;
5 if af > l then
6 FIdentifier[vf]← 1;
7 continue;

/* GPU warps parallel level */
8 foreach BFS instance Bi do
9 hif ← mfi;

10 if hif > l then
11 continue;

/* GPU threads parallel level */
12 foreach neighbor vn of vf do
13 hin ← mni;
14 if hin 6=∞ then
15 continue;
16 if vn is not a keyword node then
17 calculate an from wn and α;
18 if an > l + 1 then
19 FIdentifier[vf]← 1;
20 continue;
21 mi

n ← l + 1;// Set hitting level in M
22 FIdentifier[vn]← 1;
23 return;

Theorem V.2 gurantees the lock-free property of writes and
reads. Theorem V.3 guarantees we identify all Central Nodes
for top-(k,d) Central Graphs.

Theorem V.2. Algorithm 2 is a lock-free procedure and all
reads and writes are guaranteed correct.

Proof. We only need to examine all reads and writes for
FIdentifier and M , since only they may be modified. First, all
values written to FIdentifier and M is 1 and l+1 respectively,
where l is the BFS level. Therefore, we do not need to add
lock when two writes are for a same location. Second, all
values read from M (there is no read from FIdentifier) may
change but do not affect the truth value in if-condition (line
10 and 14). At line 10, mfi may be changed from ∞ to l+ 1
in the situation where vf is a neighbor of another frontier in
Bi. In either case (mfi = l + 1 or mfi =∞), we should not
expand vf . And it is similar for if-condition at line 14.

Theorem V.3. Given top-k value, the bottom-up search pro-
cedure solves top-(k,d) Central Graphs Problem correctly.

Proof. The search procedure is in line with the definition of
Central Graphs and stops at the smallest level d where we
collect at least k Central Graphs.

Load balancing. We implement on CPU by OpenMP. Load
balancing is automatically handled by using the dynamic
scheduling feature of OpenMP. On GPU, each warp handles
one frontier and one BFS instance. The load balancing prob-
lem only becomes severe when a frontier has too many edges.
Such nodes tend to have large degree of summary, resulting in

0
2

1
8

9

7 6
3

4
5

0

2

4

2

101

1 0 0

XML RDF RDF

SQL

(a) BFS expansion level 0

0
2

1
8

9

7 6
3

4
5

0

2

4

2

101

1 0 0

XML RDF RDF

SQL

(b) BFS expansion level 1

0
2

1
8

9

7 6
3

4
5

0

2

4

2

101

1 0 0

XML RDF RDF

SQL

(c) BFS expansion level 2

0
2

1
8

9

7 6
3

4
5

0

2

4

2

101

1 0 0

XML RDF RDF

SQL

(d) BFS expansion level 3

Fig. 4. A running example with values of ai attached to each node from Fig. 1. Arrows denote the expansion.

a high minimum level during search. They have little chance to
expand. On the other hand, it takes much more cost to evenly
divide the neighbors of all frontiers and BFSes to threads, since
the total number is only known after scanning all neighbors.

Time and space complexity. Since the computation is
not overlapped during parallel execution, the time complex-
ity is calculated by dividing sequential time complexity by
the number of threads, denoted by T . We discuss the time
complexity for initialization, enqueuing frontiers, identifying
Central Nodes and expansion separately. First, for initializa-
tion, we just set the keyword nodes for each Bi. Thus, the time
complexity is O(|V |q) in sequential on CPU and O(|V |qT) in
parallel on GPU, where q is the number of keywords. Second,
the time complexity of enqueuing frontiers is O(|V |lmax

T)
where lmax is the maximum number of iteration or depth
allowed, since we scan through the FIdentifier array and a
node may be a frontier many times. Third, The time complex-
ity of identifying Central Nodes is O(|V |qlmax

T), since for each
frontier, we need to scan all hitting levels in M and the number
of frontiers is bounded by |V |. Last, For expansion procedure,
we run q BFS-like instances concurrently. In standard BFS,
a visited node will not be visited again, but in our BFS-like
search, a node continued to be a frontier if it is inactive or it
has inactive neighbors. This causes one BFS-like instance in
our algorithm to have time complexity O(|V ||E|lmax) instead
of O(|V | + |E|) for standard BFS. Since there are q BFSes
and T threads, we have O(|V ||E|qlmax

T). For space complexity,
the memory occupation includes graph data in CSR format
Θ(|V |+ |E|), the node weight array Θ(|V |), the FIdentifier
Θ(|V |), the CIdentifier Θ(|V |) and the node-keyword matrix
Θ(|V |q) where q is the number of keywords. In total, the space
complexity is O(q|V |+ |E|).

Example 4. Fig. 4 illustrates a running example for nodes in
Fig. 1. In Fig. 4a, three BFS instances are initiated at {v9},
{v4, v5} and {v1}. At every BFS level, the expansion is in
parallel. Since a4 = 0, only v4 is active to expand, but v3 is
not active because a3 = 2. As a result, there is no expansion.
At expansion level 1 shown in Fig. 4b, v9, v4 and v5 start
expansion. Also, v3 is able to accept expansion and it becomes
a frontier in level 2 which reaches its minimum activation level.
The hitting levels of new frontiers are, h06 = h07 = h08 = h13 =
2. Finally, at level 3 (Fig. 4d), every node near v2 can expand
to it. v2 is identified as a Central Node in the next iteration
(not shown) and its depth is 4.

Stanford
University…

Nodes containing “Jeffrey”
(should be pruned)

Jeffrey Ullman

Parts to be preserved.

(a) Central Graph before pruning

Stanford University

…
Jeffrey Ullman

Level 3 (Top)

Level 2

Level 1 “Jeffrey” nodes

(b) Level classification

Fig. 5. Level cover strategy example.

C. Top-down Processing

There are three major steps in top-down processing. First,
given the Central Nodes from the first stage, we need to
extract respective Central Graphs. Second, to obtain even
more compact answers, we apply a level-cover strategy to all
Central Graphs to prune redundant nodes based on keyword
co-occurrence. Third, after pruning, we select the final top-
k answers by proper scoring function. We let one thread
to recover one or more Central Graphs. The load balancing
problem is handled by OpenMP dynamic scheduling feature.
We implement the top-down process on CPU rather than GPU,
because it not only needs dynamic memory allocation for
recording recovered nodes and paths, but also diverges a lot
in terms of program executions.

Level-cover strategy. To make the final top-k answers even
“thinner”, we propose a keyword co-occurrence based level-
cover pruning strategy to prune nodes that are redundant within
a Central Graph. We classify only keyword nodes within a
Central Graph into different levels based on the number of
keywords they contribute. The Central Node is always at the
top level. We proceed in a greedy manner starting downwards
from top level where nodes contain most keywords. If nodes in
one level already covers all keyword, we then prune all nodes
in the rest levels along with the hitting paths from pruned
nodes to Central Nodes. In this pruning strategy, we preserve
as many keyword nodes as possible, since nodes will not lead
to pruning of nodes within the same level. An example below
is given with respect to Fig. 5.

Example 5. As shown in Fig. 5, the input keywords are

Stanford, Jeffrey and Ullman. After pruning nodes with only
one keyword “Jeffrey”, we have an answer with only Stanford
University and Jeffrey Ullman nodes.

Scoring function. To select the final top-k answers from
the pruned top-(k,d) Central Graphs, we propose a ranking
function that restricts the “width” of Central Graphs, as in
Equation 6.

S(C) = d(C)λ
∑
vi∈C

wi (6)

where C represents a Central Graph and λ ≥ 0 is a parameter
that controls the effect of depth of the respective Central
Graph. We set λ = 0.2 by default.

Algorithm. By Theorem V.4, we can correctly recover
nodes contained in a Central Graph as long as Central Node
and node-keyword matrix are known from the first stage. As
illustrated in Algorithm 3, we start a standard BFS search
from each node. For every frontier vf , we apply Theorem V.4
between vf and its neighbors to see whether a neighbor can
be recovered w.r.t. a keyword ti (line 8 to 10). We apply level-
cover strategy after extraction (line 13). At last, we insert the
pruned graph to the top-k answer heap (line 14).

Theorem V.4. Suppose vi expands to vj during bottom-up
search and the extraction is now at vj to extract vi, we have the
following heuristics between hli and hlj for a certain keyword
tl.

1) If vj contains keywords, hlj = 1 + max{ai, hli},
2) If vj contains no keywords, hlj = 1+max{ai, hli, aj−1}.

Proof. The quantitative relationship is due to the fact that aj
lower bounds hlj if vj does not contain keywords. Otherwise,
hlj is lower bounded by 0.

Time and space complexity. First, for the extraction step,
it is a standard BFS traversal from the respective Central
Node, and for each node we check through the hitting levels
of q keywords. It can also be thought of as q independent
standard BFSes, one for each keyword. Therefore the time
complexity is O(q(|V |+ |E|)). Second, for level-cover strat-
egy, to classify all keyword nodes, we need to scan all hitting
levels of these nodes, which is bounded by O(q|V |). To
do pruning, we need to scan from top level to the lowest
level, in the worst case no keyword nodes are pruned. In this
case, we scan everything again and the time complexity is
also O(q|V |). Therefore, the total time complexity of level-
cover strategy is O(q|V |). Third, to insert result to Tk which
is a heap. Thus, the complexity of insertion is O(log2 k)
for maintain top-k answers. All together, suppose we have
|C| top-(k,d) Central Graphs, the time complexity is then
O(|C|(q(|V | + |E|) + log2 k)) in sequential execution and
O(|C|(q(|V |+|E|)+log2 k)

T) in parallel, where T is the number
of threads. For space complexity, the major cost arises from
storing Central Graphs while extraction, besides node-keyword
matrix and graph storage cost. Note that the number of nodes
of a Central Graph is bounded by |V |, then in worst cases
the space complexity is O(|C||V |+ (q|V |+ |E|) + k), where

k denotes the number of elements in the answer heap and
|C| is the number of all top-(k,d) Central Graphs. The part,
O(|C||V |+(q|V |+|E|)+k), comes from node-keyword matrix
and graph storage. In practice, the top-(k,d) Central Graphs
tend to be compact with small number of nodes.

Algorithm 3: Top-down Processing
Input : G(V,E), M , identified Central Nodes, node weights, α, k
Output: Final top-k answers

1 Initialize top-k answer heap Tk;
2 foreach vc in Identified Central Nodes do
3 insert vc to frontier queue f ;
4 while f 6= ∅ do
5 vf ← f.next(), f ′ ← ∅;

/* Scan neighbors of vf */
6 foreach vn ∈ N(vf) do
7 foreach Bi do
8 if vf has keywords and hif = 1 +max{an, hln}

then
9 Extract vn, insert vn into f ′, if not in f ′;

10 if vf has no keywords and
hif = 1 +max{an, hln, af − 1} then

11 Extract vn, insert vn into f ′, if not in f ′;
12 f ← f ′;

/* let Cn denote the Central Graph at vc */
13 Apply level-cover strategy to Cn;
14 Insert into Tk , if possible;
15 return;

VI. EXPERIMENT STUDIES

The first goal of our work is to obtain performance at scale.
We evaluate our success in this direction, and report results
in the first subsection below. The second goal of our work
is to return effective answers in face of the large variety in
Wikidata KB. We also evaluate our success in this direction,
and report results in the second subsection below.

Competitors. We use following implementations.
1) GPU-Par. The proposed parallel algorithm on GPU as

described in Sec. V. Our online system is based on GPU
implementation.

2) CPU-Par. The proposed parallel algorithm on CPU as
described in Sec. V.

3) CPU-Par-d. We implement a parallel algorithm with dy-
namic memory allocation, which does not require node-
keyword matrix but needs locks on writes and reads. In
addition, there is no extraction phase needed, since all
Central Graphs are recorded during search. By comparing
with it, we validate the efficiency of our designs.

4) BANKS-II [4]. We compare with the established and
widely used method BANKS-II [4] for both efficiency
and effectiveness. The reasons are as follows. There are
few established parallel keyword search methods that
can work on graphs. [12] can only apply to relational
database. As discussed in [7], in order to find top-
k answers, the proposed parameterized DP (dynamic
programming) algorithm finds the top-1 result, followed
by top-2, top-3, and so on. This process is rather slow,
as pointed by [6]. However, [6] finds answers in a
progressive manner. In other words, the answers are

TABLE II
WIKIDATA DUMPS

dataset(year) # nodes # edges A Deviation
wiki2017 15.1M 124M 3.87 0.81
wiki2018 30.6M 271M 3.68 0.98

TABLE III
PARAMETERS IN EXPERIMENTS.

Parameter Meaning Default
Topk Top-k answers to be returned 20
Knum The number of keywords in a query 6
α The tunable parameter introduced in Sec. IV-A 0.1
Tnum The number of threads for parallel 30

generated better and better until the true Steiner Tree is
found. It is not clear how to collect top-k results by [6].
BLINKS [4] needs to pre-compute all-pair shortest path
between nodes and keywords to build two indexes, which
are keyword-nodes lists and node-keyword map. Similarly,
EASE [17] has to use node matrix to pre-compute steiner
graphs as well as all-pair keywords distance in addition.
Furthermore, [18] needs to build a neighbor index as
mentioned in Sec. II and requires domain experts to define
value r, which is difficult on Wikidata KB with so large
variety. [16] is a partition method for backward algorithm
with a disk solution for small RAM. Taking the above into
account, we finally choose BANKS-II as our competitor.

Dataset. As we focus on Wikidata Knowledge Base, we obtain
two dumps as shown in Table II. The last two columns show
the sampled average distance and the deviation of sampling.
We sample ten thousand pairs of nodes to estimate the average
shortest distances. The statistics are collected after we filter out
non-English contents.

Platform. All algorithms are implemented using C++ 4.8.5
with openmp 3.1 and cuda 8.0. We turn on -O3 flag for
compilation. All tests were run on Centos 7.0. We use a single
machine with 52-core Intel(R) Xeon(R) Platinum 8170 CPU
@ 2.10GHz and a single GPU, GTX 1080 Ti. It is worth noting
that our CPU has 1 TB DDR4 as its main memory with data
width 64 bits, and our GPU has 11 GB memory with DDR5X
352-bit memory bus width. It can be seen that GPU has a
much faster transfer speed (480GB/s) between processors and
main memory than CPU (around 56 GB/s).

In all experiments, we set the time limit as 500 seconds.
If the running time exceeds this limit, we note it as 500 to
compute averages. All running times are in millisecond (ms).

A. Efficiency Studies

In this section, we evaluate the efficiency of our proposed
approaches. Table III summarizes the parameters we study. We
vary one parameter at a time while others are set to default
values. For each Knum, we randomly select 50 keyword
queries from keyword lists of all accepted (over 300) papers
in AAAI’14 from UCL repository [28], as these keywords
naturally serve as reasonable queries. The running time is
calculated as the average of all 50 queries.

Exp-1 (Vary Knum) As shown in Fig. 6 and 7, we provide a
detailed profiling comparison for each phase in our algorithm.
The results of BANKS-II are shown only in the last figure
of total time. For initialization, GPU-Par and CPU-Par are
both faster than CPU-Par-d, since they only need to set the
node-keyword matrix in a lock-free way. However, CPU-Par-
d has to add a lock to each node to record which keyword it
has, since the memory is allocated dynamically. The advantage
of DDR5X of our GPU is reflected by Enqueuing Frontier
and Identifying Central Nodes, as GPU-Par consistently beats
other methods. It is also the case for expansion procedure.
In addition, the proposed lock-free expansion approach is 2
to 3 magnitudes faster than CPU-Par-d which needs a lock
for modifying any nodes during search. The benefits of CPU-
Par-d is that there is no need to extract and recover Central
Graphs from Central Nodes, since all path information is kept
in run time. Therefore, level-cover strategy is the only thing
for CPU-Par-d. As shown in Top-down processing, CPU-Par-
d is always the fastest. However, this advantage is easily
overwhelmed by the slow processing of other phases of CPU-
Par-d. This also validates the efficiency of heuristics we use
for recovering Central Graphs. As shown in Total time, GPU-
Par and CPU-Par are 2 to 3 magnitudes faster than BANKS-II.
This efficiency is essential for keyword search service.

As Knum becomes larger, the number of frontiers and
top-(k,d) Central Graphs also becomes larger. However, this
change only leads to a small increase of proposed GPU-Par
and CPU-Par, which suggests our method works efficiently
and stably for longer keyword queries.

We observe that there are three main reasons for BANKS-II
to be slow. Firstly, compared to BANKS-I which is purely
based on backward search, BANKS-II adds forward testing
to avoid traversing too many neighbors from a node in
backward direction. However, when the graph becomes large,
the situation now is that there is also a large number of
nodes in the forward direction, which causes the program
trapped in nodes with many forward edges. Secondly, the top-
k termination checking turns out to be very inefficient. To
guarantee the correctness of top-k results, BANKS-II needs to
make sure that there is no better results in the undiscovered
answer trees, but the best possible score of undiscovered trees
changes slightly. As a result, BANKS-II needs to search many
nodes to guarantee the correctness of top-k answers. Thirdly,
BANKS-II expands based on activation of nodes as priorities
instead of shortest distances, on which the final scoring is
based. This may cause a node to be reached in a shorter
distance by the same keyword. Then it needs to broadcast
this shorter path to all its parents, which is a recursive update
and costs much time when the graph size is large. In contrast,
we model the problem in a different way which can execute
in parallel naturally. The benefit is that we can explore the
potential parts that generate answers and non-potential parts
of graph at the same time, which saves time on searching and
pruning non-potential nodes

Exp-2 (Vary Topk) As shown in the first row in Fig.
8, GPU-Par and CPU-Par have a stable running time for

Fig. 6. Vary Knum on wiki2017. The y-axis may be log-scaled, which can be seen from the attached value.

Fig. 7. Vary Knum on wiki2018. The y-axis may be log-scaled, which can be seen from the attached value.

Fig. 8. Vary topk and α on both datasets.

different Topk settings. The reason is that the top-k answers
are selected from the set of all top-(k,d) Central Graphs and
the running time increases saliently only when more levels
(larger d) need to be searched for obtaining k answers.

Exp-3 (Vary α) As shown in the second row in Fig. 8,
the running time goes down as α becomes smaller. This is
because larger α grants more nodes with a smaller minimum
activation level, which facilitates search and thus answers can
be discovered faster. These answers tend to include some
nodes with high degree of summary (Sec. IV-A).

Exp-4 (Vary Tnum) As shown in Fig. 9 and 10, we vary
the number of threads from 1 to 50. Tnum = 1 means
we are running everything sequentially on CPU. Note that
GPU implementation (GPU-Par) keeps parallelism and is only

TABLE IV
RUNNING STORAGE COST ON GPU (KNUM=8, TOPK=50).

dataset pre-storage max. running storage
wiki2017 1.19GB 1.46GB
wiki2018 2.41GB 2.92GB

affected in top-down processing step by Tnum on CPU. For
CPU implementation, with larger Tnum, the acceleration is
salient especially for Identifying Central Nodes , Expansion
and Top-down Processing steps. For CPU-Par-d, it does not
benefit so much from large number of threads, since the
locked writes and reads slow down the whole processing and
overwhelm the benefits from parallelism. This validates the
success of our proposed lock-free algorithm.

Run time storage Table IV shows the pre-storage and
the maximum running storage cost (including pre-storage)
on GPU for GPU-Par and it is the same but not a primary
concern on CPU since CPU has sufficient memory. Note that
the storage does not includes texture and content information
of the datasets, which can be stored in external memory. The
pre-storage includes the weight of all nodes and adjacency
matrix in CSR format. The dynamic memory cost includes
FIdentifier, CIdentifier and node-keyword matrix. We set
Knum to be 8 and topk 50, so the size recorded in Table
IV is the largest in all experiments. The total size of global
memory on GTX 1080 Ti is around 11 GB, which suggests
that we can handle much larger graphs.

As can be seen from all experiments, GPU-Par always
performs the best thanks to its high bandwidth and large
number of threads. We thus implement our online search
engine using GPU. It is worth noting that the price of GTX
1080 Ti is much lower than that of multi-core CPU.

Fig. 9. Vary Tnum (the number of Threads) on wiki2017.

Fig. 10. Vary Tnum (the number of Threads) on wiki2018.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q90%

20%

40%

60%

80%

100%

To
p-
k
pr
ec
isi
on

BANKS-II α-0.05 α-0.1 α-0.4

(a) top-5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q90%

20%

40%

60%

80%

100%

To
p-
k
pr
ec
isi
on

BANKS-II α-0.05 α-0.1 α-0.4

(b) top-10

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q90%

20%

40%

60%

80%

100%

To
p-
k
pr
ec
isi
on

BANKS-II α-0.05 α-0.1 α-0.4

(c) top-20

Fig. 11. wiki2017

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q90%

20%

40%

60%

80%

100%

To
p-
k
pr
ec
isi
on

BANKS-II α-0.05 α-0.1 α-0.4

(a) top-5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q90%

20%

40%

60%

80%

100%

To
p-
k
pr
ec
isi
on

BANKS-II α-0.05 α-0.1 α-0.4

(b) top-10

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q90%

20%

40%

60%

80%

100%

To
p-
k
pr
ec
isi
on

BANKS-II α-0.05 α-0.1 α-0.4

(c) top-20

Fig. 12. wiki2018

B. Effectiveness Studies

We follow the tradition of effectiveness experiments for
keyword search problem [3], [4], [18], [10], [5], [17]. The
effectiveness of keyword search results is measured by top-k
precision and the relevances of answers are judged manually.
We compared the results from our approach with BANKS-II on
both datasets and three settings of α’s, denoted by α-0.05,α-
0.1,α-0.4. Top-k precision measures the percentage of relevant
answers that appear in top-k results and is used by many
previous works. The queries we used are listed in Table V.

The results are shown in Fig. 11 and 12. We do not show

the results for Q10 and Q11, because all settings can return all
relevant results and this arises from two perspectives of reasons
worth mentioning. For Q10, these keywords have lots of co-
occurrences and it is easy to find all relevant small answers.
For Q11, the input keywords have little ambiguity and can be
mapped to a very small number of entity nodes. As a result,
any connected answers tend to be very relevant for Q11.

For other queries except Q10 and Q11, we find that Wiki-
Search can always find a setting of α that can match or
outperform the effectiveness of BANKS-II. We identify two
designs that make WikiSearch more effective than BANKS-II.

TABLE V
QUERIES FOR EFFECTIVENESS EXPERIMENT. KWF1 AND KWF2 DENOTE

THE AVERAGE KEYWORD FREQUENCY ON WIKI2017 AND WIKI2018.

Query keywords kwf1 kwf2
Q1 XML relational search 7555 54744
Q2 database indexing ranking search 2470 17452
Q3 Bayesian inference Markov network 2969 20700
Q4 statistical relational learning inference 6999 56815
Q5 SQL RDF knowledge base 4674 36498
Q6 supervised learning

gradient descent machine translation 4193 18732
Q7 transfer learning auxiliary

data retrieval text classification 4203 44127
Q8 XML RDF knowledge base sharing 4143 31833
Q9 network mining 6353 46981

medicine retrieval technique
Q10 natural language processing 10333 54940

machine learning
Q11 Wikidata Freebase Yahoo 369 448

Neo4j SPARQL

Firstly, BANKS-II approximates Steiner Tree and its scoring
function takes the sum of length of paths from root to every
leaf node. This scoring metric fails taking into consideration
of co-occurrences of keywords. As a result, BANKS-II fails
Q4, Q6 and Q7. Phrases fail to appear together, which results
in irrelevant answers, e.g. “Statistical relational learning” or
“statistical inference” of Q4, “gradient descent” or “machine
translation” of Q6 and “transfer learning” of Q7. In contrast,
WikiSearch allows multi-paths from one keyword node sets
and then prunes the final top-k results by level-cover strategy,
which is based on co-occurrences of keywords. This helps
maintain the nodes containing phrases and remove nodes that
only contribute isolated keywords. The answers are thus more
relevant. Secondly, BANKS-II searches for small connected
trees, which incur many repetitions of answers which overlap
a large portion of nodes. The repetitions can cause problem,
if the part that repeats is irrelevant. This directly causes
all repetitive answers containing that part are irrelevant. In
Q11 on wiki2018 dataset, the node representing an irrelevant
article Genotyping on a thermal gradient DNA chip. appears
in 16 different answers of top-20, contributing the keyword
“gradient” for 16 times. In contrast, Central Graphs cover more
parts of the underlying graphs and we remove the Central
Graph that completely contains smaller ones. As a result, a
Central Graph covers what it can cover at most, leading to
fewer repetitions.

VII. CONCLUSION

We propose the Central Graph model, which can naturally
work in parallel and return meaningful answers on Knowledge
Bases. We carefully design a two-stage parallel algorithm to
work in a lock-free way which is critical to efficiency. Finally,
we implement an online service, WikiSearch, for Wikidata
Knolwdeg Base.

REFERENCES

[1] T. Pellissier Tanon, D. Vrandečić, S. Schaffert, T. Steiner, and
L. Pintscher, “From freebase to wikidata: The great migration,” in Proc.
WWW’16, pp. 1419–1428.

[2] F. Erxleben, M. Günther, M. Krötzsch, J. Mendez, and D. Vrandeăić,
“Introducing wikidata to the linked data web,” in Proceedings of the
13th International Semantic Web Conference - Part I, ser. ISWC ’14,
pp. 50–65.

[3] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe, P. Parag,
and S. Sudarshan, “Banks: Browsing and keyword searching in relational
databases,” in Proc.VLDB’02, pp. 1083–1086.

[4] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and
H. Karambelkar, “Bidirectional expansion for keyword search on graph
databases,” in Proc. VLDB’05, 2005, pp. 505–516.

[5] H. He, H. Wang, J. Yang, and P. S. Yu, “Blinks: Ranked keyword
searches on graphs,” in Proc. SIGMOD’07, pp. 305–316.

[6] R.-H. Li, L. Qin, J. X. Yu, and R. Mao, “Efficient and progressive group
steiner tree search,” in Proc. SIGMOD’16, pp. 91–106.

[7] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin, “Finding
top-k min-cost connected trees in databases,” in ICDE’07, pp. 836–845.

[8] S. Agrawal, S. Chaudhuri, and G. Das, “Dbxplorer: Enabling keyword
search over relational databases,” in Proc. SIGMOD’02, pp. 627–627.

[9] V. Hristidis and Y. Papakonstantinou, “Discover: Keyword search in
relational databases,” in Proc.VLDB’02, pp. 670–681.

[10] A. Balmin, V. Hristidis, and Y. Papakonstantinou, “Objectrank:
Authority-based keyword search in databases,” pp. 564–575.

[11] E. Ihler, “The complexity of approximating the class steiner tree prob-
lem,” in Graph-Theoretic Concepts in Computer Science, G. Schmidt
and R. Berghammer, Eds., 1992, pp. 85–96.

[12] L. Qin, J. X. Yu, and L. Chang, “Ten thousand sqls: Parallel keyword
queries computing,” Proc. VLDB Endow., vol. 3, no. 1-2, pp. 58–69,
Sep. 2010.

[13] D. Yue, G. Yu, J. Liu, T. Zhang, T. Nie, and F. Li, “Efficient keyword
search for slca in parallel xml databases,” in 2011 8th Web Information
Systems and Applications Conference, pp. 29–34.

[14] B. Ning, X. Zhou, and Y. Shi, “Parallel processing the keyword search
in uncertain environment,” in 2012 International Conference on System
Science and Engineering (ICSSE), pp. 409–414.

[15] B. B. Dalvi, M. Kshirsagar, and S. Sudarshan, “Keyword search on
external memory data graphs,” Proc. VLDB Endow., vol. 1, no. 1, pp.
1189–1204, Aug. 2008.

[16] W. Le, F. Li, A. Kementsietsidis, and S. Duan, “Scalable keyword search
on large rdf data,” TKDE, vol. 26, no. 11, pp. 2774–2788, 2014.

[17] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou, “Ease: An effective
3-in-1 keyword search method for unstructured, semi-structured and
structured data,” in Proc. SIGMOD’08, pp. 903–914.

[18] M. Kargar and A. An, “Keyword search in graphs: Finding r-cliques,”
Proc. VLDB’11, vol. 4, no. 10, pp. 681–692.

[19] L. Qin, J. X. Yu, L. Chang, and Y. Tao, “Querying communities in
relational databases,” in Proc. ICDE’09, pp. 724–735.

[20] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph explo-
ration on multi-core CPU and GPU,” in 2011 International Conference
on Parallel Architectures and Compilation Techniques, PACT 2011,
Galveston, TX, USA, October 10-14, 2011, 2011, pp. 78–88.

[21] A. Buluç and K. Madduri, “Parallel breadth-first search on distributed
memory systems,” in Conference on High Performance Computing Net-
working, Storage and Analysis, SC 2011, Seattle, WA, USA, November
12-18, 2011, 2011, pp. 65:1–65:12.

[22] P. Harish and P. J. Narayanan, “Accelerating large graph algorithms on
the gpu using cuda,” in Proc. HiPC’07, pp. 197–208.

[23] Z. Fu, H. K. Dasari, B. Bebee, M. Berzins, and B. Thompson, “Parallel
breadth first search on gpu clusters,” in 2014 IEEE International
Conference on Big Data (Big Data), Oct 2014, pp. 110–118.

[24] L. Luo, M. Wong, and W. m. Hwu, “An effective gpu implementation
of breadth-first search,” in Design Automation Conference, June 2010,
pp. 52–55.

[25] J. Zhong and B. He, “Parallel graph processing on graphics processors
made easy,” Proc. VLDB Endow., vol. 6, no. 12, pp. 1270–1273, Aug.
2013.

[26] D. Merrill, M. Garland, and A. Grimshaw, “Scalable gpu graph traver-
sal,” SIGPLAN Not., vol. 47, no. 8, pp. 117–128, Feb. 2012.

[27] H. Liu, H. H. Huang, and Y. Hu, “ibfs: Concurrent breadth-first search
on gpus,” in Proc. SIGMOD’16, pp. 403–416.

[28] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

