
Containing the Cambrian Explosion
in QUIC Congestion Control

Ayush Mishra
National University of Singapore

Ben Leong
National University of Singapore

ABSTRACT
Since its introduction in 2015, QUIC has seen rapid adoption and is
set to be the default transport stack for HTTP3. Given that devel-
opers can now easily implement and deploy their own congestion
control algorithms in the user space, there is an imminent risk of
the proliferation of QUIC implementations of congestion control
algorithms that no longer resemble their corresponding standard
kernel implementations.

In this paper, we present the results of a comprehensive measure-
ment study of the congestion control algorithm (CCA) implementa-
tions for 11 popular open-source QUIC stacks. We propose a new
metric called Conformance-T that can help us identify the imple-
mentations with large deviations more accurately and also provide
hints on how they can be modified to be more conformant to ref-
erence kernel implementations. Our results show that while most
QUIC CCA implementations are conformant in shallow buffers,
they become less conformant in deep buffers. In the process, we
also identified five new QUIC implementations that had low confor-
mance and demonstrated how low-conformance implementations
can cause unfairness and subvert our expectations of how we ex-
pect different CCAs to interact. With the hints obtained from our
new metric, we were able to identify implementation-level differ-
ences that led to the low conformance and derive the modifications
required to improve conformance for three of them.

CCS CONCEPTS
• Networks → Transport protocols; Network performance
analysis.

KEYWORDS
IETF QUIC, Congestion Control, Measurement

ACM Reference Format:
Ayush Mishra and Ben Leong. 2023. Containing the Cambrian Explosion in
QUIC Congestion Control. In Proceedings of the 2023 ACM Internet Measure-
ment Conference (IMC ’23), October 24–26, 2023, Montreal, QC, Canada. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3618257.3624811

1 INTRODUCTION
QUIC was first introduced by Google in 2015 to address the limita-
tions of TCP and to add security enhancements to HTTP [31]. It has
since seen rapid adoption and has been designated as the default

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IMC ’23, October 24–26, 2023, Montreal, QC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0382-9/23/10.
https://doi.org/10.1145/3618257.3624811

transport stack for HTTP3. QUIC is estimated to already constitute
some 30% of downstream traffic in EMEA (Europe, Middle East, and
Africa) and 16% of downstream traffic in North America [43].

While the original motivation behind QUIC was to improve se-
curity, QUIC’s protocol designers also used this opportunity to
redesign many legacy aspects of TCP, like the handshake, and to
introduce multi-streaming. However, for congestion control, most
QUIC developers chose to be conservative and re-implemented stan-
dard congestion control algorithms (CCAs) like CUBIC [28], Reno,
and BBR [25]. This is not surprising since these algorithms are well
understood and predictable, thanks to many years of deployment
on the Internet. Their stability properties are especially important
since QUIC already takes up a significant share of today’s Internet
traffic.

In general, for compatibility with existing CCAs, we expect these
QUIC CCA implementations to have the following two properties:

(1) Behave like their kernel counterparts. Since the entire
motivation behind re-implementing standard congestion
control algorithms is to achieve predictability and stabil-
ity, we want QUIC implementations to resemble their corre-
sponding kernel implementations. In particular, we expect
QUIC CCAs to not only achieve delays and throughputs
similar to their kernel counterparts but also to interact with
existing CCAs qualitatively in the same way.

(2) TCP friendliness. We want new QUIC congestion con-
trol implementations to co-exist well with existing Internet
traffic and be friendly towards other QUIC and TCP kernel
implementations. In particular, it would be disastrous if new
implementations cause significant degradation or starvation
of existing flows.

In this paper, we investigated how closely the CCA implementa-
tions for the 11 popular open-source QUIC stacks listed in Table 1
adhere to these expectations. These stacks were selected because
they are all open source, stable, and deployed on the Internet. While
it is easy to evaluate TCP-friendliness and qualitative interactions
between different implementations, it is much harder to define
the ideal behavior of a congestion control algorithm. Even if we
use a given implementation as the standard reference for a con-
gestion control algorithm, it is not entirely straightforward how
we can quantify how well a new implementation conforms to this
reference implementation. For example, a simple fairness-based
measure of conformance would not be desirable as it would fail
to capture the algorithmic nuances between different CCA imple-
mentations. We had argued earlier that any measure of similarity
should capture the following two properties (relative to a reference
implementation) [35]:

(1) Replaceability. How easily can a third-party observer tell
if we replaced the reference implementation with the new
implementation?

https://doi.org/10.1145/3618257.3624811
https://doi.org/10.1145/3618257.3624811

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Ayush Mishra & Ben Leong

(a) Our earlier definition of the PE [35]
(Conformance= 0.63)

(b) New clustering-based definition
(Conformance= 0.12)

Figure 1: A single convex hull for the PE does not fully cap-
ture low conformance in quiche CUBIC.

(2) Inherent performance trade-offs. Different congestion
control algorithms represent different trade-offs in a network.
Does the new implementation operate in the same trade-off
space as the standard reference implementation?

To this end, we proposed a metric called the Performance En-
velope (PE) that was built on these two ideas [35]. To investigate
a new QUIC CCA implementation, we sample the delay (𝑑) and
throughput (𝑇) of the new implementation while it competed with
the reference (kernel) implementation in a controlled network envi-
ronment. These (𝑑,𝑇) pairs were then plotted on a delay-throughput
plane to visualize the delay-throughput trade-off space for the new
QUIC CCA implementation. The region defined by the convex hull
of this point cloud was referred to as the PE of the new QUIC CCA
implementation.

To measure the replaceability of a QUIC implementation, the PE
of the QUIC implementation competing with a reference implemen-
tation was compared with the PE of a reference implementation
competing with itself. The area of the overlap between these two
PEs was then used as a measure of similarity (called conformance)
between the two implementations (see Figure 1a).

While this preliminary approach was promising and uncovered
some low-conformance QUIC implementations of CUBIC and BBR,
it had some limitations. For example, we found that plotting the
performance envelope with a single convex hull does not provide
us with sufficient granularity to identify low conformance in some
cases. One such example is illustrated in Figure 1.

The maximum possible value for conformance, the overlap be-
tween the PEs of the reference and QUIC implementations, is 1. We
can clearly see that using a single convex hull for the PE does not
fully capture low conformance in the quiche implementation of
CUBIC in Figure 1a. This is because while the overlap between the
PEs in Figure 1 is relatively large, most of it comprises empty space
without any data points. This will inadvertently cause us to overes-
timate the similarity between these implementations, even though
the two implementations may exhibit very different behaviors. We
address this issue by clustering the delay-throughput pairs before
constructing the final PEs (see Figure 1b).

Furthermore, our earlier conformance metric did not provide any
hints on how the conformance of a QUIC implementation could
be improved. We found several QUIC implementations where the
conformance can be improved by merely tuning their intentionally
misconfigured cwnd and sending rate parameters (§5). In such cases,
the PE of the reference and tested QUIC implementations generally
have the same shape and the same number of clusters but are
translated to a different region in the delay-throughput plane.

To identify such implementations, we propose an additional
metric Conformance post-Translation (or Conformance-T), that is the
maximum conformance that can be achieved by translating the PE
of a QUIC CCA implementation. Generally, a high Conformance-
T would indicate that an implementation’s conformance can be
improved significantly with simple parameter tuning. We show
that this parameter tuning can be guided by the translation vector
(Δ-throughput, Δ-delay).

In summary, our work advances the state of the art in our under-
standing of speciation [32, 35] in QUIC CCAs with the following
contributions:

(1) We present a comprehensive study of 11 QUIC stacks using
this enhanced definition of the PE in both controlled testbeds
and on the Internet. Our results show that while most QUIC
CCA implementations are conformant in shallow buffers,
they become less conformant in deep buffers (§4.1). In the
process, we identified five new QUIC implementations that
had low conformance;

(2) We propose new metrics Conformance-T, Δ-throughput, and
Δ-delay, that can provide hints on the root cause of low
conformance for a QUIC implementation (§3.2);

(3) We demonstrate how low-conformance implementations can
cause unfairness (§4.3) and subvert our expectations of how
we expect different CCAs to interact (§4.4); and

(4) We identify implementation-level differences that led to the
low conformance and propose modifications to improve con-
formance for three QUIC CCA implementations (§5). We
were also able to identify instances where low conformance
arises when features that are a part of the TCP stack and
not the CCA itself (like Hystart (RFC 9406) [23]) are not
implemented in QUIC stacks.

The traces and source code for all our experiments is available
at [34].

Given the large number of QUIC stacks, it seems inevitable that
there will be an increasing number of non-conformant QUIC CCA
implementations. Our proposed metrics will provide developers

Containing the Cambrian Explosion in QUIC Congestion Control IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Table 1: List of QUIC/TCP stacks studied and their available CCAs.

Organization Stack Version/Commit Hash CUBIC BBR Reno

Linux kernel TCP Linux 5.13.0-44-generic ✓ ✓ ✓
Facebook mvfst [6] 65a9c066e742620becacc99b7c0ca86200e6a4c4 ✓ ✓ ✓
Google chromium [8] 82a3c71cf5bf2502d5ad90489fe20ce8f8cb3fab ✓ ✓ ✗
Microsoft msquic [12] e6110b62cd8e0d84e6436bde2504e6bc0702921a ✓ ✗ ✗
Cloudflare quiche [5] 9dfeaafb625b08760218def7beb8db133e3f50cb ✓ ✗ ✓
LiteSpeed lsquic [11] 108c4e7629a8c10b9a73e3d95be0a1652e620fb9 ✓ ✓ ✗
Go quicgo [9] 424a66389c01d10678bfb980cfe6faa8524b42b6 ✓ ✗ ✓
H2O quicly [10] d44cc8b21ed0d27ab6d209d0775c3961b2f89f38 ✓ ✗ ✓
Rust quinn [14] f86dd7596d4df31370b294c35501cec8da48b393 ✓ ✗ ✓
Amazon Web Services s2n-quic [4] 17826d9df1c59903beadd1733bbe79ed7d67647e ✓ ✗ ✗
Alibaba xquic [3] 00f622885d91e02c879f8531bc04af7a584faed4 ✓ ✓ ✓
Mozilla neqo [13] 07c2019988a8f0a37f87cbd90f95e906e7b53258 ✓ ✗ ✓

with a means to understand how their CCA implementations devi-
ate from standard kernel implementations and with hints to make
the required modifications to ensure that their CCA implemen-
tations are conformant, thus reducing the likelihood of mistakes
that might cause instability and performance degradation to the
Internet.

While we had initially set out to study how we can ensure that
future QUIC CCA implementations are conformant to the standard
kernel implementations, we have come to realize that the standard
kernel implementations are also moving targets that will evolve
with time. While it is beyond the scope of this paper, the question
of how QUIC CCA implementations can keep up with new RFCs
and evolving kernel implementations is also an important concern.

2 RELATEDWORK
The widespread adoption of QUIC by major tech companies has
inspired numerous studies in recent years [24, 26, 30, 31, 33]. These
works include studies on the effectiveness of its new mechanisms,
interoperability, differences in parameterization, and general per-
formance.

Comparing gQUIC with TCP. Most of the earlier studies eval-
uating the performance of QUIC against TCP were done using
gQUIC[31], Google’s original version of QUIC before the IETF QUIC
standard was released, as it was the only implementation available.
Langley et al. completed an extensive study on gQUIC’s perfor-
mance for Google’s large-scale deployment of QUIC and reported
gQUIC’s performance against TCP CUBIC [31]. Langley et al. re-
ported that gQUIC outperformed TCP in metrics such as Google
Search’s latency, Youtube’s video latency, and Youtube’s video re-
buffer rate. For example, YouTube’s video rebuffer rate was reduced
by 18.0% for desktop users and 15.3% for mobile users when TCP
was replaced with gQUIC. A limitation of this study is that it mea-
sured the performance of specific applications (and not QUIC CCA
implementations) and the results were obtained from proprietary
data that is not easily reproducible. In our work, we study the gen-
eral transport-layer performance of CCA implementations for a
large number of QUIC stacks and not just gQUIC. Our source code
is available at [34] and our experiments are fully reproducible.

Other gQUIC studies evaluating gQUIC’s performance against
TCP mostly used page-load time measured via controlled experi-
ments as the main metric to compare their application-layer per-
formance [24, 26, 33]. Carlucci et al. found that gQUIC achieved

higher goodput and smaller page-load times in networks with small
buffers or high packet loss rates [26]. Biswal et al. found that gQUIC
outperformed TCP in networks with low bandwidth, high RTT, or
high packet loss rates. Megyesi et al. had similar conclusions, except
that they reported, to the contrary, that TCP performs better in net-
works with high packet loss rates. These studies all evaluated the
QUIC’s protocol performance against TCP using application-level
metrics without any attempt at root-cause analysis. Our work is
focused on the transport-layer performance of the QUIC CCAs and
we show that our methodology provides hints that allow us to (i)
deduce potential reasons for differences in behavior, and (ii) to ver-
ify if modifications made would make a QUIC CCA implementation
more conformant to the reference kernel implementation.

Another study on gQUIC by Kakhki et al. focused on evaluating
gQUIC’s transport-layer performance against TCP [30]. In their
study, Kakhki et al. performed a root-cause analysis using execu-
tion traces captured by instrumenting gQUIC’s source code. They
discovered that gQUIC’s default parameter values were not tuned
and proceeded to calibrate their gQUIC implementation in their
experiments so that they would perform similarly to those deployed
in production. Kakhki et al. highlighted that this calibration was
not done in prior studies and led to them wrongly concluding that
gQUIC would under-perform in high bandwidth networks.

Kakhki et al. observed that the congestion control implementa-
tion in QUIC was likely different from TCP despite both of them
implementing the same CUBIC CCA because the gQUIC flow was
observed to have twice the bandwidth of a competing CUBIC flow
at the same bottleneck link. They concluded that this is because
gQUIC’s CUBIC increased its congestion window (cwnd) more fre-
quently and by a larger amount than TCP CUBIC. Although Kakhki
et al. showed that there was a deviation and even found the root
cause, those findings are not relevant today as the QUIC standard
published by IETF (IETF QUIC) has many significant differences
compared to the old gQUIC standard. Moreover, the QUIC ecosys-
tem has grown much larger and includes many more stacks. At
some level, this limitation also extends to the results of the above
studies. To the best of our knowledge, our work is the most com-
prehensive measurement study covering the largest number of
open-sourced QUIC implementations to date.

Evaluating IETF QUIC implementations. There are other
more recent studies that evaluated IETF QUIC stacks, but most of
them have limited scope, and focus on application-layer metrics [38,

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Ayush Mishra & Ben Leong

40, 42]. Saif et al. compared the quiche stack against TCP and
found that quiche QUIC has greater average throughput but worse
user quality of experience metrics as measured by the Lighthouse
tool [7, 42]. A key limitation of these studies is that they only
report the results for a single QUIC stack. As demonstrated in our
latest study, QUIC’s performance can differ significantly across
implementations and these differences are often artifacts of the
implementations and not a result of the QUIC protocol.

To the best of our knowledge, Marx et al. were the first to report
speciation in different QUIC stacks [32]. Their study highlighted
differences in implementation details of 15 IETF QUIC stacks. These
differences were uncovered by analyzing the inner workings of the
QUIC stacks through visualizations produced by the Qvis tool. They
found significant differences in domains where the QUIC standard
had minimal specifications, i.e. congestion control and flow control.
Differences were found even for parameters that were specified
in the QUIC standard. For example, 3 of the stacks did not follow
the QUIC standard’s initial congestion window value specification
and 10 of the stacks did not follow the QUIC standard’s recom-
mendation of 2 for the acknowledgment frequency. Marx et al. did
not investigate how the performance differences arose from these
implementation deviations. More recently, we had earlier reported
significant deviations between the different QUIC implementations
of existing congestion control algorithms and their respective ker-
nel implementations for 4 common QUIC stacks [35]. In this paper,
we build upon our earlier work by investigating the transport-layer
performance differences for a much larger number of modern QUIC
stacks.

3 METHODOLOGY
Our goal is to quantify the conformance of QUIC implementations
of CUBIC, BBR, and Reno for the QUIC stacks in Table 1 using
an enhanced definition of the Performance Envelope (PE). In this
section, we describe our original definition of the PE [35], our
proposed enhancements, as well as the new metrics Conformance-
T, Δ-throughput, and Δ-delay.

3.1 Background: Performance Envelope
To determine the PE for a test implementation, a flow running
the test implementation is launched alongside a competing flow
that runs the corresponding reference (Linux kernel TCP) imple-
mentation. Both flows are set to the same RTT and run through a
bottleneck with a constant link capacity and a fixed-size droptail
buffer. The flows run for 120 seconds to ensure that they have suffi-
cient time to converge to steady state. The start and end of the flow
traces are also truncated by 10% to remove the transient behaviors.
The throughput and delay time series data (computed offline via
packet trace) of the test implementation is then sampled every 10
RTTs and plotted pair-wise (𝑑,𝑇) on a delay-throughput plane as
a point cloud. The region defined by the convex hull of this point
cloud is the PE for the implementation. Empirically, we have found
that sampling the time-series throughput and delay data at this
rate is sufficient to capture an implementation’s PE. In other words,
sampling more frequently does not substantially affect the shape
of the PE for a CCA implementation.

Conformance. The conformance of an implementation is de-
termined by calculating the overlap its PE has with the PE of the
reference implementation. The overlap is weighted by the number
of points present in the overlapping region. In particular,

Conformance =
of points in the overlapping region

total # of points in both PEs
Clearly, the maximum possible value of conformance is 1 (complete
overlap) and the minimum value is 0 (no overlap).

3.2 Improving the Performance Envelope
We propose a number of enhancements to the earlier definition of
the PE from [35] to address some of its limitations.

Handling outliers. Since the data points that are used to deter-
mine the PE are instantaneous values, there will be outliers. Earlier,
we removed these outliers by eliminating 5% of the points with the
largest Euclidean distance from the centroid of the PE. However, we
found that there is no guarantee that the points furthest from the
centroid are necessarily outliers and by doing so, we risk artificially
reducing the variance in the PE. Ideally, we want to remove the
outliers that are points that arise from natural network variation
across trials and not artifacts of the implementation itself. There-
fore, we decided that a more principled way to remove outliers was
to capture (𝑑,𝑇) pairs over multiple trials and use the intersection
of the convex hulls produced by all these trials to be the final PE.
In practice, it turns out that our approach also removes roughly 5%
of the points on average for our experiments.

One convex hull is not enough. From Figure 1, we can see that
the distribution of the points in the point cloud is often not uniform.
Hence, if we use only a single convex hull, it is plausible that we
may include large regions of empty space that do not contain any
points. In other words, using only a single convex hull will often
result in the overestimation of an implementation’s conformance.
To address this issue, instead of a single convex hull, we use a
clustering algorithm to group data points into clusters and then
calculate convex hulls for each individual cluster. The final PE is
then the set of all convex hulls.

How many clusters is enough? We use the standard 𝑘-means
clustering algorithm [29] to compute clusters from our set of data
points in the throughput-delay plot. Usually, the number of clusters
for the 𝑘-means algorithm is determined using the elbow method,
which selects the inflection point for the mean squared error of the
resulting clusters. However, in our case, we found that the regular
elbow method was not satisfactory because there was no obvious
inflection point if we considered the mean squared error.

On the other hand, we can see in Figures 2 and 3 that a PE often
has a “natural” number of clusters arising from the characteristics
of the CCA. For BBR, this natural number is generally 2 (because of
its distinct ProbeBW and ProbeRTT phases, see Figure 2). For CUBIC
and Reno, natural clusters still exist, but there does not seem to be
a fixed number (see Figure 3).

In order to determine this “natural” number of clusters algorith-
mically, we ran the 𝑘-means algorithm for all 𝑘 ≥ 1 for each trial.
For each 𝑘 , each trial will produce a PE with 𝑘 convex hulls. The
final PE for each 𝑘 is then computed as the intersection for all the
convex hulls over all the trials. For each of these PEs, we compute
and plot the intersection over union (IOU) 𝑅, which we define as

Containing the Cambrian Explosion in QUIC Congestion Control IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Figure 2: Two distinct clusters corresponding to TCP BBR’s
ProbeBW (red) and ProbeRTT (blue) phases.

the proportion of the total data points for all the trials contained
in the PE. This is effectively the amount of information retained in
the PE for each value 𝑘 .

What we found was that 𝑅 is a strictly decreasing function of the
number of clusters 𝑘 , since as the number of clusters increases, the
size of each cluster becomes smaller and the final intersection will
contain fewer data points. Because it was indeed true that there
was a “natural” number of clusters for each implementation, we
found that 𝑅 drops most steeply at some 𝑘 for all the instances that
we studied. We use the value of 𝑘 before the drop as the number
of clusters for the final PE. We illustrate this iterative process in
Figure 4, with the blue and red point clouds representing data points
from two trials of the same measurement. We removed the outliers
from each trial before we computed the number of clusters for a PE
so that the outliers do not impact the number of clusters in the PE
for a CCA implementation.

3.3 Improving the Conformance Metric
Other than measuring the conformance of different CCA imple-
mentations more accurately, we also want a way to deduce how
it might be possible to improve the conformance of an implemen-
tation via simple parameter tuning. Modern congestion control
algorithms and QUIC stacks can be quite complex, and therefore
manually checking and tuning all their parameters is not tractable.
What we need are hints for the implementor on what tuning might
be needed to improve a CCA implementation’s conformance. We
found many instances where this is possible. In such cases, the PE
of an implementation generally has the same shape and number of
clusters as the reference implementation but is merely translated
to another region in the delay-throughput plane.

Conformance-T. To identify implementations that can likely
be fixed with parameter tuning, we compute the translation that is
necessary so that we maximize the intersection between the respec-
tive clusters of data points and recalculate the Conformance post-
Translation (or Conformance-T). In general, a high Conformance-T

(a) TCP CUBIC

(b) TCP Reno

Figure 3: Clusters for CUBIC and Reno are less distinct and
tend to form around different throughput levels.

indicates that an implementation’s conformance can be significantly
improved through simple parameter tuning alone.

To understand how Conformance-T works, consider the follow-
ing experiment: we know that BBR multiplies its BDP estimate
with a constant called cwndgain to determine its cwnd. By default,
cwndgain is set to 2 in the Linux kernel. We modified the kernel
version of BBR by changing its cwndgain and measured the Con-
formance and Conformance-T values for modified implementations
with a range of cwndgain values from 1.0 to 4.0. We plot the result-
ing values for Conformance-T in Figure 5. Unsurprisingly, Confor-
mance and Conformance-T are highest when cwndgain is 2.0. As
the gap in cwndgain in the modified implementation increases, the
Conformance drops as expected, even though the algorithmic behav-
ior of the modified version is almost identical to that of the vanilla
kernel BBR implementation. On the other hand, the Conformance-
T remains relatively high. This suggests that Conformance-T is a
relatively robust way to capture shifts in observed behavior arising
from parameter tuning.

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Ayush Mishra & Ben Leong

IOU = 0.9 IOU = 0.8

IOU = 0.5 IOU = 0.3

k=1

k=3

k=2

k=4

1 2 3 4 5

1
knee

of clusters

IO
U

Figure 4: Determining 𝑘 , the number of clusters for a Performance Envelope. IOU = Intersection over Union.

Parameter tuning. It turns out that the translation required to
compute Conformance-T also provides us with hints on the sys-
tematic difference between a QUIC implementation and its corre-
sponding reference implementation. We capture the 2 components
in the required translation as the translation vector (Δ-throughput,
Δ-delay).

Consider the two knobs a congestion control algorithm usually
uses to regulate how aggressive it is: (i) its sending rate and (ii) its
cwnd. For QUIC implementations showing low conformance but a
high value of Conformance-T, we can deduce which of these knobs
have been improperly tuned and correct for them. For example, if
the cwnd of an implementation is more than it should be, it would
typically have higher throughput and higher delay since it puts
more packets in flight. This would show up as a large positive
Δ-throughput and a large positive Δ-delay. We see this trend in
Figure 5 where we see both Δ-throughput and Δ-delay increase as
the cwndgain is increased.

On the other hand, if the implementation sets a correct cwnd but
sends its packets at a larger sending rate than it should, we would
see a large positive Δ-throughput but a negligible increase in Δ-
delay. We see this behavior in mvfst BBR (See Figure 9) which we
had earlier identified to have set its pacing gain to a value higher
than the default [35].

3.4 Experiment Setup
Our experiments were conducted on a testbed with two Linux ma-
chines (Ubuntu 20.04, kernel version 5.13.0-44-generic) connected
via a 1 Gbps Ethernet cable. To generate the QUIC flows, we in-
stalled the open-source QUIC stacks on both machines and used
the test clients/servers provided. To generate the TCP flows, we
used the iperf3 [2] tool.

We used amodified version of our open-source tool QUICBench [34]
to run our experiments and compute our newmetrics Conformance-
T, Δ-throughput, and Δ-delay. We configured the socket buffer sizes
for both UDP and TCP to be 12,582,912 bytes in order to have a fair
comparison between TCP and QUIC.

Figure 5: Conformance and Conformance-T values for modi-
fied versions of TCP BBR.

As shown in Table 2, there are currently at least 22 modern QUIC
stacks [1] available. However, in this paper, we only evaluated
11 of them. We picked these 11 stacks because they are either
used by major public companies, such as Google [8], Facebook [6],
and Microsoft [12] or are the de-facto standard QUIC libraries in
programming languages such as Go [9] or Rust [14]. The remaining
stacks that we did not evaluate are either closed-sourced, had no
stable version available, or did not implement congestion control.

4 MEASUREMENT RESULTS
In this section, we present the results of our evaluation of the 11
QUIC stacks listed in Table 1. In §4.1, we compare the PEs of the
QUIC implementations of CUBIC, Reno, and BBR to their corre-
sponding Linux TCP implementations (hereafter referred to as the
reference implementations) and calculate their conformance with
respect to these reference implementations.

Containing the Cambrian Explosion in QUIC Congestion Control IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Table 2: List of Known IETF QUIC/TCP stacks.

Organization Stack Op
en
So
urc
e?

Im
ple
me
nts

CC
A?

Sta
ble
?

De
plo
ye
d?

Ev
alu
ate
d?

Facebook mvfst [6] ✓ ✓ ✓ ✓ ✓
Google chromium [8] ✓ ✓ ✓ ✓ ✓
Microsoft msquic [12] ✓ ✓ ✓ ✓ ✓
Cloudflare quiche [5] ✓ ✓ ✓ ✓ ✓
LiteSpeed lsquic [11] ✓ ✓ ✓ ✓ ✓
Go quicgo [9] ✓ ✓ ✓ ✓ ✓
H2O quicly [10] ✓ ✓ ✓ ✓ ✓
Rust quinn [14] ✓ ✓ ✓ ✓ ✓
Amazon Web Services s2n-quic [4] ✓ ✓ ✓ ✓ ✓
Alibaba xquic [3] ✓ ✓ ✓ ✓ ✓
Mozilla neqo [13] ✓ ✓ ✓ ✓ ✓

Akamai akamaiquic [16] ✗ - - - ✗
Apple applequic [39] ✗ - - - ✗
Apache ats [17] ✓ ✓ ✓ ✗ ✗
F5 f5 [27] ✓ ✗ ✗ ✗ ✗
Haskell haskellquic [17] ✓ ✗ ✗ ✗ ✗
Java kwik [18] ✓ ✗ ✗ ✗ ✗
nghttp ngtcp2 [20] ✓ ✗ ✗ ✗ ✗
nginx nginx [19] ✓ ✗ ✗ ✗ ✗
Pico picoquic [21] ✓ ✓ ✗ ✗ ✗
Python aioquic [15] ✓ ✗ ✓ ✓ ✗
Quant quant [22] ✓ ✓ ✗ ✗ ✗

(a) 5 BDP (deep) buffer

(b) 1 BDP (shallow) buffer

Figure 6: Conformance becomes significantly worse in 5 BDP
(deep) buffers. (10ms RTT, 20Mbps)

To investigate the general fairness between different implemen-
tations, we also performed a bandwidth-share-based analysis of all
pairwise combinations of the 11 QUIC stacks. We present the results
in §4.3. We also discuss how we can expect low-conformance QUIC
implementations to subvert our expectations of how CUBIC and
BBR interact in §4.4.

All evaluations were done under a variety of network conditions
that were emulated by varying the network parameters as follows:

(1) RTT (10ms and 50ms);
(2) bottleneck bandwidth (20Mbps and 100Mbps); and
(3) bottleneck buffer size (0.5, 1, 3, 5 times the BDP)

Table 3: Summary of low-conformant implementations (1
BDP Buffer).

Stack Type Conf-olda Conf Conf-T Δ-tput Δ-delay

chromiumb CUBIC 0.65 0.6 0.74 +3Mbps 0ms
neqo CUBIC 0 0 0.62 −6Mbps −5ms
quiche CUBIC 0.48 0.08 0.55 +5.5Mbps 0ms
xquic CUBIC 0.6 0.55 0.64 0Mbps −5ms
mvfstb BBR 0 0 0.7 +9Mbps 0ms
xquic BBR 0.37 0.15 0.42 +4Mbps 0ms
xquic Reno 0.43 0.38 0.81 −4Mbps −3ms

a Conformance calculated using our earlier definition in [35].
b Earlier identified and fixed in [35].

To ensure that buffer sizes are comparable across all the RTT and
bottleneck bandwidth combinations, we normalize them as multi-
ples of the Bandwidth-Delay Product (BDP). All network parame-
ters were set using tc and Mahimahi [37] and each experiment was
repeated 5 times.

We note here that all our Performance Envelope and confor-
mance measurements are done over relatively stable network pro-
fileswith constant bottleneck bandwidths and simple droptail buffers.
This is because while trying to understand how well QUIC imple-
mentations of standard CCAs resemble their kernel counterparts,
we want any deviations to arise from the implementation and the
QUIC stack itself, and not from the inherent variability of the net-
work profile. It is for this reason that we evaluate the Performance
Envelope with simple 2-flow experiments without any background
traffic.

4.1 Conformance of CCA implementations of
mainstream QUIC stacks

As we can see in Figure 6, the bottleneck buffer size has a significant
impact on conformance. In particular, we can see from Figure 6a,
that all implementations have poor conformance in 5 BDP (deep)
buffers. Since this is a trend consistent across all stacks, it is plausible
that the root cause of low conformance in deeper buffers is some
artifact of the QUIC standard that becomes more pronounced when
the buffers are larger. The investigation of this hypothesis remains
as future work.

In general, the majority of the stacks are relatively conformant in
shallow buffers as shown Figure 6b. There are several outliers to this
trend, with some implementations showing very low conformance
(<0.5) even in shallow 1 BDP buffers. From Figure 6b, we can identify
the 7 low-conformant stacks in red. The results for these stacks
(in 1 BDP buffers) are summarized in Table 3. xquic CUBIC is
included in the list, despite having conformance marginally greater
than 0.5, because it was found to be extremely unfair to other
implementations (§4.3).

Two of the 7 implementations in Table 3 (chromium CUBIC and
mvfst BBR) were earlier identified to be low-conformant and mod-
ifications were proposed to make them more conformant [35]. This
means that we have identified 5 new non-compliant QUIC imple-
mentations. While these new non-conformant implementations
were not evaluated in our earlier study [35], it is clear that the
enhanced definition of conformance presented in this paper was

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Ayush Mishra & Ben Leong

(a) chromium CUBIC, Conf.= 0.6
Conf.-T= 0.74, Δ-tput= +3, Δ-delay= 0

(b) neqo CUBIC, Conf.= 0
Conf.-T= 0.62, Δ-tput= −6, Δ-delay= −5

(c) quiche CUBIC, Conf.= 0.08
Conf.-T= 0.55, Δ-tput= +5.5, Δ-delay= 0

(d) xquic CUBIC, Conf.= 0.55
Conf.-T= 0.64, Δ-tput= 0, Δ-delay= −5

(e) mvfst BBR, Conf.= 0
Conf.-T= 0.7, Δ-tput= +9, Δ-delay= 0

(f) xquic BBR, Conf.= 0.15
Conf.-T= 0.42, Δ-tput= +4, Δ-delay= 0

Figure 7: QUIC CUBIC and BBR implementations with low conformance for 1 BDP buffers.

(a) 1 BDP buffer, Conf.= 0.38
Conf.-T= 0.81, Δ-tput= −4, Δ-delay= −3

(b) 3 BDP buffer, Conf.= 0.14
Conf.-T= 0.67, Δ-tput= −5, Δ-delay= 0

(c) 5 BDP buffer, Conf.= 0.08
Conf.-T= 0.6, Δ-tput= −6, Δ-delay= 0

Figure 8: Performance envelopes for xquic Reno for different bottleneck buffer sizes.

helpful in highlighting these variants. Comparing our new defini-
tion of conformance to the earlier definition (Conformance-old) in
Table 3, we see that our new definition makes the low conformance
for some QUIC implementations more obvious (cf. quiche CUBIC
and xquic BBR).

In §5, we describe modifications that can make xquic BBR and
quiche CUBIC more conformant; for xquic CUBIC, we were able
to identify the root cause for the low conformance. The PEs for
non-compliant CUBIC and BBR QUIC implementations are shown
in Figure 7 and the PEs for the sole non-compliant Reno implemen-
tation are plotted in Figure 8. While we performed measurements
over a large variety of network configurations as described in §4,
link speed and RTT had a marginal impact on the results and so we
only produce representative plots varying the buffer sizes unless
stated otherwise. It is likely that link speed and RTT do not have

a pronounced effect because we normalize our buffer sizes by the
BDP in our relatively stable network profiles. This trend may not
hold in networks with highly volatile bandwidth variations, like
5G networks.

4.1.1 CUBIC. The implementations of CUBIC in chromium, neqo,
quiche, and xquic had low conformance. We had earlier found
the modifications needed to make chromium CUBIC more confor-
mant [35]. To build on our earlier work, we describe how we can
mitigate the low conformance for quiche CUBIC and xquic CUBIC
in §5.

4.1.2 BBR. We found BBR implementations in mvfst and xquic to
have low conformance. The conformance for mvfst was better for
deep buffers (see Figure 9), while for xquic, the lack of conformance
became worse in deep buffers (see Figure 10). However, both these

Containing the Cambrian Explosion in QUIC Congestion Control IMC ’23, October 24–26, 2023, Montreal, QC, Canada

(a) 1 BDP buffer, Conf.= 0
Conf.-T= 0.7, Δ-tput= +9, Δ-delay= 0

(b) 3 BDP buffer, Conf.= 0.01
Conf.-T= 0.71, Δ-tput= +2, Δ-delay= −5

(c) 5 BDP buffer, Conf.= 0
Conf.-T= 0.68, Δ-tput= +2, Δ-delay= 0

Figure 9: Performance envelopes for mvfst BBR. (Conf.=Conformance)

(a) 1 BDP buffer, Conf.= 0.12
Conf.-T= 0.42, Δ-tput= +4, Δ-delay= 0

(b) 3 BDP buffer, Conf.= 0
Conf.-T= 0.53, Δ-tput= +3, Δ-delay= +25

(c) 5 BDP buffer, Conf.= 0
Conf.-T= 0.56, Δ-tput= +4, Δ-delay= +60

Figure 10: Performance envelopes for xquic BBR. (Conf.=Conformance)

Figure 11: Conformance of various QUIC stacks when tested
on AWS. Link speed was locally limited to 100 Mbps.

implementations show significantly high Conformance-T values.
The positive Δ-throughput for both these implementations sug-
gests that they might be reasonably conformant implementations
of BBR with some parameter tuning. We had earlier highlighted
that mvfst BBR multiplies its final sending rate by 120% in order to
improve throughput [35]. We verified that reducing the send rate
to 100%, mvfst BBR will become more conformant. We show in §5
that a similar modification can also improve the conformance of
xquic BBR.

4.1.3 Reno. QUIC Reno implementations are generally confor-
mant for most QUIC stacks. The conformance in deeper buffers is
also relatively better than CUBIC and BBR. This is likely because
Reno is the simplest algorithm among the three CCAs investigated,
and is thus easier to implement correctly. The only exception among

them is xquic, as shown in Figure 8. The fact that even a simple
CCA like Reno is non-conformant for xquic suggests that there
might be a larger issue with the xquic stack itself, given that all
its CCA implementations show poor conformance. Upon investiga-
tion, we could not find anything that was clearly wrong with the
xquic CCA implementations, suggesting that the root cause was
beyond algorithmic parameters and correctness of the CCA imple-
mentation. Determining the exact cause of the observed differences
remains future work.

4.2 Investigating Conformance “in the Wild”
We repeated our experiments in §4.1 on the Internet. In these mea-
surements, the senders were run on aws instances and connected to
receivers on physical servers in our lab. We limited the link speed
to 100Mbps at the server. We measured the ping latency before
every experiment and added additional delay using Mahimahi [37]
to keep the RTT constant at 50ms across all trials. Like before, the
results of these experiments are plotted as a heatmap in Figure 11.
We found the conformance numbers to be similar to our results
for 1 BDP buffer in our testbed (see Figure 6b). While we were
tempted to conclude that this hints that the buffers on the Internet
are shallow, we refrain from making any such claim since a CCA’s
performance on the Internet can be impacted by other network
artifacts as well.

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Ayush Mishra & Ben Leong

(a) CUBIC vs CUBIC, 1 BDP (shallow) buffer

(b) Reno vs Reno
1 BDP (shallow) buffer

(c) BBR vs BBR
1 BDP (shallow) buffer

Figure 12: Throughput ratios for competing implementations on CUBIC, Reno, and BBR (20 Mbps, 50ms RTT).

(a) 1 BDP (shallow) buffer. Expected to be red. (b) 5 BDP (deep) buffer. Expected to be blue.

Figure 13: Different implementations of CUBIC and BBR competing with each other (a throughput ratio of 1 means the BBR
flow starves the CUBIC flow.)

4.3 Fairness between Implementations
The PE only compares the time series behavior of QUIC imple-
mentations to their kernel counterparts, which can provide us an
estimate of how faithfully QUIC CCA implementations conform
to the reference implementations. However, no matter how hard
developers might try to reproduce the behaviors of the kernel im-
plementations, there will be overheads, since the QUIC stack CCA
implementations run in the user space. There will also likely be
some inherent unfairness between algorithms. It is also inevitable

that some organizations will want to modify and tune their con-
gestion control algorithms for their own applications and therefore
lead to low conformance by design.

For such cases, we would still be keen to ensure that new imple-
mentations can co-exist with other kernel and QUIC CCA imple-
mentations without causing instability or significant degradation.
To determine if new implementations are friendly to other imple-
mentations, we do a simple bandwidth-share-based analysis of the
pairwise combinations of all 23 QUIC CCA implementations in-
vestigated in this paper. Moreover, this serves as an extension to

Containing the Cambrian Explosion in QUIC Congestion Control IMC ’23, October 24–26, 2023, Montreal, QC, Canada

the conformance analysis presented in §4.1 and a sanity check that
high conformance is highly correlated to fairness to other imple-
mentations.

In these experiments, the two competing flows share a 20Mbps
bottleneck link, 50ms RTT, and a 1 BDP buffer. The bandwidth
share is computed as 𝑇𝑥

𝑇𝑥+𝑇𝑦 and 𝑇𝑦
𝑇𝑥+𝑇𝑦 where 𝑇𝑥 and 𝑇𝑦 are the

throughputs of the two competing flows averaged across 5 trials. If
the bandwidth share is greater than 0.5 for any flow, it implies that
the flow has more than a fair share of the bandwidth.

Since it is well known that different congestion control algo-
rithms can be unfair to each other [36, 45], we looked into fairness
between implementations of the same CCAs. We plot the through-
put ratios for competing implementations of CUBIC, BBR, and
Reno in Figure 12. If we compare these results to the implementa-
tions earlier identified as being low-conformant in Table 3, it is not
surprising to see which QUIC implementations of CUBIC, Reno,
and BBR are overly aggressive. chromium CUBIC, quiche CUBIC,
and xquic CUBIC (all previously identified low-conformant imple-
mentations of CUBIC) were unfair to all other implementations of
CUBIC.

Similar trends exist for xquic BBR, mvfst BBR, and xquic Reno,
which also show low conformance.We also note that lsquicCUBIC
also shows some degree of unfairness despite having high confor-
mance (0.76). This suggests that while low conformance is likely to
lead to unfairness, high conformance does not necessarily result
in fairness, so it is still important to do a bandwidth-share-based
analysis for new QUIC CCA implementations.

4.4 Contradicting known trends in inter-CCA
fairness

Given the current heterogeneous congestion control landscape
on the Internet, it is important for interactions between different
congestion control algorithms to be consistent and predictable.
In particular, the interactions between CUBIC and BBR, the two
most dominant congestion control algorithms on the Internet, has
been a hot topic in congestion control research over the past few
years [36, 44, 45].

In particular, it is well known that BBR will achieve higher band-
width than CUBIC when they compete in shallow buffers due to
CUBIC backing off frequently and BBR being largely loss-agnostic.
Also, CUBIC is expected to achieve higher throughput than BBR in
deep buffers since CUBIC is a buffer-filler [36, 45]. In other words,
Figure 13a is expected to be all red, and Figure 13b is expected to
be all blue.

However, we see in Figure 13 that some QUIC implementations
of CUBIC and BBR do not conform to these expectations. In partic-
ular, we see that in shallow buffers xquic CUBIC outperforms most
BBR implementations (Figure 13a); in deep buffers, xquic BBR and
mvfst BBR outperforms other CUBIC implementations. All three
of these implementations were earlier identified as showing very
low conformance (Table 3). This shows that in addition to introduc-
ing unfairness, low-conformant implementations can potentially
subvert our expectations of how we expect standard congestion
control algorithms to interact.

5 “FIXING” LOW-CONFORMANCE
IMPLEMENTATIONS

QUIC CCA implementations might not behave like their Linux TCP
counterparts for a number of reasons: (i) the implementation might
not conform to existing standards; (ii) the algorithm parameters
might be set differently; or (iii) because of implementation artifacts
within the QUIC stack. As we discussed in §3.3, our new proposed
metrics Δ-throughput (abbreviated as Δ-tput), and Δ-delay are often
helpful in providing us with hints on the root cause of low confor-
mance. In this section, we describe how we managed to improve
the conformance of some of the low-conformance implementations
identified earlier in §4. Most of our modifications required only a
small number of lines of code (LoC). We summarize our findings in
Table 4.

Differences in implementation. We had earlier proposed mod-
ifications to make chromium CUBIC and mvfst BBR more confor-
mant [35]. We verified that these modifications are valid using our
enhanced definition of the PE and Conformance. In addition, we also
foundmodifications that couldmake xquic BBR and quicheCUBIC
more conformant.

The conformance-T value for xquic BBR was almost triple its
conformance, which suggested that xquic BBR could potentially
be made significantly more conformant by parameter tuning. Upon
investigation, we found its cwndgain was set to 2.5 instead of the
RFC-recommended value of 2. By setting the cwndgain to 2, we
were able to marginally improve conformance as shown in Fig-
ure 14.

After reviewing the implementation of quiche CUBIC, we dis-
covered that RFC 8312 [41] was implemented. This draft proposes
the rolling back of any back-off in the cwnd if a packet loss was
deemed to be spurious. This mechanism has in fact not yet been im-
plemented in the Linux kernel. When we disabled it in quiche CU-
BIC, we saw an immediate improvement in its conformance from
0.08 to 0.55 as shown in Figure 15. In general, we would expect
QUIC CCA implementations to lag behind developments in the
kernel. In this case, we have found a QUIC CCA implementation
that leads kernel development.

Missing Mechanism. When we analyzed the implementation
of xquic CUBIC, we found that TCP HyStart (RFC 9406) [23] was
not implemented. TCP HyStart is a mechanism present in the Linux
kernel that implements a modified slow start for CUBIC, where
we will exit Slow Start when we see an increase in end-to-end
delay. This makes the Hystart dramatically less aggressive than the
traditional slow start. To verify that this missing mechanism was
the main cause of low conformance, we evaluated the conformance
of xquic CUBIC with respect to TCP CUBIC with HyStart disabled.
As shown in Table 4, the conformance was indeed much higher. We
did not attempt to implement HyStart in xquic CUBIC to make it
more conformant because HyStart is relatively complicated and we
had already identified the root cause of low conformance.

Indications of wider stack-level issues. When we reviewed
the implementations of xquic Reno and neqo CUBIC, we found
them to be compliant with the standard algorithms. The parameter
settings are also correct. This suggests that the low conformance
is likely due to some artifact(s) in the QUIC stack rather than in
the CCA implementation. This means that xquic developers need

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Ayush Mishra & Ben Leong

Table 4: Summary of successful modifications to low-conformant implementations (1 BDP buffer).

Original implementation Modified implementation
Fixed? Stack Type Conf Conf-T Δ-tput Δ-delay Conf Conf-T Δ-tput Δ-delay ΔLoC# Remarks

✓ chromium+ CUBIC 0.6 0.74 +3Mbps 0ms 0.78 0.85 0Mbps 3ms 1 Emulated flows reduced from 2 to 1
✓ mvfst+ BBR 0 0.7 +9Mbps 0ms 0.8 0.8 0Mbps 0ms 2 pacing gain reduced from 1.25 to 1
✓ xquic BBR 0.15 0.42 +4Mbps 0ms 0.38 0.47 0Mbps -2ms 2 cwnd gain reduced from 2.5 to 2
✓ quiche CUBIC 0.08 0.55 +5.5Mbps 0ms 0.55 0.66 +2Mbps 0ms 14 Disabled RFC8312 [46]

✗* xquic CUBIC 0.55 0.64 0Mbps -5ms - - - - - xquic does not implement HyStart [23]
0.72 0.81 -2Mbps 0ms - - - - - Compared to TCP CUBIC w/o HyStart

✗ xquic Reno 0.38 0.81 -4Mbps -3ms - - - - - Implementations verified to be
compliant with existing standards.✗ neqo CUBIC 0 0.62 -6Mbps -5ms - - - - -

Lines of code in required modification.
+ Earlier identified and fixed [35].
* Implementation difference identified but not fixed. Implementation found to be conformant to TCP CUBIC with HyStart disabled.

(a) xquic BBR original, Conf.= 0.15
Conf.-T= 0.42, Δ-tput= +4, Δ-delay= 0

(b) xquic BBR modified, Conf.= 0.38
Conf.-T= 0.47, Δ-tput= 0, Δ-delay= −2

Figure 14: xquic BBR’s conformance before and after reducing cwnd gain from 2.5 to 2.

to pay attention not only to the implementations of the CCA but
also to the implementation of the QUIC stack in order to achieve
high conformance. The investigation into the low conformance of
xquic Reno and neqo CUBIC is left as future work.

6 DISCUSSION AND FUTUREWORK
Given the low conformance that we have identified inmodern QUIC
stacks, we believe that QUIC congestion control research deserves
more attention and further study as the results of classic CCA
research may no longer apply. Fully understanding the interactions
and impact of new QUIC stacks is likely to be a continuous process
as these implementations morph with time. Also, we recognize that
there are some limitations in our current measurement study.

Refining bandwidth-share analysis. The throughput ratios
discussed in §4.3 provide an estimate of how well implementations
can coexist with each other. However, in the future, we would like
to refine our approach to measuring coexistence and general intra-
CCA friendliness. In addition to running experiments over a larger
range of network conditions, we would also like to experiment with
different applications and measure their application-level metrics
(such as QoE for video streaming). In our experiments, we launch

both flows together. It is likely helpful to understand the impact of
different start times and different flow durations on fairness.

Extending the Performance Envelope to other applications.
Besides benchmarking congestion control applications, the perfor-
mance envelope also has the potential to serve as a tool for helping
application choose their desired congestion control algorithms. Dif-
ferent applications usually value different network metrics. For
example, live-streaming applications will generally value low la-
tency, in contrast to applications that perform bulk downloads and
value high throughput. Such applications can possibly leverage the
performance envelope to identify the trade-off space they want to
operate in and then select a congestion control algorithm whose
performance envelope has the maximum overlap with their desired
performance envelope.

Systematic Root Cause Analysis. While the methodology
applied in this paper has largely been successful in identifying low-
conformance implementations of congestion control algorithms,
we would like to do more to aid the debugging of these imple-
mentations. We feel that time series graphs (such as the ones in
Figure 15) and Conformance-T are a good starting point in investi-
gating which aspects an implementation may be differing in (such
as cwnd or the sending rate). In the future, we would also like to

Containing the Cambrian Explosion in QUIC Congestion Control IMC ’23, October 24–26, 2023, Montreal, QC, Canada

(a) quiche CUBIC original, Conf.= 0.08
Conf.-T= 0.55, Δ-tput= +5.5, Δ-delay= 0

(b) quiche CUBIC modified, Conf.= 0.55
Conf.-T= 0.66, Δ-tput= +2, Δ-delay= 0

Figure 15: quiche CUBIC’s conformance before and after disabling its detection of spurious packet losses (RFC8312 [46]).

automatically extract key parameters from implementations and
try to correlate them with Δ-throughput and Δ-delay values of
their Performance Envelopes. There is also scope for differentiating
between implementation-level and stack-level differences for these
QUIC implementations. For example, if we find that the same quali-
tative deviation in the PE across all the evaluated CCAs for a given
QUIC stack (for example, say all the CCAs in a QUIC stack achieve
lower throughput than their kernel counterparts), it may suggest
that the root cause of this non-conformance lies in how the underly-
ing QUIC stack is implemented, rather than in the implementation
of the individual CCAs.

Transitivity. In our earlier study of 4 QUIC stacks [35], we found
that the performance of the CCA implementations was transitive,
i.e. if a CCA 𝑋 achieved higher throughput competing with CCA 𝑌

and CCA 𝑌 achieved higher throughput competing with CCA 𝑍 ,
then CCA 𝑋 would achieve higher throughput when competing
with CCA 𝑍 . However, from our results of the 11 QUIC stacks eval-
uated in this paper, we found that the relative performance of QUIC
implementations is not transitive between different CCAs. For exam-
ple, lsquic CUBIC beats msquic CUBIC and msquic CUBIC beats
chromium BBR, but lsquic CUBIC does not beat chromium BBR
when they compete in deep buffers. However, among the QUIC
stacks that we evaluated, the intra-CCA performance seems to be
transitive. That is, transitivity is likely to exist between QUIC im-
plementations for the same congestion control algorithm. A more
detailed study of transitivity between CCAs remains as future work.

Comparing Fairly Across Different CCAs. Currently, while
measuring the conformance of a QUIC implementation, we run
it alongside its corresponding TCP implementation (or the refer-
ence flow). This is because our idea of conformance is built around
replaceability–that is, we want to determine how easily a QUIC im-
plementation can mimic a standard TCP implementation in terms of
performance and behavior. However, this also means that our calcu-
lated PEs are only comparable to the PEs of other implementations
implementing the same congestion control algorithm. In the future,
we would like to define and experiment with running all QUIC im-
plementations alongside the same standard background flow. This

would allow us to have a fair basis to compare implementations of
different congestion control algorithms.

Keeping up with the kernel. Even though the Linux kernel’s
TCP stack is a relatively stable reference for measuring the confor-
mance of QUIC implementations, it is still a moving target. The
kernel will also continue to evolve as new RFCs are proposed and
implemented, as we have already seen with the implementation
of Hystart in §5. In fact, RFC8312 [46], whose implementation in
quiche reduced the conformance of its CUBIC implementation
(Figure 15), is scheduled to be deployed only in the next stable
version of the Linux kernel. These developments make a case for
conducting regular conformance tests for QUIC implementations
every time a new milestone kernel version with significant changes
to the TCP stack is released.

7 CONCLUSION
In this paper, we present the results of a measurement study of
the congestion control algorithms in 11 popular open-source QUIC
stacks. To the best of our knowledge, our measurement study is
likely the most comprehensive evaluation of congestion control al-
gorithms in modern QUIC stacks to date. We address the limitations
of previous approaches that evaluate QUIC congestion control and
propose a new metric Conformance-T for identifying implementa-
tionswhere there is scope for improving conformance via parameter
tuning. Our measurement study significantly advances the state of
the art in our understanding of speciation [32, 34] and raises new
research questions on the evolution of CCAs for QUIC.

ACKNOWLEDGEMENTS
Wewould like to thank the anonymous reviewers and our shepherd
Vaibhav Bajpai for their valuable feedback and helpful comments.
This work was supported by the Singapore Ministry of Education
grant T1 251RES1917 and the NUS-AWS Cloud Credits for Research
Grant.

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Ayush Mishra & Ben Leong

ETHICS
This work does not raise any ethical issues.

REFERENCES
[1] 2021. Active QUIC implementations. https://github.com/quicwg/base-drafts/

wiki/Implementations
[2] 2021. iPerf, the Speed Test Tool for TCP. https://iperf.fr/iperf-doc.php
[3] 2022. Alibaba’s QUIC implementation, xquic. https://github.com/alibaba/xquic
[4] 2022. Amazon Web Services’s QUIC implementation, s2n-quic. https://github.com/

aws/s2n-quic
[5] 2022. Cloudflare’s QUIC implementation, quiche. https://github.com/cloudflare/

quiche
[6] 2022. Facebook’s QUIC implementation, mvfst. https://github.com/

facebookincubator/mvfst
[7] 2022. Google Chrome, Lighthouse. https://github.com/GoogleChrome/lighthouse
[8] 2022. Google’s QUIC implementation, chromium. https://www.chromium.org/

quic/playing-with-quic
[9] 2022. Go’s QUIC implementation, quic-go. https://github.com/lucas-clemente/

quic-go
[10] 2022. H2O’s QUIC implementation, quicly. https://github.com/h2o/quicly
[11] 2022. LiteSpeed’s QUIC implementation, lsquic. https://github.com/litespeedtech/

lsquic
[12] 2022. Microsoft’s QUIC implementation, msquic. https://github.com/microsoft/

msquic
[13] 2022. Mozilla’s QUIC implementation, neqo. https://github.com/mozilla/neqo
[14] 2022. Rust’s QUIC implementation, quinn. https://github.com/quinn-rs/quinn
[15] 2023. aioquic: QUIC network protocol in Python. https://github.com/aiortc/aioquic
[16] 2023. Akamai QUIC. https://akaquic.com/
[17] 2023. IETF QUIC implementation in Haskell. https://github.com/kazu-yamamoto/

quic
[18] 2023. IETF QUIC implementation in Java. https://bitbucket.org/pjtr/kwik/src/

master/
[19] 2023. nginx-quic. https://hg.nginx.org/nginx-quic/
[20] 2023. ngtcp2. https://github.com/ngtcp2/ngtcp2
[21] 2023. picoquic. https://github.com/private-octopus/picoquic
[22] 2023. quant. https://github.com/NTAP/quant
[23] P. Balasubramaniam, Y. Huang, and M. Olson. 2023. HyStart++: Modified Slow

Start for TCP. https://www.rfc-editor.org/rfc/rfc9406
[24] Prasenjeet Biswal and Omprakash Gnawali. 2016. Does QUIC Make the Web

Faster?. In Proceedings of IEEE Global Communications Conference (GLOBECOM).
IEEE, 1–6.

[25] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2017. BBR: Congestion-based Congestion Control. Commun. ACM
60, 2 (2017), 58–66.

[26] Gaetano Carlucci, Luca De Cicco, and Saverio Mascolo. 2015. HTTP over UDP:
an Experimental Investigation of QUIC. In Proceedings of the 30th Annual ACM
Symposium on Applied Computing (SAC). 609–614.

[27] F5. 2023. Overview of the BIG-IP HTTP/3 and QUIC profiles. https://support.f5.
com/csp/article/K60235402

[28] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-friendly
high-speed TCP variant. Operating Systems Review 42 (07 2008), 64–74. https:
//doi.org/10.1145/1400097.1400105

[29] John A Hartigan and Manchek A Wong. 1979. Algorithm AS 136: A k-means
clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics) 28, 1 (1979).

[30] Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-Rotaru, and
Alan Mislove. 2017. Taking a Long Look at QUIC: An Approach for Rigorous
Evaluation of Rapidly Evolving Transport Protocols. In Proceedings of Internet
Measurement Conference (IMC). 290–303.

[31] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bai-
ley, Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik Westin, Raman Tenneti,
Robbie Shade, Ryan Hamilton, Victor Vasiliev, Wan-Teh Chang, and Zhongyi
Shi. 2017. The QUIC Transport Protocol: Design and Internet-Scale Deploy-
ment. In Proceedings of the conference of the ACM special interest group on data
communication (SIGCOMM). 183–196.

[32] Robin Marx, Joris Herbots, Wim Lamotte, and Peter Quax. 2020. Same Standards,
Different Decisions: A Study of QUIC and HTTP/3 Implementation Diversity. In
Proceedings of the Workshop on the Evolution, Performance, and Interoperability of
QUIC. 14–20.

[33] Péter Megyesi, Zsolt Krämer, and Sándor Molnár. 2016. How quick is QUIC?. In
Proceedings of International Conference on Communications (ICC). IEEE, 1–6.

[34] Ayush Mishra and Sherman Lim. 2022. QUICBench. https://github.com/NUS-
SNL/QUICbench

[35] Ayush Mishra, Sherman Lim, and Ben Leong. 2022. Understanding speciation in
QUIC congestion control. In Proceedings of the 22nd ACM Internet Measurement

Conference (IMC). 560–566.
[36] Ayush Mishra, Wee Han Tiu, and Ben Leong. 2022. Are we heading towards a

BBR-dominant Internet?. In Proceedings of the 22nd ACM Internet Measurement
Conference (IMC). 538–550.

[37] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate Record-and-
Replay for HTTP. In Proceedings of USENIX Annual Technical Conference (ATC).
417–429.

[38] Mirko Palmer, Thorben Krüger, Balakrishnan Chandrasekaran, and Anja Feld-
mann. 2018. The QUIC Fix for Optimal Video Streaming. In Proceedings of the
Workshop on the Evolution, Performance, and Interoperability of QUIC. 43–49.

[39] Tommy Pauly. 2021. QUIC usage at Apple. https://tinyurl.com/applequic
[40] James Pavur, Martin Strohmeier, Vincent Lenders, and Ivan Martinovic. 2021.

QPEP: A QUIC-Based Approach to Encrypted Performance Enhancing Proxies
for High-Latency Satellite Broadband. In Proceedings of NDSS.

[41] I Rhee, L Xu, S Ha, A Zimmermann, L Eggert, and R Scheffenegger. 2018. RFC
8312: CUBIC for Fast Long-Distance Networks. https://datatracker.ietf.org/doc/
html/rfc8312

[42] Darius Saif, Chung-Horng Lung, and Ashraf Matrawy. 2021. An Early Benchmark
of Quality of Experience Between HTTP/2 and HTTP/3 using Lighthouse. In
IEEE International Conference on Communications (ICC). IEEE, 1–6.

[43] Canada Sandvine Inc. Waterloo, ON. 2022. The 2022 Global Internet Phenomena
Report. https://www.sandvine.com/phenomena

[44] Simon Scherrer, Markus Legner, Adrian Perrig, and Stefan Schmid. 2022. Model-
Based Insights on the Performance, Fairness, and Stability of BBR. In Proceed-
ings of the 22nd ACM Internet Measurement Conference (Nice, France) (IMC
’22). Association for Computing Machinery, New York, NY, USA, 519–537.
https://doi.org/10.1145/3517745.3561420

[45] Ranysha Ware, Matthew KMukerjee, Srinivasan Seshan, and Justine Sherry. 2019.
Modeling BBR’s interactions with loss-based congestion control. In Proceedings
of the Internet Measurement Conference (IMC). 137–143.

[46] L. Xu, s. Ha, Vidhi Goel, and Lars Eggert. 2023. Spurious Congestion Events.
https://tools.ietf.org/id/draft-ietf-tcpm-rfc8312bis-00.html#section-4.9

https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quicwg/base-drafts/wiki/Implementations
https://iperf.fr/iperf-doc.php
https://github.com/alibaba/xquic
https://github.com/aws/s2n-quic
https://github.com/aws/s2n-quic
https://github.com/cloudflare/quiche
https://github.com/cloudflare/quiche
https://github.com/facebookincubator/mvfst
https://github.com/facebookincubator/mvfst
https://github.com/GoogleChrome/lighthouse
https://www.chromium.org/quic/playing-with-quic
https://www.chromium.org/quic/playing-with-quic
https://github.com/lucas-clemente/quic-go
https://github.com/lucas-clemente/quic-go
https://github.com/h2o/quicly
https://github.com/litespeedtech/lsquic
https://github.com/litespeedtech/lsquic
https://github.com/microsoft/msquic
https://github.com/microsoft/msquic
https://github.com/mozilla/neqo
https://github.com/quinn-rs/quinn
https://github.com/aiortc/aioquic
https://akaquic.com/
https://github.com/kazu-yamamoto/quic
https://github.com/kazu-yamamoto/quic
https://bitbucket.org/pjtr/kwik/src/master/
https://bitbucket.org/pjtr/kwik/src/master/
https://hg.nginx.org/nginx-quic/
https://github.com/ngtcp2/ngtcp2
https://github.com/private-octopus/picoquic
https://github.com/NTAP/quant
https://www.rfc-editor.org/rfc/rfc9406
https://support.f5.com/csp/article/K60235402
https://support.f5.com/csp/article/K60235402
https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1145/1400097.1400105
https://github.com/NUS-SNL/QUICbench
https://github.com/NUS-SNL/QUICbench
https://tinyurl.com/applequic
https://datatracker.ietf.org/doc/html/rfc8312
https://datatracker.ietf.org/doc/html/rfc8312
https://www.sandvine.com/phenomena
https://doi.org/10.1145/3517745.3561420
https://tools.ietf.org/id/draft-ietf-tcpm-rfc8312bis-00.html#section-4.9

	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Background: Performance Envelope
	3.2 Improving the Performance Envelope
	3.3 Improving the Conformance Metric
	3.4 Experiment Setup

	4 Measurement Results
	4.1 Conformance of CCA implementations of mainstream QUIC stacks
	4.2 Investigating Conformance ``in the Wild''
	4.3 Fairness between Implementations
	4.4 Contradicting known trends in inter-CCA fairness

	5 ``fixing'' low-conformance implementations
	6 Discussion and Future Work
	7 Conclusion
	References

