A Communication Architecture for Massive Multiplayer
Games

[Position Statement]

Stefan Fiedler, Michael Wallner, Michael Weber
Dept. of Multimedia Computing
University of Ulm
89069 Ulm, Germany

{stefan.fiedler,michael.wallner,weber; @informatik.uni-ulm.de

ABSTRACT

In this paper we present an approach for a communication
architecture based on the publisher/subscriber model. The
key issues considered here are scalability, ease of program-
ming and dynamic system evolution. The division of the
communication load into distinctive channels allows decou-
pling the domains of the game enabling the overall system
to scale flexibly with the underlying network infrastructure,
map size or number of players simultaneously online. Thus
our approach is suitable to realize especially huge game-
worlds as used in massive multiplayer online games. The
underlying publisher/subscriber communication layer pro-
vides a high level of abstraction with a lean API therefore
dramatically simplifying network programming in the game
engine. Due to the fact that the communication is content-
based, there is no fixed correlation between the game players
and the game backend servers. This permits the dynamic
evolution of the system by removing or adding not only play-
ers but also game servers and game content on the fly.

Keywords

publisher/subscriber model, scalability, massive multiplayer
games

1. INTRODUCTION

Over the last years multiplayer support in games of almost
all genres has developed from an option to a feature essential
for the success and the longevity of a product.

The first games providing multiplayer support where us-
ing one computer or a console with a split screen (e.g. Pit-
stop II), or two computers connected by a modem or a null-
modem cable (e.g. Populous). With the introduction of
local network support in games (e.g. DOOM) multiplayer
support became increasingly popular. A low number of

Permission to make digital or hard copies of al or part of this work for
persona or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

NetGames2002, April 16-17, 2002, Braunschweig, Germany.

Copyright 2002 ACM 1-58113-493-2/02/0004 ...$5.00.

players and good connection quality within a LAN allowed
a straight forward approach by maintaining good response
time for user interaction.

With the success of multiplayer games and the growth of
the internet the game industry realized the opportunity to
combine them. But with multiplayer games using internet
connections new problems arose. While LANs provide fea-
tures like broadcast, low latency, high bandwidth and nearly
no packet loss, quality of network connections in the inter-
net are hardly predictable since it is not feasible to create
point-to-point connections for many peers. As the inter-
net comprises a wide variety of network configurations and
connections usually involve hops of the magnitude of 10,
negative side effects are introduced.

Of these, latency, jitter and low bandwidth feature promi-
nently. Lack of a multicast mechanism leads to a splitting of
bandwidth as each messages has to be sent to every players
respectively. Although broadband internet connections be-
come increasingly available, the majority of internet users is
still using a modem line, forcing multiplayer games to cope
with bandwidth limitations of at most 56k.

Interaction with other players is crucial, so low latency is
essential so that players don’t get alienated by the game’s
behaviour, the susceptibility in this regard differing by genre.
While it’s not too difficult to cope with latency, the impact
of high jitter renders a game unplayable. To a certain degree
this can be compensated by introducing a delay, the amount
of which again is dependent on the genre of the game.

2. GAMECOMMUNICATIONARCHITEC-
TURES

Most online games can be separated into two categories:
First-person and top-down view. Whereas first-person view
games (e.g. first-person shooters, car racing games, etc.)
are typically characterized by a low number of elements that
need to be synchronized as well as the need of low latency,
top-down view games (e.g. real-time strategy games) can
often tolerate a moderate amount of delay if its variation
remains small but employ a high number of units to be syn-
chronized.

The two main architectures in use today are peer-to-peer
and client/server. Peer-to-peer networks are predominantly
used in top-down view games[3]. Ordinarily every partici-
pant runs a simulation on her own machine. To lower band-
width consumption, the grouping of units is utilized. Fur-

ther bandwidth is saved by transmitting input events instead
of unit stats.

In most client/server architectures clients collect input
events and render the scene output provided by the server|[2].
The load remains with the server, the clients can employ
techniques like dead reckoning to provide improved response
time, by only updating the client if its reckoning deviates sig-
nificantly from the server’s simulation, the synchronization
effort is minimized[1].

With a limited number of players all these problems are
handled quite well in modern online games. New challenges
arise when planning massive multiplayer online games where
several thousand players that interact simultaneously in the
same virtual world.

First massive multiplayer approaches with several thou-
sand players like Ultima Online or EverQuest have already
been working for several years and are typically based upon
server clusters. Players connect to the cluster using their
computers as “dumb” terminals. Employing peer-to-peer
synchronization mechanisms prohibits itself due to the huge
bandwidth requirements. Pure server solutions are possible,
though costly to maintain, but considering that the game
world’s state has to be kept persistent as well as in a consis-
tent state, the deployment of some kind of client indepen-
dent server is inevitable.

In the next section we introduce the publisher/subscriber
model, on which our approach is based.

3. THEPUBLISHER/SUBSCRIBER MODEL

The publisher /subscriber model of communication is based
on the production and consumption of content. This is
different from the commonly used client/server based com-
munication paradigm, where communication typically takes
place between exactly two nodes, the client and the server.
Therefore, the client/server paradigm is perfectly suited for
one-to-one communication relationships. Often however,
communication is more complex, resulting in one-to-many
or even many-to-many relationships. Modelling these in a
pure client/server based approach results in difficult net-
work code caused by the mapping of the m-to-n relation
to many one-to-one relations. Taking a different view, con-
sumer /producer based communication sets its focus not on
the communication participants (clients and servers), but
on the content that is to be exchanged. This is usually ac-
companied by the anonymity of communication, meaning
that the content producer does not know (and not care)
who receives his content. For example, the mouse cursor
in a graphical window system produces mouse move events,
and it knows nothing (and it doesn’t care) about the win-
dows that receive its events. In contrast, a client/server
paradigm based approach would model a mouse movement
server and the clients would have to poll the server when-
ever they were interested in mouse movement. Evidently,
client /server based communication is very suitable for one-
by-one communication where permanent services are offered
to clients whereas consumer/producer based communica-
tion has its strengths in the producer based distribution of
content-related information (e.g. events) to a larger number
of consumers.

The publisher/subscriber model, which is consumer /producer

oriented, provides in its most basic form a single medium for
information exchange to which everybody can publish infor-
mation. This information is being received by the other par-

ticipants, who filter the information by analysing the content
of the published message. While this form of pure content
based addressing provides an immense amount of flexibility,
the efficiency is very low. Every single publication has to
be transported to every single participant, and this will of-
ten result in communication bandwidth and computational
power requirements that are not available. Therefore, an
optimization step is done in so far as the consumers only
want to receive the content they are interested in. This is
achieved by separating the single communication space into
different areas where only a special, selected part of informa-
tion is transported in. These areas will be called “channels”,
and the producers publish information only to the channels
it belongs to. On the consumer side, information is only re-
ceived from the channels the consumer is interested in. This
interest manifests itself in the selection of certain channels,
which is realized in the publisher/subscriber model by sub-
scribing to them. After the consumer subscribed to a specific
channel, he receives all content published to that channel.
This evolution of the first publisher/subscriber model im-
mediately reduces the load that is generated by distribut-
ing and filtering all content to what is needed to distribute
the relevant content, where “relevant” means “relevant to
the subscriber of a channel”. This results in the possibil-
ity to dramatically increase the number of participants and
the amount of information that is exchanged by the overall
communication system. Also, the simplicity of this idea al-
most eliminates network programming for the participants,
because there are only a few basic primitives for communi-
cation:

subscribe (channel_id)
unsubscribe (channel_id)
publish(channel_id, message)
receive(channel_id, &message)

The event channels themselves can have properties like
message rates, QoS guarantees, priorized message transport
or message deadlines[5][6]. Much work, of course, has to be
done by the underlying communication system which has to
provide this high-level abstraction.

4. COMMUNICATION ARCHITECTURE
FORMASSIVE MULTIPLAYER GAMES

4.1 Problemswith scaling

As already stated above, most games use either a peer-to-
peer or a pure server based approach.

Pure peer-to-peer approaches are limited to relatively small
map sizes and limited player numbers due to the bandwidth
requirements they pose. Pure server based solutions require
powerful servers or server clusters and these server clusters
require a high bandwidth connection to the players because
they serve the aggregated single-client communication and
computational load.

If one wants to implement a massive multiplayer game,
a huge map with many players has to be implemented. To
handle this, our idea was to split the overall communication
bandwidth into smaller pieces and to find a way to distribute
the computational load over many machines, not only a sin-
gle server. These smaller pieces, however they are designed,
should be handled in a more feasible way. In the following

we work out their desing in a greater level of detail and how
we can use the publisher/subscriber model.

Note that this paper does not deal with the network issues
experienced in common multiplayer games as synchroniza-
tion, latency, cheating, and so on. These issues are dealt
with otherwise, while our focus is how to remove the prob-
lems experiencing when scaling up the game.

4.2 Divideand Conquer

Our first idea is, a single player needs not to know every-
thing on the map as long as it does not affect him. Outside
the scope of his visibility, or the visibility of one of his active
units, the player needs not to have any notion of the map
and other players. A possible supervising instance, e.g. a
game server managing the map, instead needs to know ev-
erything on the map, but not everything that is happening
on the map. For this supervising instance, only the per-
manent changes are relevant, not every chat message sent
between two players or every bullet flying over the map.
Therefore we propose a topological division of the map into
smaller pieces and a semantical division of the content that
is transmitted among the instances of the game.

4.3 Splitting the map

The first step was splitting the map into smaller pieces.
Only the piece(s) inside the player’s scope is (are) interest-
ing. However, when approaching the border of his piece,
a player also needs to know what happens in the adjacent
pieces. Regarding the shape of this pieces, many options
are possible. We evaluated rectangles and hexagons. Using
rectangles, when approaching a corner, three rectangles are
adjacent. Using hexagons, only two other hexagons are ad-
jacent when approaching a border. However, hexagons have
more corners than rectangles, which increases the proba-
bility of approaching a corner. As our evaluation showed,
however, the overall number of event channels that must
be subscribed, is smaller using hexagons. So from now on,
hexagons will be used in the examples.

After a shape for the map pieces has been found, the size
is still a question. To reduce the overall bandwidth needed
for a client, the pieces should probably not be much larger
than the client’s scope of visibility. This would reduce the
network traffic to a minimum, but it must be taken into ac-
count that, when moving, many subscribe und unsubscribe
operations are required, generating unwanted overhead. Too
large pieces, however, require more communication band-
width, because the larger the pieces, the more players are in
the same piece.

Indeed, no definite answer about the correct map piece
size can be given at this point, without knowledge regarding
the actual game. Different game scenarios will result in a
different level of interaction; first person shooters use rela-
tively small maps with many players where adventures have
huge maps with sparse players. Our idea is, the map piece
should be that large that it takes approximately one third
of the communication load a specific game engine gener-
ates in “normal” multiplayer mode (not in “massive” mul-
tiplayer mode). As a single player is interested in up to
three hexagons, the same level is reached as for a “normal”
multiplayer game.

Now we search a communication model that is able to
associate every map tile with a virtual “network”: In a nor-
mal multiplayer game you deal with one “network”, and as

you are normally playing on one map tile, this “network”
should be associated with this map tile. Moving from one
map tile to a different one, is changing the network. We
decided to take a publisher/subscriber model, because it be-
haves relatively similar to standard network infrastructures,
e. g. ethernet: typically, games are sending IPX or UDP
datagrams over an ethernet network, and as they do not
want to send packets to every single recipient, multicast or,
more generally, broadcast is used. This results in the packet
sender’s network layer not knowing who receives his packets,
the transmission (from the network layer’s point of view) is
anonymous. Looking at the publisher/subscriber model, the
behaviour is similar: publishing a message datagram corre-
sponds to sending an anonymous network packet.

The different virtual “networks” can now be modeled us-
ing the channel concept of our exdended publisher/subscriber
model described above. Whenever the player (respectively
the game engine controlling the player) is interested in what
is happening in a specific “network” it subscribes to the cor-
responding channel and will therefore receive the datagrams
sent over this “network” (i.e. the messages published into
this channel).

With this approach the network traffic (and thereby the
communication bandwidth) is reduced to the parts relevant
for the player, and a behaviour very similar to ordinary eth-
ernet network is maintained. Hence, the known techniques
used to cope with network issued can be applied. However,
this approach will not work out if the implementation of
the abstract publisher/subscriber channel concept behaves
too different from a raw physical network. Therefore, imple-
mentation issues concerning these channels will be discussed
later.

4.4 Separating environment and interaction

In the next step, we investigate how the load on possible
game servers managing the permanent parts of the game
can be reduced. Therefore, for this consideration the as-
pect of network communication is reduced to the content
transmitted.

Taking a closer look at this content, we were able to figure
out at least two major categories:

1. The game map and items that are on fixed positions
on the map. Usually these are game elements like re-
sources, weapons, potions or other pick-ups.

2. The players that are moving around and interacting
with each other. This includes chatting, killing, trad-
ing among them. However, these interactions do not
change the environment.

Separating these two groups of information is the next step
we propose. As illustrated above, with the map segmented
into smaller pieces, this results in each piece having now
two corresponding channels: one to subscribe for the envi-
ronmental game data and one to subscribe for the interca-
tion. While the game data channel contains relatively slow
changing environmental information like map data, proba-
bly including player positions, the other channel transfers
the events that are generated by the interaction produced
during the active game play that takes place in that specific
spatial partition of the map. This separation of environ-
mental data and interaction results in the game data chan-
nel (the “environment channel”) consuming only little band-
width compared to the game play channel (the “interaction

environment & interaction

O environment only

no longer relevant
O not relevant

Figure 1: Relevance of map pieces

channel”). Given that a player is in a specific partition of
the map, he only needs to subscribe to both channels for the
specific partition, in which he wants to interact. Regarding
the adjacent hexagons, it is sufficient to receive environmen-
tal updates as long as the player does not want to interact
with the game play taking place there. In particular, the
environmental data received through the environment chan-
nel should provide enough information to decide whether
interaction with an adjacent hexagon might take place (e.g.
reaching weapons range). In this case, the player must also
subscribe to the interaction channel of this hexagon. As
the player moves across the map it is now easy to request
the data needed by simply subscribing the new environment
and interaction channels and unsubscribe the ones now out
of scope for the player (see fig. 1).

A game server managing a specific spatial partition pro-
vides only constant or nearly constant data such as terrain
and objects within the map. This means that it is sufficient
for the server to receive only the data exchanged through
the environment channel. It is even sufficient for the game
server to hold only approximated positions of all player and
non-player characters, while the exact information can be
received directly from the source of the elements. Given our
model, where every hexagon is associated with its own two
game channels, we now can postulate requirements for these
game channels:

e The channel for the environment needs relatively small
bandwidth. Between the players, it should meet at
least soft real-time requirements, but the connection
to the game server does not need to. Environmental
updates can be delayed, and sometimes even aggre-
gated (e.g. position updates).

e The channel for the interaction among the players needs
more bandwidth and it should meet real-time require-
ments whenever possible as it takes the role of the clas-
sical LAN. Missing deadlines will result in delays to the
interaction, and therefore the smoothness of game play
will suffer.

45 Interaction aspects

These requirements can be fulfilled easily, if we assume
that clans or guilds are often network topologically located
in the same area, e. g. connected via the same backbone.
It is highly presumable that the network quality is quite

good between these groups. If all character interactions are
published only between the participants, as stated above, a
low latency can be provided. If changes occur to the envi-
ronment, all users in the player’s hexagon get the updates
directly. These updates also have to be sent to the server,
but since all participants who need this data immediately get
them directly, the server may be updated with low priority,
when there is free bandwidth. This especially will improve
the reactivity in fights, when a high event rate exists be-
tween the users. The modelling of the publisher/subscriber
channels, which will take place in the next section, will try
to respect these aspects.

However, this assumption is not always true. A particular
charm of massive multiplayer games is meeting somebody
not sitting next to you, neither geographically nor network
topologically. This is likely to result in large delays and
low bandwidth among the players that interact with each
other. Popular solutions to this problem are to terminate
the interaction (“Hey, that player is not moving!”), which is
quite boring, or to delay the game play until all participants
are up-to-date with their internal state. Stopping the game,
however, is not feasible in a large environment with many
players, because the game will not leave its synchronization
phase. A possible solution is, to delay only the game play
in the specific spatial partition in which the delays occur.
In our model this corresponds to implementing an ordinary
synchronization protocol via the interaction channel of each
spatial partition, thereby not interfering with other players
in other partitions of the map and their interactions. The
price, however, is the loss of a global (physical) time base
as parts of the game run “slower” than others. But, after
all, it is still possible to maintain a partial order by using
a logical time, for example Lamport Time. If the scenario
permits it, one might also use vector clocks.

4.6 Environmental aspects

In separating environment and interaction and letting the
clients handle the interaction themselves, the load on the
server cluster is dramatically reduced. This is the cause
since nearly all interactions can be handled by the clients,
and the servers just have to manage the terrain and fairly
rough information on the players. This results in an in-
creased number of spatial map pieces a specific server can
handle. More important, the server does not have to scale
with the number of the clients participating, but with the
size of the hexagons or (equivalent to that) with the number
of hexagons it has to maintain. As this parameter can be
chosen by the game engineer, it is possible to flexibly add,
remove or upgrade game servers as the game world evolves.

Since the exchange of information is done through in-
formation channels and not between two participants (one
client, one server), the clients never have contact a specific
server during game play. Using the publisher/subscriber
model, the addressing is based on selecting the interesting
channels, and not based upon a hardware dependent ad-
dress, like an IP or an IPX network address. Therefore it
is even possible to have complex hexagons handled by more
than one server, replace a game server on-the-fly or to trans-
fer hexagons from one server to a different one without the
clients even noticing it. Needless to say, this poses immense
challenges to the game server software, but from the com-
munication layer’s point of view, it is no problem.

Q player
Xlocal network

centralized channel

e,
ot e

no local communication! Mof/(

Sa
player
remote network

phys. network

phys. network

Figure 2: Centralized channel approach

channel

handler

object object object

channel
handler

network node network node

Figure 3: De-centralized channel approach

5. IMPLEMENTATION ASPECTSREGAR-
DING THE PUBLISHER/SUBSCRIBER
MODEL

The implementation of the publisher/subscriber model
that is used in our approach is a revised version of the mas-
ter thesis of one of the authors [7]. Therefore it will not be
discussed in every detail. However, regarding the fact that
it is vital to make our approach work as predicted, the most
important aspects will be discussed briefly.

One of the most central points is the modelling and the
implementation of the abstract publisher/subscriber “chan-
nel” concept. A first idea would be to generate a central in-
stance handling all messages published into this channel[4],
see fig. 2. This, however, is not suitable for our approach.
Not only that two publishers (players) in the same physical
network would not communicate directly with each other,
the centralized channel would also reintroduce a centralized
“game server” handling all object communication, both in-
teraction and environment updates. It was an explicit goal
to avoid this.

The next step ([4] calls this “federated event channel”)
is to distribute the channel over the participating network
nodes. As this distribution must be transparent to the par-
ticipants (otherwise you lose the lean programming inter-
face), a new component is created that will handle the dis-
tribution of the messages to the other parts of the channel.
This component is, in our implementation, named “channel
handler” [5]. Figure 3 illustrates this model. Now, with the
channels distributed among the nodes, no central instance is
needed for communication. Every object publishing a mes-
sage will publish to its local channel handler. The channel
handler, in turn, will transfer the message to other local ob-
jects subscribed to this specific channel and to other channel
handlers having objects subscribed to this channel.

Obviously, this introduces new problems. For the ap-

group membership
manager

group membership updates

channel

handler

object object object

channel
handler

network node network node

Figure 4: Managing channel memberships

proach to massive multiplayer games outlined in this pa-
per, two of them are extremely important: first, an explicit
group membership is introduced, as one channel is now rep-
resented by a group of channel handlers. Second, how is the
communication among the channel handlers realized, is it or
shall it be reliable, unicast, multicast, broadcast, real-time,
and so on.

Concerning the group membership, a channel is repre-
sented as a list of objects subscribed to it. Given our ap-
proach with the channel handlers, every channel handler can
maintain a list of its local objects subscribed to a channel, so
from a meta-view the channel is a list of channel handlers. A
channel handler is part of that list, i. e. member of the chan-
nel group, if it has at least one subscriber. Still the problem
is left, who maintains these lists. In our implementation
we use a single instance, a group membership manager (see
figure 4). While using single centralized facilities (=single
points of failure) normally is not a good idea due to relia-
bility and scalability issues, it proved itself feasible for our
approach: The load generated by group membership man-
agement is small, and therefore we ran our tests perfectly
using the centralized group management implementation.
However, this is clearly a point for future improvements.

Concerning the communication among the channel han-
dlers, this is difficult, because not every channel has the
same requirements. For some channels it might be impor-
tant that every message is delivered within a given dead-
line, for other channels it might be more important that
no single message is lost, no matter how long it takes to
deliver it. Presuming that the implementation of the pub-
lisher /subscriber protocol we use will connect nodes over the
Internet and that we want to maintain a behaviour similar
to a raw network, the network protocols we may use are
restricted to the possibilities of IP:

o UDP unicast: The UDP unicast is an unreliable data-
gram service. As it adresses only one recipient per
datagram, a publishing channel handler has to trans-
mit a single datagram to every event channel handler
that has an object subscribed to the channel.

e TCP unicast: The TCP unicast is a reliable data stream

subnet subnet

channel Unicast
\
handler I /channel
handler

U,

%

broadeast CQS/ \
channel
handler

Figure 5: Subnet clustering is needed

channel
handler

handler

channel
handler
channel

connection. It also adresses only one recipient for the
stream, so a publishing channel handler has to gener-
ate a new stream to every event channel handler that
has an object subscribed to the channel.

e UDP broadcast: The UDP broadcast is an unreliable
datagram service. It adresses every network node in
the sender’s subnet, and therefore a publishing channel
handler has to transmit only one datagram to reach
every event channel handler in its subnet. Normally,
UDP broadcasts are not routed through the Internet.

o UDP multicast and own protocols: The UDP multicast
and own protocols are probably what could be most
useful for the needs of publisher/subscriber. But, un-
fortunately, they are not guaranteed to be routed in
the Internet!, thus they are not used in our implemen-
tation. A game is worth nothing if nobody can play
it.

Taking into account the characteristics of the two types of
channels (interactive, environmental) our approach lined out
earlier, the following transport protocols have been chosen:

The environment channel produces (compared to the in-
teractive channel) less network traffic, hence consumes less
bandwidth, messages can be delayed but they should not be
lost. Therefore all connections made to deliver messages in
the environment channel are TCP connections.

The interactive channel should, as stated above, behave as
similar as possible to a raw network (e. g. ethernet). Due
to this, in the local network (a local network is identified
by a network route indicating a direct route, not a gateway
route), UDP broadcast is used. Concerning the connection
between the channel handlers not in one subnet, we decided
to use TCP: channel handlers not in the same subnet are
probably spread far over the Internet, where packet losses
are not unlikely. While a possible game engine still has to
cope with the increased latency that will be induced by a
TCP retransmit, it does not have to handle the retransmit
itself.

The final aspect concerning the implementation of the
publisher/subscriber model that will be discussed here, is
clustering. Figure 5 illustrates the problem: While a group
of event channel handlers in the same subnet as the publisher
of a message will be reached by only one UDP datagram, a
group in a remote subnet will be reached by a corresponding

!Many ISP’s block multicasts and protocols other than
TCP/UDP in fear of hackers that are trying to expoit IP
implementations.

number of unicasts producing avoidable network traffic. To
avoid this traffic, local clusters are introduced, wich is tech-
nically done by instantiating the whole publisher/subscriber
model as it is described in this chapter into itself. Every sub-
net cluster is represented to the outside as a single channel
handler, just that it has not “simple” objects as subscribers
but channel handlers. The one event channel handler that
is visible to the outside, call it cluster gateway, manages its
own group membership lists for the machines inside the clus-
ter and it subscribes to a channel as soon as one machine
inside the cluster subscribes to the channel (at the clus-
ter gateway). Similarly, every message published inside the
cluster is bridged to the outside and vice versa. In figure 6 a
clustered scenario is displayed. You can see how a message
that has been published by an object connected to channel
handler ‘AB’ travels through the system. No redundant net-
work connection is made. Also is not visible wether channel
handler ‘C’ is a single channel handler or wether it is hiding
a cluster behind it. Please note that the programming in-
terface for the client applications is still publish, subscribe,
unsubscribe, receive.

6. EVALUATION
6.1 Goal

As the implementation of the publisher/subscriber net-
work layer was adapted to meet the requirements described
in this paper, we needed to verify our assumptions. For
this reason we implemented a demonstrator to generate net-
work traffic similar to the traffic arising in real games. The
demonstrator is solely focused on the network behaviour.
We did not program any mechanisms to ensure fairness or
bandwidth optimisations like dead reckoning. A simple syn-
chronization scheme is used, in which the objects publish
their updates in the next simulation step whenever neces-
sary. And since all people using the demonstrator are well
known, there was no need to prevent cheating. Our imple-
mentation of a game client simulator is quite simple, but
should cover most game situations from the view of the net-
work layer. It realizes two different types of objects: Objects
that will represent static or mostly static environment ob-
jects, and active objects for characters under control by a
player or by a computer. According to their properties these
objects may interact as described in the following paragraph.

6.2 TheMap

As described in the previous chapters we tessellate the
map into pieces of the magnitude of normal multiplayer
maps. We implemented two map types in the demonstrator,
one with rectangular and one with hexagonal tiles.

On the screenshot shown in fig. 7 you can see three ac-
tive objects, with two sharing environment channels. All
tiles that are black are not involved in network commu-
nication on this node. Tiles drawn in dark grey are sub-
scribed only to their environment channels, while the light
grey ones communicate on both, the environment and the
interaction channel. When characters from the same node
stay in the same tile, the overall number of channels in-
volved is reduced. This constellation is quite probable since
in games using many characters these are typically grouped
so that the player can handle them easily.

Handling rectangular tiles is very simple compared to hexag-
onal tiles. But from the communication view a hexagonal

channel members

A group membership
B manager
C
unicast
channel members .
unicast

channel handler "A"

channel members

channel handler "B"
local membership manager local remote:
BA A
/ BB B (self)
C

broadcast

local subnet

channel

local: remote:)
local membership manager
AA A (selfy > manag
AB B
AC C
broadcast

publish

local subnet

handler
g

Figure 6: A clustered publisher/subscriber scenario

Figure 7: The demonstrator with rectangular tiles

‘ environment & interaction
O environment only

O no longer relevant
O not relevant

Figure 8: Walking over tile borders

O sight/ interaction radius

tile has less adjacent tiles and thus less environmental chan-
nels that need to be subscribed and unsubscribed. This is
especially the case when a player is near the border of a tile
so that he may see into and interact with objects of adja-
cent tiles (see figure 8). When using a hexagon pattern a
maximum of three interactive channels are subscribed simul-
taneously for one object compared to four in a rectangular
map model. One of this additional interactive channel will
most likely become the new current channel. Thus the ratio
of additional channel subscribes regarding tiles useful only
for a very short period of time, is one for the hexagon model
compared to two for rectangular tiles in worst case. Con-
sidering this we estimated better results for the hexagonal
model regarding both, interactive and environment channel
subscribes.

6.3 Objectsand Interaction

The first category is comprised of static objects that will
communicate via the environment channel. The term static
object includes all objects other than players or NPCs or
their representation on other machines. Players may not
interact with all objects of this category directly. Some ob-
jects represent map data and static scene objects that are
used for rendering purposes only. This comprises environ-
ment data that may consist of terrain information, build-
ings, light sources and similar. Although the player cannot
directly interact with these objects, they interact with him
indirectly, e.g. by restricting his movement abilities when he
tries to walk through undergrowth or walls. Other objects
of this category support direct interaction with the player
and may be used and collected by him. Some of these alter
the character’s properties like weapons and upgrades (e.g.
a health pack or an armor), others may be simulated shops
where the player can trade items, etc. All static items gen-
erate network traffic for themselves and for the character
interacting with them. Upgrades disappear when they are
taken, new weapons are picked up, item prices have to be
negotiated, switches may be pressed and so on. Most of
these updates are of low priority, and are thus handled by
the environment channel. The second type of objects imple-
mented are active objects. All characters controlled by the
players are modelled as active objects. These interact with
the static objects as describes above, but they also interact
with other active objects, e.g. talk, trade or shoot.

6.4 Communication

Although the demonstrator has only very limited graph-
ics, it is able to simulate a game situation with static and
active objects that are distributed and updated between
the participants. All objects are dynamically distributed
through the mechanisms described before. All objects from
remote clients are represented by proxy objects that will
encapsulate the network layer and provide interfaces for in-
teraction. On one client all interactions are done between
local objects that propagate the updates themselves. These
objects also provide their own rendering method, so drawing
them is easy. If an interaction between two object occurs,
the updates for all involved objects are calculated locally.
The local instances of all objects affected publish their up-
dates through the appropriate channels to all other proxy
objects and of course the real instance of the object. Since
the instances and all its replicates are located in the same
tile (if they are not out of sync), it is sufficient to send up-
dates only through the channel of the current tile.

6.5 Results

In order to generate comparable situations for statistical
purposes, all actions taken by active objects in the demon-
strator are simulated using a pseudo random algorithm. The
results were obtained with one single client moving over the
map, while the other objects were provided by other clients.
First we evaluated the average number of subscribed chan-
nels in our favoured hexagon model compared to simple rect-
angles. The results are shown in table 1. Column “A” is
the average number of interactive channels subscribed with
hexagonal tile shape, column “B” corresponds to rectan-
gular tile shape. Columns “C” and “D” show the average
number of environment channels subscribed with hexagonal
(C) and rectangular (D) tile shapes. According to the aver-

Table 1: Comparing hexagons and rectangles
#tiles | tile size A B C D
5x5 | 160x160 | 1,13 | 1,13 | 7,29 | 9,29
10x10 | 80x80 | 1,42 | 1,45 | 7,58 | 9,61
20x20 | 40x40 | 1,91 | 1,89 | 8,04 | 10,01
40x40 | 20x20 | 2,78 | 2,78 | 8,79 | 10,78

Table 2: Varying number of tiles and tile size

Fttiles | tile size | #cells A B
5x5 160x160 25 | 4,54% | 29,14%
10x10 | 80x80 100 | 1,42% | 7,58%
20x20 | 40x40 400 | 0,48% | 2,01%
40x40 | 20x20 1600 | 0,17% | 0,55%

age number of subscribed interaction channels the hexagon
model nearly equals the results of the rectangular model.
The average number of subscribed environment channels is
approximately 2 channels less in the hexagon model. This
is as expected: A hexagon has sixn adjacent hexagons, a
rectangle eight adjacent rectangles.

Table 2 shows the relationship of the tile size and the
percentage of the map subscribed. Column “A” shows the
percentage of interactive channels while “B” shows the per-
centage of environment channels subscribed when moving
one player over the map. It is visible that with an increas-
ing number of tiles the percentage of the map which must
be subscribed is reduced dramatically.

Tables 3 and 4 evaluate the number of events received
when varying the number of objects on the map. Table 3
shows that, when the tiles are very large, the number of
events received (and thereby the communication bandwidth
needed) grows dramatically. However, table 4 shows that, if
the tiles are chosen of a middle size, the number of events
received increases very slowly, even with an increasing num-
ber of objects on the map. This is because the amount of
objects in interaction range is reduced by the cell concept.
While in the scenario shown in table 3 every increase in ob-
ject density is refelected in an increased number of received
events, choosing smaller cells (as in the scenario outlined in
table 4) will keep the number of received events in the same
order of magnitude, even when the object density increases.
This allows the number of players to be increased without
increasing the communication bandwidth needed for every
single player too much.

7. CONCLUSION

In order to cope with the challenges that rise with massive
multiplayer online games, an architecture based on the pub-
lisher/subscriber model has been presented. Several steps
have been proposed to handle network- and communication-

Table 3: Map with 25 cells, tile size 160x160, 5x5
tiles

static obj. | dynamic obj. | events received
5 5 1758
10 10 2753
20 20 5255
40 40 13067

Table 4: Map with 400 cells, tile size 40x40, 20x20
tiles

static obj. | dynamic obj. | events received
5 5 786
10 10 836
20 20 846
40 40 830

related topics: The game map has been split into smaller
pieces, as not every participant needs to know every move
on the complete map. The publisher/subscriber model has
been found suitable to fulfil the communicational needs for
inter-player and player-environment interaction. By sepa-
rating the interaction among the players and the environ-
ment, a possibility was found to reduce the demands posed
to game servers regarding both computational power and
processing bandwidth to levels known from existing multi-
player games.

On the downside, the appproach presented deals only with
the scalability issues introduced in massive multiplayer games.
No proposal is made how other network issues or cheating
can be dealt with. A detailed evaluation regarding the feasi-
bility of the integration of existing solutions for these issues
in our concept is missing. Finally, as a real massive multi-
player online game cannot be realized easiliy for a quick test
of concepts, we were restricted to simulating certain aspects.
The final proof, however, is missing.

8. REFERENCES

[1] J. Aronson. Dead reckoning: Latency hiding for
networked games.
http://www.gamasutra.com/features/19970919/
aronson_01.htm, September 19 1997.

[2] Y. W. Bernier. Latency compensating methods in
client/server in-game protocol design and optimization.

[3] P. Bettner and M. Terrano. 1500 archers on a 28.8:
Network programming an age of empires and beyond.
GDC 2001, March 22 2001.

[4] T. H. Harrison, C. O’Ryan, D. L. Levine, and D. C.
Schmidt. The design and performance of a real-time
corba event service. Proceedings of OOPSLA 1997,
ACM, October 1997.

[6] J. Kaiser and M. Mock. Implementing the real-time
publisher/subscriber model on the controller area
network (can). ISORC99 proceedings, Saint Malo 1999.

[6] L. R. Rajkumar, M.Gagliardi. The real-time
publisher/subscriber inter-process communication
model for distributed real-time systems: Design and
implementation. Proceedings of the IEEE Real-Time
Technology and Applications Symposium, 1995.

[7] M. Wallner. Ein publisher/subscriber Protokoll fuer
heterogene Kommunikationsnetze. University of Ulm,
Germany, March 2001.

