
Robust Positioning Algorithms for Distrib uted Ad-Hoc Wir elessSensorNetworks

ChrisSavarese JanRabaey
Berkeley WirelessResearchCenter�

savarese,jan � @eecs.berkeley.edu
KoenLangendoen

Facultyof InformationTechnologyandSystems
Delft Universityof Technology, TheNetherlands

koen@pds.twi.tudelft.nl

Abstract

A distributedalgorithmfor determiningthepositionsof
nodesin an ad-hoc,wirelesssensornetworkis explained
in detail. Details regarding the implementationof such
an algorithm are also discussed.In a 400 nodenetwork
in which the nodesare randomlyplacedwithin a 100x100
square, thealgorithmis shownto achieveaverage position
errors of less than 33% of a node’s radio range in the
presenceof 5% rangemeasurementerror whenat least5%
of the nodesare anchor nodes(with knownposition)and
theaverage connectivityof a nodeis greaterthan7 nodes.
It is shownthat thealgorithmperformswell in networksin
which nodesare connectedto at least7 one-hopneighbors
on average and where average range errors are lessthan
40%.

1. Intr oduction

Ad-hocwirelesssensornetworksarebeingdevelopedfor
usein monitoring a host of environmentalcharacteristics
acrossthe areaof deployment,suchas light, temperature,
sound, and many others. Most of thesedata have the
commoncharacteristicthat they areusefulonly whencon-
sideredin thecontext of wherethedatawastakenfrom,and
somostsensordatawill bestampedwith positioninforma-
tion. As thesearead-hocnetworks,however, acquiringthis
positiondatacanbequitechallenging.

Ad-hocsystemsstriveto incorporateasfew assumptions
as possible for characteristicssuch as the composition
of the network, the relative positioning of nodes,or the
environmentin which the network operates.This calls for
robust algorithmsthat are capableof handling the wide

setof possiblescenariosleft openby so many degreesof
freedom. Specifically, we only assumethat all the nodes
beingconsideredin an instanceof a positioningalgorithm
arewithin thesameconnectednetwork, andthat therewill
exist within this network a minimumof four anchornodes.
Here,a connectednetwork is a network in which a viable
routeexiststo eachnodein thenetwork,andananchornode
is anodethatis givenapriori knowledgeof its positionwith
respectto someglobalcoordinatesystem.

A consequenceof the ad-hocnatureof thesenetworks
is the lack of infrastructureinherentto them. With very
few exceptions,all nodesareconsideredequal,making it
difficult to rely oncentralizedcomputationto solvenetwork
wideproblems,suchaspositioning.Thus,we considerdis-
tributedalgorithmsthatachieverobustnessthroughiterative
propagationof informationthroughanetwork via multi-hop
routing.

The positioning algorithm being consideredrelies on
range measurementsto estimate the distance between
neighboringnodes.Several techniquescanbeusedto gen-
eratethesemeasurements,including time of arrival, angle
of arrival, phasemeasurements,received signal strength,
andothers.Thisalgorithmis indifferentto whichmethodis
used,exceptthatdifferentmethodsoffer differenttradeoffs
betweenaccuracy, complexity, cost, and power require-
ments. Someof thesemethodsgeneraterangemeasure-
mentswith errorsas large as � 50% of the measurement,
which canresult in uselessposition information if careis
not taken. This forms the first of two major challengesin
positioningwithin anad-hocspace,andwill be termedthe
rangeerror problemthroughoutthis paper.

The secondmajor challengebehindad-hocpositioning
algorithms,henceforthreferredto asthesparseanchornode
problem, comesfrom the needfor at least four reference
points with known location in a three-dimensionalspace
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in order to uniquely predict the location of an unknown
object.Too few referencepointsresultsin ambiguitiesthat
lead to underdeterminedsystemsof equations. Recalling
the assumptionsmadeabove, only the anchornodeswill
havepositioninginformationatthestartof thesealgorithms,
andtheseanchornodeswill belocatedrandomlythroughout
an arbitrarily large network. Given limited radio ranges,
it is thereforehighly unlikely that any randomlyselected
nodein the network will be in direct communicationwith
a sufficient numberof referencepoints to derive its own
positionestimate.

In responseto thesetwo primaryobstacles,wepresentan
algorithmsplit into two phases:thestart-upphaseandthe
refinementphase.The start-upphaseaddressesthe sparse
anchornodeproblemby cooperativelyspreadingawareness
of the anchor nodes’ positions throughout the network,
allowing all nodesto arrive at initial position estimates.
Theseinitial estimatesarenotexpectedto beveryaccurate,
but are useful as rough approximations. The refinement
phaseof the algorithmthenusesthe resultsof the start-up
algorithmto improve upontheseinitial positionestimates.
It is herethattherangeerrorproblemis addressed.

This paperpresentsour algorithmsin detail, and dis-
cussesseveral network designguidelinesthat should be
takeninto considerationwhendeployingasystemwith such
an algorithm. Section2 will discussrelatedwork in this
field. Section3 will go into much greaterdetail about
the two-phasealgorithm approach,exploring in depththe
start-upandrefinementphasesof our solution. Section4
will discussthe finer pointsof the algorithm that become
factorsat the implementationstage. Section5 reportson
theexperimentsperformedto characterizetheperformance
of our algorithm. Finally, Section6 is a discussionof
designguidelinesandalgorithmlimitations,andSection7
concludesthepaper.

2. Relatedwork

The recent survey and taxonomy by Hightower and
Borriello providesageneraloverview of thestate-of-the-art
in locationsystems[7]. However, few systemsfor locating
sensornodesin an ad-hocnetwork aredescribed,because
of therangeerrorandsparseanchornodeproblemsthatare
difficult to handle.Many systemsarebasedontheattractive
option of using the RF radio for measuringthe rangebe-
tweennodes,for example,by observingthesignalstrength.
Experiencehas shown, however, that RSSI yields very
inaccuratedistances[8]. Much betterresultsareobtained
by time-of-flight measurements,particularlywhenacoustic
andRF signalsarecombined[6, 12]; accuraciesof a few
percentof the transmissionrangeare reported. Acoustic
signals,however, aretemperaturedependentandrequirean
unobstructedline-of-sight. Furthermoreeven small errors

doaccumulatewhenpropagatingdistanceinformationover
multiplehops.

A drasticapproachthat avoids the rangeerror problem
altogetheris to only useconnectivity betweennodes.The
GPS-lesssystemby Bulusu et al. [3] employs a grid of
beaconnodeswith known locations;eachunknown node
setsits positionto thecentroidof thebeaconlocationsit is
connectedto. The positionaccuracy is aboutone-thirdof
the separationdistancebetweenbeacons,implying a high
beacondensityfor practicalpurposes.Dohertyetal. usethe
connectivity betweennodesto formulatea setof geometric
constraintsandsolve it usingconvex optimization[5]. The
resultingaccuracy dependson thefractionof anchornodes,
for example,with 10%anchorstheaccuracy for unknowns
is on the order of the radio range. A seriousdrawback,
which is currently being addressed,is that convex opti-
mization is performedby a single, centralizednode. The
“DV-hop” approachby Niculescuand Nath, in contrast,
is completelyad-hocand achieves an accuracy of about
one-thirdof the radio rangefor densenetworks [10]. In
a first phaseanchorsflood their location to all nodesin
the network. Each unknown node recordsthe position
and (minimum) numberof hopsto at leastthreeanchors.
Whenever an anchor ��� infers the position of another
anchor ��� it computesthe distancebetweenthem,divides
that by the numberof hops, and floods this averagehop
distanceinto thenetwork. Eachunknown usestheaverage
hop distanceto convert hop countsto distances,and then
performsa triangulationto threeor moredistantanchorsto
estimateits own position. “DV-hop” works well in dense
andregulartopologies,but for sparseor irregularnetworks
theaccuracy degradesto theradiorange.

More accuratepositionscan be obtainedby using the
rangemeasurementsbetweenindividual nodes(when the
errorsaresmall).Whenthefractionof anchornodesis high
the“iterativemultilateration”methodby Savvidesetal. can
beused[12]. Nodesthatareconnectedto at leastthreean-
chorscomputetheir positionandupgradeto anchorstatus,
allowing additionalunknownsto computetheir positionin
the next iteration, etc. Recentlya numberof approaches
have beenproposedthatrequirefew anchors[4, 9, 10, 11].
They are quite similar and operateas follows. A node
measuresthedistancesto its neighborsandthenbroadcasts
this information. This resultsin eachnodeknowing the
distanceto its neighborsandsomedistancesbetweenthose
neighbors. This allows for the constructionof (partial)
local mapswith relative positions.Adjacentlocal mapsare
combinedby aligning (mirroring, rotating) the coordinate
systems.Theknown positionsof theanchornodesareused
to obtainmapswith absolutepositions.Whenthreeor more
anchorsare presentin the network a single absolutemap
results. This style of locationingis not very robust since
rangeerrorsaccumulatewhencombiningthemaps.
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3. Two-phasepositioning

As mentionedearlier, the two primary obstaclesto
positioning in an ad-hoc network are the sparseanchor
node problem and the rangeerror problem. In order to
addresseachof theseproblemssufficiently, our algorithm
is separatedinto two phases:start-upandrefinement.For
the start-up phasewe use Hop-TERRAIN, an in-house
algorithm similar to DV-hop [10]. The Hop-TERRAIN
algorithm is run onceat the beginning of the positioning
algorithmto overcomethesparseanchornodeproblem,and
the Refinementalgorithm is run iteratively afterwards to
improve upon and refine the position estimatesgenerated
by Hop-TERRAIN. Note thereforethat the emphasisfor
Hop-TERRAIN is not on gettinghighly accurateposition
estimates,but insteadon getting very rough estimatesso
as to have a starting point for Refinement. Likewise,
Refinementis concernedonly with nodesthat exist within
a one-hopneighborhood,and it focuseson increasingthe
accuracy of thepositionestimatesasmuchaspossible.

3.1. Hop-TERRAIN

Before the positioning algorithm has started,most of
the nodesin a network have no positioningdata,with the
exceptionof the anchors.The networks beingconsidered
for this algorithm will be scalableto very large numbers
of nodes,which will bespreadover largeareas,relative to
the short radio rangesthat eachof the nodesis expected
to possess.Furthermore,it is expectedthat the percentage
of nodesthat areanchornodeswill be small. This results
in a situationin which only a very small percentageof the
nodesin thenetwork areableto establishdirectcontactwith
any of the anchors,andprobablynoneof the nodesin the
network will be ableto directly contactenoughanchorsto
deriveapositionestimate.

In orderto overcomethis initial informationdeficiency,
the Hop-TERRAIN algorithm finds the numberof hops
from a node to eachof the anchorsnodesin a network
and then multiplies this hop count by a sharedmetric
(averagehop distance)to estimatethe rangebetweenthe
nodeandeachanchor. Thesecomputedrangesarethenused
togetherwith theanchornodes’known positionsto perform
a triangulationandget the node’s estimatedposition. The
triangulation consistsof solving a systemof linearized
equations(Ax=b) by meansof a leastsquaresalgorithm,
see[11] for details.

Eachof the anchornodeslaunchesthe Hop-TERRAIN
algorithm by initiating a broadcastcontainingits known
locationanda hop countof 0. All of the one-hopneigh-
borssurroundingan anchorhearthis broadcast,recordthe
anchor’s positionanda hop countof 1, and thenperform
anotherbroadcastcontainingthe anchor’s position and a

hop count of 1. Every node that hears this broadcast
and did not hear the previous broadcastswill record the
anchor’spositionandahopcountof 2 andthenrebroadcast.
This processcontinuesuntil eachanchor’s positionandan
associatedhopcountvaluehave beenspreadto every node
in the network. It is importantthat nodesreceiving these
broadcastssearchfor the smallestnumberof hopsto each
anchor. This ensuresconformity with the model usedto
estimatethe averagedistanceof a hop, and it alsogreatly
reducesnetwork traffic.

As broadcastsare omni directional,and will therefore
reachnodesbehindthe broadcastingnode,relative to the
directionof the flow of information,this algorithmcauses
nodesto hearmany morepacketsthannecessary. In order
to preventaninfinite loop of broadcasts,nodesareallowed
to broadcastinformationonly if it is not staleto them. In
this context, information is stale if it refersto an anchor
that the nodehasalreadyheardfrom andif the hop count
includedin the arriving packet is greaterthanor equalto
the hop countstoredin memoryfor this particularanchor.
New informationwill alwaystrigger a broadcast,whereas
staleinformationwill never triggera broadcast.

Oncea nodehasreceived data regardingat least3(4)
anchornodesfor a network existing in a 2(3)-dimensional
space,it is able to perform a triangulationto estimateits
location. If this nodesubsequentlyreceivesnew dataafter
alreadyhaving performeda triangulation,eithera smaller
hop countor a new anchor, the nodesimply performsan-
othertriangulationto includethenew data.This procedure
is summarizedin thefollowing pieceof pseudocode:

whenapositioningpacket is received,
if new anchoror lowerhopcountthen

storehopcountfor thisanchor.
computeestimatedrangeto thisanchor.
broadcastnew packet for thisanchorwith
hopcount= (hopcount+ 1).

else
do nothing.

if numberof anchors�
	 (dimensionof space+ 1) then
triangulate.

else
do nothing.

The resulting position estimateis likely to be coarsein
termsof accuracy, but it providesan initial conditionfrom
which Refinementcan launch. The performanceof this
algorithmis discussedin detail in Section5.

3.2. Refinement

Given the initial position estimatesof Hop-TERRAIN
in thestart-upphase,theobjective of the refinementphase
is to obtain more accuratepositionsusing the estimated
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rangesbetweennodes.SinceRefinementmustoperatein an
ad-hocnetwork, only the distancesto the direct (one-hop)
neighborsof a nodeareconsidered.This limitation allows
Refinementto scaletoarbitrarynetworksizesandto operate
onlow-levelnetworksthatdonotsupportmulti-hoprouting
(only a localbroadcastis required).

Refinementis an iterative algorithmin which the nodes
updatetheirpositionsin anumberof steps.At thebeginning
of eachstepanodebroadcastsits positionestimate,receives
the positionsand correspondingrangeestimatesfrom its
neighbors,and computesa leastsquarestriangulationso-
lution to determineits new position. In many casesthe
constraintsimposedby the distancesto the neighboring
locations will force the new position towards the true
positionof the node. When,after a numberof iterations,
the position updatebecomessmall Refinementstopsand
reportsthefinal position.NotethatRefinementis by nature
anad-hoc(distributed)algorithm.

Thebeautyof Refinementis its simplicity, but thatalso
limits its applicability. In particular, it was a priori not
clear under what conditionsRefinementwould converge
andhow accuratethe final solution would be. A number
of factorsthat influencethe convergenceandaccuracy of
iterativeRefinementare:� theaccuracy of theinitial positionestimates� themagnitudeof errorsin therangeestimates� theaveragenumberof neighbors� thefractionof anchornodes

Basedon previous experiencewe assumethat redundancy
cancounterthe above influencesto a large extent. When
a nodehasmorethan3(4) neighborsin a 2(3)-dimensional
spacetheinducedsystemof linearequationsis over-defined
anderrorswill beaveragedout by the leastsquaressolver.
For example, the data collectedby Beutel in [1] shows
that large rangeerrors(standarddeviation of 50%) canbe
toleratedwhenlocatinga nodesurroundedby 5 (or more)
anchorsin a 2-dimensionalspace:thedistancebetweenthe
estimatedandtrue positionof the nodeis lessthan5% of
theradiorange.

Despite the positive effects from redundancy we ob-
servedthata straightforwardapplicationof Refinementdid
not converge in a considerablenumber of “reasonable”
cases.Closeinspectionof thesequenceof stepstakenunder
Refinementrevealedtwo importantcauses:

1. Errorspropagatefastthroughoutthewholenetwork. If
the network hasa diameter� , thenanerror introduced
by a nodein step  has(indirectly) affectedevery node
in thenetwork by step ���� becauseof thetriangulate-
hop-triangulate-hop����� pattern.

2. Somenetwork topologiesare inherentlyhard,or even
impossible,to locate.For example,aclusterof � nodes
(no anchors)connectedby a single link to the main

network canbesimply rotatedaroundthe‘entry’-point
into the network while keepingthe exact sameintra-
noderanges.Anotherexampleis givenin Figure1.

To mitigateerror propagationwe modified the refinement
algorithm to include a confidenceassociatedwith each
node’s position. The confidencesare usedto weigh the
equationswhen solving the systemof linear equations.
Insteadof solvingAx=b we now solve � Ax= � b, where �
is the vectorof confidenceweights. Nodes,like anchors,
that have high faith in their positionestimatesselecthigh
confidencevalues (close to 1). A node that observes
poor conditions(e.g., few neighbors,poor constellation)
associatesa low confidence(closeto 0) with its position
estimate,andconsequentlyhaslessimpacton theoutcome
of thetriangulationsperformedby its neighbors.Thedetails
of confidenceselectionwill be discussedin Section4.3.
Theusageof confidenceweightsimprovedthebehavior of
Refinementgreatly:almostall casesconvergenow, andthe
accuracy of thepositionsis alsoimprovedconsiderably.

Another improvementto Refinementwas necessaryto
handlethe secondissueof ill-connectedgroupsof nodes.
Detectingthat a single node is ill-connectedis easy: if
the numberof neighborsis lessthan3(4) thenthe nodeis
ill-connectedin a 2(3)-dimensionalspace.Detectingthata
groupof nodesis ill-connected,however, is morecompli-
catedsincesomeglobaloverview is necessary. We employ
aheuristicthatoperatesin anad-hocfashion(nocentralized
computation),yet is ableto detectmostill-connectednodes.
The underlying premisefor the heuristic is that a sound
nodehas independentreferencesto at least3(4) anchors.
That is, the multi-hop routesto the anchorshave no link
(edge)in common.For example,node3 in Figure1, which
is taken from [12], meetsthis criteria and is considered
sound.

4

5

3

2

1

4’

Unknown

Anchor

Figure 1. Example topology .

In the start-up phase, the Hop-TERRAIN algorithm
floodstheanchorpositionsthroughthenetwork andnodes
recordthe hop count of the shortestpath to eachanchor.
We extent the administrationto also record the neighbor
ID on the shortestpath. TheseIDs are collectedin a set
of potentially soundneighbors. When the sizeof this set
reaches3(4) a nodedeclaresitself soundandmayenterthe
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Refinementphase.Theneighborsof thesoundnodeaddits
ID to theirsetsandmayin turnbecomesound,etc.Theend
resultis thatill-connectednodeswill notbeableto fill their
setsof soundneighborswith enoughentriesand,therefore,
maynotparticipatein theRefinementphase.In theexample
topologyin Figure1, node3 will becomesound,but node4
will not. Wealsonotethatthemorerestrictiveparticipating
nodedefinition by Savvides et al. rendersboth unknown
nodesasill-conditioned [12].

Refinement with both modifications (confidence
weights,detectionof ill-connectednodes)performsquite
satisfactorily, as will be shown by the experiments in
Section5.

4. Implementation

To study the robustnessof our two-phasepositioning
algorithm we createda simulationenvironment in which
we can easily control a numberof (network) parameters.
We implementedthe Hop-TERRAIN and Refinemental-
gorithms as C++ code running under the control of the
OMNeT++ discreteevent simulator[13]. The algorithms
are event driven, where an event can be an incoming
messageor a periodic timer. Processingan event usually
involvesupdatinginternalstate,andoftengeneratesoutput
messagesthat must be broadcast. All simulatedsensor
nodesrun exactly the sameC++ code. The OMNeT++
library is in control of the simulatedtime and enforces
a semi-concurrentexecutionof the code‘running’ on the
multiplesensornodes.

Code developmentfor OMNeT++ proved to be very
effective, and the run-time of the resulting simulator is
satisfactory too; most of the time (80%) is spent in our
triangulationcore. In the remainderof this sectionwe dis-
cusssomespecificimplementationdetailsof oursimulation
environment.

4.1. Network layer

Although our positioning algorithm is designedto be
usedin anad-hocnetwork thatpresumablyemploys multi-
hop routing algorithms,our algorithmonly requiresthat a
nodebe able to broadcasta messageto all of its onehop
neighbors. An important result of this is the ability for
systemdesignersto allow the routing protocolsto rely on
positioninformation,ratherthanthe positioningalgorithm
relyingonroutingcapabilities.

An importantissueis whetheror not the network pro-
videsreliablecommunication.In thispaperweassumethat
messageloss or corruptiondoesnot occur and that each
messageis deliveredat the neighborswithin a fixed radio
range( � ) from thesendingnode.Concurrenttransmissions
are allowed when the transmissionareas(circles) do not

overlap. A node wanting to broadcasta messagewhile
anothermessagein its areais in progressmustwait until
that transmission(and possibly other queuedmessages)
completes.In effectweemploy a CSMA policy.

The functionalityof thenetwork layer (local broadcast)
is implementedin a single OMNeT++ object, which is
connectedto all sensor-node objects in the simulation.
This network object holds the topology of the simulated
sensornetwork, which canbe readfrom a ”scenario”file
or generatedat random at initialization time. At time
zero the network object sendsa pseudomessageto each
sensor-nodeobjecttelling its role (anchoror unknown) and
someattributes(e.g., the positionin the caseof an anchor
node).Fromthenonit relaysmessagesgeneratedby sensor
nodesto thesender’sneighborswithin a radiusof � units.

4.2. Hop-TERRAIN

At time zero of the Hop-TERRAIN algorithm, all of
the nodesin the network arewaiting to receive hop count
packetsinforming themof the positionsandhopdistances
associatedwith eachof the anchornodes. Also at time
zero,eachof the anchornodesin the network broadcasts
a hop countpacket, which is received andrepeatedby all
of the anchors’one-hopneighbors. This information is
propagatedthroughoutthe network until, ideally, all the
nodesin thenetwork have positionsandhopcountsfor all
of the anchorsin the network. At this point, eachof the
nodesperformsa triangulationto createan initial estimate
of its position. The numberof anchorsin any particular
scenariois notknownby thenodesin thenetwork,however,
soit is difficult to definea stoppingcriteriato dictatewhen
a node should stop waiting for more information before
performinga triangulation. To solve this problem,nodes
performtriangulationsevery time they receive information
that is not staleafterhaving received informationfrom the
first 3(4)nodesin a2(3)-dimensionalspace(seeSection3.1
for a definitionof staleinformation).

Nodesalsorely on the anchornodesto inform themof
thevalueto usefor theassumedaveragehopdistanceused
in calculatingtheestimatedrangeto eachanchor. Initially
we experimentedwith simply using the maximum radio
rangefor this quantity. Better position results,however,
are attainedby dynamicallydeterminingthe averagehop
distanceby comparingthe numberof hops betweenthe
anchorsthemselvesto theknown distancesseparatingthem
following the calibrationprocedureusedfor DV-hop (see
Section2).

Theabove detailsaresufficient for controllingtheHop-
TERRAINalgorithmwithin asimulatedenvironmentwhere
all of the nodesstartup at the sametime. One important
consequenceof arealnetwork, however, is thatthenodesin
thenetwork startup or enterthe network at randomtimes,
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relative to eachother. This allows for the possibility that
a late nodemight miss someof the waves of propagated
broadcastmessagesoriginating at the anchornodes. To
solve this, eachnode is programmedto announceitself
whenit first comesonline in a new network. Likewise,ev-
erynodeis programmedto respondto theseannouncements
by passingthe new nodetheir personalpositionestimates,
the positionsof all of the anchornodesthey know of, and
the hop countsand hop distancemetricsassociatedwith
theseanchors.Notethat,accordingto therebroadcastrules
regardingstaleinformation,this informationwill all benew
to thenew node,causingthis new nodeto thenrebroadcast
all of the informationto all of its one-hopneighbors.This
becomesimportantin thecaseswherethenew nodeforms
a link betweentwo clustersof nodesthat werepreviously
notconnected.In caseswhereall or mostof thenew node’s
one-hopneighborscameonline beforethe new node,this
information will most likely be consideredstale, and so
thesebroadcastswill not berepeatedpasta distanceof one
hop.

4.3. Refinement

The refinementalgorithmis implementedasa periodic
process.Theinformationin incomingmessagesis recorded
internally, but not processedimmediately. This allows
for accumulatingmultiple position updatesfrom different
neighbors,and respondingwith a single reply (outgoing
broadcastmessage).The task of an anchornodeis very
simple: it broadcastsits positionwhenever it hasdetected
a new neighborin the precedingperiod. The task of an
unknown node is more complicated. If new information
arrivedin theprecedingperiodit performsatriangulationto
computea new positionestimate,determinesanassociated
confidencelevel, andfinally decideswhetheror not to send
outa positionupdateto its neighbors.

A confidenceis a value between0 and 1. Anchors
immediatelystart off with confidence1; unknown nodes
startoff at a low value(0.1)andmayraisetheir confidence
at subsequentRefinementiterations. Whenever a node
performsa successfultriangulationit sets its confidence
to the averageof its neighbors’confidences.This will, in
general,raisetheconfidencelevel. Nodescloseto anchors
will raisetheir confidenceat the first triangulation,raising
in turntheconfidenceof nodestwo hopsawayfrom anchors
on the next iteration,etc. Triangulationssometimesfail or
the new positionis rejectedon othergrounds(seebelow).
In thesecasesthe confidenceis set to zero, so neighbors
will not beusingerroneousinformationof the inconsistent
node in the next iteration. This generally leadsto new
neighborpositionsbringing the faulty node back into a
consistentstate,allowing it to build its confidencelevel
again. In unfortunatecasesa node keepsgetting back

into an inconsistentstate,never converging to a final po-
sition/confidence.To warrantterminationwe simply limit
thenumberof positionupdatesof a nodeto a maximum.

To avoid flooding the network with insignificant or
erroneousposition updatesthe triangulation results are
classifiedas follows. First, a triangulation may simply
fail becausethe systemof equationsis underdetermined
(too few neighbors,bad constellation). Second,the new
position may be very close to the currentone, rendering
the positionupdateinsignificant. Third, we checkthat the
new position is within the reachof the anchorsusedby
Hop-TERRAIN. Similarly to Doherty et al. [5] we check
theconvex constraintsthatthedistancebetweentheposition
estimateandanchor ��� mustbe lessthanthe lengthof the
shortestpathto ��� (hop-count� ) timesthe radio range( � ).
Whenthepositiondrifts outsidetheconvex region,wereset
the position to the original initial position computedby
Hop-TERRAIN.Finally, thevalidity of thenew positionis
checked by computingthe differencebetweenthe sumof
the observedrangesandthe sumof the distancesbetween
thenew positionandtheneighborlocations.Dividing this
differenceby thenumberof neighborsyieldsa normalized
residue. If the residueis large (residue � radio range)
we assumethat thesystemof equationsis inconsistentand
reject the new position. To avoid being trappedin some
local minima,however, we occasionallyacceptbadmoves
(10%chance),similar to asimulatedannealingprocedure.

An unexpectedsourceof errorsis that Hop-TERRAIN
assignsthesameinitial positionto all nodeswith identical
hop countsto the anchors. For example,twin nodesthat
sharetheexactsamesetof neighborsarebothassignedthe
sameinitial position.Theconsequenceis thataneighborof
two ‘look-alikes’ is confrontedwith a large inconsistency:
two nodesthat sharethe samepositionhave two different
rangeestimates.Simply droppingoneof thetwo equations
from the triangulationyields better position estimatesin
the first iterationof Refinementandeven hasa noticeable
impacton theaccuracy of thefinal positionestimates.

5. Experiments

In order to evaluateour algorithm, we ran many ex-
perimentson both Hop-TERRAIN and Refinementusing
the OMNeT++ simulation environment. All data points
representaveragesover 100 trials in networks containing
400 nodes. The nodesare randomlyplacedaccordingto
a uniform distribution on a 100x100square,the specified
fraction of anchorsis randomly selected,and the range
betweenconnectednodesis blurredby drawing a random
value from a normal distribution with the true rangeas
the mean, and a parametrizedstandarddeviation. The
connectivity (averagenumberof neighbors)is controlledby
specifyingthe radio range. To allow for easycomparison
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betweendifferentscenarios,rangeerrorsaswell aserrors
onpositionestimatesarenormalizedto theradiorange(i.e.
50%positionerrormeanshalf therangeof theradio).

Figure 2 shows the averageperformanceof the Hop-
TERRAIN algorithm as a function of connectivity and
anchorpopulationin the presenceof 5% rangeerrors. As
seenin thisplot, positionestimatesby Hop-TERRAINhave
an averageaccuracy under100% error in scenarioswith
at least5% anchorpopulationandanaverageconnectivity
level of 7 or greater. In extremesituationswherevery few
anchorsexist andconnectivity in the network is very low,
Hop-TERRAINerrorsreachabove250%.

Figure3 displaysthe resultsfrom the sameexperiment
depictedin Figure 2, but now the position estimatesof
Hop-TERRAINaresubsequentlyprocessedby theRefine-
ment algorithm. Its shapeis similar to that of Figure 2,
showingrelativelyconsistenterrorlevelsof lessthan33%in
scenarioswith at least5%anchorpopulationandanaverage
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connectivity level of 7 or greater. Refinementalsohasprob-
lemswith low connectivity andanchorpopulations,andis
shown to climb above 50% position error in theseharsh
conditions. Overall Refinementimprovesthe accuracy of
thepositionestimatesby Hop-TERRAINwith afactorthree
to five.

Figure4 helpsto explain thesharpincreasesin position-
ing errorsfor low anchorpopulationsandsparsenetworks
shown in figures 2 and 3. Figure 4 shows that, as the
averageconnectivity betweennodesthroughoutthenetwork
decreasespastcertainpoints,bothalgorithmsbreakdown,
failing to derive position estimatesfor large fractions of
the network. This is duesimply to a lacking of sufficient
information,and is an impossibleconsequenceof loosely
connectednetworks. It shouldbe notedthat the resultsin
Figure4 imply that thereportedaveragepositionerrorsfor
low connectivities in figures2 and 3 have low statistical
significance,asthesepointsrepresentonly small fractions
of the total network. Nevertheless,the generalconclusion
to be drawn from figures 2, 3, and 4 is that both Hop-
TERRAIN and Refinementperform poorly in networks
with averageconnectivity levelsof lessthan7.

Sinceconnectivity hasa pronouncedeffect on position
errorwe wereinterestedif othertopologicalcharacteristics
would show large effects as well. In the following ex-
perimentwe useda fixed grid layout insteadof randomly
placing nodes in a squarearea according to a uniform
distribution. We foundthat thegrid layoutdid not resultin
betterperformancefor theRefinementalgorithm,relativeto
theperformanceof theRefinementalgorithmwith random
nodeplacement.We do not includea plot herebecauseit
looksalmostidenticalto Figure3. We did find a difference
in performancefor Hop-TERRAINthough.Figure5 shows
that placing the nodeson a grid dramaticallyreducesthe
errorsof the Hop-TERRAIN algorithmin the caseswhere
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connectivity or anchor node populationsare low. For
example,with 5% anchorsanda connectivity of 8 nodes,
the averageposition error decreasesfrom 95% (random
distribution) to 60%(grid).

Sensitivity to averageerror levels in the range mea-
surementsis a major concernfor positioningalgorithms.
Figure 6 shows the results of an experiment in which
we held anchor population and connectivity constantat
10%and12 nodes,respectively, while varying theaverage
level of error in the rangemeasurements.We found that
Hop-TERRAINwasalmostcompletelyinsensitive to range
errors.This is a resultof thebinarynatureof theprocedure
in which routing hopsarecounted;if nodescanseeeach
other, they passon incrementedhopcounts,but at no time
do any nodesattemptto measuretheactualrangesbetween
them.Unlike Hop-TERRAIN,Refinementdoesrely on the
rangemeasurementsperformedbetweennodes,and Fig-
ure6 shows this dependenceaccordingly. At lessthan40%
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Figure 7. Cumulative error distrib ution (5%
rang e errors).

error in the rangemeasurements,on average,Refinement
offers improved position estimatesover Hop-TERRAIN.
Theresultsfrom Refinementimprove steadilyastherange
errors decrease. For referencewe determinedthe best
possibleposition informationthat canbe obtainedin each
case. For eachnodewe performeda triangulationusing
the true positionsof its neighborsand the corresponding
erroneousrange measurements. The resulting position
errors are plotted as the lower bound in Figure 6. This
shows thatthereis roomfor improvementfor Refinement.

Up until this point we reportedaveragepositionerrors.
Figure 7, in contrast,gives a detailedlook at the distri-
bution of the position errors for individual nodesunder
four different scenarios. Note that the distributions have
similar shapes:many nodeswith small errors, large tails
with outliers. Refinement’s confidencemetrics are to
someextendcapableof pinpointingthe outliers. Figure8
shows the relationshipbetweenposition error levels and
thecorrespondingconfidencevaluesassignedto eachnode.
The datafor Figure 8 was taken from the bestand worst
casescenariosfrom the sameexperimentusedto generate
Figure7. As desired,thenodeswith higherpositionerrors
are assignedlower confidencelevels. In the easiercase,
theconfidenceindicatorsaremuchmorereliablethanin the
moredifficult case.Thelargestandarddeviations,however,
show thatconfidencelevelsareweakindicatorsfor position
accuracy at the applicationlevel. Currently, the value of
usingconfidencesis theimprovedaveragepositioningerror
comparedto anaiveimplementationof Refinementwithout
confidences.

Finally, yet anotherusefulway of looking at the distri-
bution of errorsover individual nodesis to take their geo-
graphicallocationinto account.Figure9 plots positioning
errorsas a function of a node’s location in the 100x100
testingarea. This experimentused400 randomlyplaced
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nodes,ananchorpopulationof 5%,anaverageconnectivity
level of 12, andrangeerrorsof 5%. The errordistribution
in Figure 9 is quite typical for many scenariosshowing
that areasalong the edgesof the network lacking a high
concentrationof anchornodesareparticularlysusceptible
to highpositionerrors.

6. Discussion

It is interestingto compareour resultsfrom theprevious
sectionwith the alternative approachesdiscussedin Sec-
tion 2. First,wediscusstheperformanceof Hop-TERRAIN
andrelatedalgorithmsthatdonot userangemeasurements.
Hop-TERRAINis equivalentto the“DV-hop” algorithmby
Niculescuand Nath [10], but we get consistentlyhigher
positionerrors,for example,69%(Hop-TERRAIN)versus
35% (DV-hop) on a scenariowith 10% anchorsand a
connectivity of 8. It is not clearwherethedifferencestems
from, but the trend observed in both studiesis the same:
when the fraction of anchorsdrops below 5%, position
errorsrapidly increase.Theconvex optimizationtechnique
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Figure 9. Geographic error distrib ution (5%
anchor s, connectivity 12, 5% rang e errors).

by Dohertyetal. [5] is aboutasaccurateasHop-TERRAIN,
except for very low fractions of anchors. For example,
convex optimizationachievespositionerrorsthatareabove
150%on a scenario(200 nodes,5% anchors,connectivity
of 6) whereHop-TERRAIN errorsare around125%; the
gapgrows for evenlower fractionsof anchors.

The resultsof Refinementare comparableto thoseof
“iterative multilateration” by Savvides et al. reportedfor
a scenariowith 50 nodes,20% anchors,connectivity 10,
and1% rangeerrors[12]. Their algorithm,however, can
handleneitherlow anchorfractionsnor low connectivities,
becausepositioningstartsfrom nodesconnectedto at least
3 anchors. Refinementstill performs acceptablywell
with few anchorsor a low connectivity. Furthermorethe
preliminary resultsof their more advanced“collaborative
multilateration”algorithmshow that Refinementis ableto
determinethe position of a larger fraction of unknowns:
56% (Refinement)versus10% (collaborative multilater-
ation) on a scenariowith just 5% anchors(200 nodes,
connectivity 6).

The “Euclidean”algorithmby NiculescuandNathuses
rangeestimatesto constructlocalmapsthatareunifiedinto
a singleglobal map[10]. The resultsreportedfor random
configurationsshow that “Euclidean” is rather sensitive
to rangeerrors,especiallywith low fractionsof anchors:
in caseof 10% anchorstheir Hop-TERRAIN equivalent
(DV-hop) outperformsEuclidean. Refinementachieves
betterpositionestimatesand is morerobustsincethecross
over with Hop-TERRAINoccursaround40%rangeerrors
(seeFigure6).

In summary, the performanceof Hop-TERRAIN and
Refinementis comparableto other algorithmsin the case
of “easy” network topologies (high connectivity, many
anchors)with low rangeerrors,andoutperformsthecompe-
tition in difficult cases(low connectivity, few anchors,large
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rangeerrors).Theresultsof refinementcanmostlikely be
improvedevenfurtherwhentheplacementof anchorsnodes
can be controlled given the positive experiencereported
by others[2, 5]. Sincethe largesterrorsoccur along the
edgesof the network (seeFigure9), mostanchorsshould
beplacedon theperimeterof thenetwork.

Basedontheexperimentalresultsfrom Section5 andthe
discussionabove we recommenda numberof guide lines
for theinstallationof wirelesssensornetworks:
� ensureahigh connectivity ( � 10),or� employ a reasonablefractionof anchors( � 5%),and� placeanchorscarefully(i.e. at theedges).

This will createthe bestconditionsfor positioningalgo-
rithms in general,andfor Hop-TERRAIN andRefinement
in particular.

7. Conclusionsand futur e work

In this paper we have presenteda completely dis-
tributed algorithm for solving the problemof positioning
nodeswithin anad-hoc,wirelessnetwork of sensornodes.
The procedureis partitioned into two algorithms: Hop-
TERRAIN andRefinement.Eachalgorithmis describedin
detail. The simulationenvironmentusedto evaluatethese
algorithmsis explained,includingdetailsaboutthespecific
implementationof eachalgorithm. Many experimentsare
documentedfor eachalgorithm,showing severalaspectsof
the performanceachieved undermany differentscenarios.
Theresultsshow thatwe areableto achievepositionerrors
of lessthan33%in a scenariowith 5% rangemeasurement
error, 5% anchorpopulation,andan averageconnectivity
of 7 nodes. Finally, guidelines for implementing and
deployinganetwork thatwill usethesealgorithmsaregiven
andexplained.

An important aspectof wireless sensornetworks is
energy consumption.In the nearfuture we thereforeplan
to study the amountof communicationand computation
inducedby runningHop-TERRAINandRefinement.A par-
ticularly interestingaspectis how the accuracy vs. energy
consumptiontrade-off changesover subsequentiterations
of Refinement.
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