Energy Efficient Multi-player Smartphone Gaming using
3D Spatial Subdivisioning and PVS Techniques

Bhojan Anand, Zeng Qiang, Ananda L Akkihebbal

School of Computing, National University of Singapore
banand@comp.nus.edu.sg, zen1986@gmail.com, ananda@comp.nus.edu.sg

ABSTRACT

With the advent of feature rich smartphone platforms such as An-
droid and iOS, people can now enjoy a wide variety of applications
on-the-go. Among these applications, games are one of the most
desired types. However, as bigger screens, faster CPUs and inter-
faces supporting higher bandwidth (WiFi, 3G, LTE) consume more
power, battery lifetime becomes a bottleneck on such devices.

In this paper, we present novel techniques that combine 3D spa-
tial subdivisioning, Potentially Visible Set (PVS) and Visual Percep-
tion based Localisation (VPL) methods to estimate the non-critical
game states to save wireless interface energy with minimum pro-
cessing penalty. Our techniques and algorithms are realised in a
commercial game and can save up to 57% of wireless interface en-
ergy while retaining game play quality.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Wireless Commu-
nication; K.8 [Personal Computing]: Games

General Terms
Algorithms, Design, Experimentation, Human Factors

Keywords

Energy; Power; Wireless; Game; Mobile; Smartphone

1. INTRODUCTION

Energy. Growth of battery technology is not on par with the
rest of the technologies in modern smartphones. As most of us
are aware, very few systems today fulfill Mark Weiser’s vision of
“several days of continuous use” for the “Computer for the 21st
Century”. The three main sources of power consumption in smart-
phones are, 1) the processor (CPU/GPU), 2) the display, and 3)
the network interfaces. For the HTC Magic (Android samrtphone),
the measurements show 35-40%, 45-50% and 4-15% power con-
sumption by the wireless interface, the LCD and the rest (CPU,
memory...) respectively [3]. In this paper, we focus on conserving
power at the network interface level.

Games. Games are one of the most-downloaded categories of
smartphone applications. Mobile games are resource-intensive ap-
plications and they consume more power than other common ap-
plications. For example, in our measurements on the HTC Desire

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MM’13-IMMPD’13, October 22, 2013, Barcelona, Spain.

Copyright 2013 ACM 978-1-4503-2399-4/13/10 ...$15.00.
http://http://dx.doi.org/10.1145/2505483.2505491.

HD (Android smartphone), the battery provides 8 hrs of GSM talk
time, while it lasts for only 1hr 50min when the 3D game Kwaak3
[11] is played !. In this paper, we focus on conserving power at
the network interface level in networked multiplayer 3D gaming
environments.

Network Interface. The key mechanism to reduce the power
consumption of wireless interfaces is to put the interface into sleep
mode whenever possible. The challenge is to decide, 1) when to
put the wireless interface into sleep mode? and, 2) how long can
it be in sleep mode without affecting the quality of the game play
adversely?. An obvious answer would be to sleep when the game
state is not important, from the player’s perspective. Almost all
player interactions in a game are with other players who are in a
perceptible range. Hence, the game state of a client is important
when there are other players in its perceptible range. However,
predicting the near-future game state for a client is challenging.

In this paper, we introduce a novel technique that uses the 3D
rendering engine’s knowledge to determine the importance of the
game state. Modern game engines use occlusion culling algorithms
[18, 9] to compute PVS for efficient rendering. We use this PVS
data to determine visibility between two players. In contrast to pre-
vious methods that overlay simple 2D squares or hexagons on the
3D maps [10] to compute distance or visibility between players,
we propose using the 3D data directly from the renderer. Hence
our approach is efficient (minimum computations are required), ac-
curate (we handle the 3D world as it is without overlaying any 2D
structures) and easy to integrate with modern game engines (PVS
is already implemented in most of these modern game engines).
In addition, we use VPL, to filter players based on their distance
to improve scalability. For VPL, we compute Maximum Percepti-
ble Distance (MPD) which is the distance up to which a player can
view other players or bots and interact. As human behaviour is hard
to predict, we use a feedback based error controlling mechanism to
keep the errors within a given threshold.

To test our algorithms, we used the commercially successful
Quake III [14] First Person Shooting (FPS) game and its Android
port (Kwaak3 [11]). We used Quake III because it is open-sourced.
As a fast paced FPS game, Quake III brings maximum challenges
to our approach by demanding lower processing time and network
latency.

2. RELATED WORK

Power Conservation A large body of prior work has also looked
at saving wireless interface power. Meyer et. al [17] show that
power can be saved through better link utilisation while Anastasi
et. al [4] propose a proxy assisted power saving mechanism. Var-
ious authors have also proposed saving power by observing and
exploiting the statistical correlations between applications and the

1 Kwaak3 is an Android port of the game Quake IIT [14]

network traffic [6, 22, 23]. These statistical methods have also been
applied to games [12, 13, 1].

Interest Management There are two widely used categories of
techniques for Area of Interest (Aol) or Interest Management: Dis-
tance and Visibility based techniques. There are various algorithms
for determining the Aol [10] such as Euclidean distance, square
tile distance, hexagonal tile distance [19, 8, 2, 15] and more com-
plex visibility and orientation-based algorithms [7]. However, in all
these works the authors overlay a 2D grid over a 3D game map han-
dling the 3D environment inaccurately. Such basic approaches, re-
sulted in more errors as the number of players increased. Moreover,
the pure visibility or AoV (Area-of-Visibility) based algorithms fail
to work for huge open maps where the players are always visible to
each other. In addition, pure AoV based approaches [19] are not
scalable. If there are n players, for each player p;, we always need
to check the remaining n — 1 players for visibility. Hence the com-
putational cost will be 0(n4) for checking and dynamically predict-
ing visibilities between each other.

There are two main differences in our work. Firstly, we consider
distance and visibility in 3D for improved accuracy. Secondly, we
use the 3D rendering engine’s data directly to avoid additional com-
puting overhead and to increase the efficiency of our algorithms.

3. POWER MANAGEMENT ALGORITHMS

Our power management algorithms are run in two phases, namely
macro scanning and micro scanning. Macro scanning filters the
players by distance and passes only relevant players for micro scan-
ning. Micro scanning queries the PVS from the current area of a
player and puts his wireless interface to sleep mode for a period of
time.

The pseudo code presented in Algorithm 1 outlines the main al-
gorithm.

Algorithm 1 Main

for each server frame do
for each active client do
if client is sleeping then
continue
else
do t = Macro_scan()
if 7 > 0 then
sleep for t msec
else
do 1 = Micro_scan()
if 1 > 0 then
sleep for t msec
end if
end if
end if
end for
end for

Area, Cluster and Portal in a Game World. Area is a space,
partially enclosed by geometric surfaces. Adjacent areas that share
same surfaces are grouped together to form a cluster [21]. Clusters
are separated by a portal. For example, door is a portal, because
player can travel from one cluster to another through it. Thus, a
map is logically divided into clusters through portals. This graph
structure together with areas forms a hierarchical network.

3.1 Macro Scanning Algorithm

We use path-distance to measure the distance from the position
of the current player to the clusters containing the MPD end point
as shown in the Figure 1, so only necessary clusters are added to
the queue for processing. Breadth-First Search (BFS) is used to
traverse clusters in nearest-first order and stopped at the MPD of
the current player. Current player is the player or client who is cur-
rently under consideration for power management. Detailed pseudo

) L |1

.___\‘ MPD

Jser Player [

'\, Mearest Porta

=

to next Cluster MPD

Figure 1: BFS follows the Path Distance of each Cluster

code for macro scanning is presented in Algorithm 2. The algorithm
initialises sleep time to maximum sleep time. Maximum sleep time
is game specific. Setting the wireless interface to sleep mode be-
yond this duration produces noticeable latency in game play. It is
about 180ms [5] for fast paced FPS games and 400ms for slower
RPG games.

Algorithm 2 Macro_scan

clusterQueue: initialize to contain the current player’s (player;) cluster
playerQueue: initialize to empty, will pass to micro scan
sleepTime: initialize to maximum sleepTime (game dependent value)

while clusterQueue is not empty do
cluster = pop clusterQueue
for each player; in cluster; j # i do
if player;’s distance to player; > MPD then
calculate time player; takes to MPD of player; using MS
if time < sleepTime then
sleepTime = time
end if
else
put player; in playerQueue
sleepTime = 0
end if
end for
for each portaly of cluster that has path-distance to player; < MPD do
clusterOther = portal,— >otherCluster
add clusterOther to clusterQueue
end for
for each portal, of cluster that has path-distance to player; > MPD do
calculate the time taken from the portal, to MPD
if time < sleepTime then
sleepTime = time
end if
end for
end while
return sleepTime

The distance from any player to the current player’s MPD can
be easily calculated from the positions of the players. We compute
the sleep time for the current player by dividing this distance by the
players’ relative movement speed as shown in Equation (1). As hu-
man behaviour in a game play is complex, it is hard to predict when
and at what speed (and direction) the user will move his character.
Hence, computing relative movement speed for each pair of play-
ers (n*> combinations in worst case) at every frame is complex and
would incur too much overhead. To keep it practically feasible,
we use estimated average movement speed (here after we simply
refer it as movement speed). If this estimated movement speed is
lower than actual movement speed of the players, there are more
possibilities for errors. Hence, the estimated movement speed is
dynamically tweaked based on error rate, which we describe in the
section 3.3. Error rate is a ratio of total sleep time with error to
total sleep time in a given period.

We stop traversing the clusters after reaching the MPD. Once
the MPD is reached, we conservatively assume that there could
be a player in the next (unexplored) cluster, just behind the por-
tal (door), and he could enter the current cluster (and the MPD of
current player) in no time. To cater for such incidents, the algo-
rithm takes the distance between the MPD of the current player to
the nearest portal (excluding the portal through which the BFS en-
ters the cluster) in the current cluster and computes the sleep time
based on this distance. The shortest of all the sleep times is returned
by the algorithm. Note, if the BFS finds another player within the
MPD distance of current player, it will return zero as sleep time.

MPDdisz(mce (1)
2xXMS

where, MPD gistance - s distance from a player to the MPD of the
current player; MS - is estimated movement speed of players.

As BFS scans the clusters in incremental order and stops at MPD,
our macro scanning is naturally scalable. In huge maps (as in
MMOG games), it is highly efficient.

3.2 Micro Scanning Algorithm

As our spatial subdivision scheme (eg. BSP tree in Quake III
game, Octree in Ogre3D engine) is pre-computed by 3D renderer
and stored together with the data structure of the game map, mi-
cro scanning becomes simple and efficient. For the current player
under consideration we get his PVS from the renderer and check
whether any of the players in the player queue (created by macro
scan) is present in the PVS. The PVS data is usually stored in the
form of bit-array. For example, in Quake III, Area x is visible to
areayif (1 <<y%8) bit of PVS[x*no.of areas+y/8] is set. As-
suming the bit-array structure for PVS, the pseudo code for micro
scanning is described in Algorithm 3.

Sleep Time =

Algorithm 3 Micro_scan

playerQueue: passed as parameter
currentPlayer: index no. of current player

for each player inside playerQueue do
if (1<<player%8) & PVS[currentPlayer * no. of areas + player/8]==1 then
return NO_SLEEP
end if
end for
return FIXED_SLEEP_TIME

In micro scanning, the time to sleep is always fixed. We call it
Fixed Sleep Time (FST). When there are no other players in the
current player’s PVS the client is put into sleep for a FST time. If
FST is too high, there are more possibilities for errors. The FST
value is dynamically tweaked based on the error rate, which we
describe in Section 3.3.

3.3 Feedback based Error Controller

There is a trade off between the error rate and amount of power
saved. The error rate always grows together with the total power
saved. The error threshold (maximum acceptable error rate) really
depends on how much an user can bear with the affected game ex-
perience. At the time of low battery level, he may want to sacrifice
a bit to save more power.

To control the errors according to the Error Threshold (ET) set
by the user, we need to tweak two complex parameters - Move-
ment Speed (MS) described in Section 3.1 and Fixed Sleep Time
(FST) described in Section 3.2 to optimal levels for maximum en-
ergy saving. In our current implementation we have used Additive
Increase and Multiplicative Decrease (AIMD) method to make our
system more conservative on quality. Once the error threshold is
passed we enforce large changes (multiplicative) to FST and MS

to bring down the error as fast as possible. The key advantage of
multiplicative decrease is that it enables all other clients to get the
correct state (eg. position) information about the current player
much faster, resulting in rapid global game state synchronisation
among all clients.

As the game activities are very random and human behaviours
are hard to predict, such feedback based control systems are very
robust and adaptive to different requirements. The pseudo code
presented in Algorithm 4 outlines the AIMD based error control
procedure. Average Error Rate (AER) in the algorithm is the run-
ning average error rate for the past ’t’ time period. Running average
is used to avoid any abrupt changes to FST and MS. Note: After
several sets of experiments we have arrived at the values 2 and 1/4
of the current value for increment or decrement. These values gave
reasonably fast convergence and a well controlled error level.

Algorithm 4 AIMD Based Run-Time Error Controller

- Initialise: FST = 200ms, MS = 500 game unit/ms. Game unit is pixels in most
games. Movement speed here is the normal average movement speed in game. 500
pixels/ms is obtained from multiple game play experiments.
- Let the user set an ET between 1%, 3% and 5%. Higher threshold results in lower
quality and higher power saving. It determines the trade-off between quality and
power.
- Assumption : Main algorithm is running (macro and micro scanning).
while game is not end do
update AER
if AER < ET then
FST =FST + 2
MS =MS -2
else
FST =FST + § «FST
MS =MS — +«MS
end if
end while

4. IMPLEMENTATION

The power management algorithms were implemented and tested
in a community maintained copy of Quake III source called io-
quake3 [14].

We implemented our algorithms in the Quake III server as the
server knows the entire state information of the clients. We used
Ubuntu 10.10 with Eclipse as our development platform. The server
estimated the client’s state and the time period that the client could
sleep without affecting the quality of game play adversely.

In our implementation, we added a new sleep command on top of
the existing client/server communication in the game. The server
used this sleep command to tell specific clients how long to sleep.
Upon receiving this command, the client sent a signal to the wire-
less hardware to make it sleep for the specified time period.

To put the wireless card into sleep mode and wake up fast we
used Madwifi driver [16], which is an advanced Linux based WiFi
driver for WiFi cards with Atheros chipset. MadWifi comes with
Atheros Hardware Access Layer (HAL). The HAL provides hard-
ware support for wireless network adapters. More details on this
can be obtained through the ubuntu man pages [20].

5. EVALUATION METHODOLOGY

Figure 2 shows the testbed used for our experiments. The game
server was implemented and ran on a Dell Precision T7500 com-
puter which came with Intel(R) Xeon(R) E5520 2.26GHz/8MB L3
Cache/12 GB RAM. The game clients were connected through a
wired network and different wireless networks (WiFi, 3G) to the
game server. We used a variety of Lenovo Thinkpad laptops (Model
T61/T60/W500) and Android phones (HTC Magic/Dream/Nexus
One/HTC Desire HD) as game clients. To obtain accurate power
measurements, we used a high-speed multifunction Data Acquisi-

Wireless
G'ame Wireless Base Station Game
Clients (WiFi, 3.5G, ZigBee) Server

fl
() CISCo2600

(s) Router
WiFi | wiFir3.561

PCMCIA GPRS/CPU/
Extender Display

NI’s Multifunction Data
Acquisition Equipment

Measuring Current
Consumption @

1000 cycles/second. @
Data Analysis

(LabVIEW)

Figure 2: Testbed: Game Play and Power Measurement

tion Equipment (DAQ) USB-6251 and a Signal Conditioning Equip-
ment (SC-2345) from National Instruments (NI).

5.1 Defining Evaluation Metrics

In this section we describe our evaluation metrics.

Definition of Error. We define a miss or an error as the case
when a client, on waking up from sleep, finds that there is some
other client in its PVS and MPD.

Sources of Errors. There are 3 scenarios for an error to occur:
1) Other players teleport near to the current player (instantly ap-
pear). 2) Other players run fast towards the MPD region during the
sleep period (Estimated average movement speed in Equation (1)
is too low). 3) The boundary area in PVS test is too small and the
other player is just near to that area and moving towards the current
player (fixed sleep time in micro-scan is too long).

The error rate and quality of the game are computed as,
Total sleep time with errors

@

ErrorRate =

Total sleep time

Accuracy = 1 — ErrorRate 3)

Open and Closed map. We define Open Map as the map which
consists of only a few loosely distributed buildings and most of the
areas in map are flat planes. (Eg. - Simpson’s map of Quake III).
Closed Map is defined as the map that is mainly constructed by
architectural structures, such as the interiors of a castle. It consists
of many rooms separated by door-ways. (Eg. - Q3DM7).

5.2 Small Scale User Study - Methodology

We did a small scale user study with 21 non-author students from
our school to study the effects of the power saving algorithm on
human players’ game play experience. There were 16 male and 5
female students in the age group 22-30.

The study procedure was as follows: First, the participants filled
up basic demographic information in the survey form. Then, they
played the original Quake III game for 10 minutes to get some train-
ing. After that, they played six randomly chosen games from eight
versions (including the original and our modified versions with ET
values 1%, 2%, 3%, 4%, 5%, 6%, 7%). The users compared the
game plays and gave their observation on the quality of the game
play by filling up the questions in the survey form. All the evalua-
tions were done with Quake III game in a networked environment
with up to 10 concurrent players.

5.3 Experiments
For each of our experiments, we ran the game client and played
for around five minutes to capture the data. We varied the maps,

number of players (2, 4, 8, 16...) and networks (WiFi, 3G-WCDMA)
in each of these experiments. We used up to 10 concurrent human
players in each run. To ensure high interactivity and interesting
game play we added a few moderately intelligent bots with the
real human players. We used three different maps developed by
the Quake III Arena team (¢3dmli, g3dm7, Simpsons). q3dml and
q3dm7 are highly occluded closed maps and Simpsons is a open
map with fewer occlusions.

Though we varied the number of clients in each run, to have a
good mix, only some of them ran in power saving mode while the
rest ran in normal mode. Such a combination is realistic and it
enabled us to study the effect of power saving clients on normal
clients. We measured the WiFi interface power consumption of the
mobile clients that were connected to the DAQ.

6. EVALUATION RESULTS

We measured the power (WiFi interface) and error convergence
rate for various map types, player density and error thresholds in
Quake III game.

6.1 Effects of Map Type

Our first experiment was to measure the effects of map type on
amount of energy saved. We set all other variables to fixed values
except the map type. The settings for the experiment are shown in
the Table 1.

Table 1: Experiment Variables Setup for Section 6.1

(| OpenMap | ClosedMap ||
Map: Simpsons Q3DM7
Player no.: 4 4
Error Threshold: 3% 3%

MPD: 2500 game units | 2500 game units
Fixed Sleep Time: 200 200
Movement Speed: 500 500
Game Length: 15 minutes 15 minutes

The graph in Figure 3a shows the test results. The values rep-
resent the total energy (in percentage) saved per client. For closed
maps we saved 34.39% energy with more than 97% accuracy. It is
much higher than 20% energy saving (with same level of accuracy
and player density) reported in our previous work for closed maps
[19].

The contributions of Macro Scan and Micro Scan were logged at
runtime. Overall, in closed maps we saved 4% more energy than
in open maps. This shows our algorithm can function well on both
open maps and closed maps. Most of the energy saved with the
open map came from macro scan while most of the energy saved
with the closed map came from micro scan. This is expected, be-
cause the PVS approach doesn’t gain much on an open map as there
are very few geometric occlusions. Visible distance between play-
ers in an open map is more likely to be greater than the MPD, thus
macro scan can save more energy. But in a closed map, the players
are within the MPD most of time, thus, it is not possible for macro
scan to return a valid sleep time. This experiment shows the impor-
tance of using both macro scan and micro scan to adapt to different
map types and to save the maximum possible energy.

6.2 Effects of Energy Threshold

From the previous experiments we can see, the amount of en-
ergy saved with different map types differs only with respect to
the contribution of macro scan and micro scan. Since they are
equivalently important, in the following measurements we are con-
cerned only about the total amount of energy saved. We chose to

% 0pen Map ™ Closed Map

Energy Saved with 8 players
49.02%

Energy Saved at 3% ET

57.43%

a. MapType vs.
Energy Saved

b. Error Threshold
vs. Player Density

27.20%

No. of Players
>~

c. Player Density
vs. Energy Saved

Figure 3: Effect of map type, error threshold and player density on energy saving

use the closed map for the remaining experiments thus eliminat-
ing the macro scan. With other parameters unchanged, we had two
variables, namely number of players and Error Threshold (ET) to
consider.

Firstly we measured the effects of different error thresholds on
the amount of energy saved. We fixed the number of players to 8,
and ran the experiments with ET of 1%, 3% and 5%. The result in
Figure 3b shows the percentage of energy saved for each value of
ET. The general trend is that for higher ET, more energy is saved.
The rationale behind the increase is that the higher ET results in
higher Fixed Sleep Time. From ET 1% to 3%, there is a 10.34%
increase in the amount of energy saved. From ET 3% to 5%, there
is a 21.82% increase. The non-linearity of increase is explained by
unpredictable fluctuations in players’ interactions.

6.3 Effects of Player Density

To measure the effects of the number of players (player density)
on the amount of energy saved, we fixed ET to 3%, and changed the
number of players to 2, 4 and 8. Note, for FPS games with highly
occluded maps (eg. Quake III), the average number of concurrent
players is around 6, though the game can accept up to a maximum
of 16 players for certain maps [10].

As shown in Figure 3c, fewer players resulted in more energy
savings. For a 2-player game, the current player is in fact alone
for most of the time. Intuitively, the client should sleep up to 80%
of time given that the map Q3DM7.pk3 is quite big. Due to the
overhead imposed by the wireless interface card, only 57.43% of
energy is saved. As the card is switched on/off often, the heat in the
hardware increases, resulting in slow response. It takes about 50-
200 milliseconds to wake-up from sleep mode. This is higher than
the normal 10-50 milliseconds lag. During these mode transition
(sleep-to-wakeup mode) period it is not possible to save energy.

We used off-the-shelf WiFi hardware in our experiments. With
better WiFi cards (with 10-50 milliseconds ON/OFF lag) , we have
estimated that it is possible to achieve close to 80% power saving
for 2 players and up to 50% for 8 players.

6.4 Optimisation of Fixed Sleep Time

The Error Controller is supposed to continuously adjust the Fixed
Sleep Time (FST) and Movement Speed (MS) to optimal values to
save maximum energy while meeting the quality requirement (Er-
ror Rate). The graph in Figure 4a shows how the FST is adjusted to
optimal values over time when playing with 8 players and 5% ET.
(This data is from the same game play used to plot Figure 3c for 8
players). Again , from the same game play data, we have also plot-
ted the graph in Figure 4b which shows the corresponding Average
Error Rate (AER) over the time.

From the Figure 4a we can see, the FST increases linearly for
the first 20 samples (at every tenth frame we took a sample). Then
it jumps down from about 550ms to about 300ms. This is because

the AER at this instant is higher than the threshold 5%; the FST
needs to be shortened in order to keep the AER within the ET. We
shorten FST to 75% of its current value. The AIMD method allows
AER to reduce quickly. The flat portion of the graph means the
AER is close to the ET. At this moment, FST stays relatively sta-
ble. Whenever another error occurs, the FST is reduced again until
the AER is lower than the ET. The graph in Figure 4b shows the
effect of this adjustment. The AER starts from 0. It then increases
until slightly higher than 5%, where FST is forced to be multiplica-
tively reduced. The AER is well controlled within the 5% threshold
which proves our AIMD method is effective.

The graphs in Figure 4c and Figure 4d show the convergence of
AER to ET level for game plays with 3% and 1% ET respectively.
The average convergence time is less than 6 seconds. This can be
shortened further by optimising the sample size and using weighted
average for AER.

6.5 Energy Overheads

There was a linear increase in processor load and memory re-
quirement with number of clients in power save mode. However,
with up to 8 players in power save mode, there was less than 3%
increase in processor load and memory. It resulted in 4% additional
energy consumption. This additional energy consumption is negli-
gible as the processor and memory consume only 4-15% of overall
system energy whereas wireless interface in mobile devices con-
sume up to 40% of system energy. We obtained such efficiency by
relying on the existing PVS data rather than recomputing.

6.6 Small Scale User Study

After training, the users played a set of six randomly chosen
games from eight versions as described in Section 5.2. They were
not informed about the meaning of each version. For each game
play, we asked them to rate how noticeable, if at all, were any net-
work related artefacts in the game, compared to the unmodified
version, on a 5-point Likert scale. Figure 5 shows the user study
results. The results show that the artefacts are almost unnotice-
able up to ET=3% and ET=3% is good enough to save significant
amount of energy as shown in Figure 3c.

No Differen:§ 4.6

Unnclticeablé1 s/ 3.6

3 4
Barely Noticeable

2
Noticeable

Highly Noti:ea%le K
1% 2% 3% 4% 5% 6% 7%

Error Threshold
Figure 5: User Study - ET Varies 1% - 7%)

Fixed Sleep Time

900

ET=5% ET=5%

800 8 players 6% 8 players
700 5%
600 °
500 %
400 5 3%
300 = o
200
100 1%

0 o

1 11 21 31 41 51 61 71 81 91
Samples (Frames) over the game play Time =

FST over
Game Play Time

1 11 21 31 41 51 61 71 81 91
Samples (Frames) over the game play Time

Error Threshold 5%
vs. Energy Saved

Error Rate

6%
5%
4%
3%
2%
1%

Samples (Frames) over the game play Time

Error Threshold 3%

3, 5%
3.0%
2.5%
2.0%
1.5%
1. 0%
0. 5%
0.0%

ET=1%
8 players

ET=3%
8 players

Error Rate

1 11 21 31 41 51 61 71 81 91

Samples (Frames) over the game play Time

Error Threshold 1%
vs. Energy Saved

1 11 21 31 41 51 61 71 81 91

vs. Energy Saved

Figure 4: Effect of feedback based control on FST and Error Rate

Objective Study. Offline analysis of game play data revealed
that there was no significant difference in performance (number of
opponents killed/fragged) of the users between original and power
efficient versions. It varied only by 1.8%. Experts always killed
more opponents than normal users in both normal and power effi-
cient versions.

7.

CONCLUSION AND FUTURE WORK

We have presented a set of techniques which used novel and scal-
able algorithms to save wireless client’s energy. The techniques can
also be applied to reduce game server’s bandwidth requirement. We
can save up to 57% of Wireless Interface Energy (which is, about
22.8% overall system energy) per mobile client without affecting
the quality of the game play adversely using off-the-shelf network
hardware. Our future work will include, extensive studies on differ-
ent feedback based controlling mechanisms, large scale user studies
and integration into commercial game engines.

8.
(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

REFERENCES

Anand, B., Ananda, A. L., Chan, M. C., Long, L. T., and
Balan, R. K. Game action based power management for
multiplayer online games. Proceedings of the 1st ACM
SIGCOMM Workshop on Networking, Systems, and
Applications on Mobile Handhelds (MobiHeld), Barcelona,
Spain, Aug. 2009.

Anand, B., Thirugnanam, K., Long, L. T., Pham, D. D.,
Ananda, A. L., Balan, R. K., and Chan, M. C. Arivu:
Power-aware middleware for multiplayer mobile games.
Proceedings of the Ninth IEEE NetGames, Teipei, Taiwan,
Nov. 2010.

Anand, B., Thirugnanam, K., Sebastian, J., Kannan, P. G.,
Ananda, A. L., Chan, M. C., and Balan, R. K. Adaptive
display power management for mobile games. ACM
Mobisys, 2011.

Anastasi, G., Passarella, A., Conti, M., Gregori, E., and
Pelusi, L. A power-aware multimedia streaming protocol for
mobile users. Proceedings of the International Conference
on Pervasive Services, Santorini, Greece, July 2005.
Armitage, G. An experimental estimation of latency
sensitivity in multiplayer quake 3. Networks, 2003.
ICON2003. The 11th IEEE International Conference on,
pages 137 — 141, sept.-1 oct. 2003.

Bertozzi, D., Benini, L., and Ricco, B. Power aware network
interface management for streaming multimedia.
Proceedings of the IEEE Wireless Communications and
Networking Conference, 2002.

Bharambe, A., Douceur, J., Lorch, J. R., Moscibroda, T.,
Pang, J., Seshan, S., and Zhuang, X. Donnybrook: Enabling
large-scale, high-speed, peer-to-peer games. Proceedings of
ACM Conference on Applications, technologies,
architectures, and protocols for computer communications
(SIGCOMM), Seattle, WA, USA, Aug. 2008.

Bhojan, A., Akhihebbal, A., Chan, M., and Balan, R. Arivu:
Making networked mobile games green. Mobile Networks

[9

—

[10]

(1]

[12]

[13]
[14]
[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

and Applications, pages 1-8, may 2011.
10.1007/s11036-011-0312-8.

Bittner, J., Mattausch, O., Wonka, P., Havran, V., and
Wimmer, M. Adaptive global visibility sampling. ACM
SIGGRAPH 2009 papers, SIGGRAPH ’09, pages
94:1-94:10, New York, NY, USA, 2009. ACM.

Boulanger, J.-S., Kienzle, J., and Verbrugge, C. Comparing
interest management algorithms for massively multiplayer
games. NetGames '06: Proceedings of 5th ACM SIGCOMM
workshop on Network and system support for games, page 6,
New York, NY, USA, 2006. ACM.

Google Open Source Project. A port of Quake3 to Android.
http://code.google.com/p/kwaak3/, 2010.

Gu, Y. and Chakraborty, S. A Hybrid DVS Scheme for
Interactive 3D Games. [EEE Real-Time and Embedded
Technology and Applications Symposium, 2008.

Gu, Y. and Chakraborty, S. Power Management of Interactive
3D Games Using Frame Structures. VLSI Design, 2008.

Id Software. Quake 3 Arena Source Code.
http://ioquake3.org/, July 2010. (Version 3.21).
Kazem, I., Ahmed, D. T., and Shirmohammadi, S. A
visibility-driven approach to managing interest in distributed
simulations with dynamic load balancing. DS-RT, 2007.
MadWifi Organisation. MAdWiFi Wireless Driver for Linux,
Release v0.9.4, Feb. 2008.
http://madwifi-project.org/.

Meyer, M., Sachs, J., and Holzke, M. Performance
evaluation of a tcp proxy in wedma networks. Proceedings of
the Eighth Annual ACM/IEEE International Conference on
Mobile Computing and Networking (MOBICOM), 2002.
Teller, S. J. Visibility Computations in Densely Occluded
Polyhedral Environments. PhD thesis, Technical Report
UCB/CSD-92-708, EECS Department, University of
California, Berkeley, Oct 1992.

Thirugnanam, K., Anand, B., Sebastian, J., Kannan, P. G.,
Ananda, A. L., Balan, R. K., and Chan, M. C. Dynamic
lookahead mechanism for conserving power in multi-player
mobile games. Proceedings of the 31st IEEE INFOCOM
2012, Orlando, USA, Mar. 2012.

Ubuntu. Atheros Hardware Access Layer.
http://manpages.ubuntu. com/manpages/maverick/
en/mand/ath_hal.4freebsd.html/.

Waveren, J. P. V. The quakeiii arena bot.
http://www.kbs.twi.tudelft.nl/docs/MSc/2001/Waveren_Jean-
Paul_van/thesis.pdf. University of Technology Delft, Faculty
of ITS, 2001.

Wei, Y., Chandra, S., and Bhandarkar, S. A statistical
prediction-based scheme for energy-aware multimedia data
streaming. Proceedings of the Wireless Communications and
Networking Conference (WCNC), Atlanta, GA, Mar. 2004.
Yang, S.-R. Dynamic power saving mechanism for 3g umts
system. ACM Mobile Networks and Applications,
12(1):5-14, 2007.

