

Real-World Exper iences with an Interactive Ad Hoc Sensor Network
 Mark D. Yarvis, W. Steven Conner, Lakshman Krishnamurthy, Alan Mainwaring

 Jasmeet Chhabra, and Brent Elliott Intel Research

 Intel Labs

 {mark.d.yarvis, w.steven.conner, lakshman.krishnamurthy}@intel.com amm@intel-research.net

 {jasmeet.chhabra, brent.j.elliott}@intel.com

Abstract

While it is often suggested that moderate-scale ad hoc
sensor networks are a promising approach to solving
real-world problems, most evaluations of sensor network
protocols have focused on simulation, rather than real-
world, experiments. In addition, most experimental re-
sults have been obtained in limited scale. This paper
describes a practical application of moderate-scale ad
hoc sensor networks. We explore several techniques for
reducing packet loss, including quality-based routing and
passive acknowledgment, and present an empirical
evaluation of the effect of these techniques on packet loss
and data freshness.

1. Introduction����†

Sensor networks provide a promising mechanism for
mining information from the physical world. Steady im-
provements in IC and radio technologies continue to
shrink sensor devices, making large-scale sensor net-
works feasible. A great deal of research attention has
been placed on the development of protocols for organiz-
ing ad hoc sensor networks, efficiently obtaining relevant
information from a network, and ensuring network lon-
gevity. Researchers have tended to evaluate these proto-
cols through simulation and small-scale testing. The fea-
sibility of ad hoc sensor networking in moderate scale
and under real-world conditions remains an important
issue that is largely unexplored.

One application of sensor networks is to enable audi-
ence feedback of a lecture or presentation. Each audience
member is given a voting device (Figure 1)—a small box
with buttons for input and LEDs for feedback1, powered
by a version of the Berkeley mote [5]. The network al-
lows users to respond to questions by pressing one of the
buttons and determines the number of users that pressed

� The authors wish to thank Steven Fordyce for his help constructing
and maintaining the voting devices.
† Other names and brands may be claimed as the property of others.
1 In the future, a more sophisticated device could be built using gravity
switches or other sensors, allowing the speaker to obtain a “sense of
the audience.”

each button. Users may change their response over time,
requiring a continuous tally.

While this application could be enabled by a fixed in-
frastructure built into a particular auditorium, a wireless
network could enable audience participation in any
venue. Since engineering a wireless network that com-
pletely covers a particular venue can be time consuming
and impractical, a multihop ad hoc network is ideal. To
this end, we constructed a wireless sensor network of
over 100 nodes (Figure 2). Nodes in the network deliv-
ered results via a designated gateway node over an ad hoc
routing topology which was generated using a single-
destination implementation of the DSDV protocol [12].

Figure 1: External and internal views of a mote-
based voting device.

Figure 2: A 100 node ad hoc topology of handheld
voting devices deployed in the San Francisco
Moscone Convention Center.

Even at this moderate scale, we found that obtaining
reasonable performance in this network was a challenge.
The main impediments were congestion and packet loss.
Our application requires information from all nodes to be
simultaneously collected at a single location, resulting in
data implosion. We leveraged several techniques, includ-
ing packet aggregation, to reduce the amount of data con-
verging on the gateway. In addition, we found that
packet loss, both during transmission and within interme-
diate nodes, was difficult to control given the simplistic
radios and limited resources of the nodes. We explored
techniques at both the link layer and the network layer to
reduce packet loss. This paper describes our real-world
experiences with moderate sized ad hoc sensor networks,
and techniques that can be employed to reduce conges-
tion and packet loss in these networks, including our ex-
perimental results.

2. The application architecture

The voting application consists of four parts: a sensor
network of voting nodes, a gateway node with an inter-
face to a traditional computing platform, a sensor gate-
way application, and one or more client applications.
This architecture is shown in Figure 3.

The voting nodes are built upon a variant of the rene
mote [5], originally developed at the University of Cali-
fornia at Berkeley, which serves as the base communica-
tion and computation platform. The core components of
the mote are an Atmel® ATmega163L AVR® microcon-
troller [1] with 16 KB of flash, 1 KB of RAM, and an
RFM TR1000 916 MHz radio transceiver [14]. Protocols
and applications are implemented using TinyOS [5], an
event-driven operating system designed to fit within the
minimal resources of mote hardware.

The radio provides on-off keying modulation and de-
livers a raw bit rate of 10 kbps. SEC/DED (single error
correcting, double error detecting) baseband encoding is
implemented in software, resulting in a maximum theo-
retical channel capacity of approximately 568 bytes per
second. Because each packet is 37 bytes long, the chan-
nel capacity has a theoretical limit of 15 packets per sec-
ond. Channel access is controlled by carrier sense multi-
ple access with collision avoidance (CSMA/CA).

One node in the network acts as a gateway, allowing
results to be obtained from the sensor network. Each
node is capable of periodically sending the user’s vote to
the gateway, where it can be delivered, across a serial
link, to a “sensor gateway” process on a PC. Since the
user can change his vote during the voting process, and
since packets can be lost in transport, each voting node
sends the user’s current vote once per time interval. As
voting packets are passed hop-by-hop across the sensor
network, each node attaches its ID to the packet, forming
a “ traceroute.”

The sensor network forms an ad hoc topology using a
single-destination form of the DSDV protocol [12]. In
this case, the gateway initiates DSDV route requests,
which are flooded into the network. Each route request
contains a monotonically increasing sequence number, a
metric, and the identity of the previous hop. The metric
is a monotonically increasing measure of the cost of
transmission to the destination. A typical metric is hop
count, allowing the shortest path to be identified. We will
explore disadvantages to this metric as well as a link-
quality-based alternative in Section 4. By optimizing the
metric and discarding any packets with outdated se-
quence numbers, a node can identify the best next hop
along a path to the gateway node. Together, these paths
form a routing tree rooted at the gateway.

The gateway node delivers the packets it receives to
the “sensor gateway” process running on a PC. This
process keeps track of the current total vote. Using the
traceroute in the vote packets, the gateway process also
maintains a representation of the topology of the sensor
network. The gateway process serves the current vote
and network topology in an XML format over a TCP
socket to client applications, such as the display applica-
tion shown in Figure 2.

3. Traffic reduction

The voting application illustrates a fundamental chal-
lenge for sensor networks: the volume of sensor data can
readily over-commit the available system resources. In
particular, network bandwidth is an extremely limited
resource in such networks.

If each node in a 100 node network were to send its
vote to the gateway once every 20 seconds, the gateway
would receive 5 vote packets each second. While the
channel supports a theoretical maximum of 15 packets
per second, contention reduces the achievable channel
capacity in an ad hoc network to a fraction of the actual
channel capacity [9]. In addition, DSDV route update
packets are also being transmitted once per node every
ten seconds. As a result, this application uses a signifi-

Sensor
Gateway

Client
Application

Gateway Node

Sensor Network

Serialized

Packets

XML

Figure 3: Software architecture of the voting appli-
cation.

cant amount of the available bandwidth. Reducing the
number of packets delivered to the gateway would likely
be beneficial.

While aggregation is a natural solution to this prob-
lem, vote aggregation is challenging because topology
changes can result in unbounded errors. Consider the
network in Figure 4a. During each local time interval, a
node waits for its childrens’ votes. At the end of an in-
terval, the node forwards aggregated vote totals (includ-
ing its own vote) to its parent. Thus, it takes n time inter-
vals for a vote from a node at tree-depth n to be received
by the gateway. If a subtree moves (due to a topology
change) to a higher position in the tree (Figure 4b), its
votes would be double counted for one or more time in-
tervals (depending on the distance moved). Since a sub-
tree can consist of any number of nodes, the resulting
error is unbounded. Similarly, if a subtree moves deeper
in the tree, its votes will not be counted for one or more
intervals. In addition, if packet retransmission is used to
reduce packet loss, any topology changes can result in
aggregation errors, even if a node’s depth in the tree is
unchanged. Note that while this problem is not present in
min/max aggregation functions, these functions are not
applicable to vote aggregation.

An alternative approach is to aggregate packets, rather
than aggregating data. A vote from a given node requires
a single byte to identify the voting node and two bits to
specify the vote (A, B, or no vote). Each leaf node on the
tree can generate a vote packet containing its own identity
and its vote, and forward it toward the root of the routing
tree. When forwarding a vote packet, each node can also
append its own identity and vote. Because the gateway
can distinguish the source of each vote, it can maintain
the last known vote from each node and provide the cur-
rent vote count to client applications.

Since the above aggregation scheme only requires leaf
nodes to initiate packets, many fewer packets need be
delivered to the gateway. In our experiments, an average
of 55% (� = 5%) of nodes were leaf nodes. Leaf node
detection can be implemented using a timeout; each node
transmits a vote packet if it has not forwarded a vote
packet (appending its own vote) over some time period.

Note that despite reducing the network traffic, this aggre-
gation scheme increases redundancy; votes from non-leaf
nodes can have multiple opportunities to be received by
the gateway. In addition, since a node need not wait for
its childrens’ votes before forwarding data to its parents,
the latency involved in reporting votes is reduced.

The amount of aggregation is limited by packet size;
in our system 13 votes. When a packet becomes full, it
can be forwarded to the gateway. A node that detects a
full packet behaves as a leaf node.

4. Quality-based routing

Hop count is a typical metric used to identify an opti-
mal path to the destination. However, in a wireless net-
work hop count is potentially a bad choice. Link quality
between pairs of nodes may vary during the lifetime of a
network based on distance, transmit power, antenna
shape and orientation, radio interference, and environ-
mental factors (such as people in the sensor network field
attenuating radio signals). Moreover, such variation may
lead to asymmetric links between nodes in the network.
Even if the locations of nodes in the network are fixed
and each node is configured with an identical transmit
power, node interconnectivity will change during the
course of an experiment.

Given these operating conditions, blindly selecting
DSDV parents based on minimum number of hops to the
destination may result in poor route choices. For exam-
ple, a node that is typically 7 hops from the destination
may sporadically receive a route update (RUPDATE)
message from a node that is 4 hops from the destination.
However, sending data packets along this route may re-
sult in greater packet loss, since packet losses are higher
over extreme physical distances.

In an attempt to alleviate these drawbacks, our DSDV
implementation uses a link cost metric that is based on
link quality statistics.

�

�

�

�

�

�

�

�

A:1, B:0

A:0, B:1

A:0, B:1

A:1, B:1

A:1, B
:2

A:3, B:3

A:3, B:4

A:1, B
:0

�

�

�

�

�

�

�

�

A:1, B:0

A:0, B:1

A:0, B:1

A:1, B:1

A:1, B
:2

A:3, B:3

A:3, B:4

A:1, B
:0

�

�

�

�

�

�

�

A:1, B:0

A:0, B:1

A:0, B:1

A:1, B:1

A:1, B:2

A:2, B:1

A:3, B:4

A:2, B
:2

Old data
propagating

Votes
counted
twice

(a) (b)

�

Figure 4: Node motion can result in unbounded aggregation errors.

4.1. Measur ing link quality

To facilitate link quality tracking, nodes tag each out-
going packet with a one-hop sequence number, independ-
ent of packet type. Nodes track these one-hop sequence
numbers in packets received from each of their neighbors.
Any sequence number gaps identified at a receiver indi-
cate packets that were sent but not received. Each node
learns the downstream reliability from each of its
neighbors by storing the number of packets successfully
received out of the last 32 packets sent.

To identify bi-directional quality, nodes share their lo-
cal quality statistics with each of their neighbors. This
data could be transmitted in a new periodic message.
However, to avoid consuming additional bandwidth, we
chose to piggyback these statistics onto the RUPDATE
messages that are already periodically broadcast from
each node for DSDV route establishment. Due to the
limited space in RUPDATE messages, neighbor lists are
divided into four categories based on quality thresholds:
Q3 is 0%-10% loss, Q2 is 10%-21% loss, Q1 is 21%-53%
loss, and Q0 is 53%-100% loss. When a node receives a
quality list from a neighbor, it supplements its local qual-
ity statistics for that neighbor with the neighbor’s percep-
tion of the quality of the link from itself. Bi-directional
link quality is considered to be the minimum quality
value in each direction between a pair of nodes. If a node
is not listed in its neighbor’s quality list, the link is as-
sumed to be asymmetric and receives the minimum qual-
ity rating of Q0.

There are several notable limitations to the link quality
implementation, primarily relating to neighbor storage (1
KB of total data space in our platform) and communica-
tion constraints (31 bytes of payload space). In a dense
network, a node may have more neighbors than it can
track, and poor parent selection may result. When the
neighbor list is full and a new neighbor is detected, the
current neighbor list is searched, and the neighbor with
the lowest link quality is replaced. If a node is not listed
on its neighbor’s neighbor list, the node must assume that
an asymmetric link exists. This is normally the intended
behavior, but if it is missing from the list due to neighbor
overflow then a high-quality neighbor may be over-
looked.

The initial quality value for a new neighbor must be
chosen carefully. If the initial value is set too low, identi-
fication of a high quality neighbor will require a long
delay. On the other hand, an initial value that is too high
may result in replacing a higher quality neighbor in the
neighbor table if the table is full due to limited storage
space, potentially resulting in table thrash. In the current
network implementation, the initial quality value is cho-
sen to be 45% loss, near the midpoint of Q1.

4.2. Using link quality as a routing metr ic

We have integrated link quality metrics with DSDV
route selection. In particular, we wanted to allow DSDV
to select routes with the highest end-to-end packet deliv-
ery rate.

The end-to-end packet delivery rate of a given route
can be computed by multiplying the delivery rate of each
link (measured as described in Section 4.1) along that
route. This approach is impractical because floating-
point multiplication is expensive in terms both of code
size and storage complexity. In addition, our link quality
implementation can only provide an estimate of link qual-
ity by categorizing each link into one of four quality
categories. As a result, we have chosen to convert the
quality measure of each link into a link cost, where higher
link costs are assigned to links that have a higher
estimated loss rate. Link costs along a path can be
summed, producing a monotonically increasing metric
for the DSDV algorithm that identifies paths with the
highest packet delivery rate.

Appropriate link costs can be chosen by converting
packet delivery rates to the log scale and then normaliz-
ing to the integer domain. Because the link metric is in
the log domain, adding link metrics is equivalent to mul-
tiplying packet delivery rates, allowing paths of different
lengths to be correctly compared, without requiring ex-
pensive multiplication.

As described in Section 4.1, each node maintains an
estimate of the quality of the link to each neighbor. The
estimate corresponds to a range of packet delivery rates.
The metric for each link is determined by normalizing the
log of the estimate value for each category, as shown in
Table 1. Because there are a small number of categories,
the associated link costs can be precomputed.

Upon receipt of an RUPDATE message with a new
sequence number, each node determines the quality of the
link to the sender, selects the metric associated with that
link quality, and adds the link metric to the route cost in
the RUPDATE message. This metric is then used to iden-
tify the lowest cost, and thus highest delivery rate, path to
the sink node. The node can then advertise its own route
cost, based on the lowest cost identified. Note that due to
limited packet size, our implementation restricts the total

Table 1: Link metrics associated with each level of
link quality.

Quality Delivery
Rate

Delivery Rate
Estimate (Re)

ln(Re) Link
Metric

Q3 90-100% 0.95 -0.05 1
Q2 79-90% 0.85 -0.16 3
Q1 47-79% 0.65 -0.43 8
Q0 0-47% 0.25 -1.39 28

route cost to be less than 255. To allow for networks of
reasonable size, link metrics of 6 and 15 were used for Q1
and Q0 instead of the theoretically correct values.

Ideally, each node should wait for a minimum “set-
tling time,” the expected delay from the time a node re-
ceives its first RUPDATE message with a new sequence
number and the time it receives the RUPDATE message
for its best parent, before selecting its parent [12]. Due to
code space limitations, settling time is not currently im-
plemented in the network. Instead each node waits a ran-
dom interval after receiving an RUPDATE message with
a new sequence number before advertising its own lowest
delivery cost. While not perfect, this scheme does reduce
the overhead associated with RUPDATE messages. In
addition, randomization has been shown to reduce the
inherently bursty nature of traffic in sensor networks [15].

5. Empir ical results

To evaluate the performance of ad hoc networking
protocols in our voting application, we deployed the vot-
ing nodes in regular topologies of 24 (4x6), 48 (6x8), and
91 (7x13) nodes, with a gateway at one end (in the mid-
dle of one of the short edges). In each case, nodes were
deployed in an office environment over a rectangular grid
with nodes 4 feet apart in one direction and 6 feet apart in
the other. The radio range of the nodes was adjusted such
that, in a noiseless environment, nearly lossless commu-
nication was possible at a distance of up to 10 feet. Each
experiment was run for approximately one hour, produc-
ing 1000 to 3000 packets at the gateway. In all experi-
ments, vote aggregation (as described in Section 3) was
used to reduce data implosion at the gateway node, with
leaf nodes generating vote packets every 20 seconds.

In all experiments, DSDV was used with a route up-
date interval of 10 seconds. Three flavors of DSDV were
compared: straight DSDV, DSDV with asymmetric link
detection, and DSDV with link quality monitoring. In the
base case, DSDV uses a hop count as the sole metric. In
the second case, nodes exchange neighbor lists (described
in Section 4.1) to identify and avoid asymmetric links
when selecting a parent node. In the third case, nodes
maintain a recent history of the link quality to their
neighbors and use bi-directional link quality to select the
parent with the lowest cost route to the gateway (de-
scribed in Section 4).

Asymmetric link detection was implemented using
link quality monitoring by setting the quality thresholds
so that each link was forced into one of two categories,
depending on whether any packets had been received
from that neighbor. To provide straight DSDV, link qual-
ity monitoring was disabled by setting the thresholds so
that all nodes were forced into a single category.

All results are shown with 90% confidence intervals.

5.1. Loss rates

Figures 5 through 9 show the end-to-end packet loss
measured for the three network sizes. Loss rates are
computed using an end-to-end sequence number main-
tained by each leaf node. Packet losses are identified by
gaps in the sequence numbers of packets generated by a
given leaf node. Loss rates are broken down by node
depth. Packets that are successfully received are attrib-
uted to the number of hops recorded in the packet. Since
the network is dynamically changing, a given node can
change its location and depth in the DSDV tree over time.
Since it is difficult to accurately attribute a node depth to
a dropped packet, we have chosen to attribute each lost
packet to a node’s previously known tree depth.2

In the 24-node experiment (Figure 5), use of the
straight DSDV algorithm resulted in moderate packet
loss. As expected, packet loss was greater for nodes that
were further (in terms of hops) from the gateway. Both
asymmetric link detection and link quality monitoring
reduced packet losses. In particular, link quality monitor-
ing reduced packet losses by between 24 and 32%, except
in the case of nodes 1 hop from the gateway as discussed
in Section 5.2.

The 48-node experiment (Figure 7) resulted in similar,
but less dramatic results. In this case, link quality moni-
toring reduced packet loss by between 6 and 20%. The
91-node experiment (Figure 9) produced an improvement
of only 2 to 4%.

From these results, it appears that both quality-based
routing and asymmetric link detection become less effec-
tive at reducing the packet loss rate as the size of the net-
work increases. We have identified two likely causes.
First, the communication channel may be reaching capac-
ity, particularly near the gateway. This theory is sup-
ported by the relatively flat loss rate for nodes beyond 2
hops, suggesting that a majority of losses occur near the
gateway. Second, the neighbor list may be overflowing,
causing it to be ineffective (as described in Section 4.1).

Under the assumption that channel contention was an
issue, we augmented our MAC layer to include a passive
acknowledgment scheme [7] in which a node retransmits
a packet if it does not overhear its parent forwarding that
packet. Our implementation provides best-effort re-
transmission in that (due to platform limitations) only one
packet can be buffered at a time. In addition, retransmis-
sions never occur from or to the endpoints.

The results of 24- and 48-node experiments that in-
cluded passive acknowledgments are shown in Figure 6
and Figure 8. Note that in the 24-node case, passive ac-

2 Had we instead chosen to freeze the network topology by stopping
the DSDV protocol, the amount of network traffic would have been
altered and the topology would have been unable to adapt to changing
link conditions.

knowledgments reduced the overall loss rates by roughly
25%. However, loss rates in the 48-node case and in a
91-node experiment (not pictured) were actually in-
creased by passive acknowledgments. We believe the
negative effect of passive acknowledgment in the larger
experiments resulted because our DSDV implementation
does not quell duplicate packets produced by the MAC
layer. As a result, any unnecessary retransmission
(caused when a node fails to see its neighbor forward a
packet) will produce a duplicate data packet that will be
forwarded to the gateway. The increased traffic has a
negative effect on larger networks which are already con-
gested, offsetting possible benefit. We believe that if
duplicate packets were discarded within the network,
rather than being forwarded, passive acknowledgment
could improve loss rates in larger networks. It is worth
noting that, in the 48-node experiments (Figure 7 and
Figure 8), while loss rates for straight DSDV rose, loss

rates for quality-based routing did not. Quality-based
routing may help to route around the additional conges-
tion caused by the lack of in-network duplicate detection.

5.2. Problems with loss rate

As noted above, in several of our experiments quality-
based routing appeared to increase packet loss rates for
nodes within one or two hops of the gateway. This result
is a side effect of our measurement methodology. As
described in Section 3, packets originate only at leaf
nodes. Since loss rates reported in this section are meas-
ured using an end-to-end sequence number (link-level
sequence numbers are only available to nodes within the
network), loss rates can only be measured for leaf nodes.
However, with our quality-based routing algorithm, a
node becomes a leaf node because it advertises (to its
neighbors) a relatively poor route to the sink node. As a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7
Node Depth

P
ac

ke
t

L
o

ss
 R

at
e

Quality Asym Straight DSDV
Figure 5: Packet loss rates in a 24-node network
with straight DSDV, DSDV with link quality detec-
tion, and DSDV with asymmetric link detection.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7
Node Depth

P
ac

ke
t

L
o

ss
 R

at
e

Quality Asym Straight DSDV

Figure 6: Packet loss rates in a 24-node network
under three DSDV variants, with the addition of
passive acknowledgments.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7
Node Depth

P
ac

ke
t

L
o

ss
 R

at
e

Quality Asym Straight DSDV

Figure 7: Packet loss rates in a 48-node network
with straight DSDV, DSDV with link quality detec-
tion, and DSDV with asymmetric link detection.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7
Node Depth

P
ac

ke
t

L
o

ss
 R

at
e

Quality Asym Straight DSDV

Figure 8: Packet loss rates in a 48-node network
under three DSDV variants, with the addition of
passive acknowledgments.

result, packet loss rates will tend to be inflated in the case
of quality-based routing, particularly for nodes near the
gateway.

This problem could be eliminated if each node at-
tached its own sequence number while forwarding a
packet, allowing average loss rate to be based on both
interior nodes and leaf nodes. This approach was not
possible in our application, due to limited packet size.
Instead, the following subsection describes an alternative
metric, data age, which can be more easily measured
across all network nodes.

5.3. Data age

Data age is the amount of time between subsequent
votes received from a particular node. Data age is a bet-
ter metric for this application because it can be measured
for all nodes, not just leaf nodes. In addition, data age
measures a quality of the network that is visible to the
user: the latency between the time a vote is cast and the
time it is reflected in the results. While leaf nodes gener-
ate a data packet every 20 seconds, data age for interior
nodes can be significantly less, because these nodes add
their data to all forwarded packets. On the other hand,
data age can also be significantly increased by packet
loss.

Average data age in a 24-node network is depicted in
Figure 10. Note that quality-based routing reduced the
data age by between 30 and 42%. While quality-based
routing tends to increase the tree depth (because the
shortest path is not necessarily the best path), data origi-
nating from deep in the quality-based routing tree did not
tend to be significantly older than data originating deep in
the straight DSDV routing tree.

Average data ages for 48- and 91-node networks are
depicted in Figure 11 and Figure 12 respectively. In each

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7
Node Depth

P
ac

ke
t

L
o

ss
 R

at
e

Quality Asym Straight DSDV

Figure 9: Packet loss rates in a 91-node network
with straight DSDV, DSDV with link quality detec-
tion, and DSDV with asymmetric link detection.

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7
Node Depth

D
at

a
A

g
e

(s
ec

)

Quality Asym Straight DSDV

Figure 10: Data age in a 24-node network with
straight DSDV, DSDV with link quality detection,
and DSDV with asymmetric link detection.

0

50

100

150

200

250

1 2 3 4 5 6 7

Node Depth

D
at

a
A

g
e

(s
ec

)

Quality Asym Straight DSDV

Figure 11: Data age in a 48-node network with
straight DSDV, DSDV with link quality detection,
and DSDV with asymmetric link detection.

0

50

100

150

200

250

300

350

1 2 3 4 5 6
Node Depth

D
at

a
A

g
e

(s
ec

)

Quality Asym Straight DSDV

Figure 12: Data age in a 91-node network with
straight DSDV, DSDV with link quality detection,
and DSDV with asymmetric link detection.

case, the improvement in data age is less than in the 24-
node case, but still significant. The diminishing benefit
in data age is most likely linked to the increased packet
loss in larger networks described in Section 5.1. Despite
these packet losses, quality-based routing allowed the
average age of data to be reduced by as much as 42% in
the 48-node network and 34% in the 91-node network,
significantly improving network responsiveness.

6. Related work

Published prior work evaluating ad hoc networking
protocols has mainly focused on simulating networks of
around 50 nodes. Given the lack of implementation re-
sults, we compare our empirical evaluation with simula-
tion results. The effect of mobility and protocol routing
overhead has been studied extensively with simulation
[2,4]. The lessons learned are not directly applicable in
our environment because of differences in both the kind
of network that was simulated (802.11) and the typical
workload (mobile nodes). It would be useful to under-
stand the effect of the DSDV route update interval for a
given mobility rate (or fixed), versus network size and
transmission workload. A study of a multihop wireless
ad hoc network testbed [11] reports the effect of mobility
on the performance of TCP/IP. Our application domain
is quite different from the mobile IP network studied in
this paper. Moreover the network included only 5 mobile
nodes and 2 fixed nodes.

Evaluation of a transmission control scheme for sensor
networks using both simulation and Berkeley motes has
been presented in [15]. The evaluation uses 11 nodes in a
fixed network topology with a network depth of 5 hops.
The paper defines the delivery bandwidth at the gateway
and energy efficiency as metrics for evaluating sensor
network protocols. This research showed that random
transmission delays and random back-off in the MAC
layer could remove periodic contention. Our implemen-
tation used the same MAC layer presented in this work
and incorporated back-off techniques to improve network
performance. Our evaluation expands on previous results
by exploring the impact of scale as well as integrating
other performance-enhancing techniques.

While many ad hoc routing protocols assume link
symmetry, other researchers have identified that asym-
metric links are a problem in wireless ad hoc networks.
Asymmetry has been dealt with in a variety of ways, in-
cluding the exchange of neighbor lists in periodic local
messages to detect asymmetric links [13], similar to the
approach used in our network. End-to-end techniques
have also been employed to deal with asymmetric links,
for example, by flooding route reply messages rather than
simply reversing the route request path [8]. Likewise,
techniques have been described to measure local link
quality by detecting packet loss for the purpose of detect-

ing and avoiding neighbors with high loss rates [3]. Our
network extends this approach by piggybacking link
quality information with exchanged neighbor list mes-
sages, allowing bi-directional link quality to be estimated
(Section 4.1).

A taxonomy of aggregation schemes has been pre-
sented in [10] which classifies aggregates based on attrib-
utes important to sensor networks. Under this taxonomy,
vote aggregation falls under the distributive aggregate
classification, theoretically allowing partial state records
to be no larger than the final aggregate size. However,
frequent route changes in our ad hoc voting network pro-
vided many opportunities for vote duplication (Section
3), to which distributive aggregation techniques are very
sensitive. This resulted in the implementation of a holis-
tic aggregate approach, also described in the taxonomy,
where individual votes were piggybacked on traceroute
packets to be counted at the gateway, precluding dupli-
cate counting. Other researchers have also noted that
such packing aggregation saves energy and bandwidth by
reducing the total per-transmission overhead in the net-
work [6].

7. Next steps

The results described in Section 5 represent an initial
rather than comprehensive exploration of the perform-
ance of an ad hoc sensor network. Many issues remain
outstanding that we plan to explore in the future.

In this paper, we characterized the network in terms of
packet loss. Other metrics are also possible. In particu-
lar, the shape of the routing topology would be of interest.
We have noted that augmenting DSDV with asymmetric
link detection or link quality monitoring tends to produce
trees that have more balanced fan-in but also tend to be
deeper. We would like to understand the effect of differ-
ent metrics on the topology of a DSDV-routed network.

The results presented in this paper reflect only a few
changes to the algorithmic parameters. It would be valu-
able to understand the best route update interval for this
application, balancing bandwidth against resilience to
change. In addition, we would like to understand how
various quality thresholds affect packet loss and whether
absolute thresholds could be replaced by a quartile rank-
ing.

Finally, while we have evaluated several techniques
for reducing packet loss, we would also like to identify
the major sources of packet loss. Through further in-
strumentation of our code, we hope to identify the degree
to which single-packet buffering, limited packet process-
ing time, packet coding, and channel contention contrib-
ute to packet loss. In addition, we would like to deter-
mine where in the network packet loss is most likely to
occur.

8. Conclusions

Empirical measurements provide valuable insights
into the performance of ad hoc sensor network communi-
cation protocols in the context of real application envi-
ronments. While perhaps only a first step, our results
provide insight into the performance of the DSDV proto-
col in actual networks of moderate scale. In particular,
we have shown that, while packet losses can be quite
high, known techniques such as link quality monitoring
and passive acknowledgment can produce measurable
improvements in real networks. These results have al-
lowed us to demonstrate the value of moderate-scale ad
hoc networking applications. While there is more work
to be done in this space, these initial results provide a
promising start.

References

[1] Atmel Corp., “AVR Microcontroller ATmega163L Ref-
erence Manual,” http://www.atmel.com/.

[2] J. Broch, D. A. Maltz, D. B. Johnson, Y. C. Hu, and J.
Jetcheva, “A Performance Comparison of Multi Hop
Wireless Ad-Hoc Network Routing Protocols,” Pro-
ceedings of the Fourth Annual ACM/IEEE International
Conference on Mobile Computing and Networking
(MOBICOM ’98), Dallas, TX, October 1998.

[3] Alberto Cerpa and Deborah Estrin, “ASCENT: Adaptive
Self-Configuring Sensor Networks Topologies,” Pro-
ceedings of the Twenty First International Annual Joint
Conference of the IEEE Computer and Communications
Societies (INFOCOM 2002), New York, NY, June 2002.

[4] Samir R. Das, Charles E. Perkins, Elizabeth M. Royer
and Mahesh K. Marina, "Performance Comparison of
Two On-demand Routing Protocols for Ad hoc Net-
works," IEEE Personal Communications Magazine,
February 2001, p. 16-28.

[5] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar,
David Culler, and Kristofer Pister, “System Architecture
Directions for Networked Sensors,” Proceedings of the
9th International Conference on Architectural Support
for Programming Languages and Operating Systems,
Cambridge, MA, November 2000.

[6] Chalermek Intanagonwiwat, Deborah Estrin, Ramesh
Govindan, John Heidemann, “ Impact of Network Den-
sity on Data Aggregation in Wireless Sensor Networks,"
Proceedings of the International Conference on Distrib-
uted Computing Systems (ICDCS 2002), Vienna, Aus-
tria, July 2002.

[7] John Jubin and Janet D. Tornow, “The DARPA Packet
Radio Network Protocols,” Proceedings of the IEEE,
75(1):21-32, January 1987.

[8] Dongkyun Kim, C.-K. Toh, Yanghee Choi, "RODA : A
new dynamic routing protocol using dual paths to sup-
port asymmetric links in mobile ad hoc networks," Pro-
ceedings of the Ninth IEEE International Conference on
Computer Communications and Networks (IEEE
ICCCN 2000), Las Vegas, NV, USA, October 2000.

[9] Jinyang Li, Charles Blake, Douglas S. J. De Couto, Hu
Imm Lee and Robert Morris, “Capacity of Ad Hoc
Wireless Networks,” Proceedings of the Seventh
ACM/IEEE International Conference on Mobile Com-
puting and Networking, Rome, Italy, July 2001.

[10] Sam Madden, Michael J. Franklin, Joseph Hellerstein,
and Wei Hong, "TAG: a Tiny Aggregation Service for
Ad-Hoc Sensor Networks," submitted for review, May
2002.

[11] D. Maltz and J. Broch, “Lessons from a Full-Scale Mul-
tihop Wireless Ad Hoc Network Testbed,” IEEE Per-
sonal Communications, February 2001.

[12] Charles E. Perkins and Pravin Bhagwat, “Highly dy-
namic Destination-Sequenced Distance-Vector Routing
(DSDV) for Mobile Computers,” Proceedings of the
Conference on Communications Architectures, Proto-
cols and Applications, August 1994.

[13] Ranga Ramanujan, Sid Takkella, Jordan Bonney, Ken
Thurber, "Source-Initiated Adaptive Routing Algorithm
(SARA) for Autonomous Wireless Local Area Net-
works," Proceedings of the 23rd IEEE Conference on
Computer Networks, October 1998.

[14] RF Monolithics, Inc., “ASH Transceiver TR1000 Data
Sheet,” available online at http://www.rfm.com/.

[15] Alec Woo and David Culler, “A Transmission Control
Scheme for Media Access in Sensor Networks,” Pro-
ceedings of the Seventh ACM/IEEE International Con-
ference on Mobile Computing and Networking, Rome,
Italy, July 2001.

