
May 21, 2005 16:35 ACE05 Proceedings: Trim Size: 295mm x 245mm ace05

Fast Delivery of Game Events with an Optimistic
Synchronization Mechanism in Massive

Multiplayer Online Games

Stefano Ferretti
Department of Computer Science

University of Bologna
Mura Anteo Zamboni 7, 40127

Bologna, Italy

sferrett@cs.unibo.it

Marco Roccetti
Department of Computer Science

University of Bologna
Mura Anteo Zamboni 7, 40127

Bologna, Italy

roccetti@cs.unibo.it

ABSTRACT
As smart players often win MMOG sessions by adopting
frantic gaming strategies along the game evolution, also the
system activities concerned with the distributed support of
MMOGs must advance at a very fast pace. Unfortunately,
MMOGs’ responsiveness requirements are hardly met when
pessimistic approaches are adopted to synchronize the game
event exchange activities among game servers. In this paper
we show how MMOGs are better supported by optimistic
synchronization schemes coupled with mechanisms that ex-
ploit the semantics of games. Results obtained from an ex-
perimental assessment of our developed scheme demonstrate
the validity of our claim.

Categories and Subject Descriptors
K.8.0 [Computing Milieux]: PERSONAL COMPUTING—
Games

General Terms
Algorithms, Synchronization, Performance, Evaluation

Keywords
Massive Multiplayer Online Games, Online Entertainment,
Optimistic Synchronization, Responsiveness

1. INTRODUCTION
Massively Multiplayer Online Games (MMOGs) require con-
siderable investments and efforts to manage the computing
and network infrastructure needed to guarantee compelling
gaming experiences. While the costs of hardware technolo-
gies decrease, the amount of users that connect to the Inter-
net through a variety of different network-enabled terminals
increase. This potential swarm of players impose the use of

highly reliable, responsive software solutions able to hide la-
tencies and overheads that may affect the usability of games
over the Internet.

In this sense, an interesting proposal to support MMOGs
amounts to exploiting a constellation of Mirrored Game State
Servers (GSSs) which are geographically dispersed over the
net [5, 11, 12, 13, 14, 24, 25]. Each GSS maintains a local,
replicated representation of the state of the game. Based on
this approach, each player connects to its nearest GSS and
communicates with it in a classic client/server style [5]. In
turn, each GSS is interconnected with all other GSSs re-
sembling a P2P architecture [7, 18]. With each new action
performed by players connected to a given GSS, the GSS
collects the corresponding event, notifies it to other GSSs,
updates the game state locally and, finally, communicates
the newly computed game state to their connected players.

This architectural solution clearly facilitates the develop-
ment of MMOGs where a potentially high number of play-
ers connect and play within the same game session. Indeed,
according to this solution only subsets of users connect to
the same GSS (and different users may be connected to dif-
ferent GSSs while participating to the same game session),
thus reducing network and computational overheads at the
servers-side. Then, a high level of fault-tolerance is ensured,
as no single point of failure exists within the architecture.
Needless to say, an efficient event synchronization scheme
is to be employed to guarantee a consistent and responsive
evolution of the game state among all GSSs.

In this scenario, a recent study was proposed where the goal
of uplifting the playability degree of MMOGs is achieved by
maintaining the game event delivery delays under a human
perceptivity threshold, whilst preserving the game state con-
sistency [13]. At the basis of this approach lies the idea of
exploiting the notion of obsolescence. In essence, obsoles-
cence allows each single GSS to autonomously drop those
game events that lose their importance during the game evo-
lution so as to speed up the event notification and processing
activities to gain interactivity while preserving some form of
state consistency.

Obviously, not any event in a game may be considered as

405



May 21, 2005 16:35 ACE05 Proceedings: Trim Size: 295mm x 245mm ace05

ACE 2005, Valencia, Spain

obsolete. Alongside the notion of obsolescence, in fact, also
the notion of correlation among events has to be taken into
account. Indeed, events may exist that are correlated with
each other. To simply explain the notion of correlation,
think of an event which cannot be considered as obsolete as
further events may come into the picture that correlate it to
the final game state [13].

Another interesting effect of correlation amounts to the fact
that only correlated events are required to be processed in
the same order at all the GSSs to maintain the consistency
of the game state. On the other hand, different delivery
orders are possible when a given sequence of non-correlated
events has to be delivered to different GSSs.

Based on the notions of obsolescence and correlation, several
schemes have been recently introduced that exploit these
two properties for an augmented interactivity [24]. Of these,
a first reactive approach has been proposed that it is able to
measure the interactivity degree provided by the system. In
essence, as long as such an interactivity degree rests equal
to an acceptable value, then normal delivery operations are
performed among GSSs. Instead, as soon as the measured
interactivity degree decreases below a given game percep-
tivity threshold at a given GSS, a procedure is activated at
that GSS which skips the processing of obsolete game events
so as to report the interactivity level to an acceptable value
(Interactivity Restoring).

Alternatively, another strategy exists that aims at proac-
tively avoiding any loss of interactivity before it happens.
In essence, obsolete events are discarded in advance based
on a given dropping probability which depends on the mea-
sured values of the interactivity degree (Interactivity-Loss
Avoidance).

The problem with all these strategies amounts to the fact
that they have been developed based on a conservative ap-
proach. Technically speaking, the decision at a given GSS
whether an event e can be processed is delayed till the point
when all non-obsolete events preceding e are received by
that GSS. (Hereinafter, we refer to those synchronization
mechanisms as COS, Conservative Obsolescence-based Syn-
chronization, schemes.)

In this paper, we present a novel game event synchroniza-
tion mechanism for mirrored game servers that exploits the
notions of obsolescence and correlation based on an opti-
mistic synchronization approach. We refer to our mecha-
nism as OOS, Optimistic Obsolescence-based Synchroniza-
tion scheme.

Based on our OOS mechanism, with each new game event
e received at a given GSS, an immediate check for detect-
ing the obsolescence of e is carried out. If this check suc-
ceeds, the event is immediately discarded. Otherwise, an-
other check is performed to verify whether later events e∗ ex-
ist that are correlated to e and have been already processed.
In this case, a rollback procedure is performed which is as
follows. All those events e∗ are rolled back and a new game
state is computed that can be now safely delivered to all
the connected players. Obviously, during the rollback pro-
cedure some of these events e∗ may exist that have become

obsolete as long as new values of the game state variables
are recomputed. In such a case, those obsolete events are
simply dropped.

It is widely accepted that the main advantage of optimistic
strategies, w.r.t. conservative, amounts to the fact that they
perform better in fast paced games where a continuous rate
of the game advancement is crucial [5]. The experimental
study we have conducted confirms this consideration, espe-
cially when the notion of obsolescence and correlation are
exploited to gain interactivity.

As a final remark, we wish to point out that our mecha-
nism has been also recently embedded into a MMOG we
developed to allow customers to play a car racing game
(inspired to Armagetron) over the Web [3]. Usage of this
game with many players has confirmed that resorting to our
OOS scheme greatly improves the playability degree of on-
line games across the Internet.

The remainder of this paper is organized as follows. First,
we provide the reader with an overview our system model
(Section 2). Then, we present our novel scheme along with
a discussion on experimental results obtained from a simu-
lative assessment (Section 3). A comparison of our scheme
with other ones proposed in the literature is reported in
Section 4. Finally, we conclude the paper with some closing
comments (Section 5).

2. THE MODEL: A SUMMARY
This Section is devoted to present the model at the basis
of our approach. Thus, we begin with a discussion on is-
sues concerned with the need for interactivity in a MMOG,
followed by an overview of the notions of obsolescence and
correlation.

2.1 MMOGs and Interactivity
It is well known that over a best-effort network real-time per-
formance is often an illusive objective to achieve. Based on
scientific literature, to assess the level of responsiveness pro-
vided by the system, a human perceptivity threshold may be
defined that represents the limit above which the interaction
among players is not satisfied. We term it Game Interaction
Threshold (GIT ). Typical values are in the range of 100-200
ms, as discussed at length in [1, 2, 9, 26].

Denoting with T p
g (e) the time of generation of a given event

e at a given GSS p, and with T q

d (e) the delivery time of e
at a given GSS q, we introduce a metric that measures the
Game Time Difference between the time of generation of an
event e and its delivery among communicating GSSs, that
is GTDp,q(e) = T q

d (e) − T p
g (e). This value is an estimation

of the interactivity degree provided by the system; thus,
interactive game applications are well supported only if the
GTDs of the generated game events are kept below the limit
provided by GIT at all GSSs.

Obviously, our approach rests upon the assumption that a
global notion of time is available across all GSSs. This re-
sult may be accomplished based on a variety of different
approaches, ranging from the use of physical clocks’ soft-
ware synchronization schemes to the use of technological

406



May 21, 2005 16:35 ACE05 Proceedings: Trim Size: 295mm x 245mm ace05

ACE 2005, Valencia, Spain

synchronization devices, such as GPS for example [4, 8, 16,
23].

Based on a global notion of time, we assume that it is possi-
ble to provide a total order on the set of all the game events
generated during the game evolution. We term this as cor-
rect timestamp order, meaning that a correct evolution of
the game may be ensured at each GSS if events are pro-
cessed according to this timestamp order. Unfortunately, a
major concern is that large computational and communica-
tion overheads are to be paid if traditional event synchro-
nization schemes are adopted to enforce a timestamp order
on the game event processing activity at each GSS [5, 7, 15,
19, 20, 21].

2.2 Correlation and Obsolescence
To overcome the problem mentioned above, the notion of
correlation has been recently introduced [13]. Correlation
among game events may be characterized as a property
which states that two game events ei , ej are correlated if
different orders of execution of the two game events lead to
different game states. Examples of correlated game events
typically involve game events, possibly generated by differ-
ent players, that act on the same game elements. Indepen-
dent movements of different virtual characters, instead, are
examples of non-correlated game events.

Hence, to provide players with a uniform evolution of the
game, it is enough that correlated game events are pro-
cessed by all GSSs respecting their correct timestamp or-
der. Instead, no ordering guarantee is needed to process
non-correlated events, as their delivery in different orders at
different GSSs do not alter the game state. Such correlation-
based order has the main advantage of reducing the synchro-
nization overheads.

Another important concept exploited in our model amounts
to the notion of obsolescence. That is, given two subse-
quent game events ei , ej (T p

g (ej ) > T p
g (ei)) it may be the

case when processing ej without ei leads to the same final
state that would be reached if both events were processed in
the correct order (i.e., ei becomes obsolete). Recent studies
demonstrated that by exploiting the semantics of the game,
there exist many situations where fresher game events annul
the importance of previous events. For example, knowing
the position of a character at a given time may be no longer
important after a certain time period, if the position of the
character has changed. It is also worth noticing that the
notion of obsolescence cannot be applied to ej and ei when
other events correlated to ei have been generated within the
time interval [T p

g (ei),T
p
g (ej )]. These game events may alter

the evolution of the plot thus making unapplicable the no-
tion of obsolescence. Deeper details about obsolescence and
correlation may be found in [13].

3. AN OOS SCHEME WITH EXPERIMENTS
In this Section we present the OOS scheme we have devised
followed by a discussion on results obtained from an evalu-
ation assessment we conducted.

3.1 The Scheme
We developed a novel Optimistic Obsolescence-based Syn-
chronization (OOS) scheme that guarantees a correlation-

based order delivery strategy only for those events that are
not discarded due to obsolescence. Our OOS algorithm is
reported in Figure 1, where all the actions accomplished by a
given GSS when a new game event is received are reported.

Specifically, according to our OOS scheme, each GSS veri-
fies if a given event e may be already identified as obsolete
(line 2). In this case, e is dropped (line 3). Otherwise,
a check is carried out to control whether any game events
ei , correlated to e and generated after e, have been already
processed (lines 5-6). If this check succeeds, then a rollback
procedure is performed (which is based on a standard incre-
mental state saving technique [15]) where all these events ei

are rolled back (line 7). At this point, e is processed (line
8), followed by the execution of all those rolled back events
which are not obsolete (lines 9-12). In fact, obsolete events
are discarded during the rollback (lines 10-11). If the check
fails that determines that a rollback procedure is needed, e
is directly processed (line 14).

It is easy to observe that our OOS scheme respects the
correlation-based order and guarantees that only useless (ob-
solete) game events are eventually dropped by some GSS.
An important remark is that our OOS guarantees the game
state consistency among all GSSs. Put it in other words,
the final game state computed by our OOS scheme is not
altered while an augmented interactivity is achieved by:

1. dropping obsolete events,

2. permitting different processing orders for non-corre-
lated events at different GSSs.

3.2 Evaluation
Our intention now is to report on experimental results ob-
tained from an evaluation of our OOS mechanism. In par-
ticular, we measured:

1. the interactivity degree provided by our scheme;

2. the amount of dropped events;

3. the number of rollbacks;

4. the amount of reprocessed events within each single
rollback.

To evaluate our OOS scheme, we have simulated a general
Mirrored Game Server architecture composed of eight GSSs.
Without loss of generality, we focused our attention on the
event receiving aspect of a given GSS, namely GSS0 , pre-
tending that other GSSs are sending game events to it.

Table 1 reports the average value and standard deviations of
the network latencies that characterize the network links be-
tween each sending GSS and GSS0 . Based on the literature
[2, 9], the transmission delay for each event was obtained on
the basis of a lognormal distribution whose parameters were
calculated from values reported in Table 1. Also the average
event size (200 Bytes), as well as the event generation rate at
each GSS (modelled through a lognormal distribution with

407



May 21, 2005 16:35 ACE05 Proceedings: Trim Size: 295mm x 245mm ace05

ACE 2005, Valencia, Spain

0 procedure OOS-receive-event-procedure() {
1 e := received event ;
2 if (e is obsolete)
3 drop(e);
4 else {
5 Event List := {ei | ei already processed ∧

ei correlated to e ∧
Tg(ei) > T p

g (e)};
6 if (Event List 6= NULL) {
7 Rollback(Event List);
8 Process(e);
9 for (each ei ∈ Event List)
10 if (ei is obsolete)
11 drop(ei);
12 else Process(ei);
13 }
14 else Process(e);
15 }
16 }

Figure 1: OOS Implementation

Table 1: Configuration of the GSSs (ms)

GSS1 GSS2 GSS3 GSS4 GSS5 GSS6 GSS7

Latency Avg (ms) 15 40 75 90 80 30 100
Latency Std Dev (ms) 10 15 30 10 20 15 25

an average value of 45 ms and a standard deviation of 10
ms), were inspired by the online gaming literature [2, 9, 24].

Taking inspiration from [2, 9], the GIT value was set equal
to 150 ms. Further, we conducted our experiments with
event traces containing as many as 1000 events for each GSS.
We considered different event trace configurations, where
the probability that a given event is non-correlated to events
generated by other players was set equal to, respectively,
50%, 60%, 70%, 80%, 90%. Clearly, the higher the prob-
ability of non-correlation, the higher the number of events
that will become obsolete during the game evolution. In-
deed, a higher non-correlation probability entails that it is
more probable the case when an event e∗ makes obsolete a
preceding one e, as it is more likely that no events have been
generated by other players which break the obsolescence re-
lation among e and e∗. Finally, the higher the probability of
non-correlation among game events, the lower the number
of events that will be subject to rollback.

For a better assessment of the validity of our proposal, in
our experiments we contrasted five different synchronization
schemes:

1. our OOS scheme;

2. the COS-based Interactivity Restoring scheme (COS-
1) described in [10];

3. the COS-based Interactivity Loss Avoidance scheme
(COS-2) described in [24];

4. the Time Warp scheme (TW) [17];

5. a traditional Conservative Synchronization (CS) mech-
anism.

Our intent here is to demonstrate the benefits on the pro-
vided interactivity degree attainable by resorting to our OOS
approach. To this aim, we first evaluate the five mentioned
mechanisms by measuring the percentage of game events
arrived at GSS0 with a GTD value larger than GIT.

Figure 2 reports the average percentage of GDTs above GIT
as a function of the non-correlation probability. As observ-
able, according to all the experimental configurations, our
OOS scheme outperforms the other schemes. It is also worth
noticing that in Figure 2 both CS and TW curves lie hori-
zontal and are almost coincident, as standard CS and TW
schemes do not take benefits from obsolescence and correla-
tion.

Another proficient tool for evaluating our proposal is rep-
resented by the cumulative function of the GTDs. This
value measures the probability of having a GTD lower than
a specified value. In substance, the more the line reported
in Figure 3 is concentrated in the left side of the chart, the
higher is the percentage of events having a GTD lower than
a certain threshold i.e., the higher the interactivity degree
provided by the system. In Figure 3 we report the average
value of results obtained from all the considered event trace
configurations. As shown in the Figure, OOS outperforms
all the other schemes thus guaranteeing an augmented in-
teractivity degree. In essence, these results confirm that:

1. our OOS strategy is far better suited for games w.r.t.

408



May 21, 2005 16:35 ACE05 Proceedings: Trim Size: 295mm x 245mm ace05

ACE 2005, Valencia, Spain

COS schemes, as executing events as soon as they ar-
rive, and then repairing inconsistencies when they are
wrong, improve responsiveness;

2. optimistic approaches may take benefits from obsoles-
cence and correlation.

Another interesting measure is concerned with the amount
of obsolete events that are dropped to report the interactiv-
ity degree within an acceptable value. Indeed, while these
dropped events are obsolete and do not influence the final
game state, they still are part of the game visual evolution.
Thus, to not affect the fluency of the game evolution an
excessive dropping of game events should be avoided when
possible. Needless to say, only the schemes that are able to
drop obsolete events are considered here.

Figure 4 reports the percentage of dropped events using,
respectively, COS-1, COS-2 and OOS. As shown in the Fig-
ure, OOS reduces the number of discarded events in all the
simulated configurations w.r.t. all the other schemes. This
effect derives from the fact that our OOS strategy acceler-
ates the event processing, thus diminishing the possibility
for an event to become obsolete as fresher events are pro-
cessed.

We measured also the number of rollbacks needed to main-
tain the consistency of the game state by comparing the two
considered optimistic synchronization algorithms: TW and
OOS. This is a fundamental metric to control, as a reduced
number of rollbacks allows an augmented interactivity de-
gree. In Figure 5 we show the rollback ratio for TW and
OOS. In simple words, we measured the total number of
rollbacks in the system divided over the total number of
generated events, depending on the non-correlation proba-
bility values. It is worth noticing that the TW curve lies
horizontal, as standard TW does not take benefits from ob-
solescence and correlation. It is so obvious that OOS out-
performs TW in all the considered scenarios, as OOS does
not trigger a rollback procedure for obsolete events.

Finally, Figure 6 reports the average number of re-processed
events within a single rollback. Our OOS scheme reduces
this value w.r.t. TW, since during a rollback our OOS
scheme always avoids the re-execution of those events that
become obsolete during the evolution of the game. This
clearly diminishes the average number of game events that
need reprocessing within a single rollback.

4. RELATED WORK: A COMPARISON
Several synchronization mechanisms have been recently pre-
sented in the online gaming literature devised to guaran-
tee a uniform view of the game state, when it is replicated
across different game nodes distributed throughout the In-
ternet [5, 6, 7, 19, 21, 22]. Among these, similarly to our
OOS scheme, some of them take inspiration from the opti-
mistic Time Warp algorithm that adopt a detect and correct
strategy [5, 6, 21, 22].

For instance, the trailing state synchronization algorithm,
presented in [5, 6] and devised for the support of online
games, is based on the idea of locally maintaining at all GSSs
a fixed number of copies of the game state, each of which

is kept at a different simulation time. In essence, each copy
of the game state is associated to a particular execution;
each execution is delayed for a fixed time interval. Thus,
inconsistencies are identified by comparing the leading state
(where game events are processed optimistically without any
delay) with the game states obtained by delaying execution
of a fixed value equal to ∆t. If an inconsistency is discovered,
a rollback is performed by resorting to the game state of the
delayed execution. This ensures that all game events are
processed in the proper order.

In [21, 22], instead, an approach has been devised which uses
the local lag control mechanism combined with a modified
Time Warp (executed only when necessary). Taking in mind
the important trade-off existing between responsiveness and
consistency, the authors propose to deliberately decrease the
responsiveness of the application in order to eliminate short-
term inconsistencies. In essence, each received game event
is delayed for a certain amount of time (local lag) so as
to reorder the received events and minimize inconsistencies.
However, if a game event arrives later than the temporal
delay identified by the local lag, then the approach resorts to
rollback-based recovery schemes to correct the computation.

The main difference between other rollback-based schemes
and our OOS mechanism is that we are able to keep under
control the number of events to be rolled back thanks to the
use of the notion of obsolescence and correlation.

Alternatively, other approaches exist which simply assume
that delaying the game event processing activity for a fixed
amount of time may be sufficient to guarantee a uniform
evolution of the game state at different nodes of the archi-
tecture without any need to resort to rollback.

Following this idea, a synchronization approach has been
presented in [7, 19] which has been exploited for the de-
ployment of MiMaze. This mechanism is an optimistic ver-
sion of the well known conservative bucket synchronization
algorithm. The approach consists in assuming that a pro-
cessing deadline (time bucket) exists before which all game
events have to be received for a correct evolution of the
game. In essence, the idea behind this scheme is to process
game events at the end of the time bucket. Simply put, at
the end of the bucket game events are ordered and then pro-
cessed. If some game events are not received before the time
bucket expiration, dead reckoning techniques are exploited
to compensate events losses.

A main drawback with a time bucket approach is that dead
reckoning may not ensure the consistency of the distributed
game state. Thus, game inconsistencies may arise if the
bucket size is set equal to a small value. On the other hand,
using a large value of the bucket size may induce a severe
degradation of the system performances. Further, a more
complex problem is that of fitting the bucket size with an
unstable condition of the Internet where large values of jit-
ter delays may be experienced. On the contrary, we react
to network congestions, packet losses, transmission delays
and delay jitters by employing a discarding mechanism for
obsolete events and by resorting to a delivery strategy based
on the notion of correlation.

409



May 21, 2005 16:35 ACE05 Proceedings: Trim Size: 295mm x 245mm ace05

ACE 2005, Valencia, Spain

0

5

10

15

20

25

30

35

40

45

50

50 60 70 80 90

Non Correlation Probability (%)

G
T

D
 o

ve
r 

G
IT

 (
%

)

CS COS-1 COS-2 TW OOS

Figure 2: Percentage of Events with GTD over GIT

0

0,2

0,4

0,6

0,8

1

1,2

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

msec

P
ro

b
(G

T
D

 <
 x

)

CS COS-1 COS-2 TW OOS

Figure 3: Cumulative Function of the GTDs

0

2

4

6

8

10

12

14

16

50 60 70 80 90

Non Correlation Probability (%)

D
ro

p
p

ed
 E

ve
n

ts
 (

%
)

COS-1 COS-2 OOS

Figure 4: Percentage of Discarded Events

410



May 21, 2005 16:35 ACE05 Proceedings: Trim Size: 295mm x 245mm ace05

ACE 2005, Valencia, Spain

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

50 60 70 80 90

Non Correlation Probability (%)

R
o

llb
ac

k 
R

at
io

TW OOS

Figure 5: Rollback Ratio

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

50 60 70 80 90

Non Correlation Probability (%)

A
vg

 #
 E

ve
n

ts
 P

er
 S

in
g

le
 R

o
llb

ac
k

TW OOS

Figure 6: Number of Re-Processed Events per Rollback

5. CONCLUSIONS
The growth in the popularity of highly interactive MMOGs
has increased the importance of a better understanding of
new protocols and schemes to support a vast amount of play-
ers connected to an online game. In this sense, a key issue is
represented by the capability of rapidly synchronizing dis-
tributed mirrored game servers that manage a redundant
copy of the game state.

Our work has confirmed that an optimistic synchronization
approach, coupled with the notions of obsolescence and cor-
relation, is well suited for MMOGs, as it allows game servers
to better follow the evolution of fast paced games.

To conclude, it is worth mentioning that our mechanism
has been recently embedded into a MMOG we developed
to allow customers to play a car racing game over the Web
[3]. Preliminary results have confirmed that resorting to our
OOS scheme improves the interactivity degree with respect

to the use of other synchronization mechanisms which were
previously employed to support the game (e.g., COS-1).

6. ACKNOWLEDGMENTS
We wish to thank the Italian M.I.U.R. (Interlink) for the
partial financial support to our research. Many thanks also
to the anonymous referees of the ACE Conference for their
helpful comments on an earlier version of this paper.

7. REFERENCES
[1] I. S. 1278.2-1995. IEEE Standard for Distributed

Interactive Simulation - Communication Services and
Profiles, 1995.

[2] M. Borella. Source models for network game traffic.
Computer Communications, 23(4):403–410, February
2000.

[3] S. Cacciaguerra, S. Ferretti, M. Roccetti, and
M. Roffilli. Car racing through the streets of the web:

411



May 21, 2005 16:35 ACE05 Proceedings: Trim Size: 295mm x 245mm ace05

ACE 2005, Valencia, Spain

a high-speed 3d game over a fast synchronization
service. In Proceedings of International ACM World
Wide Web 2005 Conference, Poster Track, Chiba,
Japan, May 2005.

[4] F. Cristian. Probabilistic clock synchronization.
Distributed Computing, 3(3):146–158, 1989.

[5] E. Cronin, B. Filstrup, S. Jamin, and A. Kurc. An
efficient synchronization mechanism for mirrored game
architectures. Multimedia Tools and Applications,
23(1):7–30, May 2004.

[6] E. Cronin, B. Filstrup, A. Kurc, and S. Jamin. An
efficient synchronization mechanism for mirrored game
architectures. In Proceedings of the 1st Workshop on
Network and System Support for Games, pages 67–73.
ACM Press, 2002.

[7] C. Diot and L. Gautier. A distributed architecture for
multiplayer interactive applications on the internet.
IEEE Network Magazine, 13(4), July/August 1999.

[8] R. Drummong and O. Babaoglu. Low-cost clock
synchronization. Distributed Computing, 6(3):193–203,
1993.

[9] J. Farber. Network game traffic modelling. In
Proceedings of Netgames’02, pages 53–57. ACM Press,
2002.

[10] S. Ferretti and M. Roccetti. The design and
performance of a receiver-initiated event delivery
synchronization service for interactive multiplayer
games. In Proceedings of the 4th International
Conference on Intelligent Games and Simulation
(Game-On 2003), London, UK, November 2003.

[11] S. Ferretti and M. Roccetti. On designing an event
delivery service for multiplayer networked games: An
approach based on obsolescence. In Proceedings of
IASTED International Conference on Internet and
Multimedia Systems and Applications (IMSA 2003),
Honolulu, HI, August 2003.

[12] S. Ferretti and M. Roccetti. Event synchronization for
interactive cyberdrama generation on the web: A
distributed approach. In Proceedings of 13th
International World Wide Web Conference (WWW
2004), volume WWW2004 Poster Track, New York,
NY, May 2004.

[13] S. Ferretti and M. Roccetti. A novel
obsolescence-based approach to event delivery
synchronization in multiplayer games. International
Journal of Intelligent Games and Simulation,
3(1):7–19, March/April 2004.

[14] S. Ferretti, M. Roccetti, and S. Cacciaguerra. On
distributing interactive storytelling: Issues of event
synchronization and a solution. In Proceedings of the
2nd International Conference on Technologies for
Digital Storytelling and Entertainment (TIDSE 2004),
LNCS 3105, pages 219–231, Darmstadt, Germany,
June 2004.

[15] R. Fujimoto. Parallel and Distribution Simulation
Systems. John Wiley & Sons, Inc., 1999.

[16] R. Gusella and S. Zatti. The accuracy of clock
synchronization achieved by tempo in berkeley unix
4.3bsd. IEEE Transactions of Software Engineering,
15(7):47–53, July 1989.

[17] D. Jefferson. Virtual time. ACM Transactions on
Programming Languages and Systems, 7(3):404–425,
1985.

[18] B. Knutsson, H. Lu, W. Xu, and B. Hopkins.
Peer-to-peer support for massively multiplayer games.
In Proceedings of the Twenty-third Annual Joint
Conference of the IEEE Computer and
Communications Societies (INFOCOM 2004), pages
96–107. IEEE, March 2004.

[19] K. Lee, B. Ko, and S. Calo. Adaptive server selection
for large scale interactive online games. In Proceedings
of the 14th international Workshop on Network and
Operating Systems Support for Digital Audio and
Video, pages 152–157. ACM Press, 2004.

[20] F. Li, L. Li, and R. Lau. Supporting continuous
consistency in multiplayer online games. In
Proceedings of the 12th annual ACM international
conference on Multimedia (MULTIMEDIA ’04), pages
388–391. ACM Press, 2004.

[21] M. Mauve, S. Fischer, and J. Widmer. A generic proxy
system for networked computer games. In Proceedings
of Netgames’02, pages 25–28. ACM Press, 2002.

[22] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg.
Local-lag and timewarp: Providing consistency for
replicated continuous applications. IEEE Transactions
on Multimedia, 6(1):47–57, February 2004.

[23] D. Mills. Internet time synchronization: the network
time protocol. IEEE Transactions on
Communications, 39(10):1482–1493, October 1991.

[24] C. Palazzi, S. Ferretti, S. Cacciaguerra, and
M. Roccetti. On maintaining interactivity in event
delivery synchronization for mirrored game
architectures. In Proceedings of the 1st IEEE
International Workshop on Networking Issues in
Multimedia Entertainment (NIME’04), pages 157–165,
Dallas, USA, November 2004.

[25] C. Palazzi, S. Ferretti, S. Cacciaguerra, and
M. Roccetti. A rio-like technique for interactivity loss
avoidance in fast-paced multiplayer online games: a
preliminary study. ACM Journal of Computer in
Entertainment, 3(2), April-June 2005.

[26] L. Pantel and L. Wolf. On the suitability of dead
reckoning schemes for games. In Proceedings of the 1st
Workshop on Network and System Support for Games,
pages 79–84. ACM Press, 2002.

412




