
45

The Great Internet TCP Congestion Control Census

AYUSH MISHRA, National University of Singapore, Singapore
XIANGPENG SUN, National University of Singapore, Singapore
ATISHYA JAIN, Indian Institute of Technology, Delhi, India
SAMEER PANDE, Indian Institute of Technology, Delhi, India
RAJ JOSHI, National University of Singapore, Singapore
BEN LEONG, National University of Singapore, Singapore

In 2016, Google proposed and deployed a new TCP variant called BBR. BBR represents a major departure from
traditional congestion-window-based congestion control. Instead of using loss as a congestion signal, BBR
uses estimates of the bandwidth and round-trip delays to regulate its sending rate. The last major study on the
distribution of TCP variants on the Internet was done in 2011, so it is timely to conduct a new census given
the recent developments around BBR. To this end, we designed and implemented Gordon, a tool that allows us
to measure the exact congestion window (cwnd) corresponding to each successive RTT in the TCP connection
response of a congestion control algorithm. To compare a measured flow to the known variants, we created a
localized bottleneck where we can introduce a variety of network changes like loss events, bandwidth change,
and increased delay, and normalize all measurements by RTT. An offline classifier is used to identify the TCP
variant based on the cwnd trace over time.

Our results suggest that CUBIC is currently the dominant TCP variant on the Internet, and it is deployed
on about 36% of the websites in the Alexa Top 20,000 list. While BBR and its variant BBR G1.1 are currently
in second place with a 22% share by website count, their present share of total Internet traffic volume is
estimated to be larger than 40%. We also found that Akamai has deployed a unique loss-agnostic rate-based
TCP variant on some 6% of the Alexa Top 20,000 websites and there are likely other undocumented variants.
The traditional assumption that TCP variants “in the wild” will come from a small known set is not likely to
be true anymore. We predict that some variant of BBR seems poised to replace CUBIC as the next dominant
TCP variant on the Internet.

CCS Concepts: • Networks → Transport protocols; Public Internet; • General and reference → Mea-
surement;

Keywords: congestion control; measurement study

ACM Reference Format:
Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong. 2019. The Great Internet
TCP Congestion Control Census. In PREPRINT: Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, 3, Article 45
(December 2019). ACM, New York, NY. 24 pages. https://doi.org/10.1145/3366693

Authors’ addresses: Ayush Mishra, ayush@comp.nus.edu.sg, National University of Singapore, Singapore; Xiangpeng Sun,
sun.xiangpeng@comp.nus.edu.sg, National University of Singapore, Singapore; Atishya Jain, atishya.jain.cs516@cse.iitd.ac.
in, Indian Institute of Technology, Delhi, India; Sameer Pande, sameer.vivek.pande.cs117@cse.iitd.ac.in, Indian Institute of
Technology, Delhi, India; Raj Joshi, rajjoshi@comp.nus.edu.sg, National University of Singapore, Singapore; Ben Leong,
benleong@comp.nus.edu.sg, National University of Singapore, Singapore.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
2476-1249/2019/12-ART45 $15.00
https://doi.org/10.1145/3366693

PREPRINT: Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

https://doi.org/10.1145/3366693
https://doi.org/10.1145/3366693

45:2 Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong

1986 1994 1999

2001

2003

2004

2006 2010

2011 2019

Reno

Tahoe Vegas

New Reno

Binomial

Westwood

HSTCP

 Veno

BIC

FAST

Jersey

Hybla

CTCP

YeAH

CUBIC

Illinois

HTCP

Ledbat

DCTCP

Remy

Sprout

PRR

PCC

TIMELY

BBR

Proprate

Vivace

Copa

2016

Fig. 1. The evolution of TCP congestion control.

1 INTRODUCTION
Over the past 30 years, TCP congestion control has evolved to adapt to the changing needs of
the users and to exploit improvements in the underlying network. Most recently, in 2016, Google
proposed and deployed a new TCP variant called BBR [4] (Bottleneck Bandwidth and Round-trip
propagation time). BBR represents a major departure from traditional congestion-window-based
congestion control. Instead of using packet loss as a congestion signal, BBR uses estimates of the
bandwidth and round-trip delays to regulate its sending rate. BBR has since been introduced in the
Linux kernel and deployed by Google across its data centers. We summarize the evolution of TCP
congestion control in Fig. 1 (with previous studies of TCP distributions indicated in red [24, 27, 38]).
As the TCP ecosystem has changed significantly since the last study [39] done in 2011, it is timely
to conduct a new census to understand the latest distribution of TCP variants on the Internet.

The goals of our TCP census are relatively modest. We aim to (i) understand how the distribution
of previously identified variants has changed since 2011; (ii) develop a method to identify BBR in
existing websites; and (iii) determine the proportion of undocumented TCP variants if any. The
final goal of our approach represents a significant departure from previous studies, which assumed
a fixed set of known TCP variants and attempted to classify all the measured websites as one of the
known variants.

To this end, we designed Gordon, a tool that allows us to measure the exact congestion window
(cwnd) corresponding to each successive RTT in the TCP connection response of a congestion
control algorithm “in the wild.” While rate-based TCP variants do not maintain a congestion
window, they typically maintain a maximum allowable number of packets in flight [4], which we
can measure as the effective congestion window for each RTT. To compare this response to that
of known variants, we created a localized bottleneck where we introduced a variety of network
changes: loss events, bandwidth change, and increased delay. We also normalize all measurements
by RTT. An offline classifier is then used to identify the TCP variant based on the cwnd trace over
time. By decoupling measurement from classification unlike prior studies [24, 27, 38], our approach
allows us to not only identify known TCP variants but also detect new undocumented variants.
Our approach also makes it possible to improve the accuracy of the classifier without repeating
the relatively expensive measurements, if new network profiles are not required for the improved
classifier.
We used Gordon to measure the 20,000 most popular websites according to the Alexa rank-

ings [18]. The following are our key findings:

PREPRINT: Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

The Great Internet TCP Congestion Control Census 45:3

(1) Our results suggest that, as expected, CUBIC is currently the dominant TCP variant on the
Internet and is deployed at 36% of all the classified websites, which is an increase from what
was reported in the last study in 2011 (§4.5).

(2) The rate of BBR adoption over the past 3 years since its release has been phenomenal. BBR
(together with its Google variant) is currently the second most popular TCP variant deployed
at 22% of the classified websites (§4.5).

(3) While BBR has a share of only 22% by website count, we estimate that its present share
of total Internet traffic volume already exceeds 40%. This proportion will almost certainly
exceed 50% if Netflix and Akamai also decide to adopt BBR (§4.3).

(4) The assumption that TCP variants “in the wild” will come from a known set is not true
anymore. In particular, we found that Akamai has deployed a unique loss-agnostic rate-based
TCP variant on some 6% of the Alexa Top 20,000 websites (§4.4).

Since our key design principle is to look for generic characteristics such as reaction to bandwidth
change, delay and different types of loss, Gordon can be extended to identify new future variants
that are not known today. Given that we expect the TCP congestion control landscape to undergo
rapid and significant change soon, we do not think that the previous approach of taking a snapshot
every 10 years is good enough. We are in the process of enhancing and automating Gordon into a
web-service that can capture a continuous view of the Internet’s ongoing transition to a new era of
rate-based congestion control. We hope that the current shift in congestion control philosophy and
our work in uncovering new undocumented rate-based variants would draw attention towards
studying the interaction between cwnd-based and rate-based protocols at scale.

The rest of the paper is organized as follows: in §2, we provide an overview of previous attempts
to characterize congestion control variants deployed in the wild. In §3, we describe the design and
implementation of Gordon’s measurement and classification techniques. In §4, we first evaluate
the measurement accuracy of Gordon and then present detailed results of using Gordon to identify
TCP variants for the Alexa Top 20,000 websites [18] on the Internet. In §5, we describe the practical
difficulties we faced, the current limitations of Gordon, and future directions to improve Gordon for
understanding the long-term evolution of Internet congestion control. Finally, we conclude in §6.

2 RELATEDWORK
To the best of our knowledge, there have been four prior studies attempting to characterize TCP
congestion control variants deployed in the wild. In 2001, Padhye et al. [27] used a tool called TBIT
that performed a specialized 25-packet drop and accept pattern which allowed it to detect if a web
server was running one of the four target congestion control variants: Reno, New Reno, Reno Plus
and Tahoe. At the time of publication, the consensus was that Reno was the most widely deployed
variant. However, their results showed that most of the Internet was already using New Reno.

In 2004, Medina et al. [24] followed up on the work by Padhye et al. by using TBIT to conduct
active and passive measurements of over 84,000 hosts on the Internet. While they were only able to
classify 33% of their target hosts, the categorized hosts showed a continued trend of moving from
Reno to New Reno, as observed earlier by Padhye et al. [27].
A study by Yang et al. [38] in 2011 provides the most recent update on the distribution of

congestion control variants on the Internet. In this work, they classify TCP variants on the Internet
using cwnd traces collected via two distinct network profiles. Their tool, CAAI, extracts feature
vectors from these cwnd measurements and identifies them via a classifier trained on cwnd traces
from controlled servers in a local testbed. While both CAAI and Gordon make cwnd measurements
to identify congestion control variants on the Internet, they do so in very different ways. CAAI uses
delayed ACKs to bloat the RTT in an attempt to ‘space out’ the individual cwnds in a connection.

PREPRINT: Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

45:4 Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong

This approach would not work while measuring rate-based variants, which is one of the main
motivations for our work. Rate-based variants like BBR will continue to send packets that �ll the
entire network pipeline and render CAAI's delayed ACK measurement technique untenable. Their
measurements showed that BIC, CUBIC, and Compound TCP (CTCP) together had become more
popular than New Reno. Separately, Yang et al. also identi�ed delay-based variants like YeAH [2],
Vegas [3], Veno [13] and Illinois [22] [39]. They found that about 4% of the Internet hosts tested
were using these delay-based congestion control variants. While we too aim to measure the general
distribution of congestion control protocols, we are more focused on studying the adoption of more
recent rate-based variants, like BBR. We summarize the key �ndings of our work together with
these previous studies in Table 9 (Ÿ4.5).

In terms of our measurement methodology, unlike prior tools [27, 38] that attempt to directly
classify the variants, Gordon decouples measurement and classi�cation by design. In other words,
the classi�er can essentially be swapped with other classi�ers that work with ourcwndtraces.
Instead of attempting to classify a TCP variant among a set of known TCP variants, we capture its
response to a �xed trace of varying network conditions to determine the entire evolution of a TCP
sender'scwndover time and normalize the result by RTT. Our approach allows us to identify and
make useful observations about undocumented variants (see Ÿ4.4). Our approach also makes Gordon
easily extensible as we leverage these observations to design new measurement and classi�cation
methods to account for the new variants discovered in the wild. Like CAAI [38], Gordon also
emulates a controlled network environment between a measurement server and the web servers on
the Internet. However, CAAI emulates only changes in RTT and packet loss, while Gordon extends
the emulation to changes in bandwidth. Gordon di�ers from CAAI in the way that classi�cation is
done. Gordon applies a decision tree to collectedcwndtrace for a website, while CAAI collects a set
of reference traces under a range of controlled network conditions and compares the trace of a
probed website to these reference traces to �nd the closest match.

Chen et al. used deep neural networks to analyze passive measurements taken from TCP receivers
and identify the congestion control variant used by a TCP sender [8]. They used traces of long
continuous �ows to train a Long Short Term Memory (LSTM) neural network that classi�es the
trace behaviors into the congestion control variants by using features such as RTT, packets in �ight
and throughput. Their evaluation was done only in a controlled testbed and so it is not surprising
that neural networks can classify relatively well-behaved traces. Because evaluation was not done
on actual Internet hosts, no attempts were made at addressing the noise from packet losses on
the Internet. We have reason to believe that such noise would introduce signi�cant errors. A key
insight that makes Gordon work is our simple but e�ective technique to eliminate noisy traces from
random packet losses (see Ÿ3.1). Also, while supervised learning approaches can identify known
TCP variants, they will not be able to uncover new undocumented variants that are surprisingly
common (see Ÿ4.4).

There have also been some works on TCP-related measurements that focus on evaluating
congestion control algorithms and their implementations. Hagos et al. used machine learning
to infer the state of a TCP sender [16]. Comer et al. used active probing techniques to reveal
implementation �aws, protocol violations and design decisions of the 5 commercial black box
congestion control implementations [10]. Sun et al. [33] and Lubben et al. [23] also evaluated the
correctness of TCP implementations in controlled testing environments. None of these are directly
applicable for identifying TCP variants on the Internet.

3 METHODOLOGY

Gordon emulates a local bottleneck and tracks the evolution of the e�ective congestion window
(cwnd) (see Ÿ3.1) of the probed TCP variant while changing the available bandwidth, increasing

PREPRINT: Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

The Great Internet TCP Congestion Control Census 45:5

the delay and introducing packet losses in a controlled manner (see Ÿ3.2). In the case of rate-based
protocols that do not use acwndfor rate regulation, we track the unacknowledged packets in
�ight as the cwndof the protocol. The key insight behind our design is that any congestion control
protocol must ultimately react to changing networking conditions. We then try to identify the TCP
variant from the observedcwndresponse via o�ine processing (see Ÿ3.3).

Gordon targets identifying congestion control variants that have been deployed in the Windows
and Linux kernels. However, since it operates as an interceptor, it is not limited to measuring only
TCP behavior, and can be used to measure UDP tra�c as well. In this work, we concentrate on
making measurements on TCP web tra�c since TCP supports an overwhelmingly large proportion
of Internet tra�c [32].

3.1 Measuring cwndover time

At a high level, we want to determine the evolution of a target congestion control algorithm'scwnd.
We note that thecwndis essentially the maximum number of unacknowledged packets in �ight
as allowed by the sender's algorithm. Therefore, a simple way to measure the evolution of the
cwndis to withhold acknowledgments from a TCP receiver (after the handshake) and count the
number of packets received until an RTO is triggered. We refer to this �rst congestion window
asC1. Next, we restart a new connection and this time, we will sendC1 acknowledgments and
stop. The total number of packets received before a re-transmission would be the total number of
packets for the �rst 2 RTTs, orC1 + C2. In principle, by repeating this process and progressively
measuringC1 + C2 + � � � + Cn , we can determine thecwndfor thenth RTT and systematically track
the evolution ofcwndover time. It should be noted here that this e�ectively normalizes ourcwnd
measurements by RTT. We employ this packet counting methodology with TCP SACK disabled.
We resort to restarting connections because we found that previous approaches that do similar
cwnd-based measurements using delayed acknowledgments do not work for rate-based variants
like BBR. These previous techniques typically use the bloated RTTs caused by the delayed ACKs as
`separators' to help them di�erentiate between di�erentcwndmeasurements for di�erent RTT's
in a single connection. This is not possible with rate-based variants like BBR that �ll the entire
network pipeline, and thus render this delayed ACK approach to measuringcwnduntenable.

Unfortunately, we found that a naïve packet counting strategy does not work well on the real
Internet for two reasons. First, most of the available web pages are relatively small and we would not
be able to plot any meaningful evolution of thecwnd. Second, the naïve approach is very sensitive
to random packet losses.

MTU sizing and crawling for large web-pages. Since we measurecwndin packets, a straight-
forward way to obtain more packets from an HTTP/HTTPS page download is to reduce the MTU
size of the connection. IPv4 [11] speci�es a minimum MTU size of 68 bytes. However, we found
that setting an MTU size of 68 bytes often resulted in some connections failing without reason.
Through repeated trials for all the websites in the Alexa Top 20,000 list, we found that while an
MTU of 68 bytes works for most websites, some accept only connections with larger MTU sizes. To
address this issue, Gordon uses binary search to determine the minimum MTU size for a website
and performs the measurement using this MTU size. This acceptable MTU size search is done
before every measurement since the minimum acceptable MTU size could vary depending on the
underlying Internet path, which could change over time.

However, reducing the MTU size was often not enough to yield a su�ciently long trace to
identify the TCP variant. Thus, we �rst used a crawler to determine the available pages for each
website (to the best of our ability) and used the largest of these pages to perform our measurements.
Using our �nal network pro�le (see Ÿ3.2), Gordon needs about 80 packets for 30 RTTs to be able to
accurately plotcwndevolution graphs for more complicated algorithms like CUBIC. With most

PREPRINT: Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

45:6 Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong

Fig. 2. Possible scenarios for random losses.

websites accepting 68 -byte MTUs, this would mean an ideal web-page size for Gordon would be at
least 165 KB.

Handling Random Packet Losses. In Fig. 2, we present the various scenarios when we observe
packet loss in our measurements. We note that most packet losses result in a lower estimate (negative
noise). It is only when the �rst re-transmitted packet is lost that we end up counting the entire
re-transmitted window twice and havepositivenoise. The latter is easily eliminated if we stop
counting packets when we see the re-transmission of any packet in the currentcwndmeasurement
window.

We eliminate negative noise caused by random losses by repeating the measurement for each
congestion window several times and taking the maximum window measurement as thecwnd. In
Fig. 3, we plot the measurement noise from random losses while measuring various web-servers
on the Internet (both real hosts on the Internet and controlled servers set up on AWS) for di�erent
number of trials. We see that 15 trials percwndmeasurement are su�cient to eliminate negative
noise. Here, by `noise' we mean the cumulative sum of the di�erence between the measured and
ground truth cwndvalues. In this experiment, the ground truth was taken to be the measurements
made over 50 trials. In addition to this, all our experiments were done over wired links to minimize
the possibility of random packet losses.

In Fig. 4, we plot the window measurements forreddit.com using 15 trials percwndmeasurement.
The red points are the individual window measurements. We see that taking the maximum over 15
trials per window measurement are su�cient to provide us with a relatively smoothcwndevolution
curve. The smallcwndduring the �rst 5 RTTs is the result of the SSL certi�cate exchange protocol.

3.2 Designing a Network Profile

Our goal is to identify TCP variants from the evolution of theircwndover time. Conceptually,
we described a way to do this measurement in Ÿ3.1. However, we need a way to normalize the
measurements so that they can be compared to base measurements of known TCP variants. Since
we have full control over the network bottleneck, we can impose a common network pro�le on all
the websites. In particular, we introduce a packet loss event and a bandwidth change event at the
network bottleneck and observe the response of the probed TCP algorithm.

PREPRINT: Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

The Great Internet TCP Congestion Control Census 45:7

Fig. 3. Sensitivity analysis for repeated measurements. Fig. 4. cwndmeasurement forreddit.com .

Packet Loss. Most congestion control algorithms enter their Congestion Avoidance phase when
they see a packet loss. The general assumption is that packet losses signal congestion due to bu�er
over�ow. Since we control the network bottleneck, we can decide exactly when a packet loss should
happen.

Through measurements, we found that most connections have a starting window size of 10
packets, as suggested by Chu et al. [19, 31]. This means that for a typical Slow Start, we can expect
the �rst few congestion windows to be 10, 20, 40, 80, etc. In Fig. 5, we plot the evolution ofcwnd
for a controlled web server running CUBIC while Gordon emulates a drop at di�erent stages of
a connection - namely when the measuredcwnd�rst reaches more than 40, 80 and 160 packets.
We evaluate CUBIC since it has relatively complexcwndevolution in the Congestion Avoidance
phase. Fig. 5 shows that if the packet drop occurs too early, the subsequentcwndis relatively small
and it might be hard to discern between the curve shapes after the packet drop. On the other hand,
if the packet drop is too late, the window size becomes very large and we need very large �ows
(large web pages) to make a measurement that captures the entire CUBIC curve. We found that
in�icting a packet loss after thecwndreaches 80 packets achieves a good trade-o� between these
two concerns. We call this value thePacket Drop Threshold. Except for this in�icted packet drop
meant to �force�cwnd-based TCP variants intoCongestion Avoidancephase, no other packets are
explicitly dropped by Gordon during the measurement. Our bu�er is big enough to avoid bu�er
over�ows.

Regulating the Bottleneck Bandwidth. Recent rate-based congestion control algorithms like
BBR do not back o� when they encounter a packet loss. Even so, these algorithms still cap the
maximum number of packets in �ight. In particular, BBR limits the number of packets in �ight to
twice the estimated bandwidth-delay product (BDP). To characterize such algorithms, we vary the
bottleneck bandwidth and observe how the measuredcwndchanges when the bottleneck bandwidth
changes.

Since our methodology requires us to limit the sender'scwndto about 100 packets to make the
�ows last long enough, we emulate a BDP of 50 packets. We achieve this BDP by maintaining an
RTT of 100 ms between the sender and the receiver and limiting the initial bottleneck bandwidth
to 500 packets/s for the �rst 1,500 packets received. This rate is reduced to 334 packets/s for the
next 1,500 packets before the bandwidth is restored to 500 packets/s. This behavior can be seen in
Fig. 6, where we show the available bandwidth in terms of the BDP for the �ow (since the delay is
a constant). We can see that thecwndfor a controlled web server running BBR tracks the available
bandwidth at twice the BDP emulated by Gordon after a measurement delay of 10 RTTs. We decided
on changing the BDP every 1,500 packets because it would result in a period of 15 to 20 RTTs and
works for the general �le sizes in our sampled websites. This change in bandwidth also allows us

PREPRINT: Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

45:8 Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong

Fig. 5. Evolution of CUBICcwndfor di�erent packet
drops.

Fig. 6. How BBR reacts to the bandwidth changes.

to identify other rate-based variants that may react to a change in bottleneck bandwidth but track
the emulated BDP di�erently.

Final Network Pro�le. In summary, we in�ict a packet drop for the �rst window where the
number of packets received is strictly larger than 80. The available bandwidth of the bottleneck
alternates between 500 packets/s and 334 packets/s after every 1,500 packets received. In Fig. 7,
we plot the responses for some common congestion control algorithms as measured by Gordon
while applying the �nal network pro�le. We note that except three pairs of congestion control
algorithms (Veno/Vegas, New Reno/HSTCP and CTCP/Illinois) we are generally able to identify the
TCP variant from the shape of the curve within the �rst 30 RTTs. These shapes are deterministic and
Gordon is consistently able to record traces like the ones in Fig. 7 over multiple runs. These shapes
show slight deviations when measured over the Internet, and their impact on our classi�cation
accuracy is discussed in Ÿ 4.1.

In the future, if there are deployments of other congestion control variants, additional network
pro�les can easily be added to Gordon to identify them. In this work, we limit ourselves to using a
single network pro�le because of the cost associated with measuring each website.

3.3 Classification

The output from Gordon is a plot of estimatedcwndversus time (RTT #) of the target host in
response to our �nal network pro�le. It remains for us to determine the TCP variant from the shape
of the graphs. For measurements that are su�ciently long and yield enough data, we expect the
shapes to be similar to those shown in Fig. 7.

We use a simple decision-tree-based approach to identifying variants over the Internet (see Ÿ4.1).
One of the bene�ts of our approach of decoupling measurement and classi�cation is that other
researchers are free to swap our classi�er with a di�erent classi�er. We have made the source code
for Gordon and our measurement traces publicly available (Ÿ8).

To compute the shape, we �rst identify the back-o� points in the trace that signify the end
of Slow Start and the beginning of the Congestion Avoidance phase. Then the traces are treated
di�erently based on the emulated network stimulus that caused this back-o�.

Case 1: Back-o� After Packet Loss . We divide the resulting Congestion Avoidance phase into
3 regions (as shown in Fig. 8).

(1) Catch-Up: This region corresponds to the region right after the algorithm backs o� to a lower
cwndafter encountering a packet loss.

(2) Steady: This is the region wherecwnddemonstrates linear or no growth.

PREPRINT: Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

The Great Internet TCP Congestion Control Census 45:9

(a) CUBIC (b) BBR

(c) BIC (d) HTCP

(e) Scalable (f) New Reno (g) Illinois

(h) CTCP (i) YeAH (j) Vegas

(k) Veno (l) Westwood (m) HSTCP

Fig. 7. Curves for TCP congestion control algorithms in response to our final network profile.

(3) Probe: This is the region when the algorithm tries to probe for more available bandwidth by
increasing thecwnd.

In addition to this, we also calculate two features common to most loss-based congestion control
algorithms � � and � . WhereCi is thecwndvalue at thei th RTT of the Congestion Avoidance
phase,

PREPRINT: Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

45:10 Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong

Fig. 8. Calculating� and � from the 3 regions.

(a) CUBIC (b) BIC (c) HTCP (d) Linear

Fig. 9. Shapes identified by the classifier.

Table 1. Shape Classification.

Regions
Shape Catch-up Steady Probe

CUBIC d�
dt < 0 X d�

dt > 0
BIC d�

dt < 0 X -
HTCP - - d�

dt > 0
Linear - X -

(1) � n = Cn � Cn� 1;n � 3 is the increase incwndbetween 2 successive measurements by Gordon
for all RTTs after back o� (see Fig. 8).

(2) � = C2
C1

, is the proportion of back-o� after packet loss.

Based on the division of the Congestion Avoidance phase into 3 regions, we found that the curves
for the knowncwnd-based TCP variants would take one of the 4 shapes shown in Fig. 9. We can
computationally classify a curve into one of the 4 shapes based on the change in gradient (d�

dt) for
each region and by determining whether the steady region exists, as shown in Table 1.

Once we have the shape and the values of� i and� , we can determine the variant from Table 2 by
computing �� , the mean of� i . Many of the values in Table 2 were obtained from the papers [3, 4, 15,
20� 22, 28, 34, 37] describing the various algorithms. However, we found some di�erence when we
measured the references traces obtained in our network testbed. Some adjustments were then made
to ensure that the values of� and �� re�ected what we observed in our traces. Algorithms that react
to loss, but cannot be classi�ed into one of these shapes are classi�ed asUnknown. We note that

PREPRINT: Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

The Great Internet TCP Congestion Control Census 45:11

Table 2. Known TCP Variant Classification.

Shape � �� Variant

CUBIC > 0:66 - CUBIC

BIC > 0:66 - BIC

HTCP > 0:5 - HTCP

Linear

> 0:8 = 1.01 Scalable
> 0:8 [1, 1.01] YeAH
> 0:5 N.A. CTCP/Illinois

¹0:2;0:5¼ < 1 Vegas/Veno
¹0:2;0:5¼ = 1 New Reno/HSTCP

� 0:2 = 1 Westwood

Stable regions = 2� BDP BBR

CUBIC [15], BIC [37] and HTCP [21] can be identi�ed by shape alone. Scalable [20], Illinois [22],
CTCP [34], YeAH [2], New Reno [28], Veno [13], Westwood [7] and Vegas [3] all increase their
cwndlinearly during Congestion Avoidance and are very similar in shape.

While most variants can be di�erentiated by their values of� and �� (slope of thecwndgraph in the
Congestion Avoidance phase), Gordon is not able to di�erentiate between three pairs of algorithms -
CTCP and Illinois, New Reno and HSTCP and between Vegas and Veno. In the Congestion Avoidance
phase, both Vegas and Veno initially increase their congestion window by 1 every RTT (� = 1)
before having more or less constantcwndand are therefore indistinguishable when they interact
with our network pro�le. Similarly, both CTCP and Illinois evolve theircwndvalues using similar
functions after seeing a packet loss. HSTCP and New Reno both back-o� to half theircwndon
seeing a packet loss and increment theircwndby 1 every RTT in Congestion Avoidance mode.
Therefore, Gordon classi�es them together as `Vegas/Veno', `CTCP/Illinois', and `New Reno/HSTCP,'
respectively. It remains as future work to introduce a second stage to disambiguate between these
pairs (Ÿ5).

Case 2: No Back-o� . For variants that do not back-o� after a packet loss, we try to either classify
them as BBR or an unknown variant. Even though BBR is a rate-based algorithm, it maintains a
cwndthat is equal to twice the BDP. Also, since BBR uses the maximum receive rate in the past 10
RTTs for calculating it's BDP [5], we expect to see a drop incwndcorresponding to our network
pro�le's drop in bandwidth delayed by 10 RTTs.

Therefore, to identify if these unique behaviors are present in a measurement, the classi�er starts
by identifying stable regions that show little change incwndas shown in Fig. 10. This is because
since our emulated BDP is a step function, we expect BBR's cwnd to trace this step function as
well. We then compare thesecwndstable regions with the emulated BDP. If thecwndis twice the
emulated BDP and the website reduces itscwnd10 RTTs after a bandwidth change was emulated,
the algorithm is classi�ed as BBR. If not, it is classi�ed asUnknown.

3.4 Implementation

In Fig. 11, we present an overview of Gordon's system design. To in�ate the RTT between our
measurement server and the remote host (as discussed in Ÿ3.2), Gordon is run inside a Mahimahi
delay shell [25]. We usewget [30] to emulate a browser making an HTTP/HTTPS GET request to

PREPRINT: Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

45:12 Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong

Fig. 10. Identifying stable regions for loss-agnostic flows.

Fig. 11. Gordon Design.

the target web server. The incoming HTTP response packets are redirected to an NFQueue [26]
using a Linux Net�lter redirect rule.

The interceptor module of Gordon dequeues packets from the NFQueue and selectively delivers
them towget or drops them. Gordon controls the rate at which packets are dequeued from the
NFQueue to localize the bottleneck of the connection and to regulate the bottleneck bandwidth
(as described in Ÿ3.2). The interceptor module is implemented in about 350 lines of C code. The
�nal output consists of a trace of the maximumcwndsize observed for each RTT period, which is
processed o�ine by a classi�er written in 440 lines of Python code. For each website in the Alexa
Top 20,000 list [18], we used a web crawler written in about 300 lines of Python code to obtain
URLs to the largest web pages/objects that it could �nd on the website.

Because of the scale of our measurements, Gordon was also extended into a web service. This
web service consisted of a single centralized server responsible for aggregating measurements made
by 250 clients (workers) distributed across 5 regions (viewpoints) - Ohio, Sao Paulo, Paris, Mumbai,
and Singapore. These workers requested jobs at the granularity of a singlecwndmeasurement for a
website, allowing us to spread our connections over time and seem less aggressive to a website.
Each host was measured �ve times (once from each viewpoint) while the centralized server tracked

PREPRINT: Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

The Great Internet TCP Congestion Control Census 45:13

Fig. 12. CDF of file sizes used in measurements.

these �ve individual measurements separately. This web service was implemented in about 2,050
lines of TypeScript code.

At the moment, we have made Gordon and our measurements available on GitHub (see Ÿ8).
We are still working to make the web service available as a live dashboard of the TCP variant
distribution on the Internet.

4 RESULTS

We measured and classi�ed the top 20,000 websites on the Internet based on their Alexa ranking [18].
These measurements were made between 11 July 2019 and 17 October 2019 (unless speci�ed). The
distribution of the �le sizes obtained using a crawler (see Ÿ3.1) for the measurements is shown in
Fig. 12. We can see that about 18% of the websites return pages smaller than the ideal page size
of 165 KB (Ÿ 3.1). We were able to classify the variants for some of these websites with page sizes
smaller than 165 KB. We refer to the remaining websites that cannot be classi�ed as `Short �ows'.

We also found that about 1,302 websites in the Alexa Top 20,000 list did not respond towget
requests. These websites had DDoS protection from Cloud�are or Google's ReCaptcha, and therefore
did not respond to repeatedwget requests. A small fraction of the websites also had invalid URLs
that did not even open on a web browser. Upon further investigation, we found that these URLs
were links to phishing websites that had been visited so often that they had made it to the Alexa
Top 20,000 list. Collectively, we consider these websites to be `Unresponsive'.

4.1 Verification of Measurement Accuracy

First, we validate the accuracy of our approach by setting up a physical test web server in Singapore
and performing measurements from AWS EC2 instances in 9 locations (viewpoints): Paris, London,
Ireland, Sydney, Seoul, Mumbai, Virginia, Oregon, and Ohio. The RTTs for the measurements ranged
from 59 ms to 255 ms. To provide the ground truth, the test server runs one of the known TCP
variants, which was then measured 5 times from each viewpoint, to give a total 45 measurements
for each variant. Later, the con�guration was reversed, with the AWS instances running a known
variant and acting as web servers while a local server made measurements. In Table 3, we present
the confusion matrix for these 90 measurements (per algorithm). The key takeaway is that for
known variants, the accuracy is high and false positives are relatively rare. Note that the �gures
in Table 3 re�ect the accuracy of single measurements. If we take the majority result across the
�ve measurements from an individual viewpoint, we can achieve 100% classi�cation success. The
errors are caused by noisy measurements arising from Internet tra�c.

PREPRINT: Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

45:14 Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong

Table 3. Classification accuracy.

Classi�ed as

BBR CUBIC BIC HTCP Scalable YeAH
Vegas/ New Reno/ CTCP/

Westwood Unknown
Veno HSTCP Illinois

BBR 98% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2%
CUBIC 0% 95% 0% 0% 0% 0% 0% 0% 0% 0% 5%
BIC 0% 9% 91% 0% 0% 0% 0% 0% 0% 0% 0%
HTCP 0% 0% 0%95% 0% 0% 0% 0% 0% 0% 5%
Scalable 0% 0% 0% 0%98% 0% 0% 0% 0% 0% 2%
YeAH 0% 0% 2% 0% 0%98% 0% 0% 0% 0% 0%
Vegas/Veno 0% 0% 0% 0% 0% 0%94% 6% 0% 0% 0%
New Reno/HSTCP 0% 0% 0% 0% 0% 0% 0%96% 0% 0% 4%
CTCP/Illinois 0% 0% 3% 0% 0% 0% 0% 0%94% 0% 3%
Westwood 0% 0% 0% 0% 0% 0% 0% 2% 0%98% 0%

Table 4. Distribution of variants as measured from di�erent viewpoints on the Internet.

Variant
Ohio Paris Mumbai Singapore Sao Paulo

Websites Share Websites Share Websites Share Websites Share Websites Share

CUBIC 5,966 29.83% 5,893 29.47% 5,950 29.75% 5,930 29.65% 5,966 29.83%
BBR 3,297 16.49% 3,414 17.07% 3,378 16.89% 3,386 16.93% 3,393 16.96%
BBR G1.1 167 0.84% 167 0.84% 167 0.84% 167 0.84% 167 0.84%
YeAH 1,102 5.51% 1,092 5.46% 1,081 5.40% 1,115 5.57% 1,112 5.56%
CTCP/Illinois 1,085 5.42% 1,054 5.27% 1,092 5.46% 1,082 5.41% 1,097 5.48%
Vegas/Veno 556 2.78% 557 2.78% 556 2.78% 551 2.75% 548 2.74%
HTCP 543 2.71% 551 2.75% 544 2.72% 541 2.70% 500 2.50%
BIC 169 0.85% 166 0.83% 161 0.80% 165 0.83% 165 0.83%
New Reno/HSTCP 154 0.77% 151 0.75% 154 0.77% 147 0.73% 151 0.75%
Scalable 36 0.18% 37 0.18% 37 0.18% 37 0.18% 36 0.18%
Westwood 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%

Unknown 4,143 20.71% 4,132 20.66% 4,096 20.48% 4,105 20.52% 4,074 20.37%
Short-�ows 1,480 7.40% 1,484 7.42% 1,482 7.41% 1,472 7.36% 1,489 7.44%
Unresponsive 1,302 6.51% 1,302 6.51% 1,302 6.51% 1,302 6.51% 1,302 6.51%

Total 20,000 100% 20,000 100% 20,000 100% 20,000 100% 20,000 100%

4.2 TCP variants on the Internet

Each target website from Alexa Top 20,000 was measured from AWS EC2 instances in the US (Ohio),
Europe (Paris), South America (Sao Paulo) and Asia (Mumbai and Singapore). Our measurements
were made from di�erent viewpoints to help us get the best view of a website's congestion control
behavior (since all websites are not hosted by CDNs). In addition, we kept re-measuring websites
that we were not able to classify as a known variant. These iterative measurements were stopped
only when a re-run did not further improve the number of classi�ed websites.

Table 4 shows the distribution of TCP variants on the Internet as measured from these viewpoints.
As expected, we found that for certain websites, some viewpoints gave less noisy measurements
compared to others. This is the only reason for the slight discrepancies between numbers reported
from di�erent viewpoints. Out of the 20,000 target websites, a total of 13,739 websites were classi�ed
similarly from all viewpoints. Out of the remaining 6,261 websites, 1,424 websites were successfully
classi�ed from some viewpoint and 3,535 websites could not be classi�ed from any viewpoints.

PREPRINT: Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

The Great Internet TCP Congestion Control Census 45:15

(a)youtube.comDec '18. (b)youtube.comFeb '19 (c) BBRv2, Alpha release, July '19.

Fig. 13. The evolution of BBR.

Table 5. Distribution of variants.

Variant Websites Proportion

CUBIC [15] 6,139 30.70%
BBR [4] 3,550 17.75%
BBR G1.1 167 0.84%
YeAH [2] 1,162 5.81%
CTCP [34]/Illinois[22] 1,148 5.74%
Vegas [3]/Veno [13] 564 2.82%
HTCP [21] 560 2.80%
BIC [37] 181 0.90%
New Reno [28]/HSTCP [12] 160 0.80%
Scalable [20] 39 0.20%
Westwood [7] 0 0.00%

Unknown 3,535 17.67%
Short �ows 1,493 7.46%
Unresponsive websites 1,302 6.51%

Total 20,000 100%

The distribution of variants as measured from these viewpoints shows the same general trend of
CUBIC [15] being the dominant congestion control variant in terms of website count, with BBR [17]
coming in second. In Table 5, we show the consolidated numbers for all websites following the rule
that if a website has been identi�ed to be using some known congestion control variant in any of the
regions, it is considered to be running that congestion control variant. There were no classi�cation
con�icts between di�erent viewpoints for these 1,424 successfully classi�ed websites. In other
words, we found no evidence for websites deploying di�erent congestion control algorithms in
di�erent regions.

Google's custom version of BBR. Gordon discovered that some Google-owned domains (167,
including YouTube) were using a modi�ed version of BBR that reacted di�erently to packet loss
compared to vanilla BBR (see Fig. 13b). This di�erence was �rst observed in February 2019. Before
that, we had observed traces resembling vanilla BBR (Fig. 13a). While we initially suspected that
this new variant was BBRv2, we checked thecwndevolution of BBRv2 that was recently released
in July 2019 (see Fig. 13c) and found that it was not. We thus refer to this variant as BBR G1.1 in
Tables 4 and 5. It should be noted here that this anomalous behavior was only observed for Google
websites. None of the other websites identi�ed to be using BBR showed this anomalous behavior
even after repeated measurements. They all deployed vanilla BBR.

PREPRINT: Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

45:16 Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi, and Ben Leong

Table 6. Excerpt of website tra�ic share (source: Sandvine [32]).

Site Downstream tra�c share Variant*

Amazon Prime 3.69% CUBIC
Net�ix

15%
CUBIC

Net�ix Video New Reno+

YouTube 11.35% BBR G1.1
Other Google sites 28% BBR G1.1
Steam downloads 2.84% BBR
* as measured on servers serving static HTTP/HTTPS pages.
+ as informed by Net�ix, not measured by Gordon.

We have con�rmed our �ndings about BBR with Google. In particular, Google is frequently
running experiments and testing re�nements to BBR. Google currently runs a slightly modi�ed
version of BBRv1 that has a gentler reaction to packet loss than the open-source BBRv1. This
experimental variant (BBR G1.1) was meant as an incremental step toward BBRv2. However, BBR
G1.1 was deployed in late 2017, which does not explain our observation of a trace resembling
vanilla BBR from Google websites in December 2018. We have thus been measuring Google sites
repeatedly and found that we still see traces with the shape shown in Fig. 13a occasionally. Hence,
it is possible that Gordon occasionally fails to detect the drop incwndfor BBR G1.1 immediately
after a packet loss event from time to time. At some level, this is not surprising since BBR does not
actively maintain acwndlike traditional cwnd-based TCP variants.

4.3 Tra�ic Volume & Popularity

We believe that the distribution of TCP variants by pure website count in Table 5 does not present
the full picture.

Understanding Tra�c by Volume . In Table 6, we present Internet tra�c volume data by
Sandvine [32]. Based on the reported Internet tra�c volume, we expect BBR variants to already
contribute at least 40% of the global Internet tra�c. During our measurements, we found that Net�ix
had switched from CUBIC to BBR in early March 2019, only to switch back to CUBIC in April 2019.
We note that Google recently announced that Net�ix is currently experimenting with BBR [6]. We
also contacted Net�ix and were told that the Net�ix website was hosted on AWS. Net�ix however
uses di�erent protocols depending on the context, and that most of their video streaming tra�c
is delivered via their Open Connect Appliances running FreeBSD's New Reno with RACK [9]
extensions. The reason for choosing New Reno over CUBIC was that the Net�ix team felt that
the New Reno stack was more mature and that improving loss-detection/loss-recovery heuristics
from RACK would be more helpful for their chunked-delivery use case. We were informed by the
Akamai team that Akamai would be deploying BBR G1.1 on more of their hosted sites in the near
future. If Net�ix and Akamai does do the switch to BBR, BBR and its variants' tra�c share on the
Internet would increase to well above 50%.

Understanding Tra�c by Popularity . Similar trends can also be observed if we consider the
popularity of the websites. In Fig. 14, we plot the distribution of the identi�ed variants for the top-k
sites. We see that BBR is the most widely deployed variant among the top 250 websites, accounting
for 25.2% of all hosts. Another interesting observation was that BBR was the most common TCP
variant for adult entertainment websites. All in all, our results suggest that BBR is rapidly catching

PREPRINT: Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

The Great Internet TCP Congestion Control Census 45:17

Fig. 14. Distribution of variants among the Alexa Top-k sites.

Table 7. Custom network profiles to investigate uncategorized hosts.

Pro�le
Packet Drop RTT BDP

Threshold (packets) (ms) (packets)
1 80 100 50
2 80 100 25
3 80 50 25
4 40 100 50
5 40 100 25
6 40 50 25
7 40 200 100
8 40 100 100

up with CUBIC in popularity and some variant of BBR is poised to overtake CUBIC as the dominant
TCP variant.

4.4 Whithering the Unknown Variants

One of the bene�ts of our methodology is that Gordon can provide us with insights on a congestion
control variant even if we are not able to identify it. Given that a larger number of websites (5,028
in total) were classi�ed as `Unknown' or `Short �ows' (together referred to as `Uncategorized' hosts
henceforth), we ran a variety ofnewnetwork pro�les to investigate their behavior under di�erent
conditions. These network pro�les were designed with di�erent combinations of emulated BDPs,
delays and Packet Drop Thresholds. We hypothesize that the same TCP variant would exhibit
the same behaviors for all network pro�les, while di�erent TCP variants may exhibit the same
behavior for some pro�les, but di�erent behavior for others, to allow us to tell them apart. Our goal
is to identify large clusters of traces that could suggest the presence of a new major, but hitherto
unknown, variant.

Given that Gordon can modify these three network parameters, we came up with eight custom
network pro�les (shown in Table 7) that are distributed over the range of these network parameters.
Each of these network pro�les emulates a �xed RTT and BDP for an experiment run and introduces
a packet drop when thecwndsize goes above the Packet Drop Threshold for the �rst time.

Reaction to Loss. We found that among the 5,028 (25.14%) websites with unknown variants,
only 3,275 (16.38%) of them reacted to packet loss. Out of these 3,275 websites, 1,493 (7.47%) are

PREPRINT: Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 45. Publication date: December 2019.

	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Measuring cwnd over time
	3.2 Designing a Network Profile
	3.3 Classification
	3.4 Implementation

	4 Results
	4.1 Verification of Measurement Accuracy
	4.2 TCP variants on the Internet
	4.3 Traffic Volume & Popularity
	4.4 Whithering the Unknown Variants
	4.5 TCP Evolution over the past Two Decades

	5 Discussion and Future Work
	6 Conclusion
	7 Acknowledgments
	8 Resources
	References

