
Understanding Speciation in QUIC Congestion Control
Ayush Mishra, Sherman Lim, and Ben Leong

National University of Singapore

ABSTRACT
The QUIC standard is expected to replace TCP in HTTP 3.0. While
QUIC implements a number of the standard features of TCP differ-
ently, most QUIC stacks re-implement standard congestion control
algorithms. This is because these algorithms are well-understood
and time-tested. However, there is currently no systematic way
to ensure that these QUIC congestion control protocols are imple-
mented correctly and predict how these different QUIC implemen-
tations will interact with other congestion control algorithms on
the Internet.

To address this gap, we present QUICbench, which, to the best
of our knowledge, is the first congestion control benchmarking
tool for QUIC stacks. QUICbench determines how closely the im-
plementation of a QUIC congestion control algorithm conforms
to the reference (kernel) implementation by comparing their re-
spective throughput-delay tradeoffs. QUICbench can also be used
to systematically compare a new QUIC implementation to previous
and different implementations of both QUIC and kernel-based con-
gestion control algorithms. Our measurement study suggests that
there is already significant deviation between the existing QUIC
implementations of standard congestion control algorithms from
the reference implementations. We demonstrate how QUICbench
can help us identify the implementation differences responsible for
these deviations so that they can be suitably corrected.

CCS CONCEPTS
• Networks → Transport protocols; Network performance
analysis.

KEYWORDS
IETF QUIC, Congestion Control, Measurement

ACM Reference Format:
Ayush Mishra, Sherman Lim, and Ben Leong. 2022. Understanding Specia-
tion in QUIC Congestion Control. In Proceedings of the 22nd ACM Internet
Measurement Conference (IMC ’22), October 25–27, 2022, Nice, France. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3517745.3561459

1 INTRODUCTION
First introduced by Google in 2013, the QUIC protocol has matured
over the years and is set to replace TCP in HTTP 3.0. QUIC offers
many benefits over TCP, including faster connection establishment,
baked-in end-to-end encryption, and support for multi-streaming.
Since it is implemented in the user space, it allows developers to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IMC ’22, October 25–27, 2022, Nice, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9259-4/22/10.
https://doi.org/10.1145/3517745.3561459

easily modify and push updates to their QUIC stacks. While this
flexibility could potentially allow QUIC to become a more secure
alternative to TCP, the converse is also true: it also makes it easier
to make mistakes.

The QUIC standard, as described by its many prescriptive IETF
RFCs and drafts today [5], implements a protocol that is different
from TCP. However, existing QUIC stacks [1] still implement the
classic congestion control algorithms (CCA) used by TCP instead
of inventing new ones. There is a good reason for this. Classic
congestion control algorithms are well understood, predictable,
and already have good track records of convergence and stability
guarantees thanks to years of research and Internet deployment.

QUIC developers however do not currently have a systematic
way to ensure that their implementations are correct and fully
compliant with standard kernel implementations. In other words,
there is presently no safeguard against buggy versions of these
standard congestion control algorithms from being deployed on the
Internet. To address this gap, we developed QUICbench, which to
the best of our knowledge is the first congestion control algorithm
benchmarking tool for QUIC stacks. For now, QUICbench has 2 key
applications:

(1) Protocol Conformance.To allow us to quantify how closely
QUIC implementations of existing CCAs conform to the stan-
dard kernel (reference) implementations, we introduce a new
metric called the Performance Envelope (PE). We will use the
similarities between the PE of a test QUIC implementation
and its corresponding standard kernel implementation as a
measure of the QUIC implementation’s conformance.

(2) Understanding interactions between implementations.
It would also be helpful for QUIC developers to understand
how their CCA implementations will interact with other
CCA implementations, both QUIC and in-kernel. This would
allow them to tune their QUIC stacks and congestion control
algorithms to suit their specific operational requirements.
To this end, QUICbench also allows us to compare the per-
formance of new QUIC CCA implementations to existing
implementations.

In this paper, we describe our methodology to benchmark QUIC
stacks by Google1 [4], Facebook2 [3], Microsoft3 [9], and Cloud-
flare4 [2] and present the results of our measurement study. We
have limited our analysis to these four stacks because of space
constraints and because to the best of our knowledge, these are
the four most popular open-sourced stacks on the Internet today.
QUICbench is easily extensible to other QUIC stacks as well and we
plan to do so soon. Our results show that there is already significant
speciation5 between the CCA implementations in these four QUIC
1chromium commit hash: 82a3c71cf5bf2502d5ad90489fe20ce8f8cb3fab
2mvfst commit hash: 65a9c066e742620becacc99b7c0ca86200e6a4c4
3msquic commit hash: e6110b62cd8e0d84e6436bde2504e6bc0702921a
4quiche commit hash: 9dfeaafb625b08760218def7beb8db133e3f50cb
5Speciation is the evolutionary process by which populations evolve to become distinct
species [10].

https://doi.org/10.1145/3517745.3561459
https://doi.org/10.1145/3517745.3561459


IMC ’22, October 25–27, 2022, Nice, France Mishra et al.

Table 1: QUIC/TCP stacks evaluated and the available con-
gestion control algorithms.

Organization Stack CUBIC BBR Reno

- Linux kernel ✓ ✓ ✓

Facebook mvfst [3] ✓ ✓ ✓

Google chromium [4] ✓ ✓ ✗

Microsoft msquic [9] ✓ ✗ ✗

Cloudflare quiche [2] ✓ ✗ ✓

stacks and we suspect that some of the deviants could have been
intentional to achieve better performance (but at the expense of
other CCAs on the Internet). The following are our key findings:

(1) There are significant deviations between the different imple-
mentations of congestion control algorithms in QUIC and
their respective kernel implementations;

(2) The mvfst BBR variant deviates significantly from standard
BBR in terms of throughput in shallow buffers, often taking
up most of the bottleneck bandwidth against a competing
flow. This is because mvfst BBR implements an additional
scaling factor of 120% on top of BBR’s usual sending rate;

(3) The chromium CUBIC variant emulates two flows and uses
a different 𝛽 value from the standard kernel implementation.
This modification does not have much impact on perfor-
mance, but it illustrates that QUICbench is able to identify
minor deviations; and

(4) In general, we have found the performance differences across
these different implementations to be transitive. By transitive,
we mean that if a QUIC implementation 𝛼 outperforms an-
other implementation 𝛽 , and 𝛽 outperforms 𝛾 , then 𝛼 would
also generally outperform 𝛾 . We have found this to be true
for the range of buffer sizes that we investigated.

QUICbench is currently open-sourced and available under the MIT
License [21].

2 METHODOLOGY
There are currently at least 25 existing open-sourced implementa-
tions of QUIC [1]. We have limited our scope to four of the most
common ones because of space constraints. These stacks are all
currently being developed actively and deployed widely by major
public companies, so we believe that our results are representative
of the current QUIC ecosystem deployed in the wild. The CCAs
available for these stacks are summarized in Table 1.

Testbed Setup.We ran our experiments on a testbed comprising
of two Linux (Ubuntu 20.04, kernel version 5.13.0) machines con-
nected via a 1 Gbps Ethernet cable. We installed the open-source
repositories of the QUIC stacks on the two machines and use the
sample QUIC clients/servers provided in the repositories to gener-
ate the QUIC network flows for our experiments. The open-source
tool, iperf3 [6], was used for generating the TCP flows. The bottle-
neck of the connection and the RTT were emulated using TBF [8]
and netem qdisc [7]. The UDP and TCP socket buffer sizes were set
to the same value (12,582,912 bytes).

2.1 The Performance Envelope
To understand how well the CCAs implemented in a QUIC stack
compare to the standard reference implementations, we needed a

way to quantify and visualize the difference. We also want to be
able to do so in a code-agnostic way, i.e. we should not have to read
the code to pick out any deviations.

One straightforward way to identify deviations would be to com-
pare the cwnd evolution to a reference implementation running in
identical network conditions [22]. However, we argue that this is
impractical in the context of QUIC. Given that QUIC is implemented
in the user space, it is unreasonable to expect these implementa-
tions to accurately replicate the complex waveforms in algorithms
like CUBIC exactly. User space implementations of these algorithms
generally have a fast path and a slow path that serves to approx-
imate the behaviour of these algorithms, but they do not exactly
match them. If the developers set out to exactly match the cwnd
evolution of these algorithms, they would not be able to realistically
do so in the user space without significant impact on performance.

An alternative is to define a more coarse-grained definition for
conformance in the context of fairness. If a new implementation
of a congestion control algorithm is as fair/unfair to a reference
flow as the standard implementation, we can say that it is behaving
in a manner conformant to the reference implementation. How-
ever, we are of the view that such an approach will not adequately
capture the finer differences between different congestion control
algorithms.

Our key insight is that a good measure of conformance should
be based on a metric that captures the different trade-offs of dif-
ferent congestion control algorithms. To this end, we propose the
Performance Envelope (PE), a multi-dimensional metric for compar-
ing the relative behaviour of different implementations of different
congestion control algorithms. The Performance Envelope is a vi-
sual representation of the different trade-offs made by different
congestion control algorithms.

In this paper, we will evaluate the various implementations of
standard congestion control algorithms in QUIC by looking at their
throughput and delay trade-offs. We decided to choose these two
metrics, because the trade-off between throughput and delay is the
key consideration in the design of most modern congestion control
algorithms [11, 14–16, 25]. Therefore, even if an implementation is
not completely accurate, it should at least offer the same throughput-
delay tradeoffs as the reference (kernel) implementation. However,
depending on the application, the performance envelope can be
adapted to capture the trade-offs between other network metrics
as well.

Defining the Performance Envelope. To determine the per-
formance envelope for an algorithm, we launch a control flow and a
test flow through a common bottleneck link. In this setting, the con-
trol flow represents the standard implementation of the congestion
control algorithm and the test flow represents the QUIC implemen-
tation that is being tested. We measure the time series throughput
and delay data for the test flow. This data is then sampled at regular
time intervals of 10 RTTs. We record the instantaneous throughput
𝑇 Mbps and the queuing delay 𝑑 for each interval. The performance
envelope is defined as the 2D region (defined by the convex hull) that
contains 95 percent of the operating points (𝑑,𝑇 ) for the algorithm
in the throughput-delay plane. In other words, in plotting the PE,
we reject 5% of the data points with the largest euclidean distance
from the centroid as outliers.



Understanding Speciation in QUIC Congestion Control IMC ’22, October 25–27, 2022, Nice, France

QUIC

TCP 

overlap Conformance = 0.20

T
h
ro

u
g
h
p
u
t 

(M
b
p
s
)

Queueing Delay (ms)

Figure 1: Calculating the Conformance between two PEs.

Defining Similarity.Our key insight in determining how closely
an implementation conforms to a reference implementation is
based on replace-ability. That is, a truly conformant implementation
should be able to replace the reference implementation without
any noticeable impact on its performance envelope across a whole
range of operating conditions. Therefore, to measure conformance,
we plot the performance envelopes for the reference (kernel) im-
plementation and the test QUIC implementation to determine the
overlap between them. We quantify this overlap using two metrics:

(1) Conformance. A conformance of 1 means the performance
envelope of the test implementation completely overlaps
with the performance envelope of the corresponding stan-
dard kernel implementation. However, not all overlapping
areas are the same. Because of the structure of the perfor-
mance envelopes, it is possible for two overlapping regions
to have the exact same area but share different numbers
of common data points. To capture this density informa-
tion, we calculate conformance as the ratio of the number of
points within the overlapped region over the total number
of sampled points.

(2) Deviation. In practice, many of the performance envelopes
for QUIC implementations have no overlap with their as-
sociated kernel implementation, and thus they have zero
conformance. In order to capture the relationship between
them, we define an additional metric called deviation, which
is the euclidean distance between the centroids of two per-
formance envelopes after normalizing the throughput using
the maximum observed throughput and the delay using the
maximum observed delay. As a result, deviation ≤

√
2.

In Figure 1, we illustrate how the conformance between two per-
formance envelopes is calculated.

2.2 Understanding Interactions between
Implementations

It is perfectly plausible and reasonable for QUIC developers to want
to implement their own versions of standard congestion control al-
gorithms or even entirely new congestion control algorithms. Since
the current crop of QUIC stacks are implemented by companies,
it would also not be surprising that they might tune and optimize
their stack to improve the performance of their applications. In
such a setting, while conformance might not be all that important,
we still want to make sure that these modified implementations’
performance is not so skewed that it begins to hurt other TCP
and QUIC flows on the Internet. Therefore, we also conducted a

bandwidth-share-based analysis. In particular, we launch experi-
ments where we made two flows from different implementations
compete (not limited to the same congestion control algorithm) and
measured their throughput ratios.

3 RESULTS
In this section, we present the results of our measurement study
for the QUIC stacks listed in Table 1.

3.1 Differences in Performance Envelopes
As described in §2.1, we ran two-flow experiments with a test
QUIC flow and the corresponding reference TCP (kernel) flow and
measured the performance envelope of the test flow. We tested
flows with a base RTT of 10ms and 50ms (since these are typical
RTTs on wired and wireless networks [27] respectively) through
bottlenecks with 20Mbps and 100Mbps constant link capacity. The
flows were run for 2 minutes and the bottleneck buffer size was
varied in multiples of the bandwidth-delay product (BDP). The
results are shown in Figure 2. The following is a summary of the
key observations:

(1) Unfairness viz-a-viz TCP kernel flows. It is clear from
Figure 2 that current implementations of standard CCAs
already deviate significantly from standard kernel imple-
mentations. In general, we have found that the performance
envelopes of most QUIC implementations lie above their
TCP counterparts. This suggests that these QUIC implemen-
tations are more aggressive compared to the kernel imple-
mentations. This was also observed in a previous study [18].
Wolsing et al. suggested that this gap could be closed by
tuning some kernel parameters (larger initial window size,
larger rcv buffers [31]). However, we found no noticeable
improvement in performance after applying the suggested
changes. A possible explanation for this is that Wolsing et al.
evaluated short flows, while we are evaluating long flows.

(2) Lack of systematic deviation. While the tested QUIC im-
plementations in general seem to bemore aggressive towards
the standard TCP implementations in the kernel, it is un-
likely that this is because of something in the QUIC standard.
The fact that we are seeing deviations in performance in
both directions suggests that most of these deviations are
implementation specific. We have also noticed that both con-
formance and deviation are highly contextual and depend a
lot on the network conditions.

(3) Reno implementations most conformant across stacks.
From Figure 2, we also note that Reno implementations in
general show higher conformance and lower deviation than
the implementations of other congestion control algorithms
like CUBIC and BBR (especially in shallower buffers). This
is hardly surprising, since Reno is algorithmically the sim-
plest CCA of the three and is therefore likely the easiest to
implement.

(4) Loss-based vs. Rate-based. The performance envelopes
for the loss-based algorithms, CUBIC and Reno, had a much
larger variation in queuing delay compared to that for BBR.
This is expected, since loss-based congestion control algo-
rithms frequently back off and then re-fill the bottleneck



IMC ’22, October 25–27, 2022, Nice, France Mishra et al.

 0

 0.5

 1

C
on

fo
rm

an
ce

 0

 0.5

 1

msquic quiche mvfst chromium

10ms 20Mbps
50ms 20Mbps

10ms 100Mbps
50ms 100Mbps

D
ev

ia
tio

n

(a) CUBIC, 1 BDP Buffer

 0

 0.5

 1

C
on

fo
rm

an
ce

 0

 0.5

 1

mvfst chromium

10ms 20Mbps
50ms 20Mbps

10ms 100Mbps
50ms 100Mbps

D
ev

ia
tio

n

(b) BBR, 1 BDP Buffer

 0

 0.5

 1

C
on

fo
rm

an
ce

 0

 0.5

 1

quiche mvfst

10ms 20Mbps
50ms 20Mbps

10ms 100Mbps
50ms 100Mbps

D
ev

ia
tio

n

(c) Reno, 1 BDP Buffer

 0

 0.5

 1

C
on

fo
rm

an
ce

 0

 0.5

 1

msquic quiche mvfst chromium

10ms 20Mbps
50ms 20Mbps

10ms 100Mbps
50ms 100Mbps

D
ev

ia
tio

n

(d) CUBIC, 5 BDP Buffer

 0

 0.5

 1

C
on

fo
rm

an
ce

 0

 0.5

 1

mvfst chromium

10ms 20Mbps
50ms 20Mbps

10ms 100Mbps
50ms 100Mbps

D
ev

ia
tio

n

(e) BBR, 5 BDP Buffer

 0

 0.5

 1

C
on

fo
rm

an
ce

 0

 0.5

 1

quiche mvfst

10ms 20Mbps
50ms 20Mbps

10ms 100Mbps
50ms 100Mbps

D
ev

ia
tio

n

(f) Reno, 5 BDP Buffer

Figure 2: The Conformance and Deviation of various implementations in shallow (1 BDP) and deep (5 BDP) buffers.

(a) 0.5 BDP (b) 1 BDP (c) 3 BDP (d) 5 BDP

Figure 3: Performance Envelopes for various Reno implementations tested on a 20Mbps link with 50ms base RTT.

buffer, while BBR is largely loss-agnostic [28]. We also no-
tice that in general for loss-based flows like CUBIC and Reno,
conformity worsens in deeper buffer. However, the opposite
is true for BBR, with its conformity improving as the bot-
tleneck buffers get deeper. This trend was consistent across
all the network conditions tested by us, and most visually
apparent in the network setting with 50ms RTT and 20Mbps
link speed (see Figures 3 and 4).

3.2 Interactions with Other CC Algorithms.
To understand how different QUIC implementations interact and
co-exist with each other, we also measured the throughput ratios
when 2 flows compete at a common bottleneck. The bottleneck link
speed was set to a constant 50Mbps and the RTT of both the flows
was set at 20ms. We plot a heat map of the pair-wise throughput
ratios of the congestion control algorithm implementations studied
in Figure 5. The throughput ratio in each square in the heat-map
is calculated as 𝑇𝑥

𝑇𝑥+𝑇𝑦 , where 𝑇𝑥 and 𝑇𝑦 are the throughputs of
the corresponding implementations listed along the x and y axes,
respectively. Therefore, if the throughput ratio is greater than 0.5,
𝑇𝑥 > 𝑇𝑦 .

While there are varying degrees of unfairness between flows
(as expected), two outliers stand out: (i) mvfst BBR is extremely
unfair to all the other tested implementations in shallow buffers
(with it taking up to 50× bandwidth compared to the competing
flows!); (ii) chromium CUBIC seems to be extremely aggressive
when competing against quiche Reno in deep buffers. In general,
we also found the throughput-wise performance to be transitive.
That is, if implementation 𝛼 outperforms another implementation
𝛽 , and 𝛽 outperforms 𝛾 , then 𝛼 would also generally outperform
𝛾 . We also note that all the CCAs implemented in chromium are
extremely fair to one another.

3.3 Implementation-level differences
With the help of QUICbench, we have been able to identify three
implementation-level differences that impact the performance of
three QUIC implementations:

(1) mvfst BBR’s scaled up sending rate.We found that mvfst
BBR applied a scaling factor of 120% to BBR’s usual sending
rate, which explains why mvfst BBR was extremely aggres-
sive compared to other CCA implementations. We verified



Understanding Speciation in QUIC Congestion Control IMC ’22, October 25–27, 2022, Nice, France

(a) 0.5 BDP (b) 1 BDP (c) 3 BDP (d) 5 BDP

Figure 4: Performance Envelopes for various BBR implementations tested on a 20Mbps with 50ms base RTT.

(a) Throughput Ratios for 1 BDP (shallow) buffer. (b) Throughput Ratios for 5 BDP (deep) buffer.

Figure 5: Plot of throughput ratios for 2 flows sharing a common bottleneck.

this by removing this scaling factor and evaluating the re-
sulting implementation. The new performance envelope is
shown in Figure 6. By returning the gain to 100% as intended,
we were able to improve the conformance of mvfst BBR
from zero to up to 0.8 in some networks conditions.

(2) chromium CUBIC emulating multiple flows.We found
that by default, chromium CUBIC emulates 2 CUBIC flows
(𝑁 = 2) and therefore has an adjusted 𝛽 value. Instead of hav-
ing 𝛽 = 0.7 like in the standard CUBIC algorithm, chromium
CUBIC sets 𝛽 = 0.85. As shown in Figure 7, a change (to
𝑁 = 1) significantly improves chromium CUBIC’s confor-
mance with the kernel implementation. We also saw its
throughput ratio compared to quiche Reno reduce from
10.45 (see Figure 5b) to 6.25 in 5 BDP buffers. However, even
after making this change chromium CUBIC has significantly
different performance compared to its TCP counterpart.

(3) mvfst Reno consistently does worse than TCP Reno.
While we did not find anything algorithmically different be-
tween the Reno implementations in mvfst and in the Linux
kernel, the mvfst implementation consistently achieved
lower throughput when it competed with the Linux imple-
mentation (i.e., the throughput ratio was below 0.6 for all
tested network conditions). We noticed one implementation

difference between the mvfst and the kernel implemen-
tations: ACK frequency. By default, mvfst send ACKs for
every 10 packets. When we increased this ACK frequency
match the kernel implementation by sending ACKs for ev-
ery 2 packets, the performance of mvfst Reno noticeably
improved (i.e., throughput ratio exceeded 0.8 for all tested
network conditions), albeit at the cost of a slight increase in
CPU utilization.

4 DISCUSSION
Our preliminary investigation into the congestion control imple-
mentations in four popular QUIC stacks shows that speciation in
QUIC congestion control deserves more careful study as the QUIC
standard matures. It is important for developers, as well as the peo-
ple who deploy these stacks, to be aware of potential differences
and the impact that they might have on existing congestion control
algorithms.

Adding more QUIC stacks. The fact that performance devia-
tions could go in either direction compared to reference implementa-
tions suggests that performance deviations are dependent on stacks’
specific implementation differences and are not merely the result
of the protocol-level differences between QUIC and TCP. This sug-
gests that QUIC stacks should be evaluated more comprehensively
and it is not sufficient to only study the QUIC implementations of



IMC ’22, October 25–27, 2022, Nice, France Mishra et al.

Figure 6: Improving mvfst BBR’s conformance by modifying
its gain to 100% (modified mvfst). (0.5 BDP, 20Mbps, 50ms)

the congestion control protocols. We have thus far only studied four
QUIC stacks, and we plan to extend this project to more available
QUIC stacks.

Context matters. We have found that PEs would vary depend-
ing on the network parameters. We plan to extend QUICbench to
benchmark QUIC stacks under other network conditions (like mo-
bile links, wireless) to develop a more comprehensive benchmark
in order to understand how the PEs depend on the network param-
eters. We suspect that with more data, we will also be able to refine
our current definitions of the PE, conformance, and deviation.

Stack-level parameter tuning. We expect many of the perfor-
mance differences between the QUIC stacks to be due to stack-level
parameters like ACK frequency and starting window size affecting
the congestion control algorithms. We plan to extend QUICbench
to extract these stack-level parameters (either via measurement or
by directly looking for them in the code-base) and suggest fixes
for CCA implementations that show low conformance and large
deviation.

Root-cause analysis. Finally, we hope to conduct more root-
cause analyses to identify the modifications that affect an imple-
mentation’s performance. As illustrated in §3.3, root-cause anal-
ysis can lead to actionable insights. While we were able to find
the modification required to bring Facebook’s mvfst BBR variant
closer to the reference implementation, we were less successful
with Google’s chromium CUBIC variant. This shows that even if
we can determine that there is a deviation, identifying the root
cause is non-trivial. Nevertheless, we have shown that QUICbench
can potentially help us identify bugs that can lead to unintentional
performance trade-offs.

5 RELATEDWORK
Over the years, there has been a large body of work dedicated
to studying the QUIC standard as it evolved. To the best of our
knowledge, Marx et al. [19] were the first to take a holistic approach
to evaluate the low-level details in IETF QUIC using Qvis [20]. They
studied the implementation of key QUIC features like the 0-RTT
handshake mechanism, loss notification, and multi-streaming. With
respect to congestion control, they evaluated stack-level parameters
like initial window size, pacing, and ACK frequency. They found
a significant amount of heterogeneity in these parameters across
the 15 QUIC stacks that they studied. However, the performance
of the different implementations of congestion control algorithms
was not evaluated.

Figure 7: Improving chromium CUBIC’s conformance by set-
ting 𝑁 = 1 (modified chromium). (3 BDP, 20Mbps, 50ms)

There have also been a number of studies that compared the
performance of QUIC to TCP [12, 18, 26, 31]. Kakhki et al. found
that in general, QUIC outperforms TCP+TLS in most networks [18].
They reported that the performance improvement was mainly the
result of the QUIC standard increasing its maximum window size
in 2016. Saif et al. showed that even though QUIC can outperform
TCP in terms of throughput, its QoS can be worse [26]. Bhat et
al. highlighted a similar issue with DASH video workloads, where
videos were able to achieve a better QoS with TCP even though
they were getting better bandwidth shares with gQUIC [12]. QUIC
was evaluated against TCP in the wild with production traffic by
Wolsing et al. [31]. Again, they also found that QUIC outperforms
TCP in terms of throughput. They made suggestions on how the
TCP stack can be tuned to make it more competitive against pro-
duction QUIC. We tried to replicate these suggested changes, but
found that they did not improve TCP’s performance in our testbed.
They also note that in general, QUIC’s performance is an artifact
of how the stack has been implemented, and is not a byproduct of
the standard itself.

Beyond QUIC, there is a large body of work on the deployability
of and fairness between different congestion control algorithms.
This was spurred by measurement studies that suggested that the
Internet’s TCP congestion control landscape itself is extremely
heterogeneous [23]. There has been a recent surge in studies eval-
uating how well CUBIC and BBR co-exist [13, 17, 24, 29, 30]. The
consensus from this body of work is that there can be varying
degrees of unfairness between CCAs depending on the network
conditions. While these works provide important insights into how
different algorithms interact with each other, the focus of our work
is to study the similarity between standard kernel CCAs and their
associated QUIC implementations.

6 CONCLUSION
In our work, we sought to study the congestion control algorithm
(CCA) implementations of QUIC stacks by benchmarking their
performance against the reference kernel implementations using
QUICbench. Our analysis uncovered significant performance differ-
ences between the user-space CCAs and their reference implemen-
tations in the kernel due to implementation-level differences. This
suggests that some level of speciation is happening with regard to
the CCAs used in QUIC stacks, which deserves further study. We
plan to expand our analysis to more QUIC stacks and evaluate their
CCAs over a wider range of network conditions.



Understanding Speciation in QUIC Congestion Control IMC ’22, October 25–27, 2022, Nice, France

ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers, Ali Razeen,
Joshua Koo, and our shepherd, Mirja Kuehlewind, for providing
their valuable feedback. This work was supported by the Singapore
Ministry of Education grant T1 251RES1917.

REFERENCES
[1] 2021. Active QUIC implementations. https://github.com/quicwg/base-drafts/

wiki/Implementations
[2] 2021. Cloudflare’s QUIC implementation, quiche. https://github.com/cloudflare/

quiche
[3] 2021. Facebook’s QUIC implementation, mvfst. https://github.com/

facebookincubator/mvfst
[4] 2021. Google’s QUIC implementation, chromium. https://www.chromium.org/

quic/playing-with-quic
[5] 2021. IETF QUIC Working Group. https://datatracker.ietf.org/wg/quic/
[6] 2021. iPerf, the Speed Test Tool for TCP. https://iperf.fr/iperf-doc.php
[7] 2021. Linux Traffic Control, netem qdisc. https://wiki.linuxfoundation.org/

networking/netem
[8] 2021. Linux Traffic Control, Token Bucket Filter qdisc. https://linux.die.net/man/

8/tc-tbf
[9] 2021. Microsoft’s QUIC implementation, msquic. https://github.com/microsoft/

msquic
[10] 2022. Speciation. https://en.wikipedia.org/wiki/Speciation
[11] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical Delay-Based Conges-

tion Control for the Internet. In Proceedings of NSDI.
[12] Divyashri Bhat, Amr Rizk, and Michael Zink. 2017. Not so QUIC: A Performance

Study of DASH over QUIC. 13–18. https://doi.org/10.1145/3083165.3083175
[13] Yi Cao, Arpit Jain, Kriti Sharma, Aruna Balasubramanian, and Anshul Gandhi.

2019. When to use and when not to use BBR: An empirical analysis and evaluation
study. In Proceedings of the IMC.

[14] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2017. BBR: congestion-based congestion control. Commun. ACM
60, 2 (2017), 58–66.

[15] MoDong, TongMeng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey,
and Michael Schapira. 2018. PCC Vivace: Online-Learning Congestion Control.
In NSDI.

[16] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-friendly
high-speed TCP variant. ACM SIGOPS operating systems review 42, 5 (2008),
64–74.

[17] Per Hurtig, Habtegebreil Haile, Karl-Johan Grinnemo, Anna Brunstrom, Eneko
Atxutegi, Fidel Liberal, and Åke Arvidsson. 2018. Impact of TCP BBR on CUBIC
traffic: A mixed workload evaluation. In 30th International Teletraffic Congress
(ITC 30).

[18] Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-Rotaru, and
Alan Mislove. 2017. Taking a Long Look at QUIC: An Approach for Rigorous
Evaluation of Rapidly Evolving Transport Protocols. In Proceedings of IMC.

[19] Robin Marx, Joris Herbots, Wim Lamotte, and Peter Quax. 2020. Same Standards,
Different Decisions: A Study of QUIC and HTTP/3 Implementation Diversity. In
Proceedings of the Workshop on the Evolution, Performance, and Interoperability of
QUIC (EPIQ).

[20] Robin Marx, Wim Lamotte, Jonas Reynders, Kevin Pittevils, and Peter Quax. 2018.
Towards QUIC debuggability. In Proceedings of the Workshop on the Evolution,
Performance, and Interoperability of QUIC (EPIQ).

[21] Ayush Mishra and Sherman Lim. 2022. QUICBench. https://github.com/NUS-
SNL/QUICbench

[22] Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben
Leong. 2019. The Great Internet TCP Congestion Control Census. 59–60. https:
//doi.org/10.1145/3393691.3394221

[23] Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben
Leong. 2019. The Great Internet TCP Congestion Control Census. In Proceedings
of SIGMETRICS.

[24] Ayush Mishra, Jingzhi Zhang, Melodies Sims, Sean Ng, Raj Joshi, and Ben Leong.
2021. Conjecture: Existence of Nash Equilibria in Modern Internet Congestion
Control. In APNet.

[25] Vern Paxson and Mark Allman. 2009. TCP Congestion Control. RFC 5681.
[26] Darius Saif, Chung-Horng Lung, and Ashraf Matrawy. 2020. An Early Benchmark

of Quality of Experience Between HTTP/2 and HTTP/3 using Lighthouse.
[27] Satadal Sengupta, Hyojoon Kim, and Jennifer Rexford. 2022. Continuous in-

network round-trip time monitoring. In Proceedings of SIGCOMM.
[28] Bruce Spang, Serhat Arslan, and Nick McKeown. 2021. Updating the theory of

buffer sizing. Performance Evaluation 151 (2021), 102232.
[29] Belma Turkovic, Fernando A Kuipers, and Steve Uhlig. 2019. Interactions between

congestion control algorithms. In Network Traffic Measurement and Analysis
Conference (TMA).

[30] RanyshaWare, Matthew K. Mukerjee, Srinivasan Seshan, and Justine Sherry. 2019.
Modeling BBR’s Interactions with Loss-Based Congestion Control. In Proceedings
of IMC.

[31] Konrad Wolsing, Jan Rüth, Klaus Wehrle, and Oliver Hohlfeld. 2019. A perfor-
mance perspective on web optimized protocol stacks: TCP+ TLS+ HTTP/2 vs.
QUIC. In Proceedings of the Applied Networking Research Workshop.

A ETHICS
This work does not raise any ethical issues.

https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/cloudflare/quiche
https://github.com/cloudflare/quiche
https://github.com/facebookincubator/mvfst
https://github.com/facebookincubator/mvfst
https://www.chromium.org/quic/playing-with-quic
https://www.chromium.org/quic/playing-with-quic
https://datatracker.ietf.org/wg/quic/
https://iperf.fr/iperf-doc.php
https://wiki.linuxfoundation.org/networking/netem
https://wiki.linuxfoundation.org/networking/netem
https://linux.die.net/man/8/tc-tbf
https://linux.die.net/man/8/tc-tbf
https://github.com/microsoft/msquic
https://github.com/microsoft/msquic
https://en.wikipedia.org/wiki/Speciation
https://doi.org/10.1145/3083165.3083175
https://github.com/NUS-SNL/QUICbench
https://github.com/NUS-SNL/QUICbench
https://doi.org/10.1145/3393691.3394221
https://doi.org/10.1145/3393691.3394221

	Abstract
	1 Introduction
	2 Methodology
	2.1 The Performance Envelope
	2.2 Understanding Interactions between Implementations

	3 Results
	3.1 Differences in Performance Envelopes
	3.2 Interactions with Other CC Algorithms.
	3.3 Implementation-level differences

	4 Discussion
	5 Related work
	6 Conclusion
	References
	A Ethics

