
Mobile Netw Appl
DOI 10.1007/s11036-011-0312-8

ARIVU: Making Networked Mobile Games Green
A Scalable Power-Aware Middleware

Anand Bhojan · Ananda L. Akhihebbal ·
Mun Choon Chan · Rajesh Krishna Balan

© Springer Science+Business Media, LLC 2011

Abstract With the improved processing power, graphic
quality and high-speed wireless connection in recent
generations of mobile phones, it looks more attractive
than ever to introduce networked games on these de-
vices. However, these games consume higher levels of
energy. While device features and application resource
requirements are rapidly growing, the battery technolo-
gies are not growing at the same pace. Therefore, the
main concern is the limitation of the battery power
of such portable devices to support potentially long-
hour of game play. In this paper we present ARIVU,
a scalable power aware middleware that dynamically
controls the energy consumption of wireless interface
based on the game and system state while maintaining
the user experience. The middleware is able to save up

This work is supported in part by the Singapore Ministry
of Education Academic Research Fund Tier 2 under
the research grant T208B2301. Any opinions, findings,
conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views
of the granting agency, National University of Singapore
or Singapore Management University.

A. Bhojan (B) · A. L. Akhihebbal · M. C. Chan
School of Computing, National University of Singapore,
Singapore, Singapore
e-mail: banand@comp.nus.edu.sg

A. L. Akhihebbal
e-mail: ananda@comp.nus.edu.sg

M. C. Chan
e-mail: chanmc@comp.nus.edu.sg

R. K. Balan
School of Information Systems, Singapore Management
University, Singapore, Singapore
e-mail: rajesh@smu.edu.sg

to 60% of the total energy consumed by the 802.11 g
wireless interfaces for First Person Shooting (FPS)
games and up to 35% of the total energy for Massively
Multiplayer Online Role Playing Games (MMORPG).

Keywords energy middleware · power middleware ·
game engine · mobile game · wireless game ·
server scalability · area of interest · area of visibility ·
green middleware

1 Introduction

In this paper, we present an extended version of
a preliminary scheme that appeared in ACM/IEEE
Netgames 2010 conference [2]. ARIVU is an adaptive
middleware that uses set of novel techniques and algo-
rithms to conserve energy consumed by wireless inter-
face, display and processor of mobile devices without
affecting the quality of game play. For mobile game
clients, the resources that can be managed to save
power include the network, processor, and display. Our
measurements in modern Google Android Phones such
as, HTC Hero and HTC Magic show 45%, 40% and
15% of phone energy consumption by LCD, Wireless
Interface (WiFi or 3G) and CPU respectively, at their
peak levels. In this paper, we will focus on reducing the
energy consumption of the wireless network interfaces.
Display and processor energy conservation can also
be performed based on game state using the same
middleware framework, but we defer that extension
to future work. Most of the recent works on saving
wireless interface power [4, 11] try to put the mobile
client’s wireless interface in sleep mode when there is



Mobile Netw Appl

enough data in the client’s buffer to process. Access
points or servers buffer the packets addressed to the
mobile client until the client wakes-up. For latency
sensitive applications such as real-time media streaming
and networked games these schemes may even tend to
increase overall power usage [3]. Hence we pose the
following question:

How do we minimise the energy requirements of
latency sensitive applications, especially Multiplayer
Mobile Games without affecting the user experience
adversely?.

In this work we present a novel approach which
exploits the game state and user type to optimise power
consumption as well as the bandwidth.To test our mid-
dleware, we used the Quake III [8] first person shooting
(FPS) game and the Ryzom [9] massively multiplayer
online role playing game (MMORPG). We chose these
two game as (1) the code for both game have been open
sourced, (2) both are popular games from popular game
genres [10], (3) FPS and MMORPG games are the
hardest to save power, as they involve large amounts
of real-time player interaction (players are constantly
trying to shoot or interact with each other) and (4) there
exist an Android port for Quake III (called kwaak3).
Our results show that we are able to save up to 60%
of wireless interface power with no perceptible qual-
ity loss. Overall, the main contributions of this paper
are as follows: (1) We present a set of general and
systematic approaches to conserve power consumed
by Wireless Interface while playing multiplayer mobile
games. (2) We analyse and identify the key parameters
that determine the trade-off between game quality and
power saved. (3) Our approach has been realized on
commercial games. We show that power savings can be
achieved even in games with very fast, constant interac-
tion and high frame rate. (4) We provide a simple API
for integrating existing games with our middleware and
building new power aware green games.

2 Design of the ARIVU middleware

The component layout of the ARIVU middleware
is shown in Fig. 1a. ARIVU’s goal is to reduce the
game client’s energy consumption by adaptively vary-
ing resource consumption while maintaining the user’s
game play experience—we do not do server power
management as the server is usually connected to a
power source. To collect necessary information about
the game and make power saving decisions, we created
two specific sub-components of ARIVU. The Resource
Data Collector (RDC) collects the raw data, discretizes
the game map into cells and stores distance and vis-
ibility information from cell to cell. Data from RDC
are used by the Resource Controller (RC) for power
management. We now explain each sub-component in
detail.

2.1 Resource Data Collector (RDC)

The major part of the RDC is a generic API through
which the RDC collects the necessary information
about the game and client resources. The RDC col-
lects two types of data: (1) Client’s game state and
(2) Client’s resource state (client hardware type, net-
work state, battery state).

2.1.1 API for game state

The API is the central part of the RDC. The API
is simple enough for easy integration into existing
and new games. It has only five primary functions
for MMORPG and FPS games which are described
in Fig. 1b. The initialisation function (init), which is
overloaded and it differs for each game genre. The
next function (updateEntityPosition) collects informa-
tion about each ’interactive entity’ in the game. An
interactive entity (or shortly ’entity’ in general) is an

Fig. 1 Architecture and API

b. APIa. Architectural Components



Mobile Netw Appl

entity in a game which can interact with a player such
as, another player (or game client), a Non-Player Char-
acter (NPC) or Artificial Intelligence (AI) character
controlled by the game server, etc. Modern MMORPG
games define ’vision range’ (also known as, ’vision
distance’, ’visibility radius’ or ’Area of Interest-AoI’).
It is a range up to which an entity can actively view
with higher level of detail and interact. Our middleware
makes use of this information. In FPS games the game
world is basically made up of set of convex hulls (called
areas). Group of adjacent convex hulls make a cluster
and clusters are connected by portals. Portals them-
selves are areas which provide path or connection from
one cluster to another. Set of visible areas from current
area is called Potentially Visible Set (PVS) of areas.
PVS is also known as Area of Visibility (AoV). Games
without visionRange, PVS and maxMoveSpeed infor-
mation can set some of these values to ’0’ and it will
be computed by World Discretisation and Initialisation
Engine (WDIE) described in the following section.

2.1.2 World Discretisation and Initialisation Engine
(WDIE)

For MMORPG games and FPS games without area
based discretisation data, WDIE discretises the world
map into hexagonal tiles (Fig. 2a) and pre-computes
visibility and distance between the tiles and stores them
in two matrices for use by Game State Estimation En-
gine (GSEE) and Resource Controller (RC) described
in the following sections. AoI and AoV are computed at
the game server and is based on hexagonal tile distance,
area or the tile visibility algorithm [6] and the player’s
environment. In ARIVU, vision radius (AoI radius) is
bounded to the player’s environment. Vision radius is
small in safe friendly zone (no monsters or enemies)
and high in hostile environments. The actual radius
values are game dependent. In Fig. 2a, the visibility

radius of an entity a could be r1 or r2 depending on its
current environment. PVS (or AoV)- A tile (or area)
is considered visible from another tile if there exists a
point in each of the two tiles that can be connected by
a line segment that does not intersect an obstacle. A set
of visible tiles from current tile forms PVS of current
tile. PVS is symmetric. That is, PVS(tile x) includes tile
y ⇔ PVS(tile y) includes tile x.

2.1.3 Game State Estimation Engine (GSEE)

Based on the run-time position update data (through
function updateEntityPosition) for each entity (player
or NPC) at the server side, the GSEE dynamically
subscribes the entity to the tile or area in which it is
currently residing. We refer the client currently under
consideration for saving power as the ‘current client’
(or current player). If there is no other interactive
entities inside the current client’s vision radius, the state
is considered non-critical for the current client. We call
this as game state in the rest of the paper.

2.1.4 Resource state—network state & device state

The network state comprises of the round trip time
(RTT), available bandwidth, and packet drop rate be-
tween the client and the server. In our current im-
plementation, we only consider the RTT using ping
probes. Current implementation of ARIVU uses only
current battery state, calculated from the remaining
battery life, to decide on an appropriate aggressive-
ness (trading off game-play quality for increased power
savings) setting.

2.2 Resource controller (RC)

The resource controller (RC) follows client/server ar-
chitecture. A key consideration for the RC is determin-

Fig. 2 World discretisation
and macro algorithms

a. Tile Distance/Visibility b. Dual Ring or Incremental Look ahead 



Mobile Netw Appl

ing how long to put the wireless network interface in
sleep mode. First the RC checks the current client’s
game state (GSEE). If game state is not critical, the
RC enters Macro Level (has larger sleep duration)
power management for the current client; Otherwise,
it enters Micro Level (sleep duration is limited) power
management. These are explained below.

2.2.1 Macro power management

At the macro level, the server side RC makes power
management decision and sends sleep and aggres-
sive_level commands to the clients. It’s decision relies
on the position of all entities and resource states of all
clients provided by the RDC. Depending on the game
genre and number of entities in the game, it can use
either single-ring (suitable for MMORPGs) or dual-
ring algorithms (suitable for FPS games) given below.

Single Ring Algorithm (SRA) Single ring algorithm is
based on the relative velocity between the interactive
entities. In Fig. 2a, it takes s1 time for client c to reach
client a’s AoI if AoI radius = r1. Similarly, it takes s1
time for client b to reach client a’s AoI if AoI radius =
r2. Here, s1 and s2 are time-distance values (that is,
time to travel a distance) computed based on relative
velocity between the clients. Single ring algorithm esti-
mates the Potential_Sleep_Duration (PSD) of a client
as given below.

The algorithm finds the nearest n interactive entities
around the current client and estimates the time re-
quired for them to reach the current client’s AoI range.
The smallest of these reach-time values is set as the
PSD. The PSD is the safest duration and there is very
less chance for important game state changes during
this period. For a game with m interactive entities,
the algorithm takes O(m2) time to find the nearest n
entities. To make it scalable for Massively Multiplayer
Online Games (MMOGs), RC uses interaction recency
as the key strategy for games in which some kind
of grouping or clustering semantics is employed. RC
maintains list of recently interacted entities for each
client in Most Recent Interaction Table (MRIT) of size
m × p, where m is number of clients and p is number of
interactive entities a client is interested in. Each table
row i maintains identification of p most recently inter-
acted players with client i. For each client RC computes
and compares the distance with only p other clients or
entities. Here the tradeoff is, as p grows the accuracy
increases at the cost of computation. Games without
grouping semantics may have completely random order
of interaction between the entities and MRIT approach

Algorithm Single_Ring_Algorithm (SRA))

for each entity i do

//get current proximity of all interactive entities
currentProximityi = getEuclideanDistance
(currentClient, entityi);

// adds current value to history and removes oldest
value pastProximityi.add(currntProximityi);

//get n nearest entities; we are interested only on n nearest
entities
interestingEntities1...n = getNearest(n entities);

for each interestingEntity j do

// compare the historical proximity to determine new
relative

// velocity (bi_directional). entities coming closer or
going away?

relativeVelocity j = calculateRelativeVelocity
(pastProximity);

//calculate potential sleep time. That is, s1 or s2 in
Fig. 2a

PSD = (currentProximity j − AoI_Visibility_
Radius)/relativeVelocity j;

//If PSD <= 0, return 0 and exit SRA. Entities
found inside the ring

if (PSD <= 0)return(0);

//return the PSD of the entity which is expected to reach
the client’s AoI Visibility Radius f irst
return smallest(PSD1..n)

becomes ineffective. For such games, Dual Ring algo-
rithm is used.

Dual Ring Algorithm (DRA) Dual ring algorithm
is based on incremental lookahead mechanism. It
is highly scalable than SRA. ARIVU enters this
part when there is no entities/players inside the vi-
sion range of the current player. The DRA algo-
rithm looks beyond the vision range by gradually
increasing the search area. It checks for other en-
tities in the area from vision range of the current
player to distance s as shown in Fig. 2b. Where, s is
100 ms time step from the vision range of the current
player (p1) and it is computed as, s = visionRange +
(estimatedAveragePlayerVelocity × 100 ms)

If there is no other entity in the range s, then the
algorithm increases s by another 100 ms time step and
checks again. This is repeated until an entity is found or



Mobile Netw Appl

max sleep threshold (game dependent parameter [1])
is reached. PSD is set to either the value of s prior to
finding the first entity or max sleep threshold. We have
selected 100 ms time-step as the smallest possible value
for s as sleep duration below 100 ms are too small to
save any significant energy [1].

2.2.2 Micro power management

If game state (AoI state) is critical, the RC enters Micro
Level (sleep duration is limited) power management.
At micro level the RC relies on either visibility from
area-to-area or orientation of the players. Area-to-area
visibility is suitable for games with maps having several
walls and obstacles (eg. common maps of FPS games).
Player orientation is suitable for game with maps hav-
ing huge open areas (eg. common maps of MMORPG
games).

Player orientation based approach In most games the
orientation of a player is defined by a float value (range
from −� to �) and the field of view of the player is
2�/3. The entities which are inside the vision range of a
current player still cannot be seen if they are not in the
field of view of the current player as shown in Fig. 3a
for players p and entity e. Micro power management
exploits this property to improve the efficiency of our
middleware. We compute the duration required for the
current player to reach other entities’ field of view as
given below.

1. As shown in Fig. 3b, v1 is the direction vector of the
current player and v2 is the direction vector from
current player p to entity e. We calculate the angle
φ1 between v1 and v2 . From which we compute,
(φ1 − �/3) which is the angle the current player
need to turn to see this entity.

2. Similarly we calculate the angle φ2, which the entity
need to turn to see the current player. We calculate

φ2 only if the entity has vision. The min(φ1, φ2) will
be the angle displacement between the character
and the entity.

3. After calculating the angle between the current
player and all other entities insides vision range or
distance, we can find the minimum angle distance,
φmin.

4. Based on this value, we find the
Potential_Sleep_Duration PSD as follows.

PSD = φmin/α where, α is the mean angle velocity
of players.

Visibility based approach In visibility based approach
we check the visibility from the current area of the
player to all other areas. Set of visible areas from
current area is called Potentially Visible Set (PVS) of
areas. It is not from the current position of the player
but from the current area (any position or point in
current area) of the player and hence, we call it PVS.
If there is no other entities in PVS of current player,
ARIVU assigns a fixed time (100 ms) to PSD. Other-
wise, PSD is set to 0.

2.2.3 Resource controller—client side

The server side RC sends two types of messages to the
RC client—A sleep message with PSD and a resource
state message with AGGRESSIVE_LEVEL flag (high,
medium or low). On receiving sleep message the client
side RC computes the Effective Sleep Duration (ESD)
as given below and puts the wireless interface into sleep
mode. As described in our previous work [1], there are
two constraints for sleep duration: maximum sleep du-
ration that a game can tolerate (using techniques such
as Dead Reckoning) and minimum sleep duration that
is really required to save energy (due to mode switch

Fig. 3 Micro algorithms
depicted

i

a. Field of View b. Angle distance between players



Mobile Netw Appl

power cost and mode switch latency of the wireless
interface).

//Computing Ef fective Sleep Duration (ESD)

if (PSD < minSleepDuration)
ESD = 0;

elseif (PSD > maxSleepDuration)
ESD = maxSleepDuration;

else
ESD = PSD;

In both macro and micro power management cases
the client ensures that it receives at least one complete
update before the next sleep to avoid longer inconsis-
tencies.

3 Results

3.1 Testing methodology

Figure 4 shows the testbed used for our experiments.
To obtain accurate power measurements, we used a
custom made cell phone test board, a high-speed mul-
tifunction Data Acquisition Equipment (DAQ) USB-
6251 and a Signal Conditioning Equipment (SC-2345)
from National Instruments (NI). For more details on
measurement methods the readers may refer to our
previous work [1]. We have assumed, availability of
more than 80% battery level in the mobile device
(hence, we just used the default algorithm, without
increasing the AGGRESSIVE level) and good network
conditions in all our experiments. Our test scenarios for

wireless interface power saving were designed to show
the following:

1. Base Effectiveness: What is the potential power
savings achievable by ARIVU? What is the effect
of player density on power saving? We present
these results in Section 3.2.

2. Effect of Game Type: How effective is ARIVU in
saving power for different game types? We show
the results for this experiment in Section 3.3.

The main quality measure we used is the number
of important packets that were either dropped or
missed their deadlines as a result of the power saving
technique.

3.2 Base effectiveness

The results for Ryzom game (MMORPG game) are
depicted in Fig. 5a and b. As this is a MMORPG game,
ARIVU selects Dual Ring Algorithm for macro mode
power saving and Player Orientation Approach for
micro mode power saving. The amount of power saved
ranges from 35 to 20% for 802.11g wireless interface.
ARIVU guarantees the quality of game play with less
than 2% loss of important packets. An additional infor-
mation shown in this graphs is, the effect of estimated
average player velocity (EAPV) of dual ring algorithm.
If EAPV is lower than actual velocity, then there is no
possibility for errors. Figure 5c shows the contribution
of macro and micro methods in the amount of power
saved.

Fig. 4 Testbed used for
experiments



Mobile Netw Appl

a. Power Saved (RPG) b. Drop Rate (RPG) c. Macro vs. Micro

Fig. 5 Results in MMORPG

3.3 Game type effects

The above results are based on slow speed MMORPG
games with outdoor open area maps. We evaluate the
results for Quake III game which is a high speed shoot-
ing game with indoor maps. As it is FPS game and
usually has up to maximum 16 players, ARIVU selects
Single Ring Algorithm for macro mode power saving
as scalability is not required here and Visibility based
Approach for micro mode power saving as the map
has many walls and obstacles. The amount of power
saved ranges from 60 to 20% for wireless interface for
this game with maximum error level of 6%. The results
are depicted in Fig. 6a and b. We set EAPV to 300
game units which is average player velocity in Quake
III. ARIVU saves more power with FPS games than
MMORPG games due to the following facts: The FPS
game map is a indoor map and visibility approach is
used for micro power management. Though the players
are nearby, they are separated by walls and obstacles
hence they cannot interact with each other which re-
sults in more opportunities for saving power. Also,
it is important to observe that the graphs depict the
performance of ARIVU is highly sensitive to number
of players in FPS games.

a. Power Saved (FPS) b. Drop Rate (FPS)

Fig. 6 Results in FPS games

4 Related work

There is a rich body of related work in the area of power
conservation and interest management.

Power conservation Mobile devices today comes with
various power management features for its proces-
sor, LCD display and wireless interface. Previous
works present different techniques for wireless inter-
face power management such as, better link utiliza-
tion and throughput [7], using proxies to allow clients
to sleep [4], and looking for statistical correlations
that allow power savings [1, 12]. In our work, we
apply the lesson and techniques derived from these
past works to the context of latency-critical interactive
games.

Interest management There are various algorithms for
determining AoI [5, 6]. They are either distance based
or visibility based technique for improving scalability.
We use a combination of both techniques by taking
their good features.

5 Future work and conclusion

The results on our efforts in building a scalable in-
tegrated middleware to manage overall system power
consumption while playing FPS and MMORPG games
is presented in this paper. Through macro and mi-
cro power management modules ARIVU tries to cap-
ture both longer possible sleep duration and shorter
ones for efficient power management of wireless in-
terface. We have demonstrated that ARIVU can save
highly significant amount of energy for both smart
phone and laptop games: 60% for wireless interface.
Saving 60% wireless interface energy translates to
saving 24% of overall system energy in HTC Magic



Mobile Netw Appl

and HTC Hero smartphones. ARIVU uses the
same game state information to manage CPU and
LCD/OLED Display power. We are continuously
enhancing our middleware to include more game gen-
res to make it highly generic.

References

1. Anand B, Ananda AL, Chan MC, Long LT, Balan RK
(2009) Game action based power management for mul-
tiplayer online games. In: Proceedings of the 1st ACM
SIGCOMM workshop on networking, systems, and ap-
plications on Mobile Handhelds (MobiHeld). Barcelona,
Spain

2. Anand B, Thirugnanam K, Long LT, Pham DD, Ananda AL,
Balan RK, Chan MC (2010) Arivu: Power-aware middleware
for multiplayer mobile games. In: Proceedings of the ninth
IEEE NetGames. Teipei, Taiwan

3. Anand M, Nightingale EB, Flinn J (2003) Self-tuning wireless
network power management. In: Proceedings of the 9th inter-
national conference on Mobile Computing and networking
(Mobicom). San Diego, CA

4. Anastasi G, Passarella A, Conti M, Gregori E, Pelusi L (2005)
A power-aware multimedia streaming protocol for mobile

users. In: Proceedings of the international conference on per-
vasive services. Santorini, Greece

5. Bharambe A, Douceur J, Lorch JR, Moscibroda T, Pang
J, Seshan S, Zhuang X (2008) Donnybrook: Enabling
large-scale, high-speed, Peer-to-Peer games. In: Proceed-
ings of ACM conference on applications, technologies, ar-
chitectures, and protocols for computer communications
(SIGCOMM). Seattle, WA

6. Boulanger JS, Kienzle J, Verbrugge C (2006) Compar-
ing interest management algorithms for massively multi-
player games. In: NetGames ’06: proceedings of 5th ACM
SIGCOMM workshop on network and system support for
games. ACM, New York, p 6. doi:10.1145/1230040.1230069

7. Meyer M, Sachs J, Holzke M (2002) Performance evalua-
tion of a tcp proxy in wcdma networks. In: Proceedings of
the eighth annual ACM/IEEE international conference on
Mobile Computing and networking (MOBICOM)

8. Quake III (2010) Quake 3 Arena Source Code. Id Software,
(Version 3.21)

9. Ryzom (2010) RYZOM. Winch Gate Property Limited
10. Schonfeld E (2010) When it comes to iphone games, what

sells is action, adventure, and arcade
11. Wei Y, Chandra S, Bhandarkar S (2004) A statistical

prediction-based scheme for energy-aware multimedia data
streaming. In: Proceedings of the Wireless Communications
and Networking Conference (WCNC). Atlanta, GA

12. Yang SR (2007) Dynamic power saving mechanism for 3g
umts system. ACM Mobile Netw Appl 12(1):5–14


