
On Constructive Network Coding for Multiple Unicasts

Tracey C. Ho, Yu-Han Chang and Keesook J. Han

Abstract— We consider the problem of network coding across
multiple unicasts. We develop, for wired and wireless networks,
off-line and online back pressure algorithms for finding approx-
imately throughput-optimal network codes within the class of
network codes restricted to XOR coding between pairs of flows.
Our online algorithm incorporates real-time control signaling
with delays, and random exploration approaches for reducing
computation.

I. I NTRODUCTION

In this paper we consider network coding across multiple
unicasts, using the class of pairwise XOR codes introduced
in [12], [13] for wired networks. While this class of codes
is not optimal in all cases1, it covers a substantial number
of common known cases including “reverse carpooling” and
two-flow “star coding” for wireless networks [6]. In this
class of codes, network coding is limited to XOR coding
between pairs of uncoded packets. Two uncoded packets
of different sessions can be coded together to form ajoint
poisonpacket in order to share capacity on one or more hops.
The joint poison packet is subsequently replicated to form
two identicalindividual poisonpackets whose routes branch
(diverge). These are met by correspondingremedypackets
and decoded to form the original uncoded packets. Decoded
packets can be subsequently re-encoded.

We consider the problem of constructing throughput-
optimal network codes within this class on wired and
wireless networks. In an off-line setting we develop, for a
given network and communication demands, a combinatorial
approximation algorithm that finds a solution for the problem
with rates (rc) if there exists a solution for the problem
with slightly higher rates((1 + 2ǫ)rc) for any ǫ > 0. In
a dynamic online setting, we incorporate real-time control
signaling with delays, and approaches for reducing compu-
tation through random exploration of the optimization space.

Our approach is inspired by back pressure techniques orig-
inally introduced for the multiple unicasts problem without
coding [1], [14], which maintain a queue for each session’s
packets at each node, and route based on queue gradients that
form by the addition of packets to sources and their removal
from sinks. Extension of this approach to incorporate coding
is not straightforward due to some significant complicating
features. Firstly, since the path taken by a packet affects
its future coding possibilities, uncoded packets of the same
session that have arrived at the same node via different paths

This work was supported by the Caltech Lee Center for Networking and
AFOSR Grant 5710001972.

T. Ho is with the California Institute of Technology.
Y. Chang is with the University of Southern California.
K. J. Han is with the Air Force Research Laboratory.
1Linear coding is not sufficient in general for multiple unicasts [4], [5].

may have to be treated as separate commodities (where a
commodity is a class of packets that are treated interchange-
ably from the standpoint of scheduling, routing and coding
decisions, without affecting the throughput of each session).2

Secondly, a poison packet is removed by its corresponding
remedy packet when they meet at any node in the network,
unlike the no coding case where all packets of a session
are removed independently at a fixed location. Consequently,
the choice of how different commodities are defined has
important bearing on the optimality and complexity of the
algorithm.

A. Other related work

For brevity we do not list many other works on network
coding and on back pressure techniques in networking, but
mention here a few that are most closely related to this
work. Back pressure has previously been applied to multicast
network coding [8]. Opportunistic XOR coding is proposed
in [9]. A more general approach for multiple unicast network
coding based on state space realizations is given in [13].
Constructive XOR coding across pairs of unicasts is con-
sidered in [13], [15] using a linear optimization approach.
Independent work by [7] also considers back pressure for the
same problem; while their algorithm superficially resembles
ours, it differs in a number of significant aspects. For
instance, [7] defines commodities solely by their destination
and multicast group (poison flows are multicast), i.e. at each
nodei, packets intended for a particular destination noded

within a multicast groupD are placed in a queueQ(d,D)
i .

We define commodities quite differently, as described in the
following sections. In [7] a coding node remotely chooses
the remedy origination locations as well as the decoding
locations based on the queue lengths at these locations; in
our algorithms the decoding locations are not predetermined
by the coding node but are chosen locally.

II. PROBLEM STATEMENT AND DEFINITIONS

K unicast sessions are transmitted over a network repre-
sented as a directed graphG = (N ,L) of N = |N | nodes
andM = |L| links. We refer to a unit of flow as a packet.

The off-line version of the problem specifies the demanded
communication raterc for each sessionc = 1, . . . ,K, and a
set of link rates (in the wireline case) or link rate constraints
(in the wireless case). A solution specifies different typesof
packets and the average rates at which they are transmitted,
coded, decoded, etc., at different nodes and links.

2A poison packet must nonetheless be labeled with the identifiers of its
constituent packets, since remedy and poison packets must be correctly
matched for actual decoding purposes.

In the online version of the problem, the instantaneous
source arrival rates and link capacities/constraints may vary
ergodically. For simplicity of exposition we assume that the
channel and arrival processes are independent and identically
distributed across time slots; a straightforward generalization
to ergodic processes is possible using a similar approach as
that in [11]. Here we give a dynamic policy that depends on
the state of the network.

In both cases, we show optimality of our algorithms by
comparison with an assumed, but unknown, pairwise XOR-
coding solution. A solution is made up ofelementary flows
such that all packets in an elementary flow undergo the same
routing and coding operations. Each elementary flow has a
set of links comprising a singleprimary path from sc to
dc and a remedy path associated with each node at which
decoding occurs.

III. O FF-LINE PROBLEM

A. Commodities

We define a number of commodities, each with its own
conceptual “queue”, at each nodei:

• U cv
i : uncoded sessionc packets also stored at nodev

• P
{c,c′}j
i : joint poison packets from sessionsc, c′ coded

at nodej meant for both sinks
• P cc′j

i : individual poison packets from sessionsc, c′

coded at nodej meant for sinkdc

• Rcc′j
i : remedy for sessionc packets that has been coded

with sessionc′ packets at nodej

B. Modified problem

Off-line, we can reduce complexity by considering a
modified problem which reverses the direction of the poison
flows while not changing the link capacity usage. Thus,
any solution of the modified problem can be translated to
a solution of the original problem and vice versa.

In the modified problem, coding two uncoded packets
p1, p2 together produces two remedy packets, each at some
node previously traversed byp1, p2 respectively. Each rem-
edy packet is transformed by adecodingoperation at some
node into an uncoded packet and an individual poison packet.
Two individual poison packets can be transformed by a
branchingoperation into a joint poison packet, and all poison
packets are removed at their original coding node, as shown
in Figure 1 and described formally below.

For each link (a, b) such thatCab >
∑

c rc, set Cab

to
∑

c rc, and let C̄a be the larger of the total incoming
capacity and total outgoing capacity of each nodea ∈ N .
At each source nodesc we define two additional queues: a
source queueU c and an overflow queuēU c. We also define
a number of virtual links: at each source nodesc a virtual
source link of capacityC̄sc

from U c to U csc
sc

, and at each
nodea a virtual coding link, a virtual decoding link and a
virtual branching link, each of capacitȳCa/2. Each real and
virtual link e is associated with a transmission setPe of pairs
(O,D) such that packets from each queue in the setO are
transformed into an equivalent number of packets in each
queue in the setD via e:

S r c A U (A , v 1)P (B , A , v 3) U (B , v 2)P (A , B , v 3)R (A , B , v 3)R (B , A , v 3)
S r c B

R c v B R c v A
P ({ A , B } , v 3)v 1 v 2v 3

Fig. 1. Illustration of commodities in off-line case. The direction of the
poison flows (labeledP) is the reverse of their physical (causal) direction
from the canonical butterfly example.

• if e is the virtual source link for sessionc, Pe =
(U c, U csc

sc
)

• if e is a real link (a, b) ∈ L, Pe =

{(U cv
a , U cv

b), (U cv
a , U ca

b), (P
{c,c′}j
b , P

{c,c′}j
a),

(P cc′j
b , P cc′j

a), (Rcc′j
a , Rcc′j

b)}
• if e is the virtual coding link at nodea, Pe =
{(

{U cv
a , U c′v′

a }, {Rcc′a
v′ , Rc′ca

v }
)

: c 6= c′; a 6= v, v′
}

• if e is the virtual decoding link at nodea, Pe =
{(

Rcc′j
a , {P cc′j

a , U cj
a }
)

: c 6= c′; a 6= j
}

• if e is the virtual branching link ata, Pe =
{(

{P cc′j
a , P c′cj

a }, P
{c,c′}j
a

)

: c 6= c′; a 6= j
}

Packets are removed from queuesU cv
dc

, P c′cj
j , andP

{c,c′}j
j .

A solution is specified by giving the average transmission
rate across each pair(O,D) ∈ Pe, e ∈ L.

C. Wireless case

Wireless broadcast links are denoted(a, Z), wherea is
the originating node andZ is the set of destination nodes.
The network connectivity and link transmission rates depend
on the transmitted signal and interference powers according
to some underlying physical layer model. For simplicity, we
consider a finite setU of sets of simultaneously achievable
link rates (transmission scenarios). We denote byC(a,Z),u

the capacity of link(a, Z) in set u ∈ U . A solution to the
multiple unicasts problem consists of a convex combination
of sets inU , which gives a set of average link capacities
achievable by timesharing, and a network code that operates
over the network with these average link capacities.

In the wireless case, the virtual links are defined exactly
as in the wired case. A branching operation can also
occur over a real wireless link, taking advantage of the
broadcast medium. For real wireless links(a, Z), P(a,Z) =

{(U cv
a , U cv

b), (U cv
a , U ca

b), (P
{c,c′}j
b , P

{c,c′}j
a), (P cc′j

b , P cc′j
a),

(Rcc′j
a , Rcc′j

b), (U cv
a , U cb′

b),({P cc′j
b , P c′cj

b′ }, P
{c,c′}j
a) : c 6=

c′; b 6= b′; b, b′ ∈ Z}

IV. OFF-LINE ALGORITHM

We consider all queuesU cv
a , U c, Rcc′v

a , P cc′j
a to be asso-

ciated with sessionc. We consider each joint poison queue

P
{c,c′}j
j as a pair of queues, one associated with each session

c and c′, such that any amount added to (removed from)
P

{c,c′}j
j means that the corresponding amount is added to

(removed from) each of the pair of queues. All flows of
packets occur between queues of the same session.

The algorithm is defined in terms of two parametersH
andL, which can be interpreted in terms of a flow solution
as follows. Running the algorithm for a particular choice
of H and L yields a solution if there exists any (pairwise
XOR-coded) flow solution in which each elementary flow has
at mostH real links and undergoes coding (and decoding)
at most L times. Note thatH ≥ L in any solution;
the complexity of finding suitable values forH and L is
discussed in Section V-E.

The overflow queue for each sessionc has a potential
αcle

αcBrc that is a function of its lengthl, where

αc =
ǫ

8Frc
(1)

F = 2H + 7L + 2, (2)

andB is a constant that will be defined later. We divide each
other queue into subqueues, one for each link for which it
is an origin or destination. In the wireless case, we assume
that each node broadcasts one message at a time and receives
one message at a time, so for each queue only one origin
subqueue and one destination subqueue are associated with
(any number of) real links. Each subqueueQ has a potential
φc(Q)(lQ) = eαc(Q)lQ that depends on its lengthlQ and its
sessionc(Q). For notational simplicity, we will abbreviate
subscriptsc(Q) as subscriptsQ.

Flow entering or leaving subqueues associated with ses-
sion c is partitioned into blocks of sizebc = (1 + ǫ)rc.
Besides its true lengthlQ, each subqueueQ has an approx-
imate length̃lQ that is an integer multiple of the block size.
The approximate length of a subqueue is updated only when
its true length has changed by at least one block since the
last update of its approximate length, as follows:l̃Q is set

to kbQ where k =
⌊

lQ
bQ

⌋

− 1 if Q is an origin subqueue

or k =
⌈

lQ
bQ

⌉

+ 1 if Q is a destination subqueue. Between

updates,lQ and l̃Q satisfylQ −3bQ ≤ l̃Q ≤ lQ for an origin
subqueue, orlQ ≤ l̃Q ≤ lQ+3bQ for a destination subqueue.

We denote byP̄e the subset ofPe consisting of pairs
(O,D) ∈ Pe satisfying

min
Q∈O

l̃Q > 0

max
Q∈D

l̃Q < BrQ + ln((L + 1)ρ)/αQ + 3bQ,

whereρ = maxc rc/minc rc.

A. Wired case

In each roundt, the algorithm carries out the following:

1) Add (1 + ǫ)rc units to the overflow queuēU c of each
sessionc, then transfer as much as possible toU c

subject to a maximum length constraint ofBrc for
U c

2) For each real and virtual linke, flow is pushed for zero
or more origin-destination pairs(O,D) ∈ P̄e such that
the total amount pushed is at most the link capacityCe.
Specifically, initializeC to Ce and repeat

• Choose the pair(O,D) ∈ P̄e that maximizes

w(O,D) =
∑

Q∈O

φ′
c(l̃Q) −

∑

Q∈D

φ′
c(l̃Q). (3)

Let

C ′ = min

(

C, min
Q∈(O∪D)

(bQ − |δQ|)

)

whereδQ is the change inlQ since the last update
of l̃Q. SubtractC ′ units fromC, subtractC ′ units
from lQ for eachQ ∈ O and add unitsC ′ to lQ for
eachQ ∈ D. For Q ∈ (O∪D), if C ′ = bQ−|δQ|,
updatel̃Q.

• If C = 0 then end.

3) Zero out all subqueuesU cv
dc

, P c′cj
j andP

{c,c′}j
j .

4) For each queue that has at least one subqueue whose
actual length has changed during the round, reallo-
cate packets to equalize the actual lengths of all its
subqueues. If the actual length of any subqueue has
changed by at least one block since the last update of
its approximate length, update its approximate length.

When the amount of flow remaining in the network queues
is an ǫ-fraction of the total amount that has entered the
network, the flow values for each link are averaged over
all rounds to give the solution.

B. Wireless case

The algorithm is the same as for the wired case, except
for Phase 2, which is as follows. For each virtual linke, flow
is pushed for zero or more origin-destination pairs(O,D) ∈
P̄e exactly as in the wired case. For each real linke =
(a, Z), flow is pushed for zero or more origin-destination
pairs (O,D) ∈ P̄e such that the total amount pushed is at
most the average link capacityλuCe,u for someλu satisfying
∑

u∈U λu ≤ 1.
Specifically, initializeT to 1 and repeat

• For each real linke = (a, Z), let

we = max
(O,D)∈P̄e

w(O,D)

(Oe,De) = arg max
(O,D)∈P̄e

w(O,D)

wherew(O,D) is defined in (3). Choose the setu ∈ U
which maximizes

yu =
∑

e

weCe,u. (4)

Let

T ′ = min

(

T, min
e: Ce,u>0

min
Q∈(Oe∪De)

bQ − |δQ|

Ce,u

)

where δQ is the change inlQ since the last update
of l̃Q. SubtractT ′ from T , and for eache, subtract
T ′Ce,u units from lQ for eachQ ∈ Oe and add the

same amount tolQ for eachQ ∈ De, updating l̃Q if
T ′Ce,u = bQ − |δQ|.

• If T = 0 then end.

Theorem 1 (Wired networks):If input rates(rc(1 + 2ǫ))
are achievable with pairwise XOR coding for someǫ > 0,
then the algorithm obtains a solution that achieves rates(rc)
in time

O

(

N3MK2H log H log(NK)

ǫ2

(

KL + ln

(

1

ǫ

)))

.

Theorem 2 (Wireless networks):If input rates(rc(1+2ǫ))
are achievable with pairwise XOR coding for someǫ > 0,
then the algorithm obtains a solution that achieves rates(rc)
in time

O

(

N3KH log H(NK log(NK) + |U|)

ǫ2

(

KL + ln

(

1

ǫ

)))

.

The proof is given in the following section.

V. POTENTIAL ANALYSIS

A. Flow solution-based algorithm

Our analysis builds on the approach in [2]. We denote by
Q(t) the actual length of a subqueueQ at the end of Phase 1
of round t. From [2], the increase in potential during Phase
1 is upper bounded by

∑

c

(1 + ǫ)rcφ
′
c(U

c(t)). (5)

We lower bound the decrease in potential during Phases 2
and 3 by comparison with the potential decrease resulting
from pushing flow based on a flow solution for ratesfc =
(1 + 2ǫ)rc. This algorithm differs from the back pressure
algorithm only in the portion of Phase 2 determining the
amount of flow pushed for each pair(O,D) ∈ P̄e of each
link e.

Consider a flow solution for ratesfc. Partition the flow
for each sessionc into elementary flowsFc

n whose size is
denotedfc

n. We say that a subqueue is in an elementary flow
Fc

n if packets from that flow are transferred into or out of
the subqueue. Note that each flowFc

n starts from queueU c,
which consists of a single subqueue, and thatfc =

∑

n fc
n.

A subqueue inFc
n is considered upstream or downstream of

another according to the direction of flow in the modified
problem defined in Section III-B. An elementary flow may
be truncated by removing from it all links and subqueues
upstream or downstream of some subqueue in the flow. Two
such flows are said to share a path segment if they are coded
together in the flow solution and contain at least one real or
virtual link in common.

Phase 2 of the flow solution-based algorithm consists of a
preprocessing part and a flow pushing part.

1) Preprocessing procedure:

• Initialization:
Remove from eachFc

n any portions that are downstream
of a subqueueQ in Fc

n for which lQ ≤ 3bc. Note that
all subqueues of each queue have been equalized in
Phase 4 of the previous round. LetG be the set of flows
Fc

n containing some subqueue of length at leastBrc +

ln((L + 1)ρ)/αc. For flows Fc
n ∈ G, let Q̄c

n be the
furthest downstream origin subqueue inFc

n of length at
leastBrc + ln((L+1)ρ)/αc; for flows Fc

n /∈ G, let Q̄c
n

be the longest origin subqueue inFc
n (if there is a tie,

choose the furthest downstream).
Initialize H as the setH0 of all flows F∗c

n , initialize
H1 andH2 as empty sets, and for eachc, n, initialize
Q∗c

n as Q̄c
n.

• Phase A: Repeat
– Choose some flowFc

n ∈ G∩H and remove fromH
all flows Fc′

n′ such thatFc′

n′ shares a path segment
with Fc

n. RemoveFc
n from H and add it toH1.

– If there is no such flow remaining, end Phase A.
• Phase B: Associate with each flowFc

n ∈ H a weight
wc

n, initially set to φ′
c(U

c(t)). For each flowFc′

n′ ∈ H,
setIc′

n′ to be the set of subqueues̄Qc
n such thatFc′

n′ is
the shared flow corresponding tōQc

n, and either
– Q̄c

n is a remedy or individual poison subqueue
whose corresponding branching link is inFc

n and
whose corresponding coding link is inFc′

n′ , or
– Q̄c

n is a joint poison subqueue whose corresponding
branching link is inFc′

n′ .
Repeat

– Choose some flowFc′

n′ ∈ H such that

wc′

n′ ≤
∑

Q̄c
n∈Ic′

n′

(

φ′
c(Q̄

c
n(t)) − wc

n

)

, (6)

∗ removeFc′

n′ from H,
∗ remove any subqueues inFc′

n′ from Ic
n ∀ c, n,

∗ set the weightwc
n of each flowFc

n ∈ Ic′

n′ to
φ′

c(Q̄
c
n(t)).

– If there is no such flow, for eachIc′

n′ and each
Q∗c

n ∈ Ic′

n′ setQ∗c
n to U c, and end Phase B.

• Phase C: Repeat
– Choose some flowFc

n ∈ H such that the longest
individual poison subqueue along one of its poison
segments,Q, is longer thanQ∗c

n , and the entire joint
poison portion of that segment together with the
branching link are not in the corresponding shared
flow. SetQ∗c

n to Q and remove fromFc
n all but the

portion downstream ofQ.
– If there is no such flow remaining, end Phase C.

Observe that:
• At most L flows are removed by each flow inG, and

φ′
c(Brc + ln((L + 1)ρ)/αc) ≥ (L + 1)max

c
φ′

c(Brc)

≥ (L + 1)max
c

φ′
c(U

c(t) (7)

• fc
n = fc′

n′ for all Fc
n andFc′

n′ that share a path segment.
• At the end of the preprocessing procedure,

2
∑

Fc
n∈H

φ′
c(Q

∗c
n (t))fc

n ≥
∑

Fc
n∈H

φ′
c(Q̄

c
n(t))fc

n. (8)

To see this, note that at the end of Phase B there is a
one-to-one correspondence between flowsFc

n ∈ H for

which Q∗c
n 6= Q̄c

n and elements̄Qc
n in the setsIc′

n′ of
flows Fc′

n′ ∈ H. For eachFc′

n′ ∈ H, by (6),

wc′

n′ >
∑

Q̄c
n∈Ic′

n′

(

φ′
c(Q̄

c
n(t)) − wc

n

)

.

Multiplying by fc
n and summing over allFc′

n′ ∈ H, and
noting that at the end of the preprocessing procedure

φ′
c(Q

∗c
n (t)) ≥ wc

n (9)

gives (8).
• Phase B and C maintain the invariant

∑

Fc
n∈H

wc
nfc

n ≥
∑

Fc
n∈H2

φ′
c(U

c(t))fc
n (10)

whereH2 is the value ofH at the start of Phase B. The
invariant holds since both sides are equal at the start of
Phase B, and the left-hand side is monotonically non-
decreasing. From (7), (9) and (10), at the end of the
preprocessing procedure we have

∑

Fc
n∈(H1∪H)

φ′
c(Q

∗c
n (t))fc

n ≥
∑

Fc
n∈H0

φ′
c(U

c(t))fc
n. (11)

2) Flow pushing procedure:For each flowFc
n ∈ H1∪H,

let F∗c
n be the portion ofFc

n downstream ofQ∗c
n . Partition its

links into a setG∗c
n of subsets. Each of these subsetsS ∈ G∗c

n

may be
• a path fromQ∗c

n , if it is a poison subqueue, to its
associated coding nodea(S)

• a path fromQ∗c
n , if it is a remedy subqueue, up to and

including its associated decoding link at nodew(S), and
the associated poison path fromw(S) to its associated
coding nodea(S) via the branching link at nodeb(S),

• a path associated with uncoded flow ending in sink node
dc, or

• a path associated with uncoded flow ending in a coding
link at a nodea(S), together with the associated remedy
path up to and including the decoding link at a node
w(S), and the associated poison path fromw to a via
the branching link at a nodeb.

Note that each subset starts either atQ∗c
n or at an uncoded

subqueue.
The flow solution-based algorithm pushes flow as follows.

First, for each pair(Sc,Sc′) ∈ G∗c
n × G∗c′

n′ that shares a
path segment, note thatfc

n = fc′

n′ and that Phase B of the
preprocessing procedure ensures that both subsets or neither
contains the coding link; in the latter case both or neither
contains the branching link. Thus, the following are the only
two cases:

• Case 1: One of the subsets, saySc, contains both the
coding link ata(Sc) and the branching link atb(Sc),
while Sc′ contains the coding link but not the branching
link. Phase C of the preprocessing procedure ensures
that all sessionc individual poison subqueues along the
joint poison path segment are shorter thanQ∗c

n . Push
fc

n units throughSc ∪ Sc′ , pushing sessionc individual
poison units through the joint poison path segment.

• Case 2: Both subsets contain the same portion of the
joint poison path segment. Pushf c

n units throughSc ∪
Sc′ .

Next, for each subsetS of someF∗c
n that does not share

any path segment withF∗c′

n′ for all c′ 6= c, n′, we have the
following cases:

• Case 1:Q∗c
n is an individual poison subqueue inS.

Phase B of the preprocessing procedure ensures that
Q∗c

n is the longest individual poison subqueue inF∗c′

n′ .
Pushfc

n individual poison units throughS.
• Case 2:Q∗c

n is a joint poison subqueue inS. Pushf c
n

joint poison units along the path inS downstream of
Q∗c

n .
• Case 3:Q∗c

n is a remedy subqueue inS. Phase C of
the preprocessing procedure ensures thatQ∗c

n is longer
than all sessionc individual poison subqueues along
the primary path ofS. Pushfc

n remedy units alongS
through the decoding link atw(S), and f c

n individual
poison units along the primary path ofS.

• Case 4:Q∗c
n is an uncoded subqueue or is not inS. Push

fc
n uncoded units along the primary path ofS starting

from its longest sessionc uncoded subqueue.

Note that flow is pushed only from origin subqueuesQ
for which lQ > 3bQ ⇒ l̃Q > 0, and only to destination
subqueuesQ for which lQ < BrQ + ln((L + 1)ρ)/αQ ⇒
l̃Q < BrQ + ln((L + 1)ρ)/αQ + 3bQ.

B. Potential decrease in Phases 2 and 3

The decrease in potential from pushingf units across
a link from a setO of origin to a setD of destination
subqueues is at least

∑

Q∈O

(

fφ′
Q(lQ) − f2φ′′

Q(lQ)
)

−
∑

Q∈D

(

fφ′
Q(lQ) + f2φ′′

Q(lQ + f)
)

wherelQ denotes the initial length of each subqueueQ.
1) Flow solution-based algorithm:We denote byO(F∗c

n)
andD(F∗c

n) the sets of origin and destination subqueues of a
flow F∗c

n , and byOc,e andDc,e the sets of sessionc origin
and destination subqueues of a linke. For each subqueue
Q, denote byfQ the total flow out ofQ (if Q is an origin
subqueue) or intoQ (if Q is a destination subqueue) in the
flow pushing procedure of the flow-solution based algorithm.
The potential drop over Phases 2 and 3 in the flow solution-
based algorithm is at least

∑

c,e





∑

Q∈Oc,e

(

fQφ′
c(lQ) − f2

Qφ′′
c (lQ + fQ)

)

−
∑

Q∈Dc,e

fQ

(

φ′
c(lQ) + f2

Qφ′′
c (lQ + fQ)

)





≥
∑

F∗c
n





∑

Q∈O(F∗c
n)

fc
n (φ′

c(lQ) − fcφ
′′
c (lQ + fc))

−
∑

Q∈D(F∗c
n)

fc
n (φ′

c(lQ) + fcφ
′′
c (lQ + fc))





Since all subqueues of each queue have been equalized in
Phase 4 of the previous round, and since each flowF∗c

n

has one origin subqueue of lengthQ∗c
n (t), at mostL + 1

destination subqueues each of length less than3bc, and a
total of at mostF subqueues, this potential drop is lower-
bounded by

∑

Fc
n∈(H1∪H)

fc
n (φ′

c(Q
∗c
n (t)) − (L + 1)φ′

c(3bc))

−
∑

Fc
n∈H1

Ffc
nfcφ

′′
c (Q∗c

n (t) + fc)

−
∑

Fc
n∈H

Ffc
nfcφ

′′
c (Q̄c

n(t) + fc)

From (1), we have

Ffcφ
′′
c (l + fc) ≤ F (1 + 2ǫ)rcφ

′′
c (l + (1 + 2ǫ)rc)

= F (1 + 2ǫ)rcα
2
ce

αcl+αc(1+2ǫ)rc

= F (1 + 2ǫ)rcαce
αc(1+2ǫ)rcφ′

c(l)

=
ǫ(1 + 2ǫ)

8
e

ǫ(1+2ǫ)
8F φ′

c(l)

≤ ǫφ′
c(l)/4. (12)

This yields, using (8), the following lower bound on the
potential drop:

∑

Fc
n∈(H1∪H)

fc
n (φ′

c(Q
∗c
n (t)) − (L + 1) φ′

c(3bc))

−
∑

Fc
n∈H1

fc
nǫφ′

c(Q
∗c
n (t))/4 −

∑

Fc
n∈H

fc
nǫφ′

c(Q̄
c
n(t))/4

≥
∑

c

rc

((

1 +
3ǫ

2
− ǫ2

)

φ′
c(U

c(t))

− (L + 1) (1 + 2ǫ)φ′
c(3bc)) (13)

2) Back pressure algorithm:If the block sizebc were
infinitesimally small rather than(1 + ǫ)rc, then lQ = l̃Q
and the procedure in Phase 2 of the back pressure algorithm
would give, for each linke, the maximum possible poten-
tial decrease from pushing flow for zero or more origin-
destination pairs(O,D) ∈ P̄e such that the total amount
pushed is at most the link capacityCe. Sincebc = Θ(rc)
and

φ′
c(l + Θ(rc)) − φ′

c(l) ≤ Θ(rc)φ
′′
c (l + Θ(rc)),

the back pressure algorithm achieves, for each linke, a
potential decrease of at least that achieved by the flow
solution-based algorithm minus an error term

∑

Q∈(Oe∪De)

Θ(fQrQ)φ′′
Q(lQ + Θ(rQ))

where fQ is the amount of flow added or removed from
Q in Phase 2 of the flow solution-based algorithm. Since
fQ = Θ(rQ), decreasing eachαc by some constant factor
ensures that (13) applies to the back pressure algorithm.

C. Overall potential change and number of rounds

The potential does not increase during Phase 4. Thus, from
(5) and (13), the overall potential decrease during the round
is lower bounded by
∑

c

rc

((ǫ

2
− ǫ2

)

φ′
c(U

c(t)) − (L + 1) (1 + 2ǫ)φ′
c(3bc)

)

=
∑

c

rc

(ǫ

2
− ǫ2

)

φ′
c(U

c(t))

− (L + 1) (1 + 2ǫ)
ǫ

8F
e

3ǫ(1+ǫ)
8F

If U c(t) = Brc for somec, then the decrease in potential is
at least

rc

(ǫ

2
− ǫ2

)

φ′
c(Brc) − K (L + 1) (1 + 2ǫ)

ǫ

8F
e

3ǫ(1+ǫ)
8F

= rcαc

(ǫ

2
− ǫ2

)

eαcBrc − K (L + 1) (1 + 2ǫ)
ǫ

8F
e

3ǫ(1+ǫ)
8F

which is non-negative if

Brc =
1

αc
ln

(

K (L + 1) (1 + 2ǫ)

ǫ(1 − 2ǫ)

)

+ 3bc

= Θ

(

1

αc
ln

(

KL

ǫ

))

If U c(t) < Brc for all c, the overflow queues are empty and,
since there areΘ(NMK) session-c subqueues (in the wired
case, orΘ(N2K) in the wireless case) each of potential less
than

φc(Brc + ln((L + 1)ρ)/αc + 4bc) = Θ
(

Lρe
ǫB
8F

)

,

the overall potential in the system at the end of the round is
at most

Θ
(

NMK2Lρe
ǫB
8F

)

By induction, this is also an upper bound on the total
potential at the end of every round. The length of the
overflow queue for sessionc is thus never more than

O

(

NMK2Lρe
ǫB
8F

αce
ǫB
8F

)

= O

(

NMK2Lρ

αc

)

and the total units for sessionc is at most

O

(

NMK2Lρ

αc
+ NMK(Brc + ln(Lρ)/αc + 4bc)

)

= O

(

NMKHrc

ǫ

(

KLρ + log

(

1

ǫ

)))

Thus, at most

O

(

NMKH

ǫ

(

KLρ + log

(

1

ǫ

)))

rounds of input flow for each session remain in the network
at any time. For

t = O

(

NMKH

ǫ2

(

KLρ + log

(

1

ǫ

)))

the amount for each session remaining in the network is at
most a fractionǫ of the total amount that has entered the
network up to roundt.

D. Number of operations

In each round, at each nodea, pushing flow across links
results in a total decrease of at mostO(C̄a) in the actual
lengths of origin subqueues and a total increase of at most
O(C̄a) in the actual lengths of destination subqueues. The
total change in subqueue lengths from rebalancing is not
more than the total change resulting from pushing flow
across links. Thus, at mostO(ND) approximate subqueue
lengths in the network are updated in each round, where
D =

∑

a∈N C̄a/(N minc rc). Assuming the subqueue dif-
ferences computed by the algorithm can be stored, only those
differences involving subqueues whose approximate lengths
have changed are recomputed.

For each real and virtual linke, the values ofw(O,D),
defined in (3), for pairs(O,D) ∈ Pe are stored in a sorted
list. For a coding link, this list has lengthO(N2K2), and a
change to an uncoded subqueue’s approximate length affects
NK entries, requiringO(NK log(NK)) operations. This
is the worst case complexity for updating any approximate
subqueue length.

Thus in the wired case each round has complexity
O(N2KD log(NK)), and the algorithm has complexity

O

(

N3MK2HD log(NK)

ǫ2

(

KLρ + log

(

1

ǫ

)))

. (14)

In the wireless case, assuming that for each wireless link
(a, Z), |Z| = O(1), updating any subqueue’s approximate
length similarly requires at mostO(NK log(NK)) oper-
ations. A furtherO(|U|) operations suffices to update the
values ofyu and find the maximum among them.

Thus, each round has complexityO(ND(NK log(NK)+
|U|), and the algorithm has complexity

O

(

N3KHD(NK log(NK) + |U|)

ǫ2

(

KLρ + log

(

1

ǫ

)))

.

(15)

E. Choosing parametersH and L

Appropriate values for parametersH andL can be found
as follows. Let H be the maximum over all sessions of
the minimum source-receiver path length for a session, and
H and L upper bounds on values of interest forH and
L respectively3. Define L = log(1/ǫ)/Kρ, h = ⌈log2 H⌉
and l = ⌊log2 L⌋. We run the algorithm for the following
sequence of values

(H,L) = (2h, 2h), (2h+1, 2h+1), . . . , (2l, 2l), (2l+1, 2l),

(2l+2, 2l), (2l+1, 2l+1), (2l+3, 2l), (2l+2, 2l+1),

(2l+4, 2l), . . . , (2l+2, 2l+2), . . . ,

(2l+n, 2l), . . . , (2l+n−⌊n/2⌋, 2l+⌊n/2⌋), . . . , (H,L)

3In the worst-case,H andL can beΘ(n), e.g. for two source-sink pairs
communicating in opposite directions from either end of a wireless network
consisting of a line of nodes, but in general for large networks they are
significantly smaller.

if h ≤ l, otherwise we use the sequence

(H,L) = (2h, 2l), (2h+1, 2l), (2h, 2l+1),

(2h+2, 2l), . . . , (2h+2−i2 , 2l+i2), . . . ,

(2h+n, 2l), . . . , (2h+n−in , 2l+in), . . . , (H,L)

wherein = ⌊(h+n−l)/2⌋. From (14) and (15), the total time
for finding a solution, if one exists, is a factor ofΘ(log H)
higher than if the optimal values ofH and L were known
in advance.

VI. DYNAMIC ONLINE SETTING

Our off-line algorithm can be readily adapted to a dynamic
online setting if we assume a separate low-rate channel for
control information, i.e. queue length updates and requests
for remedy packets. Unlike off-line where we could change
flow directions, in the online case we are constrained by the
actual directions of flow of packets. Thus, we do essentially
the reverse of the off-line case: instead of having remedy
generate poison en route to the coding node, in the online
case we have poison generate remedy (remotely, by means
of a remedy request) as it travels away from the coding node.

� c u c u cr c ’ k
r c ’ k p c ’ vu c ’ p c ’ v p c v ’ u cp { c v , c ’ v ’ }

u c v u c ’ v ’ u cp { c v , c ’ v ’ }s c v
k

j
i

Fig. 2. Illustration of commodities in online case

We further consider two practical issues. The first is
delay in transmission of control information. The effect of
old information in queue length-based algorithms has been
considered in a number of settings: infrequently updated
or delayed queue length information can be detrimental in
multi-server systems if arriving tasks choose the apparently
least loaded server [10]; infrequently updated information
does not affect asymptotic stability of back pressure multi-
hop routing [11]; infrequently updated or delayed informa-
tion does not affect asymptotic stability of joint scheduling
and congestion control where each flow has a single specified
route [16], [3]. We extend the results of [11] to back pressure
network coding when control information is transmitted with
delay T . Second, in distributed real-time applications the
amount of computation at each node is often limited. Thus,
our dynamic algorithm is essentially a simpler version of
our off-line algorithm. It is able to stabilize all queues inthe
network for any stabilizable set of exogenous source rates,

but requires more rounds to converge to an(1 + ǫ)-optimal
average solution. Computation can be further reduced by
adapting the algorithm to optimize over a subset of coding
options, which may be discovered by random exploration.

In the online version, we assume that each node has
a total incoming capacity and a total outgoing capacity
of at mostµ. Instead of source queuesU c at the source
nodes, we have “unaffiliated” uncoded queuesU c

i at each
node i (in addition to uncoded queuesU cv

i that are “af-
filiated” with node v). For a coding linke at a nodej,
Pe = {({U cv

j , U c′v′

j }, P
{cv,c′v′}
j)}; corresponding transmis-

sion rates are denotedγ{cv,c′v′}
j .4 For a branching linke at

a nodei, Pe = {(P
{cv,c′v′}
i , {P cv′

i , P c′v
i })}; corresponding

transmission rates are denotedσ
{cv,c′v′}
i . For a requesting

link e at a nodek, Pe = {(P cv′

k , Rck
v′)}; the corresponding

transmission rates are denotedκv′

k and the transformation
is done by means of a remedy request sent fromk to v′

on the control channel. For a decoding linke at nodek,
Pe = {(Rck

k , U c
k)} and the corresponding transmission rates

are denotedηc
k. All virtual links have capacityµ/2. For a real

link (a, b) ∈ L, P(a,b) consists of pairs(U c
a, U c

b) (rate de-
notedνc

ab), pairs(U cv
a , U cv

b) (rateνcv
ab), pairs(U c

a, U ca
b) (rate

χc
ab), pairs

(

P
{cv,c′v′}
a , P

{cv,c′v′}
b

)

(rate π
{cv,c′v′}
ab), pairs

(

P cj
a , P cj

b

)

(rateπcj
ab), and pairs

(

Rcj
a , Rcj

b

)

(rateρcj
ab). For a

wireless link(a, Z), the transmission set contains all pairs in
P(a,b), b ∈ Z as well as pairs(P {cv,c′v′}

a , {P cv′

b , P c′v
b′ }) and

(

U c
a, U cb′

b

)

where b, b′ ∈ Z. Our subsequent development
is for the wired case; extension to the wireless case is
straightforward. We denote bȳPe the subset ofPe consisting
of pairs (O,D) ∈ Pe satisfying

max
Q∈D

l̃Q < 2V (L + 1).

whereV will be defined later. Queues and links are illus-
trated in Figure 2.

In the online case we do not divide queues into subqueues.
We assume that control information is transmitted with a
delay of less thanT and that time is slotted with time
slots of durationT . This allows a remedy transformation to
occur within a time slot , and allows back pressure control
decisions to be made based on queue length information
from the start of the previous time slot. In the wired case,
a decision is taken once every time slot to choose one pair
(O,D) ∈ P̄e to be served on each linke. In the wireless
case, a transmission scenario is selected at the start of each
time slot and if the channel states change.

In each time slot(t, t+T], the following steps are carried
out:

1) For each real and virtual linke, choose the pair

4Note that the joint poison queues have one more superscript than in the
off-line case, owing to the direction of poison flow.

(O,D) ∈ P̄e that maximizes

w(O,D) =
∑

Q∈O

φ′(Q(t − T)+) −
∑

Q∈D

φ′(Q(t − T)+)

=
∑

Q∈O

(Q(t − T)+) −
∑

Q∈D

(Q(t − T)+)

Transfer across the chosen(O,D) pair, at the instanta-
neous rate of linke, up to the amountmaxQ∈O Q(t+).
If one of the chosen input queues of a coding link
is or becomes empty while the other is not empty,
coding produces degenerate poison packets. These are
treated as normal poison packets by the back pressure
except that branching transforms each such packet into
a single individual poison packet which subsequently
requests a dummy remedy packet for “decoding”.

2) Remove all packets from queuesU c
dc

, U cv
dc

.
3) Add rc units to the source queuesU c

sc
.

4) After completing steps 1-3 at time(t + T)−, for each
sessionc, transfer packets between the source queue
U c

sc
and the overflow queuēU c of each sessionc, so

as to maximizeU c
sc

(t+) subject to a maximum length
constraint ofV .

Theorem 3:If input rates(rc+ǫ) are achievable with pair-
wise XOR coding for someǫ > 0, then the online algorithm
with V = 3µ2

(

2.25N2 + 21.25N + 6.25K
)

T/2ǫ stabilizes
the system for rates(rc).

Proof: Define total potentialL(t) =
∑

Q∈Q Q(t)2 +

2
∑

c V Ūc(t), whereQ is the set of all queues in the network
apart from the overflow queues. Note that by arguments
similar to those in [8], step 4 does not increase the total
potentialL(t), so we focus on the change in potential across
steps 1-3.

The queues evolve according to

Q(t + T) ≤ max {Q(t) − TyQ , 0} + TxQ

where

yUc
i

=
∑

b

(νc
ib + χc

ib)

xUc
i

=
∑

a

νc
ai + ηc

i +

{

rc i = sc

0 i 6= sc, dc

yUcv
i

=
∑

b

νcv
ib +

∑

c′ 6=c,v′

γ
{cv,c′v′}
i

xUcv
i

=
∑

a

νcv
ai + χc

vi

y
P

{cv,c′v′}
i

=
∑

b

π
{cv,c′v′}
ib + σ

{cv,c′v′}
i

x
P

{cv,c′v′}
i

=
∑

a

π
{cv,c′v′}
ai +

∑

v,v′

γ
{cv,c′v′}
i

yP cv′
i

=
∑

b

πcv′

ib + κcv′

i

xP cv′
i

=
∑

a

πcv′

ai + σ
{cv,c′v′}
i

yRcj
i

=
∑

b

ρcj
ib + ηc

{i=j}

xRcj
i

=
∑

a

ρcj
ai + κci

j

and the time index(t) has been omitted from the flow
variables for brevity.

Let xQ and yQ be the total allocated flow rate into and
out of queueQ respectively, andQi the set of all queues at
nodei. Squaring and summing over all queues, and dropping
some negative terms from the right hand side, we have

E {L(t + T) − L(t)} ≤ BT 2 − 2T
∑

Q∈Q

Q(t) (−xQ + yQ)

(16)
where

B =
∑

Q∈Q

(

x2
Q + y2

Q

)

≤
∑

i∈N





∑

Q∈Qi

yQ





2

+
∑

c

(

xUc
sc

)2

+

∑

i,j

(

∑

c

xRcj
i

)2

+
∑

i∈N







∑

Q∈Qi,Q6=Uc
sc

,Q6=Rcj
i

xQ







2

≤ N (7µ/2)
2

+ K (5µ/2)
2

+ N2 (3µ/2)
2

+ (3µ)
2

= µ2
(

2.25N2 + 21.25N + 6.25K
)

(17)

Let x̃Q(t − T) and ỹQ(t − T) be the average total flow
rate into and out of queueQ respectively during the time
slot (t − T, t). We can rewrite

∑

Q∈Q Q(t) (−xQ + yQ) as
∑

Q∈Q

(Q(t − T) + x̃Q(t − T)T − ỹQ(t − T)T) (−xQ + yQ)

≥
∑

Q∈Q

Q(t − T) (−xQ + yQ) − BT (18)

Substituting into (16), we have

E
{

L((t + T)−) − L(t−)
}

≤ 3BT 2 − 2TD (19)

where

D = E







∑

Q∈Q

Q(t − T) (−xQ + yQ)







(20)

If input rates (rc + ǫ) are feasible with pairwise XOR
coding, there exists some valueξ of the vector of flow
variables(νc

ab, . . .) satisfying:
∑

{cv,c′v′}

γ
{cv,c′v′}
i ≤ µ/2,

∑

{cv,c′v′}

σ
{cv,c′v′}
i ≤ µ/2,

∑

c,j

κcj
i ≤ µ/2,

∑

c

ηc
i ≤ µ/2

∑

b

(νc
ib + χc

ib) =
∑

a

νc
ai + ηc

i +

{

rc + ǫ i = sc

0 i 6= sc, dc

∑

b

νcv
ib +

∑

c′ 6=c,v′

γ
{cv,c′v′}
i =

∑

a

νcv
ai + χc

vi

∑

b

π
{cv,c′v′}
ib + σ

{cv,c′v′}
i =

∑

a

π
{cv,c′v′}
ai +

∑

v,v′

γ
{cv,c′v′}
i

∑

b

πcv′

ib + κcv′

i =
∑

a

πcv′

ai + σ
{cv,c′v′}
i

∑

b

ρcj
ib + ηc

{i=j} =
∑

a

ρcj
ai +

∑

v

κci
j

∑

c

(

∑

v

νcv
ab + νc

ab

)

+
∑

c,j

(

ρcj
ab + πcj

ab

)

+
∑

{cv,c′v′}

π
{cv,c′v′}
ab ≤ Rab (21)

For a randomized policy which does power allocation and
scheduling based on this solution vectorξ, analogously to
the algorithm of [11], we have, from (20),

D =
∑

c

U c
sc

(t − T)ǫ (22)

Next, we consider a slightly modified policy which does
not send to any queueQ for which Q(t− T) > 2V (L + 1).
This ensures that all queues remain shorter than2V (L+1)+
5µ. As in the off-line case, we consider a flow solution which
we partition into elementary flowsFc

n whose size is denoted
fc

n. A queue inFc
n is considered upstream or downstream

of another according to the direction of flow in the problem
defined above. At each time slot(t, t + T), we modify the
solution vectorξ as follows. InitializeH as the set of all
flowsF∗c

n , andH1 as the empty set. In the following, queue
length refers to length at timet − T .

• Phase A: Repeat
– Choose some flowFc

n ∈ H that contains some non-
joint poison queue of length at least2V (L + 1)
or whose primary path contains some uncoded
queue of length at least2V (L + 1). Let Q̄c

n be the
furthest downstream such queue inFc

n. Remove
from H all flows that share a path segment with
Fc

n. RemoveFc
n from H, add it to H1, truncate

the portion upstream of̄Qc
n and convert the portion

downstream ofQ̄c
n into an uncoded flow along the

primary path.
– If there is no such flow remaining, end Phase A.

• Phase B: Repeat
– Choose some flowFc

n ∈ H that contains some
joint poison queue of length at least2V (L + 1).
Let Q̄c

n be the furthest downstream such queue in
Fc

n, andFc′

n′ the other flow corresponding tōQc
n.

Remove fromH all flows that share a path segment
with Fc

n or Fc′

n′ downstream ofQ̄c
n. RemoveFc

n

and Fc′

n′ from H, add them toH1, truncate the
portion of each flow upstream of̄Qc

n and convert
the portion of each flow downstream of̄Qc

n into
an uncoded flow along its primary path. Any path
segment shared by a truncated portion and another
flow becomes an uncoded segment for that other
flow.

– If there is no such flow remaining, end Phase B.
• For any flow not inH ∪ H1 or any truncated portion

of a flow in H1, subtract the flow size from the
corresponding entries ofξ.

Note that the flow entering any queue of length2V (L + 1)
or greater will be zero, and that this modification increases
D by the difference between the sum of the lengths of the
starting queues of the modified flows weighted by their flow
size, and the sum of the source queue lengths weighted by the
source rate, which is positive since each flow whose starting
queue has length2V (L + 1) or greater corresponds to most
2(L + 1) removed flows of the same size.

Next, we consider the back pressure algorithm. We can
rewrite (20) as follows, omitting the time indexest−T from
the queue lengths for brevity:

D =
∑

ab

(

∑

c

νc
ab (U c

a − U c
b) +

∑

c,v

νcv
ab (U cv

a − U cv
b)

+
∑

c

χc
ab (U c

a − U ca
b)

+
∑

{c,c′},j

π
{cv,c′v′}
ab

(

P {cv,c′v′}
a − P

{cv,c′v′}
b

)

+
∑

c,j

(

πcj
ab

(

P cj
a − P cj

b

)

+ ρcj
ab

(

Rcj
a − Rcj

b

))





+
∑

{cv,c′v′},i

γ
{cv,c′v′}
i

(

U cv
i + U c′v′

i − P
{c,c′}i
i

)

+
∑

{cv,c′v′}

σ
{cv,c′v′}
i

(

P
{cv,c′v′}
i − P cv′

i − P c′v
i

)

+

∑

c,v′,i

κcv′

i

(

P cv′

i − Rci
v′

)

+
∑

c,c′,i,j

ηcv′

i

(

Rcj
i − U c

i

)

(23)

Since the back-pressure algorithm maximizes (23), we have,
substituting into (16),

E {L(t + T) − L(t)} ≤ 3BT 2 − 2T
∑

c

U c
sc

(t − T)ǫ (24)

If U c(t) = 0 for all c, thenL(t) ≤ |Q|(2V (L+1)+5µ)2.
If U c(t) > 0 for somec, thenU c

sc
(t) = V , and

E {L(t + T) − L(t)} ≤ 3BT 2 − 2TV ǫ.

SettingV = 3BT
2ǫ gives E {L(t + T) − L(t)} ≤ 0. By in-

duction on the number of time slots,E{L(t)} ≤ |Q|(2V (L+
1) + 5µ)2 for all t and the queues are stable.

VII. VARIATIONS AND EXTENSIONS

A. Restricting the solution space

We can reduce the amount of computation required by
avoiding direct optimization over all of the coding and
decoding possibilities. Instead, we can discover useful pos-
sibilities by random exploration: for instance, in addition to
opportunistic coding [9], congested nodes can do limited
coding of pairs of packets that are not known a priori
to be decodable by the next hop. Downstream nodes then
report rates at which remedy packets of different sessionsc
originate from different nodesv. We can then create separate
U cv commodities based on the reported success rates. This
results in optimization over a smaller set of commodities.

The algorithm also lends itself readily to other modifi-
cations that reduce complexity by restricting the space of
solutions. For instance, we can limit the values ofH andL.
We can also restrict flows of a session from travelling too
far away from the corresponding sink.

B. Allowing more sessions to be simultaneously coded

This approach can be extended to consider coding together
more than two sessions, but at the expense of substantially
higher complexity: more choices of which flows to code
together, more queues to keep track of the different com-
binations of coded flows, and more remedy flows (which
may be multicasts rather than unicasts). The complexity can
be controlled by considering restricted classes of coding
configurations, for instance, requiring remedies from a three-
way coding operation to originate at a single location for each
of the coded flows.

REFERENCES

[1] Baruch Awerbuch and Tom Leighton. A simple local control approx-
imation algorithm for multicommodity flow. InProceedings of 34th
IEEE Conference on Foundations of Computer Science, 1993.

[2] Baruch Awerbuch and Tom Leighton. Improved approximational-
gorithms for the multicommodity flow problem and local competitive
routing in dynamic networks. InProceedings of 26th ACM Symposium
on Theory of Computing, 1994.

[3] L. Bui, A. Eryilmaz, R. Srikant, and X. Wu. Joint asynchronous
congestion control and distributed scheduling for wireless networks.
In Proc. IEEE Infocom, 2006.

[4] R. Dougherty, C. Freiling, and K. Zeger. Insufficiency oflinear
coding in network information flow.IEEE Transactions on Information
Theory, 51(8)::2745–2759, August 2005.

[5] R. Dougherty and K. Zeger. Nonreversibility and equivalent construc-
tions of multiple unicast networks.IEEE Transactions on Information
Theory, submitted, 2005.

[6] M. Effros, T. Ho, and S. Kim. A tiling approach to network code
design for wireless networks. InIEEE Information Theory Workshop,
2006.

[7] A. Eryilmaz and D. S. Lun. Control for inter-session network coding,
MIT LIDS Technical Report #2722, August 2006.

[8] T. Ho and H. Viswanathan. Dynamic algorithms for multicast
with intra-session network coding. InProc. 43rd Annual Allerton
Conference on Communication, Control, and Computing, 2005.

[9] S. Katti, D. Katabi, W. Hu, H. Rahul, and M. Mdard. Practical network
coding for wireless environments. InProceedings of 43rd Allerton
Conference on Communication, Control, and Computing, Monticello,
IL, September 2005.

[10] Michael Mitzenmacher. How useful is old information?IEEE
Transactions on Parallel and Distributed Systems, 11(1), 2000.

[11] Michael Neely, Eytan Modiano, and Charles E. Rohrs. Dynamic
power allocation and routing for time-varying wireless networks. In
Proceedings of IEEE Infocom, 2003.

[12] N. Ratnakar, R. Koetter, and T. Ho. Linear flow equationsfor network
coding in the multiple unicast case. InDIMACS workshop on network
coding, 2005.

[13] N. Ratnakar, D. Traskov, and R. Koetter. Approaches to network cod-
ing for multiple unicasts. InInt. Zurich Seminar on Communications
(IZS), February 2006.

[14] Leandros Tassiulas and Anthony F. Ephremides. Stability properties
of constrained queuing systems and scheduling policies for maximum
throughput in multihop networks.IEEE Transactions on Information
Theory, 1992.

[15] D. Traskov, N. Ratnakar, D. S. Lun, R. Koetter, and M. Médard.
Network coding for multiple unicasts: An approach based on linear
optimization. In Proceedings of the International Symposium on
Information Theory, 2006.

[16] L. Ying, R. Srikant, A. Eryilmaz, and G. E. Dullerud. Distributed fair
resource allocation in cellular networks in the presence ofheteroge-
neous delays.IEEE Trans. Automatic Control, to appear, 2005.

