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Abstract 

While it is often suggested that moderate-scale ad hoc 
sensor networks are a promising approach to solving 
real-world problems, most evaluations of sensor network 
protocols have focused on simulation, rather than real-
world, experiments.  In addition, most experimental re-
sults have been obtained in limited scale.  This paper 
describes a practical application of moderate-scale ad 
hoc sensor networks.  We explore several techniques for 
reducing packet loss, including quality-based routing and 
passive acknowledgment, and present an empirical 
evaluation of the effect of these techniques on packet loss 
and data freshness. 

1. Introduction����† 

Sensor networks provide a promising mechanism for 
mining information from the physical world.  Steady im-
provements in IC and radio technologies continue to 
shrink sensor devices, making large-scale sensor net-
works feasible.  A great deal of research attention has 
been placed on the development of protocols for organiz-
ing ad hoc sensor networks, efficiently obtaining relevant 
information from a network, and ensuring network lon-
gevity.  Researchers have tended to evaluate these proto-
cols through simulation and small-scale testing.  The fea-
sibility of ad hoc sensor networking in moderate scale 
and under real-world conditions remains an important 
issue that is largely unexplored. 

One application of sensor networks is to enable audi-
ence feedback of a lecture or presentation.  Each audience 
member is given a voting device (Figure 1)—a small box 
with buttons for input and LEDs for feedback1, powered 
by a version of the Berkeley mote [5].  The network al-
lows users to respond to questions by pressing one of the 
buttons and determines the number of users that pressed 
                                                 
� The authors wish to thank Steven Fordyce for his help constructing 
and maintaining the voting devices. 
† Other names and brands may be claimed as the property of others. 
1 In the future, a more sophisticated device could be built using gravity 
switches or other sensors, allowing the speaker to obtain a “sense of 
the audience.”  

each button.  Users may change their response over time, 
requiring a continuous tally. 

While this application could be enabled by a fixed in-
frastructure built into a particular auditorium, a wireless 
network could enable audience participation in any 
venue.  Since engineering a wireless network that com-
pletely covers a particular venue can be time consuming 
and impractical, a multihop ad hoc network is ideal.  To 
this end, we constructed a wireless sensor network of 
over 100 nodes (Figure 2).  Nodes in the network deliv-
ered results via a designated gateway node over an ad hoc 
routing topology which was generated using a single-
destination implementation of the DSDV protocol [12]. 

    
Figure 1: External and internal views of a mote-
based voting device. 

 
Figure 2: A 100 node ad hoc topology of handheld 
voting devices deployed in the San Francisco 
Moscone Convention Center. 



Even at this moderate scale, we found that obtaining 
reasonable performance in this network was a challenge.  
The main impediments were congestion and packet loss.  
Our application requires information from all nodes to be 
simultaneously collected at a single location, resulting in 
data implosion.  We leveraged several techniques, includ-
ing packet aggregation, to reduce the amount of data con-
verging on the gateway.  In addition, we found that 
packet loss, both during transmission and within interme-
diate nodes, was difficult to control given the simplistic 
radios and limited resources of the nodes.  We explored 
techniques at both the link layer and the network layer to 
reduce packet loss.  This paper describes our real-world 
experiences with moderate sized ad hoc sensor networks, 
and techniques that can be employed to reduce conges-
tion and packet loss in these networks, including our ex-
perimental results. 

2. The application architecture 

The voting application consists of four parts: a sensor 
network of voting nodes, a gateway node with an inter-
face to a traditional computing platform, a sensor gate-
way application, and one or more client applications.  
This architecture is shown in Figure 3. 

The voting nodes are built upon a variant of the rene 
mote [5], originally developed at the University of Cali-
fornia at Berkeley, which serves as the base communica-
tion and computation platform.   The core components of 
the mote are an Atmel® ATmega163L AVR® microcon-
troller [1] with 16 KB of flash, 1 KB of RAM, and an 
RFM TR1000 916 MHz radio transceiver [14].  Protocols 
and applications are implemented using TinyOS [5], an 
event-driven operating system designed to fit within the 
minimal resources of mote hardware. 

The radio provides on-off keying modulation and de-
livers a raw bit rate of 10 kbps.  SEC/DED (single error 
correcting, double error detecting) baseband encoding is 
implemented in software, resulting in a maximum theo-
retical channel capacity of approximately 568 bytes per 
second.  Because each packet is 37 bytes long, the chan-
nel capacity has a theoretical limit of 15 packets per sec-
ond.  Channel access is controlled by carrier sense multi-
ple access with collision avoidance (CSMA/CA). 

One node in the network acts as a gateway, allowing 
results to be obtained from the sensor network.  Each 
node is capable of periodically sending the user’s vote to 
the gateway, where it can be delivered, across a serial 
link, to a “sensor gateway” process on a PC.  Since the 
user can change his vote during the voting process, and 
since packets can be lost in transport, each voting node 
sends the user’s current vote once per time interval.  As 
voting packets are passed hop-by-hop across the sensor 
network, each node attaches its ID to the packet, forming 
a “ traceroute.”  

The sensor network forms an ad hoc topology using a 
single-destination form of the DSDV protocol [12].  In 
this case, the gateway initiates DSDV route requests, 
which are flooded into the network.  Each route request 
contains a monotonically increasing sequence number, a 
metric, and the identity of the previous hop.  The metric 
is a monotonically increasing measure of the cost of 
transmission to the destination.  A typical metric is hop 
count, allowing the shortest path to be identified.  We will 
explore disadvantages to this metric as well as a link-
quality-based alternative in Section 4.  By optimizing the 
metric and discarding any packets with outdated se-
quence numbers, a node can identify the best next hop 
along a path to the gateway node.  Together, these paths 
form a routing tree rooted at the gateway. 

The gateway node delivers the packets it receives to 
the “sensor gateway” process running on a PC.  This 
process keeps track of the current total vote.  Using the 
traceroute in the vote packets, the gateway process also 
maintains a representation of the topology of the sensor 
network.  The gateway process serves the current vote 
and network topology in an XML format over a TCP 
socket to client applications, such as the display applica-
tion shown in Figure 2. 

3. Traffic reduction 

The voting application illustrates a fundamental chal-
lenge for sensor networks: the volume of sensor data can 
readily over-commit the available system resources.  In 
particular, network bandwidth is an extremely limited 
resource in such networks. 

If each node in a 100 node network were to send its 
vote to the gateway once every 20 seconds, the gateway 
would receive 5 vote packets each second.  While the 
channel supports a theoretical maximum of 15 packets 
per second, contention reduces the achievable channel 
capacity in an ad hoc network to a fraction of the actual 
channel capacity [9].  In addition, DSDV route update 
packets are also being transmitted once per node every 
ten seconds.  As a result, this application uses a signifi-
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Figure 3: Software architecture of the voting appli-
cation. 



cant amount of the available bandwidth.  Reducing the 
number of packets delivered to the gateway would likely 
be beneficial. 

While aggregation is a natural solution to this prob-
lem, vote aggregation is challenging because topology 
changes can result in unbounded errors.  Consider the 
network in Figure 4a.  During each local time interval, a 
node waits for its childrens’ votes.  At the end of an in-
terval, the node forwards aggregated vote totals (includ-
ing its own vote) to its parent.  Thus, it takes n time inter-
vals for a vote from a node at tree-depth n to be received 
by the gateway.  If a subtree moves (due to a topology 
change) to a higher position in the tree (Figure 4b), its 
votes would be double counted for one or more time in-
tervals (depending on the distance moved).  Since a sub-
tree can consist of any number of nodes, the resulting 
error is unbounded.  Similarly, if a subtree moves deeper 
in the tree, its votes will not be counted for one or more 
intervals.  In addition, if packet retransmission is used to 
reduce packet loss, any topology changes can result in 
aggregation errors, even if a node’s depth in the tree is 
unchanged.  Note that while this problem is not present in 
min/max aggregation functions, these functions are not 
applicable to vote aggregation. 

An alternative approach is to aggregate packets, rather 
than aggregating data.  A vote from a given node requires 
a single byte to identify the voting node and two bits to 
specify the vote (A, B, or no vote).  Each leaf node on the 
tree can generate a vote packet containing its own identity 
and its vote, and forward it toward the root of the routing 
tree.  When forwarding a vote packet, each node can also 
append its own identity and vote.  Because the gateway 
can distinguish the source of each vote, it can maintain 
the last known vote from each node and provide the cur-
rent vote count to client applications.   

Since the above aggregation scheme only requires leaf 
nodes to initiate packets, many fewer packets need be 
delivered to the gateway.  In our experiments, an average 
of 55% (�  = 5%) of nodes were leaf nodes.  Leaf node 
detection can be implemented using a timeout; each node 
transmits a vote packet if it has not forwarded a vote 
packet (appending its own vote) over some time period.  

Note that despite reducing the network traffic, this aggre-
gation scheme increases redundancy; votes from non-leaf 
nodes can have multiple opportunities to be received by 
the gateway.  In addition, since a node need not wait for 
its childrens’  votes before forwarding data to its parents, 
the latency involved in reporting votes is reduced.   

The amount of aggregation is limited by packet size; 
in our system 13 votes.  When a packet becomes full, it 
can be forwarded to the gateway.  A node that detects a 
full packet behaves as a leaf node. 

4. Quality-based routing 

Hop count is a typical metric used to identify an opti-
mal path to the destination.  However, in a wireless net-
work hop count is potentially a bad choice.  Link quality 
between pairs of nodes may vary during the lifetime of a 
network based on distance, transmit power, antenna 
shape and orientation, radio interference, and environ-
mental factors (such as people in the sensor network field 
attenuating radio signals).  Moreover, such variation may 
lead to asymmetric links between nodes in the network.  
Even if the locations of nodes in the network are fixed 
and each node is configured with an identical transmit 
power, node interconnectivity will change during the 
course of an experiment.   

Given these operating conditions, blindly selecting 
DSDV parents based on minimum number of hops to the 
destination may result in poor route choices.  For exam-
ple, a node that is typically 7 hops from the destination 
may sporadically receive a route update (RUPDATE) 
message from a node that is 4 hops from the destination.  
However, sending data packets along this route may re-
sult in greater packet loss, since packet losses are higher 
over extreme physical distances. 

In an attempt to alleviate these drawbacks, our DSDV 
implementation uses a link cost metric that is based on 
link quality statistics.   
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Figure 4: Node motion can result in unbounded aggregation errors. 



4.1. Measur ing link quality 

To facilitate link quality tracking, nodes tag each out-
going packet with a one-hop sequence number, independ-
ent of packet type.  Nodes track these one-hop sequence 
numbers in packets received from each of their neighbors.  
Any sequence number gaps identified at a receiver indi-
cate packets that were sent but not received.  Each node 
learns the downstream reliability from each of its 
neighbors by storing the number of packets successfully 
received out of the last 32 packets sent.   

To identify bi-directional quality, nodes share their lo-
cal quality statistics with each of their neighbors.  This 
data could be transmitted in a new periodic message.  
However, to avoid consuming additional bandwidth, we 
chose to piggyback these statistics onto the RUPDATE 
messages that are already periodically broadcast from 
each node for DSDV route establishment.  Due to the 
limited space in RUPDATE messages, neighbor lists are 
divided into four categories based on quality thresholds: 
Q3 is 0%-10% loss, Q2 is 10%-21% loss, Q1 is 21%-53% 
loss, and Q0 is 53%-100% loss.  When a node receives a 
quality list from a neighbor, it supplements its local qual-
ity statistics for that neighbor with the neighbor’s percep-
tion of the quality of the link from itself.  Bi-directional 
link quality is considered to be the minimum quality 
value in each direction between a pair of nodes.  If a node 
is not listed in its neighbor’s quality list, the link is as-
sumed to be asymmetric and receives the minimum qual-
ity rating of Q0. 

There are several notable limitations to the link quality 
implementation, primarily relating to neighbor storage (1 
KB of total data space in our platform) and communica-
tion constraints (31 bytes of payload space).  In a dense 
network, a node may have more neighbors than it can 
track, and poor parent selection may result.  When the 
neighbor list is full and a new neighbor is detected, the 
current neighbor list is searched, and the neighbor with 
the lowest link quality is replaced.  If a node is not listed 
on its neighbor’s neighbor list, the node must assume that 
an asymmetric link exists.  This is normally the intended 
behavior, but if it is missing from the list due to neighbor 
overflow then a high-quality neighbor may be over-
looked.   

The initial quality value for a new neighbor must be 
chosen carefully.  If the initial value is set too low, identi-
fication of a high quality neighbor will require a long 
delay.  On the other hand, an initial value that is too high 
may result in replacing a higher quality neighbor in the 
neighbor table if the table is full due to limited storage 
space, potentially resulting in table thrash.  In the current 
network implementation, the initial quality value is cho-
sen to be 45% loss, near the midpoint of Q1. 

4.2. Using link quality as a routing metr ic 

We have integrated link quality metrics with DSDV 
route selection.  In particular, we wanted to allow DSDV 
to select routes with the highest end-to-end packet deliv-
ery rate. 

The end-to-end packet delivery rate of a given route 
can be computed by multiplying the delivery rate of each 
link (measured as described in Section 4.1) along that 
route.  This approach is impractical because floating-
point multiplication is expensive in terms both of code 
size and storage complexity.  In addition, our link quality 
implementation can only provide an estimate of link qual-
ity by categorizing each link into one of four quality 
categories.  As a result, we have chosen to convert the 
quality measure of each link into a link cost, where higher 
link costs are assigned to links that have a higher 
estimated loss rate.  Link costs along a path can be 
summed, producing a monotonically increasing metric 
for the DSDV algorithm that identifies paths with the 
highest packet delivery rate. 

Appropriate link costs can be chosen by converting 
packet delivery rates to the log scale and then normaliz-
ing to the integer domain.  Because the link metric is in 
the log domain, adding link metrics is equivalent to mul-
tiplying packet delivery rates, allowing paths of different 
lengths to be correctly compared, without requiring ex-
pensive multiplication. 

As described in Section 4.1, each node maintains an 
estimate of the quality of the link to each neighbor.  The 
estimate corresponds to a range of packet delivery rates.  
The metric for each link is determined by normalizing the 
log of the estimate value for each category, as shown in 
Table 1.  Because there are a small number of categories, 
the associated link costs can be precomputed. 

Upon receipt of an RUPDATE message with a new 
sequence number, each node determines the quality of the 
link to the sender, selects the metric associated with that 
link quality, and adds the link metric to the route cost in 
the RUPDATE message.  This metric is then used to iden-
tify the lowest cost, and thus highest delivery rate, path to 
the sink node.  The node can then advertise its own route 
cost, based on the lowest cost identified.  Note that due to 
limited packet size, our implementation restricts the total 

Table 1:  Link metrics associated with each level of 
link quality. 

Quality Delivery 
Rate 

Delivery Rate 
Estimate (Re) 

ln(Re) Link 
Metric 

Q3 90-100% 0.95 -0.05 1 
Q2 79-90% 0.85 -0.16 3 
Q1 47-79% 0.65 -0.43 8 
Q0 0-47% 0.25 -1.39 28 



route cost to be less than 255.  To allow for networks of 
reasonable size, link metrics of 6 and 15 were used for Q1 
and Q0 instead of the theoretically correct values. 

Ideally, each node should wait for a minimum “set-
tling time,”  the expected delay from the time a node re-
ceives its first RUPDATE message with a new sequence 
number and the time it receives the RUPDATE message 
for its best parent, before selecting its parent [12].  Due to 
code space limitations, settling time is not currently im-
plemented in the network.  Instead each node waits a ran-
dom interval after receiving an RUPDATE message with 
a new sequence number before advertising its own lowest 
delivery cost.  While not perfect, this scheme does reduce 
the overhead associated with RUPDATE messages.  In 
addition, randomization has been shown to reduce the 
inherently bursty nature of traffic in sensor networks [15]. 

5. Empir ical results 

To evaluate the performance of ad hoc networking 
protocols in our voting application, we deployed the vot-
ing nodes in regular topologies of 24 (4x6), 48 (6x8), and 
91 (7x13) nodes, with a gateway at one end (in the mid-
dle of one of the short edges).  In each case, nodes were 
deployed in an office environment over a rectangular grid 
with nodes 4 feet apart in one direction and 6 feet apart in 
the other.  The radio range of the nodes was adjusted such 
that, in a noiseless environment, nearly lossless commu-
nication was possible at a distance of up to 10 feet.  Each 
experiment was run for approximately one hour, produc-
ing 1000 to 3000 packets at the gateway.  In all experi-
ments, vote aggregation (as described in Section 3) was 
used to reduce data implosion at the gateway node, with 
leaf nodes generating vote packets every 20 seconds. 

In all experiments, DSDV was used with a route up-
date interval of 10 seconds.  Three flavors of DSDV were 
compared: straight DSDV, DSDV with asymmetric link 
detection, and DSDV with link quality monitoring.  In the 
base case, DSDV uses a hop count as the sole metric.  In 
the second case, nodes exchange neighbor lists (described 
in Section 4.1) to identify and avoid asymmetric links 
when selecting a parent node.  In the third case, nodes 
maintain a recent history of the link quality to their 
neighbors and use bi-directional link quality to select the 
parent with the lowest cost route to the gateway (de-
scribed in Section 4).   

Asymmetric link detection was implemented using 
link quality monitoring by setting the quality thresholds 
so that each link was forced into one of two categories, 
depending on whether any packets had been received 
from that neighbor.  To provide straight DSDV, link qual-
ity monitoring was disabled by setting the thresholds so 
that all nodes were forced into a single category. 

All results are shown with 90% confidence intervals. 

5.1. Loss rates 

Figures 5 through 9 show the end-to-end packet loss 
measured for the three network sizes.  Loss rates are 
computed using an end-to-end sequence number main-
tained by each leaf node.  Packet losses are identified by 
gaps in the sequence numbers of packets generated by a 
given leaf node.  Loss rates are broken down by node 
depth.  Packets that are successfully received are attrib-
uted to the number of hops recorded in the packet.  Since 
the network is dynamically changing, a given node can 
change its location and depth in the DSDV tree over time.  
Since it is difficult to accurately attribute a node depth to 
a dropped packet, we have chosen to attribute each lost 
packet to a node’s previously known tree depth.2 

In the 24-node experiment (Figure 5), use of the 
straight DSDV algorithm resulted in moderate packet 
loss.  As expected, packet loss was greater for nodes that 
were further (in terms of hops) from the gateway.  Both 
asymmetric link detection and link quality monitoring 
reduced packet losses.  In particular, link quality monitor-
ing reduced packet losses by between 24 and 32%, except 
in the case of nodes 1 hop from the gateway as discussed 
in Section 5.2.   

The 48-node experiment (Figure 7) resulted in similar, 
but less dramatic results.  In this case, link quality moni-
toring reduced packet loss by between 6 and 20%.  The 
91-node experiment (Figure 9) produced an improvement 
of only 2 to 4%.   

From these results, it appears that both quality-based 
routing and asymmetric link detection become less effec-
tive at reducing the packet loss rate as the size of the net-
work increases.  We have identified two likely causes.  
First, the communication channel may be reaching capac-
ity, particularly near the gateway.  This theory is sup-
ported by the relatively flat loss rate for nodes beyond 2 
hops, suggesting that a majority of losses occur near the 
gateway.  Second, the neighbor list may be overflowing, 
causing it to be ineffective (as described in Section 4.1). 

Under the assumption that channel contention was an 
issue, we augmented our MAC layer to include a passive 
acknowledgment scheme [7] in which a node retransmits 
a packet if it does not overhear its parent forwarding that 
packet.  Our implementation provides best-effort re-
transmission in that (due to platform limitations) only one 
packet can be buffered at a time.  In addition, retransmis-
sions never occur from or to the endpoints. 

The results of 24- and 48-node experiments that in-
cluded passive acknowledgments are shown in Figure 6 
and Figure 8.  Note that in the 24-node case, passive ac-

                                                 
2 Had we instead chosen to freeze the network topology by stopping 
the DSDV protocol, the amount of network traffic would have been 
altered and the topology would have been unable to adapt to changing 
link conditions. 



knowledgments reduced the overall loss rates by roughly 
25%.  However, loss rates in the 48-node case and in a 
91-node experiment (not pictured) were actually in-
creased by passive acknowledgments.  We believe the 
negative effect of passive acknowledgment in the larger 
experiments resulted because our DSDV implementation 
does not quell duplicate packets produced by the MAC 
layer.  As a result, any unnecessary retransmission 
(caused when a node fails to see its neighbor forward a 
packet) will produce a duplicate data packet that will be 
forwarded to the gateway.  The increased traffic has a 
negative effect on larger networks which are already con-
gested, offsetting possible benefit.  We believe that if 
duplicate packets were discarded within the network, 
rather than being forwarded, passive acknowledgment 
could improve loss rates in larger networks.  It is worth 
noting that, in the 48-node experiments (Figure 7 and 
Figure 8), while loss rates for straight DSDV rose, loss 

rates for quality-based routing did not.  Quality-based 
routing may help to route around the additional conges-
tion caused by the lack of in-network duplicate detection. 

5.2. Problems with loss rate 

As noted above, in several of our experiments quality-
based routing appeared to increase packet loss rates for 
nodes within one or two hops of the gateway.  This result 
is a side effect of our measurement methodology.  As 
described in Section 3, packets originate only at leaf 
nodes.  Since loss rates reported in this section are meas-
ured using an end-to-end sequence number (link-level 
sequence numbers are only available to nodes within the 
network), loss rates can only be measured for leaf nodes.  
However, with our quality-based routing algorithm, a 
node becomes a leaf node because it advertises (to its 
neighbors) a relatively poor route to the sink node.  As a 
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Figure 5: Packet loss rates in a 24-node network 
with straight DSDV, DSDV with link quality detec-
tion, and DSDV with asymmetric link detection. 
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Figure 6:  Packet loss rates in a 24-node network 
under three DSDV variants, with the addition of 
passive acknowledgments. 
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Figure 7:  Packet loss rates in a 48-node network 
with straight DSDV, DSDV with link quality detec-
tion, and DSDV with asymmetric link detection. 
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Figure 8:  Packet loss rates in a 48-node network 
under three DSDV variants, with the addition of 
passive acknowledgments. 



result, packet loss rates will tend to be inflated in the case 
of quality-based routing, particularly for nodes near the 
gateway. 

This problem could be eliminated if each node at-
tached its own sequence number while forwarding a 
packet, allowing average loss rate to be based on both 
interior nodes and leaf nodes.  This approach was not 
possible in our application, due to limited packet size.  
Instead, the following subsection describes an alternative 
metric, data age, which can be more easily measured 
across all network nodes. 

5.3. Data age 

Data age is the amount of time between subsequent 
votes received from a particular node.  Data age is a bet-
ter metric for this application because it can be measured 
for all nodes, not just leaf nodes.  In addition, data age 
measures a quality of the network that is visible to the 
user: the latency between the time a vote is cast and the 
time it is reflected in the results.  While leaf nodes gener-
ate a data packet every 20 seconds, data age for interior 
nodes can be significantly less, because these nodes add 
their data to all forwarded packets.  On the other hand, 
data age can also be significantly increased by packet 
loss. 

Average data age in a 24-node network is depicted in 
Figure 10.  Note that quality-based routing reduced the 
data age by between 30 and 42%.  While quality-based 
routing tends to increase the tree depth (because the 
shortest path is not necessarily the best path), data origi-
nating from deep in the quality-based routing tree did not 
tend to be significantly older than data originating deep in 
the straight DSDV routing tree. 

Average data ages for 48- and 91-node networks are 
depicted in Figure 11 and Figure 12 respectively.  In each 
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Figure 9:  Packet loss rates in a 91-node network 
with straight DSDV, DSDV with link quality detec-
tion, and DSDV with asymmetric link detection. 
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Figure 10:  Data age in a 24-node network with 
straight DSDV, DSDV with link quality detection, 
and DSDV with asymmetric link detection. 
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Figure 11:  Data age in a 48-node network with 
straight DSDV, DSDV with link quality detection, 
and DSDV with asymmetric link detection. 
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Figure 12:  Data age in a 91-node network with 
straight DSDV, DSDV with link quality detection, 
and DSDV with asymmetric link detection. 



case, the improvement in data age is less than in the 24-
node case, but still significant.  The diminishing benefit 
in data age is most likely linked to the increased packet 
loss in larger networks described in Section 5.1.  Despite 
these packet losses, quality-based routing allowed the 
average age of data to be reduced by as much as 42% in 
the 48-node network and 34% in the 91-node network, 
significantly improving network responsiveness. 

6. Related work 

Published prior work evaluating ad hoc networking 
protocols has mainly focused on simulating networks of 
around 50 nodes.  Given the lack of implementation re-
sults, we compare our empirical evaluation with simula-
tion results.  The effect of mobility and protocol routing 
overhead has been studied extensively with simulation 
[2,4].  The lessons learned are not directly applicable in 
our environment because of differences in both the kind 
of network that was simulated (802.11) and the typical 
workload (mobile nodes).  It would be useful to under-
stand the effect of the DSDV route update interval for a 
given mobility rate (or fixed), versus network size and 
transmission workload.  A study of a multihop wireless 
ad hoc network testbed [11] reports the effect of mobility 
on the performance of TCP/IP.  Our application domain 
is quite different from the mobile IP network studied in 
this paper.  Moreover the network included only 5 mobile 
nodes and 2 fixed nodes. 

Evaluation of a transmission control scheme for sensor 
networks using both simulation and Berkeley motes has 
been presented in [15]. The evaluation uses 11 nodes in a 
fixed network topology with a network depth of 5 hops.  
The paper defines the delivery bandwidth at the gateway 
and energy efficiency as metrics for evaluating sensor 
network protocols.  This research showed that random 
transmission delays and random back-off in the MAC 
layer could remove periodic contention.  Our implemen-
tation used the same MAC layer presented in this work 
and incorporated back-off techniques to improve network 
performance.  Our evaluation expands on previous results 
by exploring the impact of scale as well as integrating 
other performance-enhancing techniques. 

While many ad hoc routing protocols assume link 
symmetry, other researchers have identified that asym-
metric links are a problem in wireless ad hoc networks.  
Asymmetry has been dealt with in a variety of ways, in-
cluding the exchange of neighbor lists in periodic local 
messages to detect asymmetric links [13], similar to the 
approach used in our network.  End-to-end techniques 
have also been employed to deal with asymmetric links, 
for example, by flooding route reply messages rather than 
simply reversing the route request path [8].  Likewise, 
techniques have been described to measure local link 
quality by detecting packet loss for the purpose of detect-

ing and avoiding neighbors with high loss rates [3].  Our 
network extends this approach by piggybacking link 
quality information with exchanged neighbor list mes-
sages, allowing bi-directional link quality to be estimated 
(Section 4.1). 

A taxonomy of aggregation schemes has been pre-
sented in [10] which classifies aggregates based on attrib-
utes important to sensor networks.  Under this taxonomy, 
vote aggregation falls under the distributive aggregate 
classification, theoretically allowing partial state records 
to be no larger than the final aggregate size.  However, 
frequent route changes in our ad hoc voting network pro-
vided many opportunities for vote duplication (Section 
3), to which distributive aggregation techniques are very 
sensitive.  This resulted in the implementation of a holis-
tic aggregate approach, also described in the taxonomy, 
where individual votes were piggybacked on traceroute 
packets to be counted at the gateway, precluding dupli-
cate counting.  Other researchers have also noted that 
such packing aggregation saves energy and bandwidth by 
reducing the total per-transmission overhead in the net-
work [6].    

7. Next steps 

The results described in Section 5 represent an initial 
rather than comprehensive exploration of the perform-
ance of an ad hoc sensor network.  Many issues remain 
outstanding that we plan to explore in the future. 

In this paper, we characterized the network in terms of 
packet loss.  Other metrics are also possible.  In particu-
lar, the shape of the routing topology would be of interest.  
We have noted that augmenting DSDV with asymmetric 
link detection or link quality monitoring tends to produce 
trees that have more balanced fan-in but also tend to be 
deeper.  We would like to understand the effect of differ-
ent metrics on the topology of a DSDV-routed network. 

The results presented in this paper reflect only a few 
changes to the algorithmic parameters.  It would be valu-
able to understand the best route update interval for this 
application, balancing bandwidth against resilience to 
change.  In addition, we would like to understand how 
various quality thresholds affect packet loss and whether 
absolute thresholds could be replaced by a quartile rank-
ing. 

Finally, while we have evaluated several techniques 
for reducing packet loss, we would also like to identify 
the major sources of packet loss.  Through further in-
strumentation of our code, we hope to identify the degree 
to which single-packet buffering, limited packet process-
ing time, packet coding, and channel contention contrib-
ute to packet loss.  In addition, we would like to deter-
mine where in the network packet loss is most likely to 
occur. 



8. Conclusions 

Empirical measurements provide valuable insights 
into the performance of ad hoc sensor network communi-
cation protocols in the context of real application envi-
ronments.  While perhaps only a first step, our results 
provide insight into the performance of the DSDV proto-
col in actual networks of moderate scale.  In particular, 
we have shown that, while packet losses can be quite 
high, known techniques such as link quality monitoring 
and passive acknowledgment can produce measurable 
improvements in real networks.  These results have al-
lowed us to demonstrate the value of moderate-scale ad 
hoc networking applications.  While there is more work 
to be done in this space, these initial results provide a 
promising start. 
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