
Competitive Online Routing in Geometric Graphs†

Prosenjit Bose‡

Carleton University
Pat Morin§

McGill University

Abstract

We consider online routing algorithms for finding paths between the vertices of
plane graphs. We show there exists a simple online O(1)-memory c-competitive routing
strategy that approximates the shortest path in triangulations possessing the diamond
property, i.e. the path found is at most a constant c times the total distance travelled
by the algorithm. Our results imply a competitive routing strategy for certain classical
triangulations such as the Delaunay, greedy, or minimum-weight triangulation, since
they all possess the diamond property.

1 Introduction

Path finding, or routing, is central to a number of fields including geographic information
systems, urban planning, robotics, and communication networks. In many cases, knowledge
about the environment in which routing takes place is not available beforehand, and the ve-
hicle/robot/packet must learn this information through exploration. Algorithms for routing
in these types of environments are referred to as online [2] routing algorithms.

In this paper we consider online routing in the following abstract setting [4]: The envi-
ronment is a plane graph, G (i.e., the planar embedding of G) with n vertices and whose
edges are weighted with the Euclidean distance between their endpoints. The source s and
destination t are vertices of G, and a packet can only travel on edges of G. Initially, a packet
only knows the coordinates of s, t, and N(s), where N(v) denotes the set of vertices adjacent
to a node v. When a packet visits a node v, it learns the coordinates of N(v).

Bose and Morin [4] classify routing algorithms based on their use of memory. A deter-
ministic routing algorithm is memoryless or oblivious if, given a packet currently at vertex

†This research was partly funded by the Natural Sciences and Engineering Research Council of Canada.
‡School of Computer Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, Canada,

K1S 5B6, jit@scs.carleton.ca
§School of Computer Science, McGill University, 3480 University Street, McConnell Eng. Bldg., Room

318, Montreal, Quebec, H3A 2A7 CANADA, morin@cs.mcgill.ca .

1

v and destined for node t, the algorithm decides where to forward the packet based only on
the coordinates of v, t and N(v). An O(1)-memory routing algorithm decides where to move
a packet based only on the coordinates of v, t, N(v), and the content of its constant size
memory M .1

We say that a routing algorithm A is defeated by a graph G if there exists a pair of
vertices s, t ∈ G such that a packet stored at s will never reach t when being routed using
A. Otherwise, we say that A works for G.

Let A(G, s, t) denote the length of the walk taken by routing algorithm A when travelling
from vertex s to vertex t of G, and let SP(G, s, t) denote the length of the shortest path, in
G, between s and t. We say that A is c-competitive for a class of graphs G if

A(G, s, t)

SP(G, s, t)
≤ c

for all graphs G ∈ G and all s, t ∈ G, s 6= t. We say that A is simply competitive if A is
c-competitive for some constant c.

Recently, several papers have dealt with online routing and related problems in geometric
settings. Kalyanasundaram and Pruhs [7] give a 16-competitive algorithm to explore any
unknown plane graph, i.e., visit all of its nodes. This online exploration problem makes the
same assumptions as those made here, but the goal of the problem is to visit all vertices of
G, not just t. This difference leads to inherently different solutions.

Kranakis et al. [8] give a deterministic oblivious routing algorithm that works for any
Delaunay triangulation, and give a deterministic O(1) memory algorithm that works for any
connected plane graph.

Bose and Morin [4] also study online routing in geometric settings, particularly triangula-
tions. They give a randomized oblivious routing algorithm that works for any triangulation,
and ask whether there is a deterministic oblivious routing algorithm for all triangulations.
They also give a competitive non-oblivious routing algorithm for Delaunay triangulations.

Cucka et al. [5] experimentally evaluate the performance of routing algorithms very sim-
ilar to those described by Kranakis et al. [8] and Bose and Morin [4]. When considering
the Euclidean distance travelled during point-to-point routing, their results show that the
greedy routing algorithm [4] performs better than the compass routing algorithm [4, 8]
on random graphs, but does not do as well on Delaunay triangulations of random point
sets.2 However, when one considers not the Euclidean distance, but the number of edges
traversed (link distance), then the compass routing algorithm is slightly more efficient for
both random graphs and Delaunay triangulations.

Recently, Bose et al. [3] provide a deterministic oblivious routing strategy that works for
all triangulations. However, they also show that there is no competitive online routing algo-

1A constant size memory can hold a constant number of vertex identifiers, distances, and O(log n) bit
integers.

2Cucka et al. call these algorithms p-dfs and d-dfs, respectively.

2

rithm under the Euclidean distance metric in arbitrary triangulations. In light of this fact, it
is interesting to classify which types of triangulations admit competitive routing algorithms
since it was shown in [4] that there exist O(1)-memory competitive routing strategies for the
Delaunay triangulation.

In this paper we explore this question further and present an O(1)-memory competitive
routing strategy that works for the class of triangulations possessing the diamond property.
This class is fairly large as it includes such classical triangulations as the Delaunay, greedy
and minimum-weight triangulations.

The remainder of the paper is organized as follows: In Section 2 we present a deter-
ministic competitive online routing algorithm for routing on triangulated polygons with two
ears. Section 3 presents our results for routing on triangulations that possess the diamond
property. Finally, Section 4 summarizes and concludes with open problems.

2 Competitive Routing in Triangulated Polygons with

Two Ears

Before addressing the problem of routing on plane graphs, we first study the problem in
a specific setting which will prove to be quite useful in the sequel. A triangulated sim-
ple polygon is a geometric outer-planar graph P where every face except the outer face
is a triangle. A vertex of degree two in P is known as an ear. In this section, we study
triangulated simple polygons with only two ears, s and t. Given such a graph P , we
devise a simple online O(1)-memory routing strategy that finds a path from s to t such
that the total distance travelled by the algorithm when routing from s to t is at most
9 · SP(P, s, t)(the shortest path from s to t in P).

The two ears naturally divide the outer face of P into two chains. Let {s = a0, a1, . . . , am =
t} be the sequence of vertices in the upper chain and {s = b0, b1, . . . , bn = t} be the sequence
of vertices in the lower chain. If the shortest path from s to t happened to be one of these
two chains, then one could devise a simple online routing strategy by directly apply a result
of Baeza-Yates et al. [1]. Baeza-Yates et al. studied the following problem: given a two-way
infinite line and a searcher starting at the origin, the searcher must find a goal that lies at
some unknown distance d from the origin. The searcher can only move in unit steps and
the objective is to minimize the ratio of the distance traversed to the true distance d. The
strategy proposed in [1] is to have the searcher alternate her search between the two sides of
the origin and each time the searcher travels a certain distance on one side of the origin, she
doubles the distance travelled on the other side of the origin. This results in the searcher
travelling at most 9d steps to find the goal. By having the upper and lower chain represent
each of the two sides of the origin, applying this technique would result in a 9-competitive
search strategy. Unfortunately, the shortest path need not be one of the two chains. In
fact, the ratio between the length of the shortest path and either of the two chains can be
unbounded (see Figure 2).

3

s
t

a1

a2

a3

a7a5
a4

a8

a6

b1
b2

b3

b4

b5

Figure 1: The ears s and t partitions P into an upper and lower chain.

s

t

Figure 2: The paths along the lower and upper chains of P can be arbitrarily long.

4

We circumvent this problem by uncovering some key properties of the shortest-path tree
of P rooted at s, denoted T (s). The tree T (s) is the tree formed by taking the union of the
shortest paths from s to all the vertices in P . The shortest path from s to a node x in P
consists of a sequence of nodes from the upper and lower chain. This sequence cannot have
a node from the lower chain between two consecutive nodes in the upper chain or vice versa.

We refer to nodes of degree 1 in T (s) as a leaves, nodes of degree 2 as internal nodes and
all other nodes as branching nodes. The crucial observation is that the shortest path from s
to t visits every branching node.

Lemma 1. Given a triangulated simple polygon P with two ears s and t, the shortest path
from s to t in P visits every branching node of the shortest path tree rooted at s.

Proof. The proof is by induction on the number of vertices in P . The lemma holds trivally
when P has 4 vertices. Assume that the lemma holds when P has 4 ≤ k < n vertices. Let us
consider the inductive step when P has k = n vertices. Vertex t has degree 2 and is adjacent
to one vertex, ai from the upper chain and one vertex bj from the lower chain. Remove t
from P to form a triangulated polygon P ′. Now, P ′ has only two ears, s and one of ai or bj.
WLOG, assume bj is an ear of P ′. By the inductive hypothesis, the shortest path from s to
bj visits every branching node of the shortest path tree rooted at s in P ′. By re-introducing
t, the shortest path tree does not change very much. In fact, t is a leaf in the tree and it
is adjacent either to ai or bj. However, the least common ancestor of ai and bj in the tree
is the first branching node in path from bj to s. Therefore, t visits every branching node of
T (s).

Branching nodes can be identified locally with only a constant amount of extra informa-
tion. Consider the node ai in the upper chain. Let bj, bj+1, . . . , bk be the sequence of nodes
in the lower chain adjacent to ai. If we know the length of SP(P, s, ai−1) and SP(P, s, bj),
then we can identify whether ai or any of its adjacent vertices on the lower chain are branch-
ing nodes. For example, the node bj is a branching node if |SP(P, s, bj)| + dist(bj, ai) <
|SP(P, s, ai−1)|+ dist(ai−1, ai).

The approach to finding a competitive routing algorithm is to move from branching node
to branching node in a competitive fashion. Notice that to find a short path between two
consecutive branching nodes, we only need to explore two paths, one consisting solely of
upper chain vertices and the other of lower chain vertices. The following algorithm, which
we call Next-Branch starts at a branching node x and moves to the next branching
node y travelling a total of 9 · SP(G, x, y). Since x is a branching node, there are two
paths of T (s) leading out of x. One of them leads to y and the other ends at a leaf. Let
P1 = x, ai, ai+1, . . . , aj, y be one of the paths and P2 = x, bk, bk+1, . . . , bl be the other.

1: d = min dist(x, ai), dist(x, bk)
2: repeat
3: travel along P1 until reaching a branching node or until reaching a vertex az such

that the length of the path from x to az+1 > d. When travelling from one vertex to
the next, retain the length of the shortest path to the one upper chain and one lower

5

chain vertex required to compute all shortest path information at the next step. If a
branching node is reached quit, otherwise return to x.

4: d← 2d
5: travel along P2 until reaching a branching node or until reaching a vertex bz such that

the length of the path from x to ab+1 > d. When travelling from one vertex to the
next, retain the length of the shortest path to the one upper chain and one lower
chain vertex required to compute all shortest path information at the next step. If a
branching node is reached quit, otherwise return to x.

6: d← 2d
7: until y is reached

We note that in steps 3 and 5 of the algorithm, it is not necessary to return to x upon an
unsucessful search. In fact, it would be easier to simply follow an edge connecting a vertex
of the upper (resp. lower) chain to a vertex on the lower (resp. upper) chain. Although this
shortcutting will likely reduce the distance travelled in practice, it is difficult to reduce the
upper bound when these short cuts are taken and the analysis is much simpler if one returns
to x after each unsuccesful search.

Lemma 2. Starting at x, Next-Branch reaches y after travelling a total of 9 ·SP(G, x, y)

Proof. Let c = min{dist(x, ai), dist(x, bk)}. Let df = 2kc be the value of d during the final
exploration step (Line 3 or Line 5) of the algorithm. Therefore, the total distance travelled
by the algorithm is equal to

D = 2 ·
k−1∑
i=1

2ic+ L

≤ 2k+1c+ L

where L is the distance travelled during the last exploration step. There are now two cases
to consider.

Case 1: The algorithm terminated while exploring the shorter of the two paths P1 or P2.
Then df ≤ 4 ·min{length(P1), length(P2)}, otherwise the algorithm would have reached y in
the previous iteration of the algorithm. Therefore

D ≤ 8 ·min{length(P1), length(P2)}+ L

= 9 ·min{length(P1), length(P2)}

Case 2: The algorithm terminated while exploring the longer of the two paths P1 or P2.
Then x ≤ df ≤ 2 ·min{length(P1), length(P2)}, otherwise the algorithm would have reached
y in the previous exploration step. Then

D ≤ 4 ·min{length(P1), length(P2)}+ L

≤ 6 ·min{length(P1), length(P2)}

6

αα

e

αα

t1 t2

Figure 3: The edge e satisfies the diamond property if at least one of t1 and t2 does not
contain any point of V in its interior.

In both cases, the conditions of the lemma are satisfied.

Putting Lemma 1 and Lemma 2 together, we devise Find-Short-Path, an online com-
petitive O(1) memory routing strategy to move from s to t in G. Starting at vertex s,
repeatedly invoke Next-Branch until t is reached.

Theorem 1. Find-Shortest-Path reaches t after having travelled at most 9 times SP(G, s, t).

Proof. By Lemma 1, the shortest path from s to t must visit every branching node. Since
each of these steps is 9-competitive, by Lemma 2, the theorem follows.

3 Competitive Routing in Triangulations

Although it was shown in [3] that there is no competitive online routing algorithm under
the Euclidean distance metric in arbitrary triangulations. In this section, we provide an
O(1)-memory competitive algorithm for the class of triangulations possessing the diamond
property. Das and Joseph [6] showed these triangulations approximate the complete Eu-
clidean graph in terms of the shortest path length. We elaborate on the precise definition of
this property.

Let α be any angle 0 < α ≤ π/2. For an edge e of a triangulation T = (V,E), consider the
two isosceles triangles t1 and t2 whose base is e and with base angle α. Refer to Fig. 3. The
edge e satisfies the diamond property with parameter α if one of t1 or t2 does not contain any
point of V in its interior. A triangulation T satisfies the diamond property with parameter α
if every edge of T satisfies the diamond property with parameter α. Das and Joseph prove
the following.

Lemma 3. [6] Given a triangulation T = (V,E) satisfying the diamond property with param-
eter α, there exists a constant dα (depending on α), such that ∀x, y ∈ V, SP(T, x, y)/dist(x, y) ≤
dα.

7

x

y

Figure 4: The graph Txy (shaded).

They showed that the diamond property is not an obscure property that is possessed
by only a few triangulations but that the class of triangulations possessing the diamond
property is fairly rich and includes some of the classical triangulations.

Lemma 4. [6] The set of triangulations satisfying the diamond property include such classi-
cal triangulations as the Delaunay triangulation, the minimum weight triangulation and the
greedy triangulation.

Given two vertices x, y in a triangulation T , consider the set Sxy of triangles of T whose
interiors intersect the line segment [x, y]. Define Txy as the subgraph of T containing only
those edges of T bounding triangles of Sxy. By construction, Txy is a triangulated simple
polygon with two ears, x and y.3 An example is shown in Fig. 4.

Lemma 5. Given a triangulation T = (V,E) satisfying the diamond property with parameter
α, and two vertices x, y ∈ V , the shortest path between x and y in Txy is at most dα times
dist(x, y).

Proof. Due to space constraints, we will not delve into the details of the proof of this lemma.
Essentially, although it is not stated explicitly, a careful analysis of the proof of Lemma 3
reveals that in fact, for every triangulation satisfying the diamond property with parameter
α, the shortest path between x and y in Txy has length at most dα times the line segment
[x, y]. This is stronger than simply the shortest path, but the distance is related to the
Euclidean distance.

Note that the above lemma shows that the path is related not only to the shortest path
between x and y but in fact to the Euclidean distance between x and y. In order to route
in a competitive fashion between vertices x, y in a triangulation T possessing the diamond
property, attention can be restricted to the subgraph Txy. Given a vertex z of T , a local test
determines whether or not z lies in Txy by testing whether any of the edges of z intersect
the segment [x, y]. This leads to a routing scheme based on algorithm Find-Short-Path.
Basically, starting at vertex x, run Find-Short-Path until y is reached. At each step in

3There are degenerate cases in which vertices other than x and y lie on the segment [x, y]. In such cases,
Txy is a sequence of triangulated simple polygons joined at the vertices on [x, y].

8

the algorithm, a local test allows one to determine which vertices form the upper and lower
chain. We conclude with the following:

Theorem 2. Given a triangulation T = (V,E) satisfying the diamond property with param-
eter α, and two vertices x, y ∈ V , a modified Find-Short-Path is an O(1)-memory online
competitive routing algorithm that moves a packet from x to y after travelling a total of at
most 9 · dα · dist(x, y).

4 Conclusions

Given that no competitive routing strategy works for all triangulations, in this paper we
presented an O(1)-memory competitive routing strategy that works for the class of triangu-
lations possessing the diamond property. This class is fairly large as it includes such classical
triangulations as the Delaunay, greedy and minimum-weight triangulations. The routing
strategy is based on a simple online competitive strategy for routing on triangulated simple
polygons.

These results are in contrast with results for the link distance metric, where the length
of a path is the number of edges it uses. It is known [3] that no competitive algorithm exists
for greedy, minimum-weight, or Delaunay triangulations under this metric. This raises the
question: For what classes of geometric graphs do competitive routing algorithms exist under
the link distance metric?

References

[1] R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Information and
Computation, 106(2):234–252, 1993.

[2] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

[3] P. Bose, A. Brodnik, S. Carlsson, E. Demaine, R. Fleischer, A. Lopez, P. Morin, and
I. Munro. Online routing in triangulations. In Proceedings of the 11th International
Symposium on Algorithms and Computation (ISAAC’00), Springer LNCS, 2000.

[4] P. Bose and P. Morin. Online routing in triangulations. In Proceedings of the Tenth
International Symposium on Algorithms and Computation (ISAAC’99), volume 1741 of
Springer LNCS, pages 113–122, 1999.

[5] P. Cucka, N. S. Netanyahu, and A. Rosenfeld. Learning in navigation: Goal find-
ing in graphs. International Journal of Pattern Recognition and Artificial Intelligence,
10(5):429–446, 1996.

9

[6] G. Das and D. Joseph. Which triangulations approximate the complete graph? In
Proceedings of the International Symposium on Optimal Algorithms, pages 168–192, 1989.

[7] B. Kalyanasundaram and K. R. Pruhs. Constructing competitive tours from local infor-
mation. Theoretical Computer Science, 130:125–138, 1994.

[8] E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks. In
Proceedings of the 11th Canadian Conference on Computational Geometry (CCCG’99),
1999.

10

	Introduction
	Competitive Routing in Triangulated Polygons with Two Ears
	Competitive Routing in Triangulations
	Conclusions

