
PGTP: Power Aware Game Transport Protocol for
Multi-Player Mobile Games

Bhojan Anand‡, Jeena Sebastian‡, Soh Yu Ming‡, Akhihebbal L. Ananda‡, Mun Choon Chan‡, and Rajesh Krishna Balan†

‡National University of Singapore and †Singapore Management University

Abstract—Applications on the smartphones are able to capi-
talize on the increasingly advanced hardware to provide a user
experience reasonably impressive. However, the advancement of
these applications are hindered battery lifetime of the smart-
phones. The battery technologies have a relatively low growth
rate. Applications like mobile multiplayer games are especially
power hungry as they maximize the use of the network, display
and CPU resources. The PGTP, presented in this paper is aware
of both the transport requirement of these multiplayer mobile
games and the limitation posed by battery resource. PGTP
dynamically controls the transport based on the criticality of
game state and the network state to save energy at the wireless
network interface (WNIC) level with almost no degradation to
the quality of the game play.

I. INTRODUCTION

The latest smartphones with PC-like processing power and
OS are taking cell phones beyond the next level into a wireless
world limited only by our imagination. As the capability of the
device increases, new applications has emerged. The growth in
hardware facilities and application sophistication comes with a
tight penalty on battery life time. In modern smartphones, the
three main sources of power consumption are, 1) the CPU, 2)
the display, and 3) the network interfaces. These resources are
consumed at varying rate according to the type of application.
Games, which account for more than 50% of current iPhone
application downloads [10], tend to consume large amounts of
CPU and display power in general — with multiplayer games
also consuming large amounts of network interface power.

PGTP is designed for energy and bandwidth efficient net-
work control. PGTP manages the packets sent through the
socket based on the game state and network state to control
the network interface for power management. Mobile games
require multiple streams between client and server through a
single association (using one socket pair) with different qual-
ity requirements: reliable ordered streams, reliable unordered
streams, partially reliable streams and unreliable streams. Our
protocol provides all these features while optimising the power
and bandwidth utilisation without affecting the QoS. We have
implemented our protocol on Android’s Dalvik VM on the
clients side and Ubuntu Linux platform on the server side and

This work is supported in part by the Singapore Ministry of Education
Academic Research Fund Tier 2 under the research grant T208B2301. Any
opinions, findings, conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the views of the
granting agency, National University of Singapore or Singapore Management
University.

evaluated its performance over WiFi and 3.75G WCDMA-
HSPA networks with set of Google-Android phones running
an Andriod game. We have shown that our protocol conserves
up to 40% of power and maintains comparable latency and
throughput with the existing protocols.

The main contributions of this paper are as follows:
1) We analyse the transport requirements of multiplayer

mobile games.
2) We present the design of the PGTP.
3) We provide a reference implementation of PGTP on

Linux based platforms and evaluation of the protocol
against existing protocols over different network tech-
nologies.

II. RELATED WORK

There is a rich body of related work on Transport protocols
in general. Our extensive survey shows that there is no prior
work on power aware transport protocols for mobile games.
As shown in Section III-A, games have unique transport
requirements. In the following section we show conventional
protocols do not address all these requirements.

UDP [8] is the lightest and low latency protocol. Though
it is widely used by game developers, it needs to be supple-
mented with application level custom protocols for reliability
and ordered delivery. TCP [9] on the other hand enforces
reliable and ordered transport for all bytes at the expense of ad-
ditional delay due to head-of-line blocking. Since TCP is byte-
oriented, the receiver is responsible to reconstruct the message
structure from the byte data. As most of a game’s packets
require unreliable transport, enforcing reliability adds unneces-
sary overhead. A TCP connection or association supports only
one stream. The authors of [3] show that TCP has features that
makes it unsuitable for online games. From the game traces, it
is shown that 46% of the bandwidth was occupied by packet
headers alone. They also found that congestion control and fast
retransmission failed to operate correctly. Though DCCP [7]
offers UDP like transmission with congestion control it does
not offer reliable or ordered transmission required by games.
SCTP [5], [11] satisfies most of the requirements (datagram
oriented, multiple streams with different delivery methods,
congestion control, flow control and priority processing),
but it is basically a connection oriented protocol and offers
unreliable service through individual packet marking. SCTP
is highly suitable for a communication which needs reliable978-1-4244-9799-7/11/$26.00 c© 2011 IEEE

delivery for most of its packets with few packets for unreliable
delivery. Communication of game applications exactly have
the opposite requirement: more unreliable packets and very
few reliable packets. A typical SCTP packet with data and
acknowledgement, takes at least 44 bytes overhead for SCTP
headers. Since most game packets are less than 32 bytes, more
than half of the packet contains non-data and this makes SCTP
very inefficient. SCTP do not support intermittent connection
failures which are common in mobile environments and also a
required feature for conserving power. Custom modifications
can be made but the potential amount of change and effort
may warrant it impractical. If PR-SCTP [12] cannot send a
packet before its lifetime expires, it is simply dropped. This
is required behavior for online games. However, if the packet
has been sent but not yet acknowledged, it will still be re-
sent even if the retry time exceeds the packet lifetime. This is
unnecessary for time-sensitive packets. For priority processing,
pSCTP [5] assigns each stream a priority and SCTP sends
Heartbeat chunks to periodically probe an idle stream. Since
high priority game packets are usually sparse and infrequent,
this introduces needless network traffic. PGTP uses game state
to make intelligent decision on priority processing hence it
improves quality of the game play.

III. DESIGN REQUIREMENTS
A. Transport Requirements of Mobile Games

Online games have unique transport requirements when
compared to other real-time applications. Online games usu-
ally send small packets (32 bytes) in a consistent and relatively
slow rate [3]. Online games have different types of packets
with each type requiring different type of QoS. For example,
in Quake3 [6], some packets are time sensitive (for eg.
movement update). This means that a delayed packet may
not contain useful information. If a newer packet is generated
with the latest information, the delayed packet can be simply
dropped. In-game chat messages can be sent unreliably and
a dropped chat packet would not significantly impact the
game. In contrast, game score updates can be delayed but
they cannot be discarded. Packets containing game changing
events (for eg. shooting) should be transmitted immediately
with high priority. Table I gives general set of the packet types
present in today’s commercial games and their associated QoS
requirements.

B. Design Considerations
Based on the requirements discussed above in Section III

we have the following recommendations for the power aware
game transport protocol. We have designed the PGTP protocol
based on these recommendations.

• Lightweight and low overhead: It has been shown that
98% of game packets have a payload of less than 32 bytes
[3]. Thus, the overhead incurred by a transport protocol in
managing the connection should be proportionally small
compared to the payload.

• Datagram oriented: Since a game packet is a complete
piece of information by itself, it would make sense to
send and receive using datagram instead of byte stream.

• Provides a range of delivery methods or service
qualities in a single connection:
1 Unreliable channel: packets that do not considerably

affect the game if they are lost or arrived out-of-order.
2 Reliable channel: critical packets whose delivery must

be guaranteed.
3 Semi-reliable channel: time-sensitive packets that have

become obsolete can be dropped.
4 Ordered arrival: critical packets whose order-of-arrival

matters.
5 Unordered arrival: critical packets whose order-of-

arrival does not matter.
6 Priority processing: important packets containing

game changing events should be processed first.
• Throttling of transmission speed and temporary dis-

connection: The protocol should throttle the transmission
based on game state and network state. Most importantly,
it should have built-in support for temporary disconnec-
tion when the WNIC is put to SLEEP mode for power
saving.

• Socket API: The protocol should provide an easy API
for game developers.

• Congestion and Flow Control: Congestion and flow
control are required to throttle the sending rate to avoid
packet loss due to a congested network or an overloaded
receiver.

• Multi-homing: Multihoming for automatic transport
layer level redundancy and load balancing (essential need
for today’s massively multi-player games).

IV. DESIGN OF PGTP
PGTP is a flexible multi-channel transport protocol. It

supports temporary disconnection for power management, thus
’flexible’. PGTP treats data at the message-level and pro-
vides transmission over unreliable, reliable-ordered, reliable-
unordered and semi-reliable-unordered delivery channels. Un-
like SCTP [5], [11], the default channel is unreliable and
additional packet level marking is required for reliability and
ordered delivery. The game can specify parameters to describe
how each data should be sent. These parameters indicate the
delivery channel, order-of-arrival, data priority and lifetime
through the Socket API. Data is processed in a highest-
priority first-come-first-serve basis. If the data is flagged for
the unreliable channel, it is simply sent. For data using the
reliable channel, the send queue blocks and retransmit until
an acknowledgement is received. During this blocking period,
if there are data in the queue that are bound for the unreliable
channel, they will bypass the block and be sent. Before sending
each data, PGTP checks the lifetime parameter and drops
the data if it has expired. Multiple data can also be sent in
a bundle to save bandwidth. During the ’connected’ state,
if the connection is idle, KEEPALIVE messages are sent
periodically to probe its status.

A. Datagram Structure
The PGTP header is designed to be as ’slim’ as possible

to save on bandwidth. The common header requires only 10

TABLE I
TYPES OF PACKET AND CHANNEL QOS

Type of Packet Type of Channel
Example Time sensitive Critical Order Priority
Important game changing event Yes Yes Important High Reliable, realtime, ordered
Movement update Yes No Important Normal Unreliable, realtime, ordered, prioritized
Score update No Yes Not Important Normal Reliable, buffered, unordered
Chat Yes No Important Low Unreliable
Time sensitive - Time sensitive packets should be dropped if delayed beyond expiry
Critical - Critical packets should not be dropped
Order - Packet’s order of arrival at destination
Priority - Priority of packets; a higher priority packet will be processed first for delivery

Fig. 1. Structure of PGTP datagram

bytes. The structure of PGTP datagram is shown in Figure 1.
The fields Source port and Destination port fields identifies
the processes communicating. The Length field holds is length
of the message and the Checksum is one’s complement of sum
of 16 bit words. The Sequence field is optional and is added if
the Reliable flag is set to 1. Similarly, the Acknowledgement
field is added only if the ACK flag is turned on. No field is
dedicated for payload length since this can be calculated by
subtracting the header size from the packet length.

The Type field specifies the type of the packet takes one
of the following values. 0000: OPEN, 0001: DATA, 0010:
KEEPALIVE, 1111: CLOSE. There are five Flags of one bit
each which have the following semantics. Reliable (R): The
reliability flag. When set to 1, this packet has a Sequence
number and requires an acknowledgement from the receiver.
Ordered (O): The order-of-arrival flag. When set to 1, the
receiver drops the packet if the Sequence number is not within
the range of the receive window. Fragmented (F): When set
to 1, this packet contains only a fragment. When set to 0, this
packet is the last or only fragment. The order of fragment is
given by the Sequence number. Bundled (B): When set to 1,
it indicates that this packet contains more than 1 sub-packet.
Acknowledgement (ACK): When set to 1, this packet carries an
Acknowledgement number. Priority (P): This is a 3 bit field
specifies the packet priority. A bigger number corresponds to
a higher priority. Unused: The 4 bits unused field is reserved
for future use (eg. game, power and network specific twists).

B. Connection Establishment

PGTP uses a 2-way handshake to establish a connection as
depicted in Figure 2 . The Sender sends a packet with Type

Fig. 2. Connection setup

Fig. 3. Connection teardown

field OPEN to the Receiver. The Receiver acknowledges the
packet by sending a packet with Type field OPEN and ACK
field set to 1. If an acknowledgement is not received from the
Receiver after some time, the OPEN packet is retransmitted.
If the number of resends exceeds the maximum number of
retries, the Receiver is deemed unreached and the connection
fails. Note that no Sequence or ACK number is required when
establishing a connection.

C. Connection Teardown

To close a connection, the Sender stops sending data and
sends a CLOSE packet to the Receiver to wait for the
acknowledgement as depicted in Figure 3. Upon receiving the
CLOSE packet, the Receiver stops sending data and sends a
CLOSE Acknowledgement packet. The Receiver then waits
for a period of time before terminating. This wait period is
to allow the Sender to retransmit the CLOSE packet if it fails
to receive the CLOSE ACK packet. If a CLOSE packet is
received during this wait period, the Receiver resets the wait
period timer. When the Sender receives the CLOSE Acknowl-
edgement packet, it terminates the connection immediately.
Note that no Sequence or ACK number is required when
closing a connection.

D. Data Packet Transmission

To send data, the Type is set to DATA and the appropriate
flags are set, based on the parameters specified by the game.
If the Reliable flag is set, the Sequence number field is added.
Similar to TCP, this sequence number is used for identification
purposes. But unlike TCP, this sequence number identifies a
packet instead of a byte. The reliable packet is placed on a
timer to be sent repeatedly until an acknowledgement arrives
or if the maximum number of retries has been exceed. While
the packet waits for acknowledgement, the send queue is
scanned for data to be sent. Data requiring the reliable delivery
channel are put on hold while data bound for unreliable
delivery is removed from the queue and sent immediately.
Unreliable data are not blocked because they do not need an
acknowledgement and consequently do not need to be resent.
This prevents unnecessary packet hold up.

If the ACK flag is set, the ACK number field is added. Like
TCP, the acknowledgement number is used by the Receiver to
notify the Sender that the reliable data has been received and
the Sender can proceed to send the next data specified by
the number. The reliable data received must have a sequence
number that is expected by the Receiver. If the sequence
number is unexpected, the Receiver resends the expected
sequence number. The Sender receives the acknowledgement
number and sends the expected data.

When data from the game is larger than the network’s
MTU, the data is split into fragments and sent separately. All
fragments of data are sent reliably using different sequence
numbers. All fragments except the last have the Fragment flag
set to 1 while the last fragment’s flag is set to 0. When the
Receiver encounters the first packet with Fragment flag set to
1, that packet is buffered to wait for the remaining fragments.
As more fragments arrive, the Receiver arranges them using
their sequence number. When the Receiver encounters the last
packet with Fragment flag set to 0, the fragments are merged
and passed to the game.

E. Packet Bundling

For efficient use of bandwidth, many small packets can be
bundled together and send as one big packet as depicted in
Figure 4. A new field is added to the start of each sub-packet
to denote its length. The common header is also added since
each sub-packet may have varying transmission properties.
However, only one Sequence number and one ACK number is
needed. If any of the sub-packets have the Reliable and ACK
flags turned on, the corresponding flags in the first header will
be set regardless of the transmission properties of the first sub-
packet. This is to denote the inclusion of the Sequence number
and ACK number fields at the beginning. If the Reliable flag is
set, the bundled packet is to be acknowledged as a whole. The
Reliable, Bundled and ACK flags in the remaining common
headers are then ignored. For unreliable packets, PGTP can
save up to 44% of the original packet header size. For reliable
packets, the saving is even greater at 50% because only one
Sequence number is required.

Fig. 4. Structure of Bundled Packet

Besides saving bandwidth, packet bundling also helps to
improve throughput. When there are many reliable packets to
be sent, the send queue is blocked until the current reliable
packet has been acknowledged. By bundling them together,
these reliable packets can be sent immediately, eliminating
the time wasted on waiting for acknowledgement. This is
particularly useful when the network interface is put into sleep
mode. However, because the game is not aware of the switch
off, it continues to send data to the transport protocol. This
results in an accumulation of data in the send queue. When
the network device is switched on again, there is a sudden
burst of data to be sent. Without packet bundling, these data
will take a longer time to be transmitted and this would cause
undesirable delay jitter in the game. With packet bundling, the
artificial delay is reduced.

F. Keep-alive

After the connection has been established, the Sender knows
the Receiver is still reachable when it receives an acknowl-
edgement for a reliable packet or when it receives a data
packet. If the Sender only sends unreliable packet and the
Receiver does not send any data, the Sender would not be
able to detect a disconnected Receiver until it sends a reliable
packet. As such, probe packets are sent periodically when the
last reliable packet was sent too long ago. A KEEPALIVE
timer is used to keep track of this duration. When the timer
expires, a KEEPALIVE packet is sent and it waits for an
acknowledgement. The timer is reset whenever a KEEPALIVE
ACK or a normal ACK is received. If no acknowledgement
is received after repeated sending, the connection is deemed
’broken’.

G. Resource State Aware Power and Bandwidth Optimisation

Unlike conventional transport protocols that only interpret
the network to manage packet sending, PGTP factors in
the state of the game and network to optimize power and
bandwidth consumption for online games on mobile phones.
PGTP operates in 4 modes that control how long packets are
buffered for efficient use of bandwidth and power manage-
ment. The modes are: Optimal (no buffering), Good (short
buffering duration), Normal (medium buffering duration), and
Saving (long buffering duration). The modes are determined
by the criticality of the game state and quality of the network
state (such as, RTT latency and Bandwidth) as shown in the
Table II. The game or a middleware provides the information

TABLE II
DETERMINING THE POWER SAVE MODE

- - - - - - - Network State Good Average Bad
Game State
Non-critical Saving Normal Good
Semi-critical Normal Good Optimal
Critical Good Optimal Optimal

about the criticality of the game state to the PGTP using the
methods described in our previous works [1], [2] . In regular
intervals PGTP computes the RTT latency by using the reliable
transport stream and KEEPALIVE probes discussed earlier.
The wireless node is put into SLEEP mode for the duration
equivalent to the buffer duration of the mode to save energy
with minimum or no loss of quality of service to the game
application. For example, if the game state is non-critical and
the network is good the PGTP switched to SAVING mode, and
it will buffer the packets for a longer duration and save more
energy. In general, buffering for a longer duration will increase
the probability of expiry of a datagram. When a datagram has
expired, it is not send but dropped. Since the datagrams are
dropped during the non-critical state, it is not likely to cause
significant disruption to the game.

V. RESULTS

A. Implementation

We implemented PGTP in Google’s Android platform. The
Android OS only supports Java applications and linked native
C libraries. To achieve the highest performance, PGTP is
implemented in C language and linked to a Java application
using the Java Native Interface. The game communicates with
the PGTP through Java method calls that are hooked up with
the native C codes. To test the protocol we used Armageddon,
a multiplayer mobile role-playing game created by our team
with the features of the commercial role playing games.

B. Experiments

In the Armageddon game, each player controls an avatar
that moves between game maps and attacks monsters. The
game packets are recorded for a period of 5 minutes with
4 players connected to the game world through WiFi and
3.75G HSPA networks. From the traces, 2748 packets are
collected for each client during the 5 minutes play test. Out of
all the packets, 99.7% are sent unreliably and the remaining
was sent reliably. 99% of the client packets were 6 bytes
long. Most of the packets are sent at 110 to 120 ms interval.
These characteristics are in line with the general online mobile
game packet characteristics. As the results for WiFi and HSPA
are similar, the results shown below are applicable for both
networks.

As game updates are realtime and latency sensitive, most
of the commercial multiplayer games use UDP with custom
reliability protocols at application level. To find out how PGTP
fare in comparison with UDP, we have collected similar traces
for UDP protocol as well.

Fig. 5. Latency of PGTP protocol

Fig. 6. Latency of PGTP Protocol with power management

C. Results: Base case - PGTP vs UDP

In this experiment, we consider three key parameters: la-
tency, jitters and packet loss rates. PGTP is run in vanilla mode
without packet bundling and power saving (WNIC is always
ON). Despite, its ordered and reliable services, PGTP shows
comparable performance in terms of latency (Figure 5) and
jitter with UDP. The reason for PGTP’s good performance can
be attributed to the characteristics of the game packets and the
implementation of the protocol. As mentioned earlier, 99.7%
of the game packets are unreliable and thus the overhead
incurred for reliable or ordered sending was minimal.

D. Results: PGTP with Power Management

Power is saved by putting the wireless interface into SLEEP
mode when ever the game state is not important. This intro-
duces additional artificial latency. In this experiment we look
the (%) of power saved and its effect on latency and quality
of the game play. PGTP is run without bundling feature.
The results are shown in (Figure 6). Mean latency is 277ms
(minimum latency is 57ms and maximum latency is 1082ms)
and packet loss is 0.1%. As this latency happens only when
the game state is not important, the game play is not adversely
affected. A preliminary user study with 8 users of different
levels of experience in games shows that the quality drop is
almost not noticeable. Figure 7 shows that up to 40% of the
power consumed by WNIC is saved with PGTP. Power saved
is slightly sensitive to player density (number of players in a
given game map). This is expected as increase in the number
of players will increase the percentage of critical game states.

E. Results: Reducing PGTP Latency with Bundling

In this experiment we turn on both power management and
packet bundling features of PGTP. Figure 8 shows that packet
bundling significantly reduces the latency. The average latency

Fig. 7. Percentage of power saved

Fig. 8. Reducing latency with Bundling

is 249ms with 72.2% of packets with latency below 250ms.
With bundling, PGTP experiences a higher packet loss (0.7%).
The lost packets are denoted as ’More’ in the figure.This is
expected as a bundled packet is larger in size and is more
likely to be dropped in a congested wireless networks. As
we have capped the number of packets to be bundled to 5,
the loss is minimal. Moreover, more than 60% of these lost
packets are those dropped by PGTP in the send queue itself
as their lifetime expired when they are in the queue. This is
one of the expected behaviors of the protocol and the packets
dropped are non-critical to the quality of the game play.

Figure 9 shows the correlation between the packet latency
and the period of wireless on and off status. It is clear that,
the latency experienced by majority of packets are caused by
SLEEP mode of the WNIC. These delays are expected and
they happen only during the game state is not-critical. Hence,
the quality of the game play is assured.

VI. LIMITATIONS AND FUTURE WORK
The current design and implementation is an attempt to-

wards a new protocol for mobile multiplayer games which is
efficient in terms of using power resources, bandwidth and
reducing and/or hiding latency. We are extending the protocol
further by designing and implementing the missing features.
We have currently drafted multihoming for automatic transport
layer level redundancy and load sharing facility in PGTP,
which is widely required for massively multiplayer mobile
games. Note, SCTP’s multihoming is only for redundancy.
Due to lack of space, we give a glimpse of the design for
multihoming. Redundancy: A back-up IP is sent by the current
server in the ACK packet during the connection setup phase
(Figure 2). The challenging aspect here is transferring client
game state to the new server. Load balancing: The current
server picks the nearest server with less load and transfers the
client’s game state to it. It sends the IP of the new server
to the client for hand-off as in GSM networks. Congestion
control and flow control will be designed and implemented
based on TCP friendly rate control [4] to keep the protocol

Fig. 9. Correlation between latency and WNIC state (SLEEP or ON)

simple and lightweight in comparison to TCP and SCTP.
To avoid security attacks such as TCP-SYN attack, we have
excluded sequence numbers from connection establishment
and teardown packets. Sequence numbers can be securely
negotiated after establishing connection. We will be designing
and implementing security features for PGTP.

VII. CONCLUSION
The niche application area which PGTP addresses is net-

worked real-time interactive applications in battery operated
mobile devices that have small payload sizes for transmission
and do not require reliable transmission for most of their
packets. We have shown the basic design of the PGTP and
its performance through experimental results. Through our
protocol the mobile devices can save up to 40% of WNIC
energy consumed games applications. We would like thank
our lab and project members for their assistance and contribu-
tion in designing, implementing, and evaluating the protocol,
associated game and the middleware.

REFERENCES

[1] Anand, B. Konva: Power and network aware framework and protocols
for multiplayer mobile games. Proceedings of the Eleventh ACM
SIGMOBILE Workshop on Mobile Computing Systems and Applications
(HotMobile), Annapolis, Maryland USA, Feb. 2010.

[2] Anand, B., Thirugnanam, K., Long, L. T., Pham, D. D., Ananda, A. L.,
Balan, R. K., and Chan, M. C. Arivu: Power-aware middleware for
multiplayer mobile games. Proceedings of the Ninth IEEE NetGames,
Teipei, Taiwan, Nov. 2010.

[3] Chen, K.-T., Huang, C.-Y., Huang, P., and Lei, C.-L. An empirical
evaluation of tcp performance in online games. ACE ’06: Proceedings
of the 2006 ACM SIGCHI international conference on Advances in
computer entertainment technology, page 5, New York, NY, USA, 2006.
ACM.

[4] Handley, M., Floyd, S., Padhye, J., and Widmer, J. Tcp friendly rate
control (tfrc): Protocol specification, 2003.

[5] Heinz, G. J. Priorities in stream transmission control protocol (sctp)
multistreaming. Masters Thesis Tech Report 2004-01, University of
Delaware, Newark, DE, 2003.

[6] Id Software. Quake 3 Arena Source Code. http://ioquake3.org/.
[7] Kohler, E., Handley, M., and Floyd, S. Datagram congestion control

protocol (DCCP). Internet RFC 4340, Mar. 2006.
[8] Postel, J. User datagram protocol. Internet RFC 768, Aug. 1980.
[9] Postel, J. Transmission control protocol. Internet RFC 793, Sept. 1981.

Editor.
[10] Schonfeld, E. When it comes to iPhone games, what sells is

action, adventure, and arcade. http://techcrunch.com/2010/02/25/
iphone-games-what-sells-distimo/, Feb. 2010.

[11] Stewart, R. Stream control transmission protocol. Internet RFC 4960,
Sept. 2007. Editor.

[12] Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and Conrad, P. Stream
control transmission protocol (SCTP) - partial reliabity extension. In-
ternet RFC 3758, May 2004.

