
Is Runtime Verification Applicable to Cheat Detection?

Margaret DeLap, Björn Knutsson, Honghui Lu, Oleg Sokolsky,
Usa Sammapun, Insup Lee and Christos Tsarouchis

Department of Computer and Information Science, University of Pennsylvania
{delap,bjornk,hhl,sokolsky,usa,lee,cstsarou}@cis.upenn.edu

ABSTRACT
We investigate the prospect of applying runtime verification to cheat
detection. Game implementation bugs are extensively exploited by
cheaters, especially in massively multiplayer games. As games are
implemented on larger scales and game object interactions become
more complex, it becomes increasingly difficult to guarantee that
high-level game rules are enforced correctly in the implementation.
We observe that although implementing high-level rules in code is
complex because of interference between rules, checking for rule
compliance at runtime is simple because only a single rule is in-
volved in each check. We demonstrate our idea by applying the
Java-MaC runtime verification system to a simple game to detect a
transaction bug that is common in massively multiplayer games.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Validation

General Terms
Design, Reliability, Security, Verification

Keywords
Multiplayer game, Cheat detection, Runtime verification.

1. INTRODUCTION
Cheating is perpetrated by game participants to gain undue advan-

tage for themselves, harm other players, or cause general mayhem
and disruption. Although there is no universal agreement on what
constitutes a “cheat”, cheat prevention is regarded as crucial to the
quality of service of online multiplayer games.

Our focus is on Massively Multi-player Games (MMGs), since
they tend to exist in persistent worlds and run on subscription mod-
els. This means that cheating has lasting effects, as well as threat-
ening the revenue model of the companies running the games, since
players tend to abandon games where cheating isn’t curbed. Addi-
tionally, since there exists, through the unsanctioned sale of in-game
goods and currency, both an unofficial market and exchange rate for
the proceeds of cheating, the incentive for cheating is extremely well
defined in real-world terms.

MMGs are commonly supported by a client-server architecture.
They are vulnerable to cheating due to their complex rule sets and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’04 Workshops, Aug. 30+Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-942-X/04/0008 ...$5.00.

implementations. As games become more complex and game ob-
jects — and interactions between them — multiply, it becomes in-
creasingly hard to guarantee that high level game rules are enforced
correctly in the implementation.

Our approach detects cheating at runtime based on the observa-
tion that cheating can be expressed as deviant program behavior. Im-
plementing certain anti-cheating rules in the game code itself may
require complex programming, incur high performance cost, or re-
sult in unpopular game policies, while dynamically verifying those
same game rules is relatively simple. In particular, although differ-
ent events may interfere with one another, we need to verify only
whether a particular rule is enforced or not.

Runtime verification has been used, with success, to verify dy-
namic properties of real-time control systems consisting of sequen-
tial events [6, 7, 10]. It is potentially applicable to games because
they are essentially control systems, albeit with simultaneous events
and more complex object behaviors.

This paper first surveys cheating, in particular those forms ex-
ploiting implementation bugs. We then demonstrate that the correct-
ness of transactions, a common interaction in games, can be verified
using an existing run-time verification framework with a simple rule
checking logic.

2. GAME ARCHITECTURE
Online games come in two general flavors: those with large per-

sistent worlds, often called Massively Multiplayer Games (MMGs),
and those with smaller transient worlds, often just called (classi-
cal) Multi-Player Games (MPGs). MMGs are exemplified by Mas-
sively Multiplayer Online Role-Playing Games (MMORPG) like
EverQuest, while MPGs include First Person Shooters (FPS) like
Quake III and Real-Time Strategy games (RTS) such as WarCraft
III. MMGs like Lineage, developed by NCsoft, have recorded two
million registered players, and 180K concurrent players in one night.
Conversely, a large and long MPG would have fewer than a hundred
players playing in a world lasting up to a few hours.

The core of online games is the use of computing engines to sim-
ulate entities that interact with each other, where the entities are
modeled as objects. An object consists of a collection of fields (state
variables and attributes) and a set of methods that model the behav-
ior of the component. The relationship of objects to one another is
specified through three approaches:

• Attributes that indicate those state variables and parameters of
an object that are accessible to other objects.

• Association between objects (e.g., one object is part of an-
other).

• Interactions between objects that indicate the influence of one
object’s state on the state of another object.

A typical multiplayer game world is made up of immutable land-
scape information (terrain); characters controlled by players (PCs

or avatars); mutable objects such as food, tools, and weapons; mu-
table landscape information (e.g., breakable windows); and non-
player characters (NPCs) controlled by automated algorithms. NPCs
can be either allies, bystanders or enemies, and are not always im-
mediately distinguishable from PCs, except by their interaction.

The state of a player includes his position in the world and the
state of his game avatar, such as its abilities, health and possessions.
Avatar states are often persistent and can be carried along from one
game session to another. Similar states exist for NPCs and game ob-
jects. In general, a player is allowed three kinds of actions: position
change, player-object interaction, and player-player interaction. A
player interacting with objects (including NPCs) or other players
may, subject to game rules, change objects’ state as well as the state
of his avatar, i.e., drinking from a bottle would empty the bottle and
decrease the thirst of the avatar.

3. TYPES OF CHEATS
Cheaters can exploit many different aspects of a game; we have

attempted to classify the vulnerabilities into three categories:

• Rule design – loopholes in game rules are similar to those in
real world laws. Cheaters can exploit them to gain advantage
at the cost of disturbing the game economy.

• Architecture – putting function and data on the client can give
the client opportunities to cheat, usually by changing the client
side code or observing supposedly hidden states.

• Implementation – a specific implementation may fail to en-
force rules, regardless of rule design and game architecture.

The three aspects are orthogonal from the cheaters’ point of view,
and some cheats may exploit combinations of them. Which type
of exploit is most common often depends on the game genre —
role-playing games tend to have complicated rules and bugs in rule
design, while FPS games have more cheats due to client side data
and functionality designed for latency hiding; both genres are sus-
ceptible to implementation bugs.

Defining what constitutes cheating becomes easier as we move
from high level game rules to low level implementations. Clever ex-
ploits of game rules can be tolerated unless they become a nuisance.
At the implementation level, on the other hand, exploiting an im-
plementation bug is relatively clear cut. We will now give concrete
examples and detailed discussions of exploits of these three types.

3.1 Rule design
Game rules govern objects and their attributes as well as the va-

riety of possible game events. A rule either specifies the bounds of
an attribute value, or specifies the precondition and postcondition
of an event. For example, the preconditions for a “purchase” event
can be the location of two participants and their respective posses-
sions. The rule specifies the “price” of each merchant, and how each
participant’s possessions are updated after the purchase. Good rule
design will make the game challenging, encourage interaction, and
balance the overall game economy. It takes experience and exten-
sive testing to make good rules. Even the genre and goals of the
game have effects on what types of cheating are easy or useful. Two
common cheats that exploit rule design flaws are automatic play and
collusion. Other cheats that make use of the interaction between rule
design and implementation bugs are described in Section 3.3.1.

Automatic play. Mechanical and repetitive game events can be
automated by the player. There are various forms of automatic play
and some may be seen as more annoying than others. The usefulness
of automatic play depends on the overall type of game rather than
on specific rules.

One example of automatic play is reflex augmentation. By au-
tomating tasks that would otherwise involve some human reaction

time delay, such as aiming, it produces superior results that other-
wise would be impossible to achieve. Similarly, a script that auto-
matically perform a series of simple task defeats the common use of
time/reward efficiency to deter players from repeatedly doing sim-
ple, low-yield actions to advance.

In both cases, these cheats ruin the game experience for other
players as well as upsetting the game balance. If many of the play-
ers are in reality computer controlled or computer augmented, the
player may as well play a single-player game. Also, if anyone can
become a high-level player with no real skills, this erodes the sense
of achievement a player gets from playing the “real” game.

Collusion. Collusion occurs when players have an agreement to
cooperate that is made outside of the normal play of the game. In
any given game, some forms of cooperation, such as teaming up,
may be entirely normal and legitimate, while others are more ques-
tionable. For example, a cheater might persuade other people to cre-
ate new characters in a certain game for the sole purpose of having
them lose to him. In general, since collusion involves out-of-game
cooperation and communication, in-game rules or policies are un-
likely to have any effect, but game designers can at least attempt to
avoid rules that cannot be enforced within the game.

3.2 Architectural problems
This is a somewhat nebulous category since all online games re-

quire some code to be run locally (the user must have a computer).
Moving parts of the game code onto players’ own machines can de-
crease latency significantly, but unfortunately may also allow play-
ers to observe or alter parts of the game to their advantage. This
problem is commonly exploited in FPS games, because their tight
bound on response time forces more of the game to be run locally
on the player’s machine. A well known cheat is information expo-
sure, in which a player can modify local code or eavesdrop the local
network to reveal information that would otherwise be hidden from
him. Recently, we have proposed a peer-to-peer architecture that
distributes most MMG game state to player machines [9], which
may expose MMGs to similar cheating problems.

3.3 Implementation bugs
In general, game rules are local – each is concerned with only a

single attribute or event, but objects and their interactions are hierar-
chal, such that each object can interact with a variety of objects and
different levels of the hierarchy. Enforcing local rules across multi-
ple levels of dynamic interactions is both complex and expensive.

Bugs commonly occur because of implementation oversight, es-
pecially in large game worlds. For example, a “castle” object would
naturally employ standard “door” and “window” objects. While the
door is handled with custom code that prevents it from being opened
except by a special fancy spell, the window objects are standard.
Later extensions of the common window class, also in use in other
parts of the world, may provide a way by which they can be opened
or broken. Or, they may have been placed in such a way as to ren-
der them unreachable, but the later addition of a movable “ladder”
object may allow players access to them. Thus, as games age and
extensions are added to keep them interesting, the original implicit
rules may be overlooked.

3.3.1 Meta-game events
Many cheats exploit meta-game events, events that are not part

of the game world and the rules in it, but rather belong to the envi-
ronment in which the game operates, e.g., network disconnects. In
chess, accidentally knocking a piece off the board would be a meta-
game event. Meta-game events cause particular difficulties in im-
plementing games. First of all, client failures may leave the game in
an inconsistent state. Furthermore, rules that are designed to make

dying and network outage less painful for unlucky players can also
be exploited by cheaters who die and disconnect intentionally.

One class of cheats can occur when a relatively complex or ex-
pensive synchronization procedure would be required to carry out
an action correctly, but instead it is implemented as an interruptible
sequence of events. This may be a bug, or it may be the result of
a design choice. The common exploit during disconnect/timeout is
to take advantage of the fact that these transactions are not atomic,
by disconnecting before a transaction completes. This exploit man-
ifests itself in cheats such as the “dup” cheat.

Cloning or “duping” is a notorious cheat since it allows a player’s
wealth to grow exponentially. Suppose player A, who has a units
of money, is colluding with player B, who has b money units. A

gives M units of money to B, which requires two updates to add
money to b and remove it from a. A disconnects temporarily af-
ter b = b + M is committed, but before a = a − M occurs. A

can later reconnect to reclaim the money from his cohort, and the
cheat can proceed through many iterations. This inconsistency can
also be seen as resulting from multi-tiered design, where the meta-
game event regarding A’s disconnection is handled separately from
regular in-game transaction events.

3.4 Anti-cheating approaches
Both MMGs and MPGs suffer from problems stemming from im-

plementation bugs. Detection, usually through human observation,
is the key to preventing this kind of cheating. Just as crime stands
out more in a small village than in a city, the smaller scale of MPGs
means that discrepancies become more obvious. Even with a hun-
dred players, one that mysteriously advances in score/money/level,
or performs incredible feats, will stand out. Among hundreds of
thousands of players in a game spanning months, it is much harder
for fellow players to keep track of each other and extrapolate oth-
ers’ advancement. MMGs usually have dedicated administrators to
monitor players and investigate reported cheaters.

Commercial anti-cheating products include Punkbuster [4] and
Cheating Death [2]. They involve installing more code on the client
side to verify the client’s game code or detect a certain pattern of
cheating. This makes cheating harder, but fundamentally does not
prevent it. Research approaches include Terra [5], a virtual machine-
based trusted computing platform. They too rely on static code ver-
ification and do not fundamentally prevent cheating. Finally, [1]
presents an algorithm for preventing a certain type of cheat (looka-
head cheat) in turn-based games, and [3] extends this idea to games
that use dead-reckoning. This approach can be useful against an
important class of cheats, although to be used in existing games it
would require some rewriting of the code.

4. OUR APPROACH
Because games are complex control systems whose implemen-

tation may require complex programming, incur high performance
cost, or result in unpopular game policies, we choose to detect ex-
ploits at runtime. Dynamically verifying game rules is relatively
simple, even though implementing game rules is complex because
of large object hierarchies and meta-game events. In particular, al-
though different events may interfere with each other, we need to
verify only whether a particular rule is enforced or not.

Runtime verification mainly targets cheats that exploit implemen-
tation bugs, but can also be used to monitor system resources such
as player capability and wealth. Since gaining advantage is a major
goal of cheating, the effect of many cheats is reflected in player state
changes, such as a quicker increase of capabilities. For example, we
can monitor the rate of wealth increase by specifying a time interval
and defining the rate as the difference of wealth between the begin-
ning and end of the interval. We could then compute the average and

max among different intervals for each player, and raise an alarm if
either of them is larger than some threshold.

4.1 Atomicity of transactions
Transactions are a common form of interaction among players.

As previously explained, transaction atomicity is often not guaran-
teed in games. As a result, many cheats exploit the lack of atomicity,
particularly in the context of meta-game events.

Figure 1 shows the state machines of a simple transaction between
players A and B, in which A initiates the transaction to transfer one
unit of money to B. It represents the server states of each player.
The two state machines communicate with each other as well as
with their corresponding client objects. We include only one meta-
game event, client disconnection, in the state machines. This meta-
game event may be caused by a network outage between the client
machine and the server or by failure of the client machine. The
transaction should be aborted when disconnection occurs.

The design depicted in Figure 1 has a loophole in that the transac-
tion is not guaranteed to be atomic if the client fails. For example, if
client A fails at the Wait state, B can still commit the transaction.
As a result, B ++ is executed without the corresponding A−−.
This loophole has been extensively exploited in MMORPGs, by in-
tentionally disconnecting A to duplicate A’s asset. In the reverse
case, if client B is disconnected at the Update state after it has sent
a positive reply to A, the item will be lost in the transaction. Players
will not, however, intentionally try to reach this state.

To detect non-atomic transactions, we annotate each transaction
with a unique ID tid and the IDs of the two parties, 〈tid, idA, idB〉.
Given the state machines of the transaction, once both parties agree
to commit, the commit events should happen within a short interval
unless client failures occur. We then monitor commit events, and
detect a non-atomic event if one party commits but the other party
does not commit within a certain time interval afterward. This time
interval can be determined by the interval at which the game system
writes state to stable storage.

• Transaction between A and B: 〈tid, idA, idB〉
• Raise alarm if

– (A.commits ∧ (¬B.commit − within − T))
– OR (B.commits ∧ (¬A.commit − within − T))

Note that all events relevant to the runtime verification are lo-
cal game events within the transaction, while the rule implemen-
tation must consider external meta-game events that may interrupt
the transaction. Since considering the effect of meta-game events
on all possible in-game events is very difficult in complex games,
verifying game rules at runtime is simpler than code verification.

5. RUNTIME VERIFICATION OF SYSTEM
PROPERTIES

Continuous monitoring of the runtime behavior of a system can
improve our confidence in the system by ensuring that the current
execution is consistent with its requirements at runtime. We have
developed a Monitoring and Checking (MaC) framework for run-
time monitoring of software systems [8].

Figure 2 shows the overall structure of the MaC framework. The
framework includes two main phases: static and dynamic. Dur-
ing the static phase, i.e., before a target program is executed, run-
time components such as a filter, an event recognizer, and a runtime
checker are generated from a target program and a formal require-
ments specification. During the dynamic phase, the instrumented
target program is executed while being monitored and checked with
respect to the requirements specification. A filter is a collection of
probes inserted into the target program. The essential functionality
of a filter is to keep track of changes of monitored objects and send

Wait

Abort

Reply == NO

Abort

Client B disconnects

to A

Reply == YES

SEND YES reply to A

Positive

SEND NO reply

B++

Update

Commit

SEND NO reply
to A

(A) (B)

Initial state

RECV Client A’s
request for transaction

Ready to commit

SEND request to B

Wait

Reply == NO Client A disconnects

Abort

Reply == YES

Update

A−−

Commit

Abort

RECV A’s
request

Ready to commit

Initial state

SEND request to Client B

Figure 1: State machines for a transaction initiated by client A. These are server states.

pertinent state information to the event recognizer. An event rec-
ognizer detects an event from the state information received from
the filter. Events are recognized according to a low-level specifica-
tion. Recognized events are sent to the runtime checker. Although
it is conceivable to combine the event recognizer with the filter, we
chose to separate them to provide flexibility in an implementation of
the architecture. A runtime checker determines whether or not the
current execution history satisfies a requirement specification. The
execution history is captured from a sequence of events sent by the
event recognizer.

The MaC framework includes two languages: MEDL and PEDL.
The Meta-Event Definition Language (MEDL) is used to express
requirements. It is based on an extension of a linear-time temporal
logic. It can be used to express a large subset of safety properties
of systems, including real-time properties. We use events and con-
ditions to capture and reason about temporal behavior and data be-
havior of the target program execution; events are abstract represen-
tations of time progress and conditions are abstract representations
of data. For formal semantics of events and conditions, see [8].

Target program MEDL ScriptPEDL Script

Instructmentation
script

PEDL
Compiler

MEDL
Compiler

Instrumenter

Event Recongnizer

Compiled PEDL

Run-time Checker

Compiled MEDLInstrumented
Target

Program Filter

Static
Phase

Dynamic
Phase

Figure 2: The Mac framework

In addition to the requirements written in MEDL, a monitoring
script relates these events and conditions with low-level data manip-
ulated by the system at runtime. Monitoring scripts are expressed in
the Primitive Event Definition Language (PEDL). PEDL describes
primitive high-level events and conditions in terms of system ob-
jects. PEDL is used to define what information is sent from the
filter to the event recognizer, and how it is transformed into events
used in high-level specification by the event recognizer. Based on
the monitoring script, the system is automatically instrumented to
deliver the monitored data to the event recognizer at runtime. The
event recognizer, also generated from the monitoring script, trans-
forms this low-level data into abstract events and delivers them to
the runtime checker. The runtime checker verifies the sequence of
abstract events with respect to the requirements specification and

detects violations of the requirements.
The reason for keeping event recognition distinct from the prop-

erty checking per se is to maintain a clean separation between the
system itself, implemented in a certain way, and high-level system
requirements, independent of a particular implementation. PEDL,
therefore, is tied to the implementation language of the monitored
system in the use of object names and types. MEDL is independent
of the monitored system. The separation between PEDL and MEDL
ensures that the architecture is portable to different implementation
languages and specification formalisms. Note that implementation-
dependent event recognition insulates the requirement checker from
the low-level details of the system implementation. This separation
also allows us to perform monitoring of heterogeneous distributed
systems. A separate event recognizer may be supplied for each
module in such a system. Each event recognizer may process the
low-level data in a different way, but all deliver high-level events to
the checker in a uniform fashion.

To demonstrate the effectiveness of the MaC framework, we have
implemented Java-MaC [7], a MaC prototype for Java programs.
Java-MaC targets Java executable code, i.e., bytecode. It is easy
to deploy Java-MaC, because it automatically instruments the target
program and generates the runtime components of Java-MaC based
on requirements specifications written in two scripting languages,
MEDL and PEDL-for-Java. The system is available at www.cis.
upenn.edu/˜rtg/mac.

6. EXPERIMENTS
Our game SimMUD [9] is modeled after the well known role

playing game Multi-User Dungeon. We use a client-server version
of SimMUD, implemented in Java. SimMUD has four kinds of el-
ements: players, food, money, and the map. The map is created
offline and does not change during game play. A player is described
by its life or health level, the amount of money it owns, and its po-
sition in the map. Players can eat food and fight with other players,
as well as transfer money to each other. Food items are described
by their units of nutrition. A player can take only a limited amount
of food at a time; eating food increases the player’s health level de-
pending on the number of nutrition units in the food. Once the food
in one location is gone, it can be regenerated, but is likely to ap-
pear in a different location. For our transaction experiment, we are
concerned with changes to players’ amounts of money.

The transaction we simulate and check in SimMUD is the one
described in Section 4. A description of how to use MaC to check
for faulty transactions follows. The MEDL script defines a more
general faulty transaction, while the PEDL script specifies detection
of money-related transactions for this particular game.

import event transactionStart, transactionEnd,
increment, decrement;

event incrementFirst = increment
when [transactionStart,decrement);

event decrementFirst = decrement
when [transactionStart,increment);

event incrementSecond = increment
when [decrementFirst, transactionEnd);

event decrementSecond = decrement
when [incrementFirst, transactionEnd);

event firstCommit =
incrementFirst || decrementFirst;

event secondCommit =
incrementSecond || decrementSecond;

alarm noCommit =
start(currentTime - time(firstCommit) > T)
when [firstCommit, secondCommit);

Figure 3: MEDL script for checking transaction atomicity

export event transactionStart, transactionEnd,
increment, decrement;

event transactionStart = startM(
Server.handleTransactionMessage());

event transactionEnd = endM(
Server.handleTransactionMessage());

event increment = endM(Player.incMoney());
event decrement = endM(Player.decMoney());

Figure 4: Definition of the primitive events

6.1 Detection of faulty transactions
In order to check that transactions in our game happen atomically,

we have expressed the property presented in Section 4 in MEDL.
The main part of the MEDL script is shown in Figure 3. To keep
the script simple, we assume non-overlapping transactions. The
script assumes that four primitive events in the game are observable:
start and end of a transaction, and increase or decrease of a player’s
money, which are seen as the commit events for the players. Each
transaction should have one increment and one decrement event,
but they can appear in arbitrary order. The script, then, detects the
first commit event (firstCommit), and the second commit event
(secondCommit). To see how this is done, consider the defini-
tion of the event incrementFirst. The condition [e1, e2) holds
from the time event e1 occurs in the trace until the first occurrence
of e2 after that. Therefore, incrementFirst will occur if the
increment event occurs after the event transactionStart
but before the decrement event occurs. Now that we defined
the two commit events of the transaction, we can raise the alarm
as soon as enough time elapses after firstCommit without the
occurrence of a secondCommit.

We then specify how to extract the events from the particular im-
plementation of the game that we are working with. Figure 4 shows
the definition of the primitive events. In our implementation, a trans-
action occurs within the method handleTransactionMessage
in class Server. Thus the call to this method represents the start
of a transaction and return from the method represents the end of it.
Commit events correspond to the completion of methods incMoney
and decMoney in the class Player. When method incMoney is
called but decMoney is not subsequently called within time limit
T , suggesting that A has disconnected to interrupt the transaction, a
noCommit alarm is raised by the MaC runtime checker.

Running the SimMUD game instrumented with these primitive
events, we were able to observe the transaction in which a cheat-
ing player avoids having his money decremented by interrupting the
transaction. The cost for monitoring a transaction is small: the prim-
itive event recognizer generates four events per transaction, each of
which contains 10 bytes. The event records are passed to the model
checker for in-memory, real-time checking.

7. CONCLUSIONS AND FUTURE WORK
Runtime verification is a promising tool for assuring the correct-

ness of game implementations. Although traditionally used for real-
time control systems, runtime verification is applicable to games
because games are essentially complex control systems. Games are
also much more complex than many traditional applications of run-
time verification. Game objects model the physical world, and they
interact by complex and sometimes contradictory rules.

Our key idea is that although game rules may interfere with each
other, it is simpler to dynamically verify whether a rule has been
correctly enforced, than to try to prevent all opportunities for cheat-
ing. We demonstrate our idea by applying the Java-Mac runtime
verification system to SimMUD and detecting a transaction bug that
is common in massively multiplayer online games.

Although preliminary results are encouraging, several issues must
be addressed before this approach can be deployed in practice. The
first is functionality. Since rules in runtime verification are based
on temporal logic, are they general enough to express game rules,
which more closely resemble the real physical and social world?
The second issue is performance. Although the verification is done
in memory, it is not free. Scalability to a large number of rules,
objects, and players is a challenging question. Last but not least,
programmability is an issue. We hand-crafted the verification rules
for this experiment, but our goal is to build verification into game
engines and make it transparent to high-level game designers.

Acknowledgment
We would like to thank John Fiore and Baohua Wu for constructing
the SimMUD code. This research is supported partly by the Ash-
ton Fellowship Foundation, ONR N00014-01-1-0795, NSF CCR-
0086147, NSF CCR-0209024 and ARO DAAD19-01-1-0473.

8. REFERENCES
[1] Nathaniel E. Baughman and Brian Neil Levine. Cheat-proof

playout for centralized and distributed online games. In
INFOCOM ’01, pages 104–113, 2001.

[2] 2002-2003 by UnitedAdmins.com. Cheating Death.
http://www.unitedadmins.com/cdeath.php.

[3] Eric Cronin, Burton Filstrup, and Sugih Jamin.
Cheat-proofing dead reckoned multiplayer games. In Proc.
ADCOG ’03, January 2003.

[4] 2000-2004 Even Balance, Inc. Punkbuster.
http://www.punkbuster.com.

[5] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and
Dan Boneh. Terra: a virtual machine-based platform for
trusted computing. In Proc. SOSP ’03, October 2003.

[6] Patrice Godefroid. Model checking for programming
languages using Verisoft. In Symposium on Principles of
Programming Languages, pages 174–186, 1997.

[7] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan.
Java-MaC: a run-time assurance approach for Java programs.
Formal Methods in Systems Design, 24(2):129–155, 2004.

[8] Moonjoo Kim, Mahesh Viswanathan, Hanêne Ben-Abdallah,
Sampath Kannan, Insup Lee, and Oleg Sokolsky. Formally
specified monitoring of temporal properties. In Proc. ECRTS
’99, pages 114–121, June 1999.

[9] Bjorn Knutsson, Honghui Lu, Wei Xu, and Bryan Hopkins.
Peer-to-peer support for massively multiplayer games. In
INFOCOM ’04, Hong Kong, China, March 2004.

[10] Madanlal Musuvathi, David Y.W. Park, Andy Chou,
Dawson R. Engler, and David Dill. CMC: A pragmatic
approach to model checking real code. In Proc. OSDI ’02,
pages 75 – 88, December 2002.

