
Masking Corruption Packet Losses in Datacenter Networks with
Link-local Retransmission

Raj Joshi†, Cha Hwan Song†, Xin Zhe Khooi†, Nishant Budhdev‡, Ayush Mishra†,
Mun Choon Chan†, Ben Leong†

†National University of Singapore ‡Nokia Bell Labs

ABSTRACT
Packet loss due to link corruption is a major problem in large
warehouse-scale datacenters. The current state-of-the-art approach
of disabling corrupting links is not adequate because, in practice,
all the corrupting links cannot be disabled due to capacity con-
straints. In this paper, we show that, it is feasible to implement
link-local retransmission at sub-RTT timescales to completely mask
corruption packet losses from the transport endpoints. Our system,
LinkGuardian, employs a range of techniques to (i) keep the packet
buffer requirement low, (ii) recover from tail packet losses without
employing timeouts, and (iii) preserve packet ordering. We imple-
ment LinkGuardian on the Intel Tofino switch and show that for
a 100G link with a loss rate of 10-3, LinkGuardian can reduce the
loss rate by up to 6 orders of magnitude while incurring only 8%
reduction in effective link speed. By eliminating tail packet losses,
LinkGuardian improves the 99.9th percentile flow completion time
(FCT) for TCP and RDMA by 51x and 66x respectively. Finally, we
also show that in the context of datacenter networks, simple out-
of-order retransmission is often sufficient to significantly mitigate
the impact of corruption packet loss for short TCP flows.

CCS CONCEPTS
•Hardware→ Failure recovery, maintenance and self-repair;
• Networks → In-network processing; Physical links; Data
center networks; Programmable networks; Link-layer protocols.

KEYWORDS
Packet corruption, Link failures, Optical links, Link-local retrans-
mission, Programmable switches, In-network packet loss recovery
ACM Reference Format:
Raj Joshi, Cha Hwan Song, Xin Zhe Khooi, Nishant Budhdev, Ayush Mishra,
Mun Choon Chan and Ben Leong. 2023. Masking Corruption Packet Losses
in Datacenter Networks with Link-local Retransmission . In ACM SIGCOMM
2023 Conference (ACM SIGCOMM ’23), September 10–14, 2023, New York, NY,
USA. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3603269.
3604853

1 INTRODUCTION
Optical links are commonly used as switch-to-switch links in mod-
ern datacenter networks [61]. Unfortunately, external factors such
as physical damage, bending, or contamination due to airborne

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0236-5/23/09.
https://doi.org/10.1145/3603269.3604853

10-8

10-6

10-4

10-2

100

 9 10 11 12 13 14 15 16 17 18

higher
baudratedenser

modulation

Pa
ck

e
t

Lo
ss

 R
a
te

Optical Attenuation (dB)

50GBASE-SR (FEC)
25GBASE-SR

25GBASE-SR (FEC)
10GBASE-SR

Figure 1: Effect of optical attenuation on various Ethernet
link speeds (1518B frames).

dirt particles, can cause optical attenuation and make optical links
susceptible to data transmission errors [15, 61]. As a result, packet
losses due to corruption on optical links in large warehouse-scale
datacenters are common. Alibaba’s recent study of hundreds of
real-world service tickets showed that about 18% of the packet
drops that caused network performance anomalies (NPAs) were
due to packet corruption [59]. Another large-scale study across 15
Microsoft datacenters consisting of 350K optical links showed that
the number of packets lost due to corruption is comparable to those
lost due to congestion [61].

At the same time, Ethernet link speeds continue to increase,
having increased from 25G [26] in 2016 to 400G [29] in recent
years. This increase has been achieved through a combination of
using multiple parallel PHY lanes, higher baudrate, and denser
modulation. Figure 1 shows the result of a measurement experiment
(details in §2) where we can see that, as the link speeds continue to
increase through the use of higher baudrate (from 10G to 25G) and
denser modulation (from 25G to 50G), optical links are becoming
more susceptible to optical attenuation and thus corruption packet
loss.

Optical corruption can only be remedied by physically repair-
ing the damaged links, which can take between several hours to
days [61]. During this time, the impact of corruption can only be
mitigated. The current state-of-the-art approach to mitigate corrup-
tion packet loss is to disable the corrupting links while maintaining
a certain minimum network capacity [56, 61]. However, this ap-
proach is not sufficient, as it is often not feasible for some corrupting
links to be disabled without violating capacity constraints. Such
links will continue to cause packet drops thereby negatively im-
pacting both throughput and latency-sensitive flows. Data from
Microsoft datacenters shows that up to 15% of the corrupting links
cannot be disabled under realistic capacity constraints [61].

In this paper, we apply the classical loss recovery strategy of
link-local retransmission for mitigating corruption packet loss
in datacenter networks. Link-local retransmission has been stud-
ied extensively [8, 9, 44] and deployed widely in wireless net-
works [1, 2, 23, 24]. It has desirable properties such as the recovery
overheads are proportional to the corruption loss rate and are local-
ized to only the corrupting link. It can achieve sub-RTT recovery,

https://doi.org/10.1145/3603269.3604853
https://doi.org/10.1145/3603269.3604853
https://doi.org/10.1145/3603269.3604853

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Joshi et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105 106 107

1024
1500

C
D

F

Message/ Flow Size (Bytes)

Meta key-value
Google search RPC

Google all RPC
Meta Hadoop

Alibaba storage
DCTCP web search

Figure 2: Flows size distribution of several datacenter work-
loads from 2008 to 2019 [3, 7, 34, 47, 52].

and since it is agnostic to the end-hosts, it is amenable to any
transport protocol including RDMA. Yet, despite these advantages,
link-local retransmissions have never been deployed in the context
of datacenter networks to the best of our knowledge.

We suspect that this is because deploying link-local retransmis-
sion in datacenter networks is challenging for the following reasons:
first, link-local retransmission requires packet buffering while dat-
acenter switch buffers are generally small. The problem is further
exacerbated by high link speeds that will generally require more
buffering. Second, most flows in datacenter networks are short (see
Figure 2), which increases the probability of tail packet loss. Such
tail losses need to be detected and recovered at microsecond scales
to provide bounded tail FCT guarantees and meet the stringent
Service Level Agreements (SLAs) [13, 37, 54, 59]. Third, RDMA is
being widely deployed in modern datacenters [19, 21, 37, 60] which
is more sensitive to packet reordering than TCP [22]. Therefore,
packet ordering needs to be preserved while performing link-local
retransmission.

In this paper, we show that, withmodern programmable switches,
it is now feasible to implement link-local retransmission in datacen-
ter networks. Our system, LinkGuardian, can overcome the above
challenges by implementing the following mechanisms: (1) a fast
and efficient (low overhead) loss detection and recovery protocol
to keep the recovery delay and thus the buffering requirement
small (§3.1 and §3.4); (2) a novel mechanism to detect tail packet
losses quickly and efficiently using a self-replenishing queue of
“dummy packets” without the need for a timeout (§3.2); and (3) a
“reordering buffer” at the receiver switch to maintain packet order-
ing along with a backpressure mechanism to ensure that the buffer
does not overflow (§3.3). While individually these techniques are
relatively straightforward, our key insight is that their combination
is sufficient to make link-local retransmission feasible in modern
datacenter networks.

Conventional wisdom says that link-local retransmissions need
to preserve packet ordering to prevent the transport layer from
triggering spurious loss recovery and reduction of the sending
rate [3, 4, 8, 10, 60]. We will show that in the context of datacenters,
it is not always necessary to preserve packet ordering (§4.3). The
key insight is that most flows in datacenter networks are short [37,
46] and most flows fit within one packet requiring only 1 RTT to
complete [37] (see Figure 2). When a flow fits within a single packet,
we do not need to worry about ordering for both TCP and RDMA.
For multi-packet TCP flows, out-of-order retransmission can still
provide significant corruption loss mitigation for TCP flows at
100G speeds even if we cannot retransmit within TCP’s reordering
window. This is because even when a TCP flow spans multiple
packets, it lasts only a few RTTs (flows being short). This means
that if there is a corruption loss, it mostly occurs just once and thus

Do NOT use the Link Use the link

Disable the link
(CorrOpt)

Avoid the link (RAIL)

End-to-End Link-local

Redundancy
(RAIL,

CloudBurst)

ReTx
(TCP, IRN,
FUSO)

Redundancy
(Ethernet FEC,

Wharf)

ReTx
(Link

Guardian)

Figure 3: Design space for handling corrupting links in data-
center networks.

reordering happens at most once which has minimal impact on the
FCT (§4.4). To this end, we show that a non-blocking variant of
LinkGuardian (that implements out-of-order retransmission) not
only has lower overheads but can scale better to higher link speeds
(§4.1). However, for multi-packet RDMA flows, we currently still
need to preserve packet ordering due to its go-back-N transport
recovery.

LinkGuardian is currently implemented on an Intel Tofino switch
and our testbed evaluation shows that (i) for a 100G link with a
loss rate of 10-3, LinkGuardian can reduce the loss rate by up to
6 orders of magnitude while incurring only 8% reduction in the
link’s effective link speed and requiring less than 90KB of packet
buffer; and (ii) LinkGuardian improves the 99.9th percentile FCT
for TCP and RDMA by 51x and 66x respectively by handling tail
packet losses at sub-RTT timescales. Furthermore, LinkGuardian
is complementary to existing solutions for handling corrupting
links. By augmenting CorrOpt [61] (current state-of-the-art) with
LinkGuardian, we can reduce the total loss rate in a large datacenter
network by at least 4 orders of magnitude, and allow network
operators to operate the network at a higher average capacity that
was not previously possible.

Themain limitation of our current implementation is that recircu-
lation is used for packet buffering because of hardware constraints
(Tofino). With more advanced hardware like the Tofino2 [33], it
will be possible to implement LinkGuardian more efficiently.

2 BACKGROUND & RELATEDWORK
There is a large body of literature on the mitigation of network
faults. In particular, we lay out the design space for mitigating the
impact of corruption packet loss in Figure 3 and discuss below the
tradeoffs involved in previous approaches.

Why can’t we simply disable/avoid the faulty links? The
current state-of-the-art approach to deal with corrupting links is
indeed to disable or avoid them [56, 61]. Doing so, however, reduces
network capacity, and therefore links can only be disabled as long
as the capacity constraints of the network are not violated.

Network capacity constraints are specified as the minimum num-
ber of valley-free paths from a top-of-rack (ToR) switch to the
highest level (spine) of the network [61]. In Figure 4, we show the
configuration for a typical “pod” from Facebook’s state-of-the-art
datacenter fabric network [5], where each ToR switch has 192 (4
fabric switches × 48 uplinks) paths to the spine layer. If the capacity
constraint is 75% and link A starts corrupting packets, it can be
easily disabled and sent for repair as every ToR switch will lose only
1 out of 192 paths to the spine layer. However, if link B also starts
corrupting packets while link A is being repaired (which can take 2
to 4 days), link B cannot be disabled since by doing so switch 1 will

LinkGuardian ACM SIGCOMM '23, September 10�14, 2023, New York, NY, USA

Figure 4: A single pod from Facebook's state-of-the-art data-
center fabric network [5].

lose more than 25% of paths to the spine and violate the capacity
constraint.

A recent study of Microsoft datacenters by Zhuo et al. showed
that under realistic capacity constraints, about 15% of the corrupting
links cannot be disabled[61]. Zhuo et al. hence proposed a solution
calledCorrOptthat �nds a subset of corrupting links that can be
disabled such that the impact of theremainingcorrupting links is
minimized. It is also possible toavoidthe corrupting links via source
routing or by using virtual network topologies (e.g. RAIL [62]).
However, again due to capacity constraints, it is not always possible
to avoidthe faulty links.

Why not rely on end-to-end recovery? Since there is cur-
rently no way to eliminate corruption losses, recovery is left to the
end-to-end transport protocol (TCP/RDMA) by default. However,
as shown in Figure 2, most �ows in datacenters �t within a single
packet and complete within 1 RTT under normal conditions. For
such �ows, under 10-3 corruption packet loss rate, we found that
the 99.9th percentile FCTs increase by 66x and 51x when using
RDMA and DCTCP, respectively (see Figure 10 in Ÿ4.3). In other
words, when the �ows are very short, high-tail FCTs become more
likely since the corrupted packets are more likely to be the �tail�
packets that cause retransmission timeout (RTO).

Using an adaptive RTO [39] with NIC-o�oaded [6, 39, 50] and/or
multipath [11] transport stacks as well as explicit probing (RACK-
TLP [12]) can reduce the recovery delay in case of tail packet loss.
However, the fundamental limitation of any end-to-end recovery
is that it cannot completely eliminate the use of RTO to detect
tail packet losses and even the most aggressive RTO cannot be
lowered below 1 RTT. Lim et al. proposed a timeout-less design
to handle tail packet loss due to congestion, but it does not help
with corruption [35]. LinkGuardian, on the other hand, does not
employ timeouts and performs corruption loss recovery at sub-RTT
timescales.

End-to-end recovery can also be achieved via end-to-end for-
ward error correction (FEC) [57, 62] or packet duplication [53].
However, this adds encoding/decoding latency and also risks wors-
ening congestion by adding redundant bytes forall the packets
across theentirepath. Further, the required decoding at the re-
ceiving end makes it o�-limits for supporting one-sided RDMA
operations where no CPU is involved on one end.

Why not use link-local FEC or specialized transceivers?
The Ethernet standards for 25G/100G [25,26] and 50G/200G/400G [27,
28] specify optional and compulsory FEC at the PHY layer respec-
tively. However, the redundancy parameters are �xed in the cur-
rent standards and cannot be adjusted according to the loss rate.
To investigate the e�ectiveness of Ethernet FEC, we followed the
methodology proposed by Zhuo et al. [62] to add a con�gurable

Table 1: Corruption loss rates observed in Microsoft Datacen-
ters [61].

Loss Bucket % Links

[10� 8, 10� 5) 47.23%
[10� 5, 10� 4) 18.43%
[10� 4, 10� 3) 21.66%

[10� 3+) 12.67%

Total 100%

optical attenuation on an OM4 grade �ber using a Variable Optical
Attenuator (VOA). We then measured the packet loss rates using
pairs of three di�erent transceivers � 10GBASE-SR [17], 25GBASE-
SR (with and without FEC) [16], and 50GBASE-SR [18]. As shown
in Figure 1, the state-of-the-art 50GBASE-SR su�ers signi�cantly
from optical attenuation even with FEC. The trends in Figure 1
suggest that as link speeds are increasing using higher baudrate
and denser modulation, the e�ectiveness of Ethernet's built-in FEC
is diminishing. It is possible that future Ethernet standards could
include a runtime con�gurable adaptive FEC. However, to the best
of our knowledge, currently, there is no hardware support to do
so at 100's of Gbps link speeds. Besides, FEC leads to increased
per-hop latency forall the packets including those that are not
a�ected by corruption [49].

Wharf [20] uses link-local FEC at the level of an Ethernet frame
(L2). Its main drawback is that the redundancy is added toall the
packets even when the corruption loss rates are very small (see
Table 1). Furthermore, it performs meter-based packet dropping
to signal reduced link capacity which may not work well with
delay-based transports [32, 38] and most de�nitely will not work
well with loss-sensitive RDMA. Wharf requires FPGA support on
switches, and it is unclear if the expensive frame-level FEC encod-
ing/decoding can scale to higher link speeds (¡ =100G).

RADWAN [51] uses bandwidth variable transceivers (BVTs) to
dynamically reduce/adapt the modulation rate (PHY link speed)
for WAN links based on the optical attenuation. While Figure 1
suggests that such an approach could work for intra-datacenter
optical links, BVTs are currently not used for intra-datacenter links
as they are much more bulky and expensive compared to the small
form-factor pluggable (SFP) optical transceivers.

Has anyone else tried link-local retransmission in datacen-
ters? For In�niband networks, LLR [41] is an NVIDIA proprietary
feature that breaks an In�niband L2 datastream into �cells� and
performs cell-level retransmission for links that are not longer than
30m. For Ethernet networks, SQR [45] performs link-local retrans-
mission to recover packet loss during fail-stop link failures, but it
does not work for corrupting links. LinkGuardian hence represents
a new and unexplored point in the solution design space for han-
dling packet corruption in (Ethernet-based) datacenter networks.

Our prior workshop paper [30] investigated the potential of this
general idea by implementing out-of-order retransmission within
the TCP's reordering window of 3 packets on 10G links. In this
paper, we build upon that work to show that out-of-order retrans-
mission outside the TCP's reordering window can still be e�ective at
100G speeds. Furthermore, our prior work was a work-in-progress
and it did not describe a complete solution that: (i) completely
masks the corruption packet loss with in-order retransmission (and
is hence amenable to RDMA); (ii) handles tail packet loss; (iii) han-
dles consecutive packet loss; (iv) works at high link speeds; and (v)

ACM SIGCOMM '23, September 10�14, 2023, New York, NY, USA Joshi et al.

can be deployed e�ectively on a large-scale network. Therefore, to
the best of our knowledge, LinkGuardian is the �rst complete solu-
tion for mitigating corruption packet loss in datacenter networks
using link-local retransmission.

3 LINKGUARDIAN
The corruption loss rates in real-world datacenters tend to be small
(see Table 1). This makes it possible for LinkGuardian tomitigate
the impact of corruption packet loss using link-local retransmission.
To detectlink corruption, we use a low-cost control plane scheme
(calledcorruptd) that continuously monitors all optical links in the
network (see Appendix C) and activates LinkGuardian once a link is
found to be corrupting packets. Until it is activated, LinkGuardian
lies dormant and imposes no cost on the network.

In this section, we provide an overview of LinkGuardian's design
by describing a basic link-local retransmission (LL-ReTx) scheme,
the challenges of implementing LL-ReTx at line rates, and, �nally,
the key ideas that make LL-ReTx practical in the context of data-
center networks.

Basic LL-ReTx. LinkGuardian can be modeled as a protocol1

running between a �sender� switch and a �receiver� switch (see
Figure 5). The sender adds a monotonically increasing sequence
number (seqNo) to the transmitted packets and bu�ers a copy of the
recently sent packets (in the Tx bu�er). These sequence numbers
are used by the receiver to detect corruption packet losses. When
there is no packet loss (seqNo 1-2), the receiver piggybacks the
cumulative ACK information on top of reverse direction tra�c
(Ack2). The sender then drops the bu�ered copies of successfully
delivered packets (seqNo 1-2). In case of a corruption packet loss
(seqNo 3 in Figure 5), the receiver detects the gap in the sequence
numbers when it receives the subsequent packet (seqNo 4). The
receiver then sends a high-priority loss noti�cation to the sender
(Lost3) and the sender retransmits the packet with seqNo 3 using a
high priority queue. We provide further details on the basic LL-ReTx
protocol in Appendix A.

Challenges. While this basic LL-ReTx scheme is su�cient to
achieve LL-ReTx, it is not practical in a datacenter because of the
following reasons:
(1) Small bu�ers: Since the switches in datacenter networks have

shallow bu�ers, the sender needs to receive the ACKs quickly
so that it can drop the bu�ered packets fast enough to keep
the Tx bu�er usage small. If we piggyback the ACKs naively,
they could get delayed by an arbitrary amount depending on
the reverse direction tra�c.

(2) Short �ows: Since most datacenter �ows are short (see Fig-
ure 2), mostly 1 packet, it is not always possible to detect the
loss of such packets based on the gap in the sequence numbers.
In Figure 5, if the packet with seqNo 5 belonging to a short �ow
is lost, then the basic LL-ReTx scheme cannot detect the same
until a subsequent packet (seqNo 6) is transmitted. This can
lead to high-tail FCTs.

(3) RDMA �ows: The use of RDMA in datacenters networks is now
becoming increasingly commonplace [19, 21, 37, 60]. Compared
to TCP, RDMA performance is very sensitive to packet ordering

1Note that the protocol runs per link (per port) rather than per �ow.

Figure 5: LinkGuardian Design Overview.

due to the lack of a �reordering window� [22]. The basic LL-
ReTx above does not preserve the original packet ordering e.g.
when seqNo 3 is lost in Figure 5.

LinkGuardian incorporates three key ideas on top of the basic
LL-ReTx scheme to address these challenges and make it practical
in datacenter networks:
(1) Self-replenishing queue of ACK packets (Ÿ3.1): LinkGuardian

implements a strictly low-priority queue with one ACK packet
at the receiver switch (1 in Figure 5). This means that there
will always be packets in the reverse direction even when there
is no reverse direction tra�c to piggyback the ACKs.

(2) Self-replenishing queue of dummy packets (Ÿ3.2): Link-
Guardian also implements a similar strictly low-priority queue
of dummy packets at the sender switch (2 in Figure 5). The
dummy packets get sent out as soon as there is no regular tra�c
to allow the receiver to quickly detect tail packet losses (e.g.
seqNo 5 in Figure 5).

(3) Reordering Bu�er without Over�ow (Ÿ3.3): To preserve
packet ordering, LinkGuardian implements a reordering bu�er
on the receiver (3 in Figure 5). A naive design would result in
bu�er over�ow at today's datacenter link speeds. To prevent
this, we use a backpressure algorithm to throttle the sender
when necessary.

Scope and assumptions.Our goal is not to completely elimi-
nate corruption packet loss because it is too costly to achieve such
a guarantee. Instead, we focus on the more modest goal of reducing
the corruption packet loss rate to an operator-speci�ed target level.
To achieve the target e�ective loss rate, LinkGuardian also handles
the case that the retransmitted copy of the packets could get lost
too (Ÿ3.4). For the following sections, we assume that a corrupting
link corrupts packets only in one direction which is the case with
91.8% of corrupting links in production [61]. However, we should
highlight that handling bidirectional corruption would require only
minor modi�cations which we describe in Ÿ5.

Operation modes. LinkGuardian in itsdefaultmode preserves
packet ordering. However, we also allow running LinkGuardian
in a simple mode called LinkGuardianNB, where we disable the
mechanism that maintains packet ordering. Our results in Ÿ4.3 show
that LinkGuardianNB is e�ective in mitigating corruption packet
loss for short TCP �ows because of the small �ow sizes as well as
TCP's support for reordering window and selective recovery.

3.1 Fast ACKs to prevent bu�er over�ow
When there are no corruption losses, the sender uses the ACK
information from the receiver to clear its bu�er by dropping the
bu�ered packets that were successfully received. Therefore, the
receiver must send the ACK information as soon as possible to
keep the Tx bu�er overhead low. While this can be achieved by
maintaining a continuous stream of ACK packets, it would add

LinkGuardian ACM SIGCOMM '23, September 10�14, 2023, New York, NY, USA

Algorithm 1: De-Duplication & In-Order Recovery
Apply to: protected, protected-reTx, recirculating rx-bu�ered pkts

1 if pkt.seq_no== ackNo then
2 forward();
3 ackNo = ackNo + 1;
4 else if pkt.seq_no¡ ackNo then
5 mark_pkt_as_rx_bu�ered();
6 recirculate();// will be subjected to the algo again

7 else if pkt.seq_noŸ ackNo then
8 drop();// de-duplication

signi�cant overhead in the reverse direction. The overhead can
be minimized by piggybacking the ACK information on regular
packets, but this can cause the ACK signal to be delayed when there
is no tra�c in the reverse direction.

To address this problem, we introduce a novelself-replenishing
ACK packet queue that has a strictly lower priority compared to
the normal packet queue at the receiver (see Figure 5). The ACK
packet queue is initialized with a single minimum-sized explicit
ACK packet which will be sent as soon as the normal packet queue
is empty. When the normal packet queue is not empty, the ACK
information would be piggybacked on a normal packet. In addition,
every time an explicit ACK packet is sent, we replenish the queue
by adding a new explicit ACK packet back to the same queue using
egress mirroring.

3.2 Detecting Tail Losses for Single-Packet
Flows

Single-packet �ows are common in datacenters [7, 34, 37, 47, 52].
Since losses can only be detected at the receiver from the gap in the
sequence numbers, when the last packet before a short break in the
transmission is corrupted and lost, the receiver would not detect
the loss until the packet transmission resumes. The most common
approach to detect such tail losses is to employ retransmission
timeouts [48]. However, in order to avoid spurious retransmissions,
retransmission timeouts are required to be set conservatively con-
sidering worst-case delays [35]. To eliminate the need for a timeout,
we add anotherself-replenishingqueue at the sender with a sin-
gle �dummy� packet that has a strictly lower priority compared to
the normal packet queue (see Figure 5). Each time when the nor-
mal packet queue at the sender is empty, the �dummy� packet will
be transmitted and the gap in sequence numbers can be detected
immediately at the receiver.

3.3 Reordering Bu�er without Over�ow
To preserve packet ordering after a corruption loss is detected, the
receiver will need to bu�er the subsequent out-of-order packets
until the retransmission is received from the sender switch. We
implement this bu�ering by using a recirculation port queue as the
�reordering bu�er� (Rx Bu�er in Figure 5). Packets received after
the lost packet are bu�ered using recirculation, and this means
that we need a way to ensure that the packets are forwarded in
the right order after the lost packet is received from the sender.
Furthermore, if extra copies of the retransmitted packet were to be
received (Ÿ3.4), the extra copies need to be dropped (de-duplication).
We achieve this by using a single state variable calledackNo which
determines the correct next packet to be forwarded ahead. The

Algorithm 2: Backpressure Mechanism

Input: curr_qdepth;// recirculation port's queue size

Initialization: curr_state = resume;
1 if curr_qdepth >=pauseThreshold && curr_state == resumethen
2 send_pause();
3 curr_state = pause;
4 else if curr_qdepth <=resumeThreshold && curr_state == pausethen
5 send_resume();
6 curr_state = resume;

Figure 6: Logical view of receiver-side reordering bu�er (re-
circulation port queue).
(protected) packets from the sender as well as the receiver-bu�ered
packets are continuously checked against theackNo and sent back
into the recirculation queue until it is their turn to be forwarded.
The pseudo-code for this is shown in Algorithm 1.

Since each retransmission takes a small but non-negligible delay,
the reordering bu�er will keep �lling up with each packet loss if
the subsequent packets continue to arrive at line rate, and even-
tually, the reordering bu�er would over�ow. To prevent this, we
employ a backpressure mechanism where the receiver switch sends
pause/resume messages to the sender switch. We only pause/resume
the normal packet queue on the sender switch (see Figure 5) so as
to not a�ect the retransmission of the lost packets. The underlying
principle is that we want to pause the transmission of the normal
packet queue on the sender just enough to keep the reordering
bu�er usage on the receiver switch to a small non-zero value which
we set as 2 MTU (see Figure 6).

We note that after the receiverdecidesto send a resume mes-
sage, there is a short delay calledt flight _resume before the normal
packet queue on the sender is resumed. TheresumeThreshold is
therefore set to a value such that during thet flight _resume time,
the reordering bu�er will not be fully emptied (see Figure 6). Since
the thresholds in our backpressure mechanism are similarin spirit
to the PFC-based backpressure, we follow DCQCN's recommenda-
tion [60] to set thepauseThreshold by leaving 2 MTU worth of
space as hysteresis (see Figure 6). The overall backpressure mecha-
nism is described in Algorithm 2. Essentially, a pause message is sent
when the bu�er level reaches thepauseThreshold ; and a resume
message is sent when the bu�er falls below theresumeThreshold .
Since Algorithm 2 operates on a per-packet basis, we use a �ag
curr _state to avoid sending redundant pause/resume messages.

We note that LinkGuardian's backpressure mechanism is not
always activated because datacenter link utilization is typically
low � less than 30% for� 85% of time [58]. It is activated only if
a corruption packet loss occurs during a high (¡ 90%) utilization
burst which lasts long enough for the reordering bu�er to build up
to the pauseThreshold .

3.4 Mitigating Potential ReTx Losses
If the link corruption rate is high, it is plausible that a retransmitted
packet might also be lost. Therefore, to improve the odds of a suc-
cessful retransmission, the sender retransmits not one, but multiple
(#) copies of a bu�ered packet in response to a loss noti�cation.

ACM SIGCOMM '23, September 10�14, 2023, New York, NY, USA Joshi et al.

Since the original packet was already transmitted (and lost), the
total number of copies transmitted for the lost packet would be
¸ 1, giving us an e�ective loss rate of¹02CD0;_;>BB_A0C4º ¹# ¸ 1º .
Since our goal is not to completely eliminate corruption packet
losses but to reduce the e�ective loss rate to an operator-speci�ed
target level, we have the following relation:

¹02CD0;_;>BB_A0C4º ¹# ¸ 1º Ÿ= ¹C0A64C_;>BB_A0C4º (1)

For example, if a target loss rate of 10-8 is desired by a network
operator and the actual loss rate on a corrupting link is 10-4, then
retransmitting a single copy of the bu�ered packet (# = 1) would
su�ce to achieve an e�ective loss rate of 10-8. Now, solving Equa-
tion 1, we get the number of retransmitted copies (#) as:

=¡
;>610¹C0A64C_;>BB_A0C4º
;>610¹02CD0;_;>BB_A0C4º

� 1 (2)

Since# is an integer in practice, we assign# the next integer
value by doing a248;on the RHS term of Equation 2. Also, note that
since the loss rates are typically very low (Table 1), this strategy to
retransmit multiple copies adds a very small overhead.

3.5 Implementation Details
LinkGuardian is implemented on an Intel To�no programmable
switch in about 1,800 lines of P4 code and runs entirely in the dat-
aplane. For each packet to be protected, the sender switch adds
a 3-byte LinkGuardian data header, consisting of a 16-bitseqNo
and other metadata: theseqNo era and the packet type (original or
retransmitted). To piggyback the ACK information on the reverse
direction tra�c, the receiver switch adds a similar 3 byte Link-
Guardian ACK header. During bootstrapping, theself-replenishing
queues of the dummy and the ACK packets are initialized by in-
jecting a single minimum-sized packet from the switch control
plane. All the state variables are maintained on a per-port basis
using SRAM-based register memory. By default, LinkGuardian pre-
serves ordering (Ÿ3.3) and provides a runtime option to switch to
the non-blockingmode (LinkGuardianNB) where ordering is not
preserved.

Backpressuring the normal packet queue. The normal packet
queue on the sender switch can be paused or resumed (Ÿ3.3) using
To�no2's advanced �ow control primitives [33]. However, since
our current implementation is on To�no, we use PFC pause/resume
frames. Speci�cally, the receiver switch generates PFC pause/resume
frames as dictated by Algorithm 2, which are then absorbed and
processed by the RX MAC of the corrupting link on the sender
switch. We note that such an implementation does not risk a PFC
storm or deadlock since the normal packet queue on the sender
switch does not further generate any PFC pause/resume frames.

Handling seqNo Wrap-around. We handleseqNo wrap-around
by including an additional �era bit� along with the sequence num-
ber which toggles between 0 and 1 each time the sequence number
wraps around. We perform an �era correction� when comparing
two sequence numbers belonging to di�erent eras, where we sub-
tract a constant N/2 from both the sequence numbers (N is the
sequence number range). This works correctly as long as the two
di�erent-era sequence numbers are not more than N/2 apart.

Handling consecutive packet losses. To decide which packets
to retransmit, the sender switch maintains a lookup tablereTxReqs
which is updated by the receiver (details in Appendix A.1). When

consecutive packets are lost, multiple entries inreTxReqs need
to be updated simultaneously by the loss noti�cation packet. If
reTxReqs is implemented as a single register, such a simultaneous
update is not possible due to hardware limitations. Therefore, we
implementreTxReqs across multiple 1-bit registers (details omitted
for brevity) where the number of registers required is equal to the
maximum number of consecutive packets lost. In our current imple-
mentation, we provision 5 1-bit registers (across 2 pipeline stages)
which based on our measurement results (details in Appendix B.2)
can handle 99.9999% of corruption loss events at an unreasonably
high packet loss rate of 5%.

Preventing transmission stalls. In spite of our best e�orts,
there is still a small but non-zero probability that a retransmission
will not be successful. Because we bu�er packets at the receiver
until the retransmission for the missing packet is received, this
could stall the transmission inde�nitely and cause the reordering
bu�er to over�ow. To handle this rare but potentially fatal event, we
implement a timeout calledackNoTimeout at the receiver. If a re-
transmission does not occur within the timeout period, the receiver
ignores the lost packet, increments theackNo , and continues with
the remaining packet transmissions. TheackNoTimeout is set to a
value greater than the maximum expected delay in receiving the
retransmission after a packet has been found to be lost (details in
Appendix B.1). To update theackNo at the receiver when there is an
ACK timeout (see Ÿ3.3), we use periodic packets from the switch's
packet generator for timekeeping [31]. In our implementation, we
set the rate of these timer packets to 10 Mpps (� 1% of the switch's
pipeline processing capacity).

Packet Generation. To create multiple copies of a bu�ered
packet during retransmission (in case of a high loss rate), the sender
switch uses the multicast primitive. Upon detecting a loss, the re-
ceiver switch uses ingress mirroring to generate the loss noti�ca-
tions. Whenever PFC pause/resume packets need to be sent by the
receiver, we modify the timer packets and send them to the sender
switch.

3.6 Repairing Corrupting Links in Practice
Recall that LinkGuardian is activated on a link only when the link
is found to be corrupting packets (Ÿ3). However, if we only enable
LinkGuardian and do nothing to repair the corrupting links, then
over a long period of time (� 1-2 years), we might end up having
LinkGuardian activated on the majority of links in a large datacenter
network. Therefore, as a long-term strategy for maintaining the
network, periodically, we will need to bring down the corrupting
links so that they can be repaired.

A simple way to do this is to run an algorithm like CorrOpt [61]
to safely schedule LinkGuardian-enabled links for repair without
violating capacity constraints. In particular, when a link starts cor-
rupting packets, we immediately enable LinkGuardian on it to
reduce the e�ective loss rate to an acceptable rate. Then we run
CorrOpt's fast checker algorithm to check if the link can be safely
disabled and scheduled for repair. If so, we disable the link and
schedule for repair. Otherwise, the link continues to operate with
corruption while LinkGuardian mitigates the impact on application
performance. As links get enabled again after their repair is com-
plete, we run CorrOpt's optimizer algorithm to see if any of the

LinkGuardian ACM SIGCOMM '23, September 10�14, 2023, New York, NY, USA

Figure 7: Testbed w/ Variable Optical Attenuator (VOA).

LinkGuardian-enabled corrupting links can be safely disabled and
scheduled for repair. What this joint strategy also demonstrates
is that instead of being in competition with previously proposed
algorithms, LinkGuardian is complementary to them.

4 EVALUATION
In this section, we present our evaluation results for LinkGuardian
(LG) and its out-of-order recovery variant LinkGuardianNB (LG_NB).
In particular, we seek to answer the following questions:
(1) How e�ective is LinkGuardian at masking the corruption packet

losses? Are we able to reduce the e�ective loss rate to the
operator-speci�ed target as desired? And what is the corre-
sponding reduction in link speed? (Ÿ4.1)

(2) How does LinkGuardian interact with the end-point transport
protocols? (Ÿ4.2)

(3) How well does LinkGuardian handle tail packet loss and im-
prove FCTs for short and single-packet �ows? (Ÿ4.3, Ÿ4.4)

(4) How do the various mechanisms of LinkGuardian contribute to
its good performance? (Ÿ4.5)

(5) How much bu�ering do we need and what are the associated
overheads and costs of deploying LinkGuardian? (Ÿ4.6)

(6) How does LinkGuardian's performance compare with Wharf [20],
the state-of-art link-local FEC solution? (Ÿ4.7)

(7) When deployed in a large-scale network, how e�ective is Link-
Guardian in reducing the corruption packet loss and improving
the overall network capacity? (Ÿ4.8)

Testbed Setup.We use the testbed setup shown in Figure 7,
wheresw2 andsw6 are connected by an OM4 grade �ber optical
�ber link. Depending on the experiment, links are either all 25G or
all 100G.sw2 andsw6 act as the LinkGuardian sender and receiver
respectively and we restrict their recirculation bu�ers to 200 KB.
Following the methodology used in [62], we introduce corruption
packet loss on the link betweensw2 andsw6 using a VOA. We set
LinkGuardian's target loss rate2 to 10-8 and the number of retrans-
mitted packet copies is then determined by Equation 2 depending
on the actual loss rate.

Using the switch control plane, we poll the port counters for
ports denoted by A, B, C and D in Figure 7. These counters enable
us to measure the sending rate/throughput of an endpoint sender,
the actual loss rate incurred due to the VOA, and the e�ective loss
rate and link speed achieved by LinkGuardian. Before starting an
experiment, we measure the actual loss rate by sending 1B MTU-
sized packets across the corrupting link and checking the di�erence
between counters B and C. We also poll the queue occupancies on
sw2 andsw6 using the local control plane.

The servers are equipped with Intel Xeon Silver/Gold CPUs,
128 GB memory, NVIDIA CX5 and CX6-DX NICs (25G/100G), and

2For MTU-sized packets, a loss rate of 10-8 corresponds to a bit error rate (BER) of
10-12 which is considered a healthy/non-corrupting link [62].

Figure 8: E�ective loss rates achieved by LinkGuardian (LG)
and LinkGuardianNB (LG_NB) and the e�ective link speeds.

run Linux kernel 5.4.0-91-lowlatency on Ubuntu 20.04.3. For our
experiments, we use kernel-based DCTCP and NIC-based RoCEv2
(RDMA) transports. For TCP, TSO, SACK, RACK-TLP, and ECN
(100 KB marking threshold [14]) are enabled and')$ <8= is set to
1 ms. The network RTT for a TCP sender is� 30` s. For RoCEv2, we
use a one-sided RDMA_WRITE operation using NIC-based reliable
delivery (RC [42]) which we found to have a')$ of � 1 ms.

Parameters. LinkGuardian uses 3 parameters:ackNoTimeout ,
resumeThreshold , andpauseThreshold . As discussed in Ÿ3.5, we
set theackNoTimeout to 7.5` s and 7̀ s as we found the maximum
retransmission delays to be 6` s and 5.5̀ s for 25G and 100G links
respectively. For theresumeThreshold (Ÿ3.3 and Figure 6), we
measured the maximumt flight _resume values to be 1.9̀s and 1.6̀ s
for 25G and 100G links respectively. Therefore, we conservatively
set theresumeThreshold at 40 KB and 37 KB for 25G and 100G
links respectively as the recirculation-based bu�er drains at 100G.
Since we use a �xed hysteresis of 2 MTU, thepauseThreshold is
resumeThreshold + 2 MTU. We provide more details on parameter
tuning in Appendix B.1.

4.1 E�ective Loss Rate & Link Speed
Using the packet generator onsw2 (see Figure 7), we conduct a
�stress test� by sending MTU-sized packets at line rate and evaluate
LinkGuardian using three representative loss rates observed in
production (see Table 1): 10-5, 10-4, and 10-3. As prescribed by
Equation 2, LinkGuardian retransmits 1, 1, and 2 copies for each lost
packet for these loss rates, respectively. This should theoretically
result in loss rates of 10-10, 10-8, and 10-9, respectively. In Figure 8,
we plot the observed (e�ective) loss rates achieved by LinkGuardian
and the corresponding e�ective link speeds for 25GBASE-SR and
100GBASE-SR4 links. We observe that, except for the 25G link with
10-3 loss rate, the e�ective loss rates for both LinkGuardian and
LinkGuardianNB closely match the theoretically expected loss rates.
For the 25G link at the 10-3 loss rate, our investigations showed that
the corruption losses are not independent and identically distributed
(i.i.d.) and we suspect that this is the reason why the e�ective
loss rate deviates from the theoretically expected loss rate of 10-9.
However, it is still very close to the target loss rate of 10-8.

For e�ective link speed, we see that LinkGuardianNB scales
much better to higher link speeds and higher loss rates compared
to LinkGuardian while achieving similar e�ective loss rates. This is
because, unlike LinkGuardian, LinkGuardianNB does not preserve
packet ordering and therefore does not incur intermittent pauses
in the link transmission. Nevertheless, for a 100G link with a high

ACM SIGCOMM '23, September 10�14, 2023, New York, NY, USA Joshi et al.

(a) LinkGuardian.

(b) LinkGuardian with backpressure mechanism disabled.

Figure 9: Performance of LinkGuardian for DCTCP on a 25G
link with 10 -3 loss.

actual loss rate of 10-3, LinkGuardian can reduce the loss rate by
up to 6 orders of magnitude while incurring only an 8% reduction
in the link's e�ective link speed while preserving packet ordering.

Timeouts in practice. Recall from Ÿ3.5 that when LinkGuardian
preserves ordering, it implements anackNoTimeout which is trig-
gered when LinkGuardian fails to recover a lost packet i.e. when
all the retransmitted copies are lost. We used a simple counter on
the receiver switch to measure the total number of timeouts across
all the LinkGuardian (LG) experiments in Figure 8. We found that
for all the packet loss events (� 31M), only 476 (0.0016%) of them
had timeouts. This con�rms that theackNoTimeout is merely a
fallback mechanism that occurs rarely in practice.

4.2 Impact on Transport Protocols
Our high-level goal is to mask the corruption packet losses from
the transport layer. While we showed in Ÿ4.1 that LinkGuardian
can reduce the e�ective loss rates, what matters is the net impact
on transport protocols. To understand the impact of LinkGuardian,
we send single �ow TCP tra�c from h4 to h8 using iperf with all
links set to 25G. We evaluate three di�erent TCP variants: CUBIC,
DCTCP, and BBR, as they use congestion loss, ECN, and delay as
congestion signals respectively. We consider BBR to be representa-
tive of delay-based transport protocols since the implementations
for TIMELY [38] and Swift [32] are not readily available.

In each experiment, we start the setup with no corruption loss.
At the 2-second mark, we introduce a loss rate of 10-3 on the link,
and approximately 5 seconds later, we enable LinkGuardian. We
plot the results for DCTCP in Figure 9a. The e�ective link speed in
the �gure is measured separately by sending a line rate UDP �ow
under the same experiment conditions. We see that the throughput

(a) DCTCP.

(b) RDMA WRITE

Figure 10: Top 1% FCTs for 143B �ows on a 100G link.

is reduced sharply once corruption losses are introduced. Upon
enabling LinkGuardian, the corruption losses are eliminated and
the throughput returns to a level comparable to the e�ective link
speed. We also notice that the slightly lower e�ective link speed
leads to a build-up in the �ow's bu�er at the sender switch (shown
as �qdepth�) triggering ECN marking. This result also demonstrates
that since LinkGuardian only deals with packetstransmittedon the
link, it works well even if the link has congestion. Overall, we see
that LinkGuardian's backpressure mechanism is e�ective at keeping
its receiver-side bu�er occupancy (labeled as �Rx bu�er�) low. We
observe similar results with CUBIC and BBR (see Appendix B.3).

Backpressure Not Considered Optional. In Figure 9b, we also
plot the results when the backpressure mechanism is disabled. We
now see a large number of end-to-end retransmissions because the
reordering bu�er (Rx bu�er) periodically builds up and over�ows.
In fact, the observed packet losses after enabling LinkGuardian
are so severe that the random corruption packet losses in the pe-
riod between 2 and 8 seconds are barely visible in Figure 9b. The
throughput is also lower compared to the earlier results shown
in Figure 9a. In other words, the backpressure mechanism is criti-
cal for ensuring that the bu�ering at the receiver switch works as
intended.

4.3 Tail Packet Loss and Short Flows
One-packet Flows. To evaluate how e�ectively LinkGuardian han-
dles tail packet losses, we measure the FCT of 143 B DCTCP and
RDMA write (RDMA_WR) �ows (300K trials) in our testbed with
all links set to 100G while introducing a corruption loss rate of
� 10-3. 143 B is the most frequent �ow size in the Google all RPC
workload [52]. It is clear from our results in Figure 10 that both
LinkGuardian and LinkGuardianNB are able to mask the corrup-
tion losses so e�ectively that the performance at 10-3 loss rate
becomes indistinguishable from the case when the link is lossless.
LinkGuardian and LinkGuardianNB achieve the same performance
since we do not need to worry about ordering in case of single
packet �ows. We note that the result in Figure 10 is also representa-
tive of all other �ow sizes for workloads in Figure 2 that �t within
a single packet.

Multi-packet Flows . Next, we repeat the experiment with
24,387 B-sized �ows which is the most frequent �ow size in the

	Abstract
	1 Introduction
	2 Background & Related work
	3 LinkGuardian
	3.1 Fast ACKs to prevent buffer overflow
	3.2 Detecting Tail Losses for Single-Packet Flows
	3.3 Reordering Buffer without Overflow
	3.4 Mitigating Potential ReTx Losses
	3.5 Implementation Details
	3.6 Repairing Corrupting Links in Practice

	4 Evaluation
	4.1 Effective Loss Rate & Link Speed
	4.2 Impact on Transport Protocols
	4.3 Tail Packet Loss and Short Flows
	4.4 Why does out-of-order recovery work for TCP?
	4.5 Contribution of different mechanisms
	4.6 Overhead
	4.7 Comparison with Wharf
	4.8 Effectiveness in large-scale deployment

	5 Discussion & Future work
	6 Conclusion
	Acknowledgments
	References
	A Protocol Details
	A.1 Loss Detection & Notification
	A.2 Sender-side Buffering & Retransmission

	B Additional Experiments and Results
	B.1 Parameter Tuning
	B.2 Consecutive Corruption Packet Loss
	B.3 Impact on CUBIC and BBR transports
	B.4 Overheads

	C Monitoring Links for Corruption
	D Link Corruption Trace Generation

