
A Peer-to-Peer Architecture for Massive Multiplayer Online
Games

Thorsten Hampel
University of Paderborn

33102 Paderborn
Germany

hampel@upb.de

Thomas Bopp
University of Paderborn

33102 Paderborn
Germany

astra@upb.de

Robert Hinn
University of Paderborn

33102 Paderborn
Germany

exodus@upb.de

ABSTRACT
Massive Multiplayer Online Games with their virtual gam-
ing worlds grow in user numbers as well as in the size of the
virtual worlds. With this growth comes a significant increase
of the requirements for server hardware. Today an MMOG
provider usually faces the problem of serving thousands of
users with entire server clusters. Peer-to-Peer networks with
their high scalability and flexibility meet the requirements
of connecting hundreds of thousands of people all over the
world without a central server. In doing so the network
bandwidth requirements remain at a reasonable level.

In this work we propose to combine MMOGs with a Peer-
to-Peer network. We introduce a game architecture capa-
ble of exploiting the flexibility and scalability of P2P net-
works. A P2P architecture based on an overlay network us-
ing distributed hash tables with support for persistent object
storage and event distribution has been developed to meet
MMOG requirements.

Keywords
MMOG, peer-to-peer, game architecture

1. INTRODUCTION
Distributed hash tables (DHT) are a mapping of a hash
function to the nodes of a network. They route messages on
shortest paths from one node to another (usually in a loga-
rithmic number of routing steps) and guarantee fail safety of
the overlay network. Obviously, this new technology offers
a comprehensive peer-to-peer infrastructure for all kinds of
applications. Therefore, the usage of peer-to-peer overlays
for MMOG architectures is a promising approach.

In recent years the design of distributed hash tables has
been studied extensively. Nevertheless, there are only a few
applications based on this new technology. It is generally
agreed upon the impact of DHT on the design of new soft-
ware, when scalability, distribution of content, or computing

power is an issue. Therefore, we adapt the concept to the
field of massive multiplayer online games (MMOG). In this
area scalability is an important factor when a lot of users
play simultaneously in huge virtual worlds.

Peer-to-peer overlay networks can provide this kind of scal-
ability, moving the computational load and storage require-
ments from central server clusters to peers in the network.
This way, each player’s computer connected to the game also
automatically provides additional resources to the game.
This reduces requirements for powerful central server clus-
ters and thus lowers the cost of setting up and maintain-
ing massive multiplayer online games. The main drawback
of peer-to-peer networks for games is the lack of a central
authority that regulates access and prevents cheating. We
introduce a concept of sets of controller peers that supervise
each other. This kind of redundancy can prevent cheating
[3] while at the same time improving the stability of the
network, since there is no single point of failure.

We will first present an overlay network based upon dis-
tributed hash tables (DHT) in a way usable for MMOGs
and then present an MMOG architecture that we have im-
plemented using such a peer-to-peer network.

2. CONCEPT
The concept of a P2P-based MMOG architecture offers a ba-
sic infrastructure to support a large number of participants.
In order to meet the requirements of a distributed MMOG
architecture we have chosen existing technologies and sys-
tems. Each of these systems can be mapped on certain re-
quirements with some demands needing a combination of
technologies. Our design is based on Pastry [5] and the ex-
tensions Past [6, 2] and Scribe [1]. The resulting overlay
network includes the following components:

DHT-based Overlay-Network – Pastry
The DHT-based overlay-network should enable a self-orga-
nizing, virtual infrastructure, which offers robustness against
network failures. Additionally, the infrastructure possesses
high scalability to maintain good performance with a large
number of peers. Communication and Persistence are han-
dled by the infrastructure. In comparison to typical DHT-
applications like filesharing the MMOG needs events for
game actions and player communication. Pastry serves as a
good basis for these requirements.

Object Management – Past

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Netgames'06, October 30–31, 2006, Singapore.
Copyright 2006 ACM 1-59593-589-4. $5.00.

1

Pastry is responsible for maintaining the network and rout-
ing messages in the overlay network. An extension of the
basic functionality is needed to achieve persistence of ob-
jects. It must satisfy the demands of a high availability
with replication of objects. For this purpose the Past sys-
tem is applicable, which is also based on the Pastry routing
technology.

Event-based Messaging – Scribe
Scribe is a multicast infrastructure for Pastry. Therefore,
it is ideally suited to distribute events (e.g. game actions)
to the nodes of the peer-to-peer network. Apparently, this
event infrastructure needs to be scalable as well. The de-
livery of messages is ensured because of Pastry’s routing
algorithm.

Figure 1: Combining different technologies to ac-
complish object access and synchronization

Figure 1 illustrates the cooperation of the Pastry-based tech-
nologies. In step 1 an object is found by Pastry itself. Then,
all access is synchronized using the Scribe extension. Finally,
the replica management is handled by Past by storing repli-
cas to the currents node leaf set of the logical network. The
illustration of the physical network shows how objects are
replicated to provide redundancy and availability. The com-
bination of these technologies covers the requirements of a
distributed MMOG architecture. A detailed description of
the implementation will be given in the next section.

3. MMOG ARCHITECTURE BASED ON A
P2P OVERLAY NETWORK

To demonstrate the feasibility of a distributed overlay net-
work approach, we have developed an MMOG architecture
based upon the DHT overlay network described in the previ-
ous section. We use a Pastry network with persistent object
storage through Past and event distribution through Scribe.

The game engine that runs on each peer sitting on top of
this network base is shown in figure 2.

Scribe

Past
persistence

resource manager

security manager

renderergui

communication

Pastry

kernel /
loader

script manager

controller scripts

client scripts

script APIs

Figure 2: Architecture of a single peer node

As can be seen, this architecture resembles a microkernel ar-
chitecture. The script and security managers form a kernel
that controls inter-component communication through the
scripting interfaces. The kernel also acts as a loader that
fetches components from the overlay network through the
resource manager. Central software updates can be realized
by uploading new versions of components into the Pastry
network and letting the resource manager load these at run-
time into the environment of each peer.

To achieve a consistent timing for games realized with our
architecture, we are separating the game runtime into dis-
tinct slots called ‘ticks’. These can be arbitrarily defined,
for a turn-based game it could be game turns, for real-time
games it could be 20 millisecond phases. Each tick, a new
game state is calculated from the previous game state and
the changes that have arrived since then. The number of
ticks since the beginning of the game can be used as a tim-
ing counter, so that each game action and game state can
be attributed to a certain time stamp. This also makes it
possible to determine synchronicity between peers.

We will describe the main components of our MMOG archi-
tecture in the following subsections.

3.1 Scripting and Security
The game-engine components are written in Java, while the
game logic is implemented in the PNuts1 scripting language.
This allows for arbitrary games and for easy extendibility. In
addition to that, all game components can provide a script-
ing interface so that there are clearly defined interfaces that
result in code that is easier to maintain. A security manager
handles access rights and permissions before passing script
calls to the script manager for execution. In settings where
different content providers write extensions for the game,
this environment can be used to provide clear code inter-
faces and access control between components. It also limits

1http://pnuts.dev.java.net/

2 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

user actions to those that are allowed for the user within the
game context.

3.2 Network
Several components provide functionality based directly on
the overlay network (Pastry). The resource manager holds
static data like script source code, images or 3d object data
which are stored persistently in the overlay network (through
Past). The data manager holds the game state and client
specific data like login information and the user profiles and
3-d avatars. The communication manager handles event dis-
tribution by using multicasts on the overlay network (through
Scribe). Events are routed through Scribe-topics and can
be distributed and subscribed to just like in a centralized
client-server architecture.

The game world is segmented into several regions. These
regions can be chosen arbitrarily and they can be connected
to provide a large environment as well as disconnected areas
that are only accessible through doorways or portals. Each
region is controlled by a region controller (RC), a peer that
has been chosen to keep the game states of all other peers
in the same region consistent. Figure 3 shows a part of the
game world that is divided into hexagonal regions, each run-
ning on a Pastry network controlled by a region controller.

RC

BC

BC

Figure 3: A region of the game world as an overlay
network with redundant object storage and region
controller

To increase network stability and tackle the problem of cheat-
ing by manipulated peers we introduce a number of backup
controllers (BC). These keep copies of the data held by the
region controller. In case the region controller fails or dis-
connects from the network, a backup controller can immedi-
ately take over and become the new region controller. The
backup controllers can also detect when the region controller
has been compromised and is trying to cheat by sending out
manipulated game states (see figure 5).

3.3 Consistency and Events
One of the central problems of massive multiplayer online
games is that of cheating, which means that a player tries
to manipulate data that she is not entitled to change, e.g.
the virtual wealth of the player’s character in the game. In
peer-to-peer architectures, this problem is even more sophis-
ticated, because part of the virtual world and game logic is

run on the player’s peer node. This means that peers can-
not be regarded as trustworthy and that special mechanisms
must be developed to ensure that compromised peers cannot
endanger the consistency or stability of objects and network
traffic.

A central approach towards this problem is redundancy.
Backup controllers can take over if a region controller fails
and they can supervise each other and the region controller
to detect and prevent cheating. The event and game state
distribution in our peer-to-peer system works as follows:

1. Peers send events (e.g. game actions) to the region
controller and the backup controllers.

2. The region controller and the backup controllers each
calculate the new game state based upon the events
they received. The region controller then sends out
the new game state to all peers, while the backup con-
trollers send out hash values calculated from the new
game state.

3. The peers compare the new game state they received to
the hashes from the backup controllers. If the hashes
match, then the game state was valid. If they do not
match, then they can determine which peer sent out
an invalid game state or hash. This either means that
the peer failed to calculate the correct hash or game
state or that it has been compromised. A compro-
mised node can thus be expelled from the network or
reduced to common peer status depending on policy.
If the game state was invalid, the peers skip until the
next game state is sent. This might cause a small lapse
in the game, but the game will not fail and will auto-
matically be in sync again when the next valid game
state arrives.

4. To prevent single peers from interfering persistently,
the role of the region controller is passed around each
game tick. This means that the load of calculating
a game state and sending it out will be evenly dis-
tributed over time and no peer will have the chance
to disrupt the game with invalid game states mutliple
ticks in a row.

Figure 4 shows how the peers use the overlay network to
distribute events or game actions between them. The dis-
tribution of game states by the region controller and game
state hashes by the backup controllers can be seen in fig-
ure 5.

4. RELATED WORK
The presented approach is quite similar to the ideas intro-
duced in [4]. SimMud is a proof-of-concept of an MMOG
architecture based on Pastry and combining the Past and
Scribe extensions to create a virtual world distributed to
peers. It is shown that the system scales with the number
of players with an average message delay of 150ms. Our
approach provides a framework for MMOGs based on such
a P2P architecture, while adressing some common game-
related requirements like object and resource storage and
basic mechanisms to prevent or hinder cheating.

The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006 3

RC

BC

BC

game actions

Figure 4: Game actions and events are sent to the
region and backup controllers

RC

BC

BC
game state hash

game state
game state hash

Figure 5: Distribution of game state and hashes for
cheating detection

5. CONCLUSION AND OUTLOOK
Our architecture demonstrates the successful design of a
highly distributed P2P-based gaming architecture by using
Pastry in combination with the Past and Scribe extensions.
A distributed MMOG is a very promising approach for the
gaming industry, because the traffic and load can be moved
to the former client machines.

The motivation for a distributed MMOG can be seen in a
scalability of resources, robustness by decentralized storage
of objects and management of peers, load-balancing by dis-
tribution of activities through the network, self-organizing
network and efficient routing and replication.

Several details remain for further investigation. The latency
of our example MMOG suffices for games that are not overly
time-critical (e.g. a game world that is mainly used for com-
munication and trade). We are planning to do more research
on whether this architecture can also be used for games with
higher requirements towards latency, e.g. action games.

6. ADDITIONAL AUTHORS
The MMOG student project group: Tobias Berghoff, André
Braun, Kai Brinksmeier, Marco Gießman, Markus Heber-
ling, Jürgen Hölker, Kamil Kopel, Marko Kowalczyk, Jo-
hannes Lintner, Ingo Niehaus, Markus Podlacha, Dilek Say,
André Schmitz, Metaxia Vavritsa, Raphael Weber.

7. REFERENCES
[1] M. Castro, P. Druschel, A. Kermarrec, and

A. Rowstron. SCRIBE: A Large-scale and
Decentralized Application-level Multicast
Infrastructure. IEEE Journal on Selected Areas in
communications (JSAC), 20(8):1489–1499, 2002.

[2] P. Druschel and A. I. T. Rowstron. PAST: A
Large-Scale, Persistent Peer-to-Peer Storage Utility.
pages 75–80, 2001.

[3] P. Kabus, W. W. Terpstra, M. Cilia, and A. P.
Buchmann. Addressing Cheating in Distributed
MMOGs. In NetGames ’05: Proceedings of 4th ACM
SIGCOMM Workshop on Network and System Support
for Games, pages 1–6, New York, NY, USA, 2005.
ACM Press.

[4] B. Knutsson, H. Lu, W. Xu, and B. Hopkins.
Peer-to-Peer Support for Massively Multiplayer Games.
In Proceedings of the Conference on Computer
Communications (INFOCOM), 2004.

[5] A. Rowstron and P. Druschel. Pastry: Scalable,
Decentralized Object Location, and Routing for
Large-Scale Peer-to-Peer Systems. Lecture Notes in
Computer Science, 2218:329–350, 2001.

[6] A. T. Rowstron and P. Druschel. Storage Management
and Caching in PAST, A Large-scale, Persistent
Peer-to-peer Storage Utility. pages 188–201, 2001.

4 The 5th Workshop on Network & System Support for Games 2006 — NETGAMES 2006

