
1

Explicit Loss Notification and Wireless Web Performance

Har i Balakr ishnan and Randy H. Katz
{ hari,randy} @cs.berkeley.edu

Computer Science Division, Department of EECS,
University of California at Berkeley

Abstract

This paper describes our experiences with improving TCP
and Web performance over a WaveLAN-based wireless net-
work. In previous work, we analyzed the problems to TCP
performance in error-prone wireless networks and designed
the Berkeley Snoop protocol to significantly improve per-
formance over error-prone wireless links [7, 5].

Most efforts to date have focused on improving perfor-
mance for transfers to a mobile host. We present a novel
protocol based on Explicit Loss Notification (ELN) to
improve performance when the mobile host is the TCP
sender, a situation that is becoming increasingly common.
Then, we use experimental packet traces of wireless errors
from a production wireless network to derive an empirical
model of channel errors. We use this to evaluate the perfor-
mance of TCP Reno, TCP Selective Acknowledgments [17]
and the Snoop protocol for Web workloads to mobile hosts.
We also discuss the scaling behavior of the Snoop protocol
and reflect on some general lessons we have learned about
efficient protocol design for reliable wireless transport.

1. Introduction

Wireless technologies are playing an increasingly promi-
nent role in the global Internet infrastructure. They are ideal
as Internet access technologies, providing a convenient and
cheap solution to the “last mile” problem. However, reliable
transport protocols such as the Transmission Control Proto-
col (TCP) [22, 25], used by popular applications like the
World Wide Web, file transfer, electronic mail, and interac-
tive remote terminal appli cations, show greatly degraded
performance over wireless networks. Over the past many
years, TCP has been tuned for traditional networks compris-
ing wired links and stationary hosts. It assumes congestion
in the network to be the primary cause for packet losses and
unusual delays, and adapts to it. The TCP receiver sends
cumulative acknowledgments (ACKs) for successful ly
received segments, which the sender uses to determine
which segments have been successfull y received. The
sender identifies the loss of a packet either by the arrival of
several dupli cate cumulative ACKs, triggering a fast
retransmission, or by the absence of an ACK for a timeout
interval equal to the sum of the smoothed round-trip delay
and four times i ts mean deviation. TCP reacts to packet
losses by retransmitting missing data, and simultaneously

invoking congestion control by reducing its transmission
(congestion) window size and backing off its retransmission
timer. These measures reduce the level of congestion on the
intermediate links.

Unfortunately, when packets are lost for reasons other than
congestion, these measures result in an unnecessary reduc-
tion in end-to-end throughput and hence, in sub-optimal
performance. Communication over wireless l inks is often
characterized by high bit-error rates due to channel fading,
noise or interference, and intermittent connectivity due to
handoffs. TCP performance in such networks suffers from
significant throughput degradation and very high interactive
delays because the sender misinterprets corruption for con-
gestion [see e.g., 8].

Recently, several schemes have been proposed to alleviate
the effects of non-congestion-related losses on TCP perfor-
mance over error-prone networks [3, 7, 26]. In previous
work [5], we compared many existing schemes and argued
for transport-aware link protocols to improve performance.
The end result of this work was a more adaptive TCP/IP
protocol architecture that adapted not only to network con-
gestion, but also to error-prone wireless links.

However, most design and measurement efforts to date have
focused on the (common) case of data transfers to a mobile
host. The case of a mobil e host transmitting data over a
first-hop wireless li nk to hosts on the wired Internet has
largely been ignored. Such access scenarios are becoming
increasingly common in the Internet; for example, research-
ers at Daimler Benz are working on a prototype of a Mer-
cedes car that runs a Web server, which disseminates
information over wireless and wired links about the status of
the vehicle to users on the Internet [13].

In this paper, we present a novel protocol based on Explicit
Loss Notification (ELN) to improve transport performance
when the mobile host is the TCP sender, a situation that is
becoming increasingly common in many wireless access
networks (Section 3). Then, we obtain experimental packet
traces of wireless errors from a production outdoor wireless
network deployed as part of the Reinas environmental mon-
itoring project at UC Santa Cruz [9] and derive an empirical
model of channel errors based on this data (Section 4). We
use this to evaluate the performance of TCP Reno, TCP
SACK [17] and the Snoop protocol for an empiricall y
derived Web workload to mobile hosts (Section 5). Finally,

In Proc. IEEE Globecom 1998, Internet Mini-Conference, Sydney, Australia.

2

we reflect on some lessons learned about improving wire-
less transport performance in the face of wireless bit-errors
(Section 6) and conclude with a summary and directions for
future work (Section 7).

2. Background

In this section, we summarize some protocols and transport
enhancements that have been proposed to improve the per-
formance of TCP over wireless links.

• Link-layer protocols: There have been several propos-
als for reliable link-layer protocols to improve wireless
performance [1, 14, 19]. These typicall y use forward
error correction (FEC) or retransmissions (ARQ) to
improve performance.

The main advantage of employing a link-layer protocol
for loss recovery is that it fits naturall y into the layered
structure of network protocols and achieve local reliabil -
ity. However, there are several occasions when transport
performance does not improve when such protocols are
used. There are three chief modes of adverse interaction
that could arise between independent reliable transport
and link layers:

1. Timer interactions: Independently set timers at both
layers could trigger at the same time, leading to redun-
dant retransmissions at both layers and degraded per-
formance [10]. While this is a concern in general, TCP
does not suffer from this problem because of the coarse
and conservative timeout intervals in practice.

2. Fast retransmission interactions: This arises when a
link layer protocol achieves reliability by local retrans-
missions, but does not preserve the in-order sequential
del ivery of TCP segments to the receiver. Then,
although local recovery occurs, the receipt of later seg-
ments causes dupli cate ACKs from the receiver as
well, leading to redundant sender fast retransmissions,
sender window reduction, and reduced throughput [5].

3. Large round-trip variations: If a link layer protocol is
designed to be overly robust and attempt, for example,
to provide a TCP-li ke service, it often result in long
latencies and large round-trip time deviations at the
TCP sender. This leads to long and conservative time-
outs when congestion-related losses occur on the path.
Other problems that arise include a large number of
redundant retransmissions if a sender timeout occurs
for a wireless loss [15], a problem observed in GSM
networks running the RLP protocol [18].

• Spli t connection protocols [3, 26]: Spli t connection
protocols split each TCP connection between a sender
and receiver into two separate connections at the base
station — one TCP connection between the sender and
the base station, and the other between the base station

and the receiver. Over the wireless hop, a speciali zed
protocol tuned to the wireless environment may be used.
In [26], the authors propose two protocols — one in
which the wireless hop uses TCP, and another in which
the wireless hop uses a selective repeat protocol (SRP)
on top of UDP. They study the impact of handoffs on
performance and conclude that they obtain no significant
advantage by using SRP instead of TCP over the wire-
less connection in their experiments. However, our
experiments demonstrate benefi ts in using a simple
SACK scheme with TCP over the wireless connection.

Indirect-TCP [3] is a split-connection solution that uses
standard TCP for its connection over the wireless l ink.
Like other split -connection proposals, it attempts to sep-
arate loss recovery over the wireless li nk from that
across the wireline network, thereby shielding the origi-
nal TCP sender from the wireless link. However, as our
experiments indicate, the choice of TCP over the wire-
less link results in several performance problems. Since
TCP is not well-tuned for the lossy link, the TCP sender
of the wireless connection often times out, causing the
original sender to stall. In addition, every packet incurs
the overhead of going through TCP protocol processing
twice at the base station (as compared to zero times for a
non-split-connection approach), although extra copies
are avoided by an eff icient kernel implementation.
Another disadvantage of split connections is that the
end-to-end semantics of TCP ACKs is violated, since
ACKs to packets can now reach the source even before
the packets actuall y reach the mobile host. This makes
the system vulnerable to base station crashes. Also, since
split-connection protocols maintain a significant amount
of state at the base station per TCP connection, handoff
procedures tend to be complicated and slow [2].

• Snoop Protocol [7]: The snoop protocol introduces a
module, called the snoop agent, at the base station. The
agent monitors every packet that passes through the TCP
connection in both directions and maintains a cache of
TCP segments sent across the link that have not yet been
acknowledged by the receiver. A packet loss is detected
by the arrival of a small number of duplicate ACKs from
the receiver or by a local timeout. The snoop agent
retransmits the lost packet if it has it cached and sup-
presses the duplicate ACKs. Thus, the snoop protocol is
a transport-aware link protocol.

The main advantage of this approach is that it suppresses
duplicate ACKs for TCP segments lost and retransmitted
locall y, thereby avoiding unnecessary fast retransmis-
sions and congestion control invocations by the sender.
The per-connection state maintained by the snoop agent
at the base station is soft, and is not essential for correct-
ness. A detai led description of the Snoop protocol
appears in [7].

3

• Selective Acknowledgments: Since TCP Reno uses a
cumulative ACK scheme, it often does not provide the
sender with sufficient information to recover quickly
from multiple packet losses within a single transmission
window. The SACK RFC [17] proposes that each ACK
contain information about up to three non-contiguous
blocks of data that have been received successfully by
the receiver. Each block of data is described by its start-
ing and ending sequence number. Due to the limited
number of blocks, it is best to inform the sender about
the most recent blocks received. The RFC does not spec-
ify the sender behavior, except to require that standard
TCP congestion control actions be performed when
losses occur. SACKs help greatly when window sizes are
large and multiple losses occur in a single transmission
window [11].

3. Transfers from a Mobile Host

We now proceed to discuss the case of data transfer from a
mobile host. While this has conventionally been a less com-
mon scenario for wireless information access, it is rapidly
gaining in importance. There is an increasing number of
Web and other information servers that serve data across
first-hop wireless links [13, 9]. A representative topology of
this scenario is shown in Figure 1.

It might be tempting to come to the conclusion that a proto-
col very similar to the snoop protocol described in Section 2
and [7] for data transfer to the mobile host can be used in
this case as well . In particular, one of the important features
of that case was that it required changes only to the base sta-
tion and not to any other entities in the network. However, it
is unlikely, if not impossible, that a protocol with modifica-
tions made only at the base station can substantially improve
the end-to-end performance of reliable bulk data transfers
from the mobile host to other hosts on the network, while
preserving the precise semantics of TCP ACKs. For exam-
ple, caching packets at the base station and retransmitting

them as necessary is not useful, since most of the packet
losses will be from the mobile host to the base station. Run-
ning a Snoop agent at the mobile host will be inappropriate
because the same duplicate ACKs signify both corruption
and congestion losses. There is no way for the mobil e
sender to know if the loss of a packet happened on the wire-
less link or elsewhere in the network due to congestion.

There are at least two ways in which the basic Snoop
scheme can be enhanced to achieve good performance for
this case — the first involves the use of negative ACKs, and
the second the use of Explicit Loss Notifications (ELN). We
first describe the first approach, and then the second, which
we believe to be an elegant and simple solution to the prob-
lem. We also show how the algorithm naturally generalizes
to the case when a cellular wireless link is the transit li nk
bridging two or more wired networks.

3.1 Using Negative ACKs

An agent at the base station keeps track of the packets that
were lost in any transmitted window and generates negative
acknowledgments (NAKs) for those packets back to the
mobile sender. This is especially useful if several packets
are lost in a single transmission window, a situation that
happens often under high interference or in fades where the
strength and quality of the signal are low. These NAKs are
sent when either a threshold number of packets (from a sin-
gle window) have reached the base station or when a certain
amount of time has expired without any new packets from
the mobile. Encoding these NAKs as a bit vector can ensure
that the fraction of the sparse wireless bandwidth consumed
by NAKs is relatively low. The mobi le host used these
NAKs to selectively retransmit lost packets.

NAKs can be implemented using the TCP SACK option.
The agent could use SACKs to enable the mobil e host to
quickly (relative to the round-trip time of the connection)
retransmit missing packets. The only change required at the
mobile host is to enable SACK processing. No changes of
any sort are required in any of the fixed hosts. Also, SACKs
are generated by the snoop agent when it detects a gap cor-
responding to missing packets; we emphasize again that no
transport-layer code runs at the base station to do this.

There is a danger of a possible violation of end-to-end
semantics in this scheme, because the snoop agent would
send SACK information about segments it receives, but they
may not yet have been received by the intended receiver.
This will lead to problems if the corresponding segments get
lost later in the path. However, this is not strictly true
because of the semantics of TCP SACKs: they are advisory
in nature, and only cumulative ACKs are binding. What this
means is that even if a TCP sender receives SACKs for cer-
tain data blocks, it must not clean those segments from it’s
transmission buffer or assume successful reception, until
cumulative ACKs arrive for them.

Mobile Host
(Sender)

Receiver

Base Station

Data

ACKs

Figure 1. Topology for data transfer from a mobile host.

4

However, this approach based on SACKs is inelegant
because it relies on a relatively obscure feature of the SACK
specification. Of course, we could implement an expli cit
NAK scheme, but that would require complex modifications
at the sender, which would anyway implement SACKs in
the future. In addition, we would like to avoid explicit proto-
col messaging as far as possible, and both SACKs and
NAKs generated from the base station do not provide this.
All these issues led us to investigate alternate protocols;
what follows is one such scheme.

3.2 Using Explicit Loss Notifications

Explicit Loss Notification (ELN) is a mechanism by which
the reason for the loss of a packet can be communicated to
the TCP sender. In particular, it provides a way by which
senders can be informed that a loss happened because of
reasons unrelated to network congestion (e.g., due to wire-
less bit errors), so that sender retransmissions can be decou-
pled f rom congestion control . I f the receiver or a base
station knows for sure that the loss of a segment was not due
to congestion, i t sets the ELN bit in the TCP header and
propagate it to the source. In the situation at hand, this ELN
message is sent as part of the same connection (and not in a
separate way, using ICMP for instance). This simplifies the
sender implementation as it receives messages in-band.
ELN is a general concept that has appli cations in a wide
variety of wireless topologies. In this section, we describe it
in the context of data transfer from a mobile host connected
to the rest of the Internet via a cellular wireless link.

The snoop agent running at the base station monitors al l
TCP segments that arrive over the wireless link. However, it
does not cache any TCP segments since it does not perform
any retransmissions. Rather, it keeps track of holes in the
sequence space as it receives data segments, where a hole is
a missing interval in the sequence space. These holes corre-
spond to segments that have been lost over the wireless link.
However, it could also be the case that the packet was lost
due to congestion at the base station. To avoid against
wrongly marking a congestion hole as having been due to a
wireless loss, it only adds a hole to the list of holes when the
number of packets queued on the base station’s input inter-
face is not close to the maximum queue length.

When ACKs, especiall y dupli cate ACKs, arrive from the
receiver, the agent at the base station consults its li st of
holes. It sets the ELN bit on the ACK if it corresponds to a
segment in the list before forwarding it to the data sender. It
also cleans up all holes with sequence numbers smaller than
the current ACK, since they correspond to segments that
have been successfully received by the receiver. When the
sender receives an ACK wi th ELN information in i t, i t
retransmits the next segment, but does not take any conges-
tion control actions. The sender also makes sure that each
segment is retransmitted at most once during the course of a

single round-trip, as the snoop agent would flag an ELN for
each duplicate ACK following a loss.

3.3 ELN Implementation

We need to make modifications to both the base station (BS)
and the mobile host (MH), which is the TCP sender. Fixed
hosts in the rest of the Internet are unchanged.

Data structures: At the BS, the snoop agent detects holes
in the data transmission from the MH. The basic data struc-
ture used for this purpose is a list of blocks, or maximal con-
tiguous segments of data specified by a starting sequence
number and size. Gaps between blocks correspond to miss-
ing segments in the transmission sequence. At the MH, a
new variable is added to the connection’s TCP control block
to keep track of the last ELN-triggered retransmission.

Data path: When new data arrives from the MH, the agent
attempts to coalesce it with an existing block and checks if it
bridges a previous hole. A new data segment that is out of
the normal increasing sequence creates a hole, because seg-
ments in between have been lost. We ensure that every hole
was the consequence of a corruption-induced loss, and not
caused by congestion. Congestion-induced losses can occur
in two ways — due to the base station’s input queue over-
flowing, or due to the mobile host’s output queue overflow-
ing. Piggybacked on each packet from the MH is i ts
instantaneous output queue length, which the base station
can use to classify each loss it detects. When a new, out-of-
sequence packet arrives at the BS, the snoop agent checks
the size of its input queue and gets the size of the MH’s out-
put queue from the packet. If either of the instantaneous
queue sizes is above a certain threshold of the maximum
(set to 75% in our implementation), then this loss is not con-
sidered as one due to corruption. Because the agent should
only flag ELN information for those losses that were unre-
lated to congestion, the impli citly maintained li st of holes
should only include packets lost due to corruption.

ACK processing: Whenever an ACK arrives at the BS, the
agent updates the list of blocks by cleaning up all blocks (or
parts of blocks) that have been acknowledged so far. It also
checks if the ACK corresponds to a hole, i.e., if the next seg-
ment in sequence was lost due to corruption on the wireless
link. It does so by comparing the ACK to the sequence num-
ber of the earliest block currently in its list for that connec-
tion. If the value of the ACK is smaller, it sets the ELN bit in
the TCP header, modifies the TCP checksum, and forwards
the ACK on to the MH. Because there is currently no spe-
cific bit in the TCP header for ELN, we use one of the unre-
served bits for this purpose. Note that while ELN marking
happens most often for duplicate ACKs, it can (and does)
also happen for new ones. However, it does not happen
when the list of blocks is empty, because there is no way the
agent at the BS can know if any further data has been trans-
mitted by the mobile host.

5

When the MH receives an ACK with the ELN bit set, i t
retransmi ts the missing packet and updates a variable
(eln_last_rxmit) that keeps track of the last ELN-induced
retransmission. This ensures that the MH does not retrans-
mit the same packet on every ACK with ELN that it receives
via the base station; thus, the retransmission policy is left to
the end-host, and the base station only conveys relevant
information to it. The TCP stack at the MH uses a config-
urable variable, eln_rexmt_thresh, to determine when to
retransmit a segment upon receiving an ACK with ELN set.
Upon receiving eln_rexmt_thresh ACKs with ELN, i t
retransmits the missing segment. In our implementation and
experiments, we set its value to 2.

When the MH retransmits a segment based on ELN infor-
mation, it does not reduce its congestion window and per-
form congestion control. It also bypasses the fast recovery
code that inflates the congestion window for every duplicate
ACK. Finall y, we note that these actions are taken only for
dupl icate ACKs wi th ELN, and not for other dupl icate
ACKs that signify network congestion.

3.4 Per formance

We performed several experiments to measure the perfor-
mance of data transfer from the MH to the FH. These
results, measured across a range of exponentiall y-distrib-
uted bit-error rates, are shown in Figure 2. As before, there
are significant performance benefits of using the snoop pro-
tocol coupled with the ELN mechanism in this situation.
These measurements were made for wide-area transfers
between UC Berkeley and IBM Watson, across one wireless
WaveLAN hop and 16 Internet hops. At medium to high
error rates, the performance improvement due to ELN is
roughly a factor of 2. At lower error rates, TCP Reno per-
forms quite well as expected, and the benefits of ELN are

not as pronounced. The main advantage of ELN is that it
helps maintain a large TCP congestion window even when
wireless error rates are high, reacting only to congestion.

While the relative performance of ELN is about 100% better
than Reno at high error rates, it is not as high as the relative
improvement for the FH to MH case using the Snoop proto-
col. The reason for this is that the Snoop protocol performs
quick local recovery in addition to shielding the sender from
congestion. On the other hand, loss recovery with ELN is
due to TCP retransmissions alone. When multiple losses
occur in a window TCP with ELN incurs a coarse timeout,
leading to “only” a factor of two improvement in through-
put.

3.5 Cellular Wireless Transit L inks

The ELN-based approach presented above for improving
end-to-end performance also generalizes to cellular wireless
transit l inks where the TCP ACKs traverse the same base
stations as the data packets on the forward path. Consider a
connection over one cellular wireless transit li nk and other
wired links, as shown in Figure 3. Suppose a loss happened
due to corruption over the wireless li nk. In this case, the
agent at base station A would have seen the packet, while B
would not, so the packet gets added to B’s list of holes using
the same algori thms as in Section 3.2. When dupl icate
ACKs arrive for the missing packet at B, its agent sets the
ELN information bit and propagates it towards A. Since A
original ly saw the packet (it is not in i ts l ist of holes), i t
infers that the packet was obviously lost over the wireless
link and simply lets the ACK go through to the data sender
with the ELN information set on it. Of course, it is possible
to deploy a snoop agent that caches and locally retransmits
packets at A in this topology. In this case, the agent also
suppresses dupli cate ACKs for corrupted packets, as
described earlier. It is important to note that local retrans-
missions from the snoop agent at A now happen only upon
duplicate ACKs with ELN set.

Figure 2. Throughput of TCP Reno and Reno enhanced
with ELN across a range of exponentially distr ibuted

bit-error r ates for transfers from a mobile host.

0

0.1

0.2

0.3

0.4

0.5

0.6

8 16 32 64 128 256 512

Inverse Bit-Er ror Rate (KBytes-1)

T
hr

ou
gh

pu
t

(M
bp

s) Reno + ELN

Reno

Sender Receiver

Base Station

Data

ACKs

Figure 3. Topology for data transfer over a cellular
wireless transit link.

A B

Congestion
loss

