Symphony: Distributed Hashing In A Small World

Gurmeet Singh Manku
Stanford University

manku@cs.stanford.edu

Abstract

We present Symphony, a novel protocol for main-
taining distributed hash tables in a wide area net-
work. The key idea is to arrange all participants
along a ring and equip them with long distance con-
tacts drawn from a family of harmonic distributions.
Through simulation, we demonstrate that our con-
struction s scalable, flexible, stable in the presence
of frequent updates and offers small average latency
with only a handful of long distance links per node.
The cost of updates when hosts join and leave is
small.

1 Introduction

Peer to peer file sharing applications have surged in
popularity in recent years. Systems like Napster,
Gnutella, Kazaa and Freenet [4] have been used by
millions of users. The research community 1s work-
ing on a wide variety of peer to peer applications
like persistent data storage (CFS [6], Farsite [3],
Oceanstore [11], PAST [19]), event notification and
application level multicast (Bayeux [23], Scribe [20]
and CAN-based Multicast [17]), DNS [5], resource
discovery [2] and cooperative web caching [9]. Sev-
eral of these applications have no centralized com-
ponents and use a scalable distributed hash table
(DHT) [8, 13, 16, 18, 22] as a substrate.

A DHT is a self-organizing overlay network of
hosts that provides a service to add, delete and
look up hash keys. Consider a network of n hosts
over a wide area network that wish to cooperatively
maintain a DHT with entries that change frequently.
Replicating the entire hash table n times is unfea-
sible if n is large. One solution is to split the hash
table into n blocks and let each host manage one
block. This now requires a mapping table that maps
a block id to its manager’s network id. If n is of
the order of hundreds or thousands of hosts and if
hosts have short lifetimes, replicating this mapping
table n times might be challenging. One possibil-
ity is to store this mapping table at a single cen-
tral server, which would be consulted for every hash

Mayank Bawa
Stanford University

bawa@cs.stanford.edu

Prabhakar Raghavan
Verily Inec.

pragh@verity.com

lookup. The load on the central server can be re-
duced by caching mapping table entries with DNS-
style leases. However, a central server is a single
point of failure and has to bear all traffic related to
arrivals and departures.

Researchers have recently proposed distributed
hashing protocols [8, 13, 16, 18, 22] that do not re-
quire any central servers. The mapping table is not
stored explicitly anywhere. Instead, hosts config-
ure themselves into a structured network such that
mapping table lookups require a small number of
hops. Designing a practical scheme along these lines
is challenging because of the following desiderata:

Scalability: The protocol should work for a range
of networks of arbitrary size.

Stability: The protocol should work for hosts with
arbitrary arrival and departure times, typically with
small lifetimes.

Performance: The protocol should provide low la-
tency for hash lookups and low maintenance cost in
the presence of frequent joins and leaves.

Flexibility: The protocol should impose few re-
strictions on the remainder of the system. It should
allow for smooth trade-offs between performance
and state management complexity.

Simplicity: The protocol should be easy to under-
stand, code, debug and deploy.

We propose Symphony, a novel distributed hash-
ing protocol that meets the criteria listed above. The
core idea is to place all hosts along a ring and equip
each node with a few long distance links. Symphony
is inspired by Kleinberg’s Small World construc-
tion [10]. We extend Kleinberg’s result by showing
that with & = O(1) links per node, it is possible
to route hash lookups with an average latency of
O(% log? n) hops. Among the advantages Symphony
offers over existing DHT protocols are the following:

Low State Maintenance: Symphony provides low
average hash lookup latency with fewer TCP con-
nections per node than other protocols. Low degree
networks reduce the number of open connections and
ambient traffic corresponding to pings, keep-alives
and control information. Moreover, sets of nodes
that participate in locking and coordination for dis-

tribute state update are smaller sized.

Fault Tolerance: Symphony requires f additional
links per node to tolerate the failure of f nodes be-
fore a portion of the hash table is lost. Unlike other
protocols, Symphony does not maintain backup links
for each long distance contact.

Degree vs. Latency Tradeoff: Symphony provides
a smooth tradeoff between the number of links per
node and average lookup latency. It appears to be
the only protocol that provides this tuning knob
even at run-time. Symphony does not dictate that
the number of links be identical for all nodes. Nei-
ther is the number stipulated to be a function of
current network size nor is it fixed at the outset.
We believe that these features of Symphony provides
three benefits: (a) support for heterogeneous nodes,
(b) incremental scalability, and (c) flexibility. We
discuss these further in Section 5.3.

Road map: Section 2 explores related work. Sec-
tion 3 describes Symphony. Section 4 contains ex-
perimental results. In Section 5, we compare Sym-
phony with other protocols. Section 6 concludes the

paper.

2 Related Work
2.1 Distributed Hash Tables

Plaxton, Rajaraman and Richa [15] devised a rout-
ing protocol based on hypercubes for a static col-
lection of nodes. Routing is done by digit-firing:
e.g., when a node with id zedstu receives a query for
zedaaa, 1t forwards it to a neighbor with prefix zeda.
It turns out that for b bits per digit, each neighbor
must maintain O((2° logn)/b) neighbors resulting in
O((log n)/b) worst case routing latency. Tapestry [8]
adapted this scheme to a dynamic network for use in
a global data storage system [11]. Pastry [18] is an-
other scheme along the same lines where a node for-
wards a query to a neighbor with the longest match-
ing prefix. In both Tapestry and Pastry, the number
of bits per digit b is a configurable parameter that
remains fixed at run-time.

CAN [16] embeds the key-space into a torus with d
dimensions by splitting the key into d variable-length
digits. A node forwards a query to the neighbor that
takes it closer to the key. Nodes have O(d) neighbors
and routing latency is O(dn'/¢). The number of di-
mensions d is fixed in CAN. If the final network size
can be estimated, then d could be made O(logn),
resulting in O(logn) routing latency and O(logn)
neighbors.

Chord [22] places participating nodes on a circle
with unit perimeter. An m-bit hash key K is treated

as a fraction K /2™ for routing. Each node maintains
connections with its immediate neighbors along the
circle and a finger table of connections with nodes at
distances approximately (%, %, % ...y along the circle.
Routing is done by forwarding to the node closest
to, but not past, the key being looked up. Chord
requires O(logn) neighbors and provides O(logn)
routing latency. The protocols for joining and leav-
ing the network introduce complexity and require
O(log? n) messages each. A stabilization protocol is
required to maintain network integrity.

Viceroy [13] is the first proposal that provides
O(logn) routing latency with only a constant num-
ber of links. Like Chord, nodes are placed along
a circle. A node additionally belongs to one out
of approximately O(log n) concentric rings lying one
above the other. These rings correspond to layers in
Butterfly networks. A node maintains connections
with two neighbors each along the two rings it be-
longs to. It also maintains two connections to a pair
of nodes in a lower ring and one connection with a
node in the ring above. Routing requires O(logn)
hops on average.

DHT’s over clusters have been extensively stud-
ied by the SDDS (Scalable Distributed Data Struc-
tures) community in the 90’s. The term was coined
by Litwin, Niemat and Shneider in their seminal pa-
per [12]. Gribble et al. [7] implemented a highly scal-
able, fault tolerant and available SDDS on a cluster
for Internet services. The requirements for a DHT
over wide area networks are very different.

2.2 Small World Networks

Milgram conducted a celebrated experiment [14]
that demonstrated the Small World phenomenon.
He discovered that pairs of people in a society were
connected by short chains of acquaintances. He
also discovered that people were actually able to
route letters to unknown persons in a few hops by
forwarding them along a short path through ac-
quaintanceships. To model the Small World phe-
nomenon, Kleinberg [10] recently constructed a two-
dimensional grid where every point maintains four
links to each of its closest neighbors and just one
long distance link to a node chosen from a suit-
able probability function. He showed that a mes-
sage can be routed to any node by greedy routing
in O(log® n) hops. Barriere et al. [1] studied Klein-
berg’s construction and proved its optimality under
certain conditions.

Our work is inspired by Kleinberg’s construction.
We extend his result by showing that with & = O(1)
links, the routing latency diminishes to O(log” n)

hops. We also show how this basic idea can be
adapted and engineered into a practical protocol for
maintaining DHTs in a peer to peer network.

3 Symphony: The Protocol

Let [denote the unit interval [0,1) that wraps
around. It is convenient to imagine I as a circle
(ring) with unit perimeter. Whenever a node arrives,
it chooses as its id a real number from I uniformly at
random. A node manages that sub-range of I which
corresponds to the segment on the circle between its
own id and that of its immediate clockwise prede-
cessor. A node maintains two short links with its
immediate neighbors. Since all nodes choose their
id’s uniformly from I, we expect that they manage
roughly equi-sized sub-ranges.

The nodes cooperatively maintain a distributed
hash table. If a hash function maps an object to an
m-bit hash key K, then the manager for this hash
entry is the node whose sub-range contains the real
number K/2™. No restriction on m is imposed. Un-
like CAN, Pastry and Tapestry, there is no relation-
ship between m and the number or links.

3.1 Long Distance Links

Every node maintains & > 1 long distance links. For
each such link, a node first draws a random number
x € I from a probability distribution function that
we will shortly define. Then it contacts the man-
ager of the point z away from itself in the clockwise
direction by following a Routing Protocol which we
describe in Section 3.2. Finally, it attempts to es-
tablish a link with the manager of .

We ensure that the number of incoming links per
node is bounded by placing an upper limit of 2k in-
coming links per node. Once the limit is reached,
all subsequent requests to establish a link with this
node are rejected. The requesting node then makes
another attempt by re-sampling from its probability
distribution function. As a practical matter, an up-
per bound is placed on the number of such attempts,
before a node gives up. We also ensure that a node
does not establish multiple links with another node.

Probability distribution function (pdf): We denote
the pdf by p,,, where n denotes the current number of
nodes. The function p, () takes the value 1/(zInn)
when z lies in the range [1/n,1], and is 0 other-
wise. Drawing from p,, corresponds to a simple C ex-
pression: exp (log(n) * (drand48() - 1.0)), where
drand48 () produces a random number between 0 and
1. Tt is the continuous version of the discrete pdf pro-
posed by Kleinberg. The distribution p, belongs to

a family of harmonic distributions. This observation
inspired the name Symphony.

Estimation of n: Drawing from pdf p, poses a
problem: a node needs to know n to begin with.
However, it is difficult for all nodes to agree on the
exact value of current number of participants n, es-
pecially in the face of nodes that arrive and depart
frequently. In Section 3.4, we will describe an FEsti-
mation Protocol that helps each of the nodes track n
at run time. We denote an estimate of n by n. Thus
a node draws from p; instead of p,,.

Choice of k: The number of links established by
each node is a design parameter that is not fixed by
our protocol. We experimentally show that as few as
four long distance links are sufficient for low latency
routing in large networks.

Long Distance Links in Practice: In a network
with hosts spanning continents, we would have to
embed the set of participating hosts onto a circle,
taking network proximity into account. We expect
this to require a fair amount of engineering and we
are currently working on this problem. Once the cir-
cle has been established, we expect Symphony to be
able to route lookups such that the latency does not
exceed IP latency between the source and the final
destination by a large factor. For example, CAN [16]
demonstrated that a factor of two could be achieved
for their construction for roughly 130K nodes.

The phrase “a network with & links per node” de-
notes a network where each node establishes 2 short
links and k long links with other nodes. In terms of
TCP connections, each node actually maintains an
average of ¢ = 2k + 2 connections.

3.2 Unidirectional Routing Protocol

When a node wishes to lookup a hash key z € I, it
needs to contact the manager of z.

A node forwards a lookup for x along that
link (short or long) that minimizes the
clockwise distance to x.

Kleinberg [10] analyzed a static network in which
each participant knows n precisely, has one long dis-
tance link corresponding to p,, manages a sub-range
of size 1/n and always routes clockwise. He showed
that for £ = 1 the expected path length for greedy
routing is O(log” n) hops. We can show that in gen-
eral, if each node has k = O(1) links, expected path
length is O(+ log® n).

Theorem 3.1 The expected path length with uni-
directional routing in an n-node network with k =

O(1) links is O(log” n) hops.

Proof:

We sketch the proof assuming every attempted
long-distance link is successful. However as noted
above in Section 3.1, some of these connections in
fact are rejected because the intended target of the
link is “saturated” with 2k incoming links. We ac-
count for this implementation detail by noting that
provided k£ = O(1), the fraction of such rejected links
is a constant and this only inflates the expected num-
ber of hops by a constant. We also assume that all
nodes have accurate knowledge of n.

The pdf that we use for generating long distance
neighbors is p, (z) = 1/(z logn) for z € [1/n, 1] The
probability phair of drawing a value from [z/2, 2] for
any z € [2/n, 1] is given by fzz/zpn(:b)da: = 1/logs n,
which is independent of z. The significance of phqr:
regardless of the current distance to the destination,
it 1s the probability that any single long-distance link
will cut the distance by at least half. The number of
links to consider before the current distance dimin-
ishes by at least half follows a geometric distribution
with mean 1/phas = log, n. With k links per node,
the expected number of nodes to consider before the
current distance is at least halved is [(log, n)/k],
which is less than (2log, n)/k for k < log, n.

Successive nodes along the route of a hash lookup
diminish the distance to the destination. Consider
that portion of the route where the distance is more
than 2/n. We showed that the expected number
of nodes along the path before we encounter a node
that more than halves the current distance is at most
(2log, n)/k. The maximum number of times the
original distance could possibly be halved before it
is less than 2/n is log,(n/2). Thus, the expected
number of nodes along the route before the distance
is less than 2/n is at most 2(log, n)(log,(n/2))/k.
The remainder of the path consists of nodes that di-
minish the distance from 2/n to 0. The average con-
tribution of these small path lengths is O(1) because
each node chose its id in the interval [0, 1) uniformly
at random. Thus the average path length of the full
route is O(¢ log” n).

©

It is important that links be chosen following a
harmonic distribution. Using the proof technique
in [10], it can be shown that the average latency
is Q(y/n/k) if k links are chosen uniformly at ran-
dom from the interval [0,1). Section 4.9 presents a
graphical illustration of this observation.

3.3 Bidirectional Routing Protocol

In Section 3.1, we described how nodes establish long
links with other nodes. The average number of in-
coming links is k per node. In practice, a link be-
tween two nodes would see continuous routing traf-
fic. This would be materialized as a bidirectional
TCP connection to leverage TCP’s flow control, du-
plicate elimination and in-order delivery guarantees.
If we were to use UDP, we would have to replicate
much of this functionality.

One way to leverage incoming links is to treat
them as additional long distance links. This helps
reduce average latency only marginally. Much more
benefit can be obtained by exploiting the following
insight: The distribution of the source id of an in-
coming link corresponds roughly to p, but in the an-
ticlockwise direction. The observation that a node
has exactly k clockwise and roughly &k anticlockwise
long distance links motivates the following protocol:

A node routes a lookup for x along that
link (incoming or outgoing) that mini-
muzes the absolute distance to x.

Theorem 3.2 The expected path length with bidi-
rectional routing in an n-node network with k =

O(1) links is O(% log” n) hops.
Proof: Along the same lines as Theorem 3.1. ©

Bidirectional routing improves average latency by
roughly 25% to 30% (See Section 4.2). Note that if
we minimize absolute distance but restrict ourselves
to clockwise movement, it is possible to get infinite
loops.

With Bidirectional Routing, the average latency
is still O(%log2 n). However, the constant hidden
behind the big-O notation is less than 1. We ex-
perimentally show that coupled with the idea of 1-
Lookahead (see Section 3.7), networks as large as
215 nodes have average latency no more than 7.5 for

k=4

3.4 Estimation Protocol

Our Estimation Protocol is based on the following
insight: Let X, denote the sum of segment lengths
managed by any set of s distinct nodes. Then XLS
is an unbiased estimator for n. The estimate im-
proves as s increases. The idea of estimating n in this
fashion is borrowed from Viceroy [13] where it was
also shown that the estimate is asymptotically tight
when s = O(logn). When the Estimation Protocol
executes, all s nodes that contributed their segment

lengths update their own estimates of n as well.

Choice of s: Our experiments show that s = 3
is good enough in practice. A node estimates n by
using the length of the segment it partitions and
its two neighboring segments. These three segment
lengths are readily available at no extra cost from
the two nodes between which z inserts itself in the
ring. In Section 4.1, we show that the impact of
increasing s on average latency is insignificant.

We note that an implementation of Symphony
might employ a different Estimation Protocol. For
example, an accurate value for n might be available
from some central server where all participants must
register before participating in the network. In an-
other scenario, estimates of n could be piggybacked
along with a small fraction of normal lookup mes-
sages, thereby amortizing the cost of maintaining 7.
A node might maintain the harmonic mean of the
last few estimates it comes across. In this paper,
we do not delve into sophisticated protocols for es-
timating n. For our purposes, a simple Estimation
Protocol with s = 3 segments works fine.

3.5 Join and Leave Protocols

Join: To join the network, a new node must know
at least one existing member. It then chooses its
own id z from [0, 1) uniformly at random. Using the
Routing Protocol, it identifies node y, the current
manager of z. It then runs the Estimation Protocol
using s = 3, updating the estimates of three other
nodes as well. Let ni, denote the estimate of n thus
produced. Node z then uses pdf p;_ to establish its
long distance links. Since each link establishment
requires a lookup that costs O(%log2 n) messages,
the total cost of k link establishments is (log”n)
messages. The constant hidden behind the big-O
notation is actually less than 1. See Section 4.6 for
actual costs determined experimentally.

Leave: The departure of a node z is handled as
follows. All outgoing and incoming links to its long
distance neighbors are snapped. Other nodes whose
outgoing links to z were just broken, reinstate those
links with other nodes. The immediate neighbors of
z establish short links between themselves to main-
tain the ring. Also, the successor of z initiates the
Estimation Protocol over s = 3 neighbors, each of
whom also updates its own estimate of n. The de-
parture of a node requires an average of k incom-
ing links to be re-established. The expected cost is
O(log” n) messages. Again, the constant hidden be-
hind the big-O notation is less than 1. See Section
4.6 for actual costs determined experimentally.

3.6 Re-linking Protocol

Each node z in the network maintains two values:
fiz, its current estimate of n and #%"% | the estimate
at which its long distance links were last established.
Over its lifetime, n, gets updated due to the Estima-
tion Protocol being initiated by other nodes. When-
ever i, # ni"F it is true that the current long dis-
tance links of # correspond to a stale estimate of n.
One solution is to establish all links afresh. How-
ever, if a node were to re-link on every update of
ng, traffic for re-linking would be excessive. This is
because re-establishment of all £ long distance links
requires O(log? n) messages.

Re-linking Criterion: A compromise re-linking cri-
terion that works very well is to re-link only when
the ratio n, /R"k ¢ [1/2,2]. The advantage of this
scheme is that as n steadily grows or shrinks, traffic
for re-linking is smooth over the lifetime of the net-
work. In particular, if nodes arrive sequentially and
each node knows n precisely at all times, then the
number of nodes re-linking at any time would be at
most one. We experimentally show that even in the
presence of imprecise knowledge of n, the re-linking
cost is smooth over the lifetime of a network. How-
ever, we also show that the benefits of re-linking are
marginal.

3.7 Lookahead

Two nodes connected by a long link could period-
ically exchange some information piggy-backed on
keep-alives. In particular, they could inform each
other about the positions of their respective long dis-
tance contacts on the circle. Thus a node can learn
and maintain a list of all its neighbor’s neighbors.
We call this the lookahead list. The lookahead list
helps to improve the choice of neighbor for routing
queries. Let u denote the node in the list that takes
a query closest to its final destination. Then the
query is routed to that neighbor that contains u in
its neighbor set. Note that we do not route directly
to u. The choice of neighbor is not greedy anymore.
If hash lookups are exported by an RPC-style inter-
face, (e.g., iterative/non-recursive queries in DNS),
we could forward a client to a neighbor’s neighbor,
cutting down average latency by half. Upon receiv-
ing a forwarded lookup request, a neighbor makes a
fresh choice for its own best neighbor to route to.
We experimentally show that 1-Lookahead effec-
tively reduces average latency by roughly 40%.
What is the cost of 1-Lookahead? The size of
the lookahead list is O(k?). The number of long

links remains unchanged because a node does not

log2 (n_estimated)

ESTIMATION WITH s=3 SEGMENTS ESTIMATION WITH s =log(n) SEGMENTS
: P 19 . o 19
Growing Network Shrinking Network 17 Growing Network i Shrinking Network 17
15 il iy 15
£L T i
13 ke Wﬂﬂm 13
11 M‘\W i i 11
P E— I ML o °
. il st 7
iy i il i
5 f 1 5 w i 5
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 8 11 14 17 14 11 8 5 5 8 11 14 17 14 11 8 5

log2 (n) over time

log2 (n) over time

log2 (n_estimated)

Figure 1: Quality of estimated value of n as the nelwork first expands and then shrinks. Each vertical line segment
plots the average along with an interval that captures 99% of the distribution.

directly link to its neighbors’ neighbors; it just re-
members their 1d’s. However, arrival and departure
of any node requires an average of k(2k+2) messages
to update lookahead lists at £(2k + 2) nodes in the
immediate neighborhood. These messages need not
be sent immediately upon node arrival/departure.
They are sent lazily, piggy-backed on normal rout-
ing packets or keep-alives exchanged between pairs
of nodes. Lazy update of lookahead lists might intro-
duce temporary inconsistencies. This is acceptable
because routing does not crucially depend on these
lists. Lookaheads just provide a better hint. We are
currently investigating further the role of approxi-
mate lookahead.

We could employ ¢-Lookahead in general, for ¢ >
1. However, the cost of even 2-Lookahead becomes
significant since each update to a link would now re-
quire O(k?) additional messages for updating looka-
head lists. If £ were as large as O(log” n), each node
could effectively compute the shortest path to any
destination.

4 Experiments

In this section, we present results from our simula-
tion of Symphony on networks ranging from 2° to
2'% nodes in size. We systematically show the inter-
play of various variables (n, k and s), justifying our
choices.

We study four kinds of networks: A STATIC net-
work with n nodes is constructed by placing n
nodes on a circle, splitting it evenly into n seg-
ments. Knowledge of n is global and accurate. An
EXPANDING network is one that is constructed by
adding nodes to the network sequentially. An esti-
mate of n is used to establish long distance links. An
ExXPANDING-RELINK network is simply an EXPAND-
ING network in which nodes re-establish links using
the re-linking criterion mentioned in Section 3.6. Fi-
nally, a DYNAMIC network is one in which nodes not

k =7 LINKS
0.2 Expanding (uni)
Expanding (bi) -------
g
G i
o roe
L 01
0
5 10 15 20 Latency
k = LOG2 (n) LINKS
02 Expanding (uni)
T Expanding (bi) -------
g -
S
o
o 01f
0

Latency

Figure 2: Latency distributions for a network with 2
nodes.

only arrive but also depart. We describe the exact
arrival and departure distributions in Section 4.4.

4.1 Estimation Protocol

Figure 1 shows performance of the Estimation Pro-
tocol when a network grew from zero to 2'7 nodes
and then shrank. Each vertical segment in the figure
captures 99% of the nodes. The Estimation Protocol
tracks n fairly well. The estimate is significantly im-
proved if we use s = logn neighbors, where n itself
is obtained from any existing node. However, the
impact on average latency is not significant, as we
show in Section 4.3. All our experiments described
hereafter were conducted with s = 3.

4.2 Routing Protocol

Figure 3 plots the average latency for three networks:
STATIC, EXPANDING and EXPANDING-RELINK. The

STATIC UNIDIRECTIONAL 740 EXPANDING UNIDIRECTIONAL]
1 link 430 & e
- 2links g
=== 3links ©
4 links 120 o 1
=== 5links =
--=---=- 6 links 5 --==-- 6links
-+ 7 links 110 2 - 7 links g
A R ST N ST N T W TR R R B L1
log2 (n) 56 7 8 9101112131415 log2 (n) 5 6 7 8 9101112131415
STATIC BIDIRECTIONAL 740 EXPANDING BIDIRECTIONAL]
—— Llink 130 & —— 1link g
- - 2links k3] - - 2links
=== 3links 5 3 links
4 links 420 o 4 links e
=== 5links 2 === 5links
--=----- 6 links o --==-- 6links
-- 7 links 4 10 ; - 7links B
£ L ET L1
log2(n) 5 10 11 12 13 14 15 log2(n) 5 6 7 8 10 11 12 13 14 15

40
30 g
Q
5
20 3
=2
<
[}
10 2
40
30 &
2
Q
5
20
=]
<
g
10 Z

EXPANDING RELINK UNIDIRECTIONAL

1 link
2 links
"""" 3 links
4 links
———= 5links
- 6links
- 7links

=== 5links
- 6links
- 7links

I I
10 11 12 13 14 1

o

PO T T B B
log2(n) 5 6 7 8 9 101112131415

Figure 3: Awverage latency for various numbers of long distance links and n ranging from 2° and 2'*.

40

30

20

10

- 40

30

20

10

Average Latency

Average Latency

16
O EXPANDING (UNI)
FXPANDING_RFI INK.(UNL). 14
A STATIC (UNI)
m___EXPANDING (BI) 12
e EXPANDING_RELINK (BI)
a4 STATIC (BI)
10
1 [ug]
T iy 8
N "]
in m A YN L ie 290 6
|] ° 49 4
i} T b ° i0
“A ® -
A rFs 2
T 1 1 1 1 1 1 1 1 1
log2 (n) 5 6 7 8 10 11 12 13 14 15

Figure 4: Latency for various networks with log, i links per node. Fach vertical segment plois the average along with
an interval that captures 9% of the distribution.

25
—8— EXPANDING (UNI)
—a— EXPANDING-RELINK (UNI)
20 —=a— EXPANDING (BI) .
—e— EXPANDING-RELINK (BI)
2 15
c
15}
5
10 o ul i i il i i
n 0] n m L n L] L
5 L ® L) 0 L) o o L]
0 1 1 1 1 1 1 1 1 J
1 2 3 4 5 6 7 8

s (Number of neighbours for Estimation Protocol)

10

Cumulative #Relinks

400
Growing
Network
200
Shrinking
Network
0
0 200 400

Time step

Figure 5: Left: Latency for EXPANDING nelworks using Estimation Protocol with various values of s, the number of
neighbors contacted for estimating n. Right:Cumulative number of re links for a network that first expands from 0
to 256 nodes and then shrinks back to 0. At every time step, exactly one node joins or leaves.

Latency

number of links per node is varied from 1 to 7. In-
creasing the number of links from 1 to 2 reduces
latency significantly. However, successive additions
have diminishing returns. This is one reason that
re-linking has marginal benefits. However, Bidirec-
tional routing is a good idea as it improves latency
by roughly 25% to 30%.

Figure 2 shows the latency distribution for various
networks with either 7 or log,n links each. The
variance of latency distribution is not high. Having
log, 7 links per node not only diminishes average
latency but also the variance significantly.

Figure 4 plots latency for a network in which each
node maintains log, 72 links. The vertical segments
capture 99% of node-pairs. For a given type of net-
work, average latency grows linearly with logn, as
expected.

4.3 Re-linking Protocol

In Figure 5, we plot average latency as s, the number
of neighbors in the estimation protocol, varies. We
observe that average latency is relatively insensitive
to the value of s used. This justifies our choice of
s = 3. Figure 5 also shows the cost of re-linking over
the lifetime of a network that first expands to 256
nodes and then shrinks back to zero. Exactly one
node arrives or leaves at any time step. We chose a
network with small n for Figure 5 to highlight the
kinks in the curve. For large n, the graph looks like a
straight line. The cost of re-linking is fairly smooth.

4.4 Dynamic Network

A DynNaMIC network is one in which nodes arrive
and depart. We studied a network with n = 100K
nodes having logn neighbors each. Each node al-
ternates between two states: alive and asleep. Life-
time and sleep-time are drawn from two different
exponential distributions with means 0.5 hours and
23.5 hours respectively. We grow the node pool
linearly over a period of one day so that all 100K
nodes are members of the pool at the end of the
first day. During the second day, the pool remains
constant. The third day sees the demise of random
nodes at regular intervals so that the pool shrinks
to zero by the end of 72 hours. The average num-
ber of nodes that participate in the ring at any time
is % x 100K ~ 2K. From Figure 6, we see
that the Estimation Protocol is able to track n suffi-
ciently accurately and that the average latency was
always less than 5 hops.

We wish to point out that the network we simu-
lated is very dynamic. The set of nodes at any point

of time is quite different from the set of nodes one
hour earlier. This is because the average lifetime of
any node is only 0.5 hour. A real-life network will
have some nodes with longer lifetimes and variable
distributions [3, 21]. Our current model is simple
but sufficient to highlight the stability of Symphony
in the presence of high activity.

4.5 Lookahead

Figure 7 shows the efficacy of employing 1-
Lookahead when k is small. Average latency di-
minishes by around 40% with 1-Lookahead. More-
over, the spread of latency distribution (captured
by vertical line segments in the graph) shrinks. For
a network with 2! nodes, average latency is 7.6
with & = 4. We also simulated 1-Lookahead with
k = logn links per node and saw average latency
drop to 4.4.

Note that 1-Lookahead does not entail an increase
in the number of long links per node. Only neighbor-
lists are exchanged between pairs of nodes periodi-
cally. This does not incur extra cost because incre-
ments to neighbor-lists are piggy-backed on normal
routing traffic or keep-alives.

4.6 Cost of Joining and Leaving

Figure 8 plots the cost of joining and leaving the
network. Whenever a node joins/leaves, k long dis-
tance links have to be created apart from updates
to short links. Join/leave cost is proportional to the
number of links to be established. The cost dimin-
ishes as average lookup latency drops. When us-
ing 1-Lookahead, there are an additional k(2k + 2)
messages to update lookahead lists. However, these
are exchanged lazily between pairs of nodes, piggy-
backed on keep-alives. The cost of join/leave is
O(log® n). Figure 8 clearly shows that the constant
in the big-O notation is less than 1. For example, in
a network of size 2'*, we need only 20 messages to
establish £ = 4 long links.

4.7 Load Balance

Figure 9 plots the number of messages processed per
node in a network of size 2' corresponding to 2'°
lookups. Each lookup starts at a node chosen uni-
formly at random. The hash key being looked up is
also drawn uniformly from [0, 1]. The routing load
on various nodes is relatively well balanced. Both
the average and the variance drop when we employ
1-Lookahead. Curiously, the distribution is bimodal

=
o
1

DYNAMIC NO-RELINK BIDIRECTIONAL 13 | DYNAMIC NO-RELINK BIDIRECTIONAL
14 |
11 Expanding Steady Shrinking
= 12F + HJ{ J{ HH_H Network Network Network
c 2 L
%H% T
2 a
g o ﬁﬁ N 1
T c
L
% 6 Expanding Steady Shrinking J{ s 5
wooy Network Network Network
3
2t) T
0 1 1 1 1 1 1 1
12 24 36 48 60 72 0 12 24 36 48 60 72

Figure 6: Performance of a DYNAMIC network of 100K nodes with log fi-links using the Eslimation Protocol but no

Hour of simulation

Hour of Simulation

re-linking. Fach node is alive and asleep on average for 0.5 hours and 23.5 hours respectively. The node pool linearly

increases to 100K over the first day. The pool is steady on the second day. A random node departs at regular intervals

on the third day until the network shrinks to zero. Fach vertical segment plots the average along with the range of
values that covers 99% of the disiribution.

70
NETWORK SIZE = 2715 NODES a Static (Bi) 1-LOOKAHEAD DYNAMIC BIDIRECTIONAL
60 a] Expanding (Bi)
© Expandng Relink (Bi)
- 1-Lookahead Static (Bi) — 1link b
50 = 1-Lookahead Expanding (Bi) 2 links
. ° 1-Lookahead Expanding Relink (Bi) - 3links
o 40 4 links
3 5 links -
51 6 links
430 7 links
20 i
" 1Ll L | 1]
) ‘ ‘ LRI AN L SRR NG e
1 2 3 4 5 6 7 log2() 5 6 7 8 9 101112131415
Number of long distance links Number of long distance links
3 15
Figure 7: Impact of using 1-Lookahead in routing in a typical network with 2°° nodes.
UNIDIRECTIONAL 50 o BIDIRECTIONAL 50 " BIDIRECTIONAL + 1-LOOKAHEAD
= =
20 § 3
£ £
30 2 —— 6links S —— 6links
2 5 links e 5 links
20 8 - 4 links 8 - 4 links
2 3 links 2 3 links
10 2 - 2links 2 —===- 2links
----== 1llinks = o ----=-=- 1links o ----=-=- 1links
- z z =
A R S T T S N N W T
log2 (n) 5 6 7 8 9 101112131415 log2 (n) log2 (n) 5 6 7 8 9 101112131415

Figure 8: Cost of joining and leaving in a network with n = 2'° nodes.

4 40

30

20

10

Average Latency

#Messages to join/leave

0.005 - 2715 nodes with BIDIRECTIONAL routing
0.004 -
(%]
[0}
°
2 0.003 |- No Lookahead
5 With 1-Lookahead
c
o
g 0.002 |
o
w
0.001
L n L)

0 5 10 15 20 25 30 35 40
#Messages processed

Figure 9: Banduwidth profile in a network with n = 2'°
nodes with k = 4 links per node. Fach node looks up one
random hash key.

when 1-Lookahead i1s employed. We are investigat-
ing the reason for this behavior.

4.8 Resilience to Link Failures

Figure 10 explores the fault tolerance of our net-
work. The top graph plots the fraction of queries
answerable when a random subset of links (short as
well as long) is deleted from the network. The bot-
tom graph studies the impact of removing just long
links. The slow increase in average latency is ex-
plained by Figure 3 which demonstrated diminishing
returns of additional links. Figure 10 clearly shows
that deletion of short links is much more detrimental
to performance than deletion of long links. This is
because removal of short links makes some nodes iso-
lated. Removal of long links only makes some routes
longer.

Figure 10 suggests that for fault tolerance, we
need to fortify only the short links that constitute
the ring structure. In Section 5.2, we leverage this
insight to augment Symphony for fault tolerance.

4.9 Comparison with %4 Random

Links

Figure 11 compares average latency for Symphony
with a network where nodes form outgoing links with
other nodes uniformly at random. The figure clearly
shows that the obvious idea of choosing k uniformly
random long distance neighbors does not scale since

the path length grows as O(y/n/k).
5 Comparison and Analysis

Symphony is a simple protocol that scales well and
offers low lookup latency with only a handful of TCP

100% f
N —— Unidirectional lookup
fffffff Bidirectional lookup

80%

60%

40%

20%

Fraction of successful lookups

I I 1 M)
20% 40% 60% 80% 100%
Fraction of links dead (both long and short)

i
T

o

20% 40% 60% 80% 100%
Fraction of links dead (only long)

Figure 10: Studying fault tolerance in a network of 16K
nodes with log n long distance links each. The top graph
shows percentage of successful lookups when a fraction of
links (short and long) are randomly deleted. The bottom
graph shows increase in latency when only long links are
randomly deleted.

EXPANDING BIDIRECTIONAL

4 Random links
,,,,,,, 4 Symphony links

1

N

o
Average Latency

1
9 10 11 12 13 14 15

T >|
log2(n) 5 6 7 8

Figure 11: Comparison with a network where each node
links to k other nodes chosen uniformly at random. Nel-
work size n = 2'% nodes.

connections per node. The cost of joining and leav-
ing the network is small. Symphony is stable in the
presence of frequent node arrivals and departures.
We now highlight features unique to Symphony.

5.1 Low State Maintenance

Table 1 lists lookup latency vs. degree for various
DHT protocols. Low degree networks are desirable
for several reasons. First, fewer links in the network
reduce the average number of open connections at
servers and reduce ambient traffic corresponding to
pings/keep-alives and control information. Second,
arrivals and departures engender changes in DHT
topology. Such changes are concomitant with the
state update of a set of nodes whose size is typi-
cally proportional to the average degree of the net-
work. Fewer links per node translates to smaller sets
of nodes that hold locks and participate in some
coordination protocol for distributed state update.
Third, small out-degree translates to smaller boot-
strapping time when a node joins and smaller recov-
ery time when a node leaves without notice. Finally,
it should be easier to isolate faults in low degree net-
works, making debugging faster. Symphony actually
provides a smooth tradeoff between average latency
and the amount of state per node.

5.2 Fault Tolerance

Symphony allows replication of content for fault tol-
erance by making f copies of a node’s content at
each of the f nodes succeeding it in the clockwise
direction. A node maintains direct connections with
all its f successors. This arrangement can tolerate
f simultaneous failures before a portion of the hash
table is lost. When a new key-value pair is inserted,
a node propagates the changes to its f successors for
consistency. Furthermore, all lookups succeed until
some f successive nodes fail together. This is be-
cause the network remains connected (the base circle
is intact) as long as at least one out of f successive
nodes is alive for each node. Overall, the average
number of TCP connections per node 1s 2k + 2 + f.
In practice, a small value of f less than ten should
suffice, assuming independent failures and short re-
covery times.

Symphony’s design for fault tolerance was moti-
vated by Figure 10 (Section 4.8) where we showed
that it is the short links that are crucial for main-
taining connectivity. CFS [6] and PAST [19] use a
variant of our fault tolerance scheme.

Symphony does not create any redundant long dis-
tance links for fault tolerance. There are no backup

long links. It is only the short links that are for-
tified by maintaining connections with f successors
per node. The long links contribute to the efficiency
of the network; they are not critical for correctness
(see Section 4.8). Protocols like Pastry, Tapestry
and CAN maintain two to four backup links for ev-
ery link a node has. A glance at Table 1 reveals that
the overhead of redundant links for fault tolerance
is significantly less for Symphony than other proto-
cols. Having fewer links per node has several other
benefits that we described in the preceding section.

5.3 Degree vs. Latency Tradeoff

Symphony provides a smooth tradeoff between the
number of links per node and average lookup latency.
It appears to be the only protocol that provides this
tuning knob even at run-time. Symphony does not
dictate that the number of links be identical for all
nodes. Neither is the number stipulated to be a func-
tion of current network size nor is it fixed at the
outset. We believe that these features of Symphony
provides three benefits:

Support for Heterogeneous Nodes: Each node is
merely required to have a bare minimum of two
short-distance links. The number of long-distance
links can be chosen for each individual node accord-
ing to its available bandwidth, average lifetime, or
processing capability. All the other DHT protocols
specify the exact number and identity of neighbors
for each node in the network. It is not clear how
they would accommodate nodes with variable de-
grees. Symphony’s randomized construction makes
it adapt naturally to heterogeneous nodes ranging
from home computers with dial-in connections to
LAN-based office computers.

Incremental Scalability: Symphony scales grace-
fully with network size. The Estimation Protocol
provides each participant with a reasonably accurate
estimate of network size. It is possible for nodes to
adapt the number of long distance links in response
to changes in network size to guarantee small average
lookup latency. This obviates the need to estimate
in advance the maximum size of the network over its
lifetime.

Flexibility: An application designer who uses
a distributed hash table (DHT) would want to
make its implementation more efficient by leverag-
ing knowledge unique to the problem scenario. For
example, the specifics of the network topology at
hand, or the behavior of participating hosts, or a pri-
ori knowledge about the load on the DHT might be
known. If the DHT itself has a rigid structure, the
application designer is severely constrained. Sym-

TCP Lookup Protocol # TCP Lookup Notes
Connections Latency Connections Latency
2d (d/2)nt CAN 20 14.14 Fixed #dimensions
2log, n (log, n)/2 Chord 30 7.50 Fixed #links
10 log, n Viceroy 10 15.00 Fixed #links
(2° = 1)(log, n)/b (logy,n)/b Tapestry 56 3.75 with b=4 digits
(2° = 1)(log, n)/b (log, n)/b Pastry 22 7.50 with b=2 digits
56 3.75 with b=4 digits
2k +2 c(log” n)/k Symphony 10 7.56 k=4, bidirectional with 1-lookahead
56 3.75 k=27, bidirectional with 1-lookahead

Table 1: Comparison of various protocols for a network of size 2'°. Latencies are measured in terms of hops along

the respective network topologies.

phony allows the number of links to be variable. All
outgoing links are identical in the sense that they are
drawn from the same probability distribution func-
tion. We believe that the randomized nature of Sym-
phony poses few constraints as compared with other
protocols.

5.4 Comparison with Other Proto-
cols

We compare Symphony with other DHT protocols
for a network of size n = 2'% nodes. We also discuss
how other protocols could possibly use 1-lookahead
and deploy additional links, if available.

(a) CAN can route among n nodes with an av-
erage latency of (d/Z)n%. The optimal value of d
for n = 25 nodes is 10 resulting in an average la-
tency of 14.14. The average number of TCP con-
nections is 2d = 20. Dimensionality in CAN is fixed
at the outset. It is not clear how dimensionality
can be dynamically changed as the network expands
or shrinks. Thus, CAN nodes would have 20 TCP
connections each even if the network size is small.
Unlike other protocols;, CAN runs a zone rebuilding
protocol in the background to adjust hash table par-
titions. CAN has low cost of joining. Heuristics for
constructing a CAN topology that is aware of real
network proximity have been shown to yield low IP
latency on synthetic networks [16].

(b) Chord stipulates that every node in a network
with 2® must have log, n = 15 outgoing links each,
with the result that average latency i1s 7.5. In terms
of TCP connections, nodes have 2log, n = 30 con-
nections each. Among existing DHT protocols, Sym-
phony is closest in spirit to Chord. Chord could bor-
row ideas from Symphony for better performance.
For example, Chord currently uses clockwise rout-
ing using unidirectional links. Tt can be modified to
employ Symphony-style greedy routing over bidirec-
tional links that minimizes absolute distance to the

target at each hop. Chord uses a rather expensive re-
linking and stabilization protocol upon every inser-
tion and deletion. When a node joins, up to O(log n)
other nodes who were pointing to this node’s suc-
cessor might have to re-establish their link with the
new node. Experience with Symphony shows that
re-linking is not worthwhile and that greedy routing
continues to work satisfactorily even when nodes do
not re-link.

(c¢) Pastry, with a digit size of 2 bits, would need
an average of 22 TCP connections per node for av-
erage latency 7.5. Pastry can improve the latency
to 3.75, but only with as many as 56 TCP connec-
tions per node. The digit size is a parameter that is
fixed at the outset. For fault tolerance, Pastry main-
tains backup links for every link in its routing table.
Moreover, content is replicated among L adjacent
nodes. Pastry exploits network locality while choos-
ing id’s of nodes. The average latency over synthetic
networks has been shown to be small [18].

(d) Tapestry uses 4-bit digits resulting in aver-
age lookup latency of 3.75 with 56 links per node.
Tapestry is very similar to Pastry. The digit size is
a parameter that is fixed at the outset. For fault
tolerance, Pastry maintains backup links for every
link in its routing table.

(e) Viceroy maintains seven links per node, irre-
spective of n, the size of the network. Each node
has two neighbors along two rings, one up-link and
two down-links. Four of these links are bidirectional,
three are unidirectional. Thus, a Viceroy node would
actually have an average of ¢ = 10 TCP connec-
tions per node. For n = 2'% the average latency in
Viceroy would be at least log(n) = 15. This corre-
sponds to an average 7.5 levels to reach up to the
highest ring and another 7.5 levels to come down to
the ring at the right level. Viceroy appears to be
more complex and it is not clear how 1t would ex-
ploit network proximity while maintaining multiple
concentric rings.

(f) Symphony offers a wide variety of choices for
the number of TCP connections for a fixed value of
n = 2% nodes. Figure 7 shows that the average la-
tency with £ = 4 long links with 1-Lookahead and
bidirectional routing is 7.6. Such a topology results
in 10 TCP connections per node on average. As k in-
creases, Symphony’s average latency reduces. Sym-
phony does not use backup links for long distance
links. Instead each node replicates content on f suc-
cessor nodes and maintains direct connections with
them. This ensures content availability and success-
ful lookups as long as no string of f successive nodes
fails.

Lookahead seems to be of little value to CAN,
Pastry and Tapestry. This is because the route of
a lookup (and therefore, its length) is fixed. The
protocol would not choose a different route if 1-
Lookahead lists were available. The reason why
lookahead is useful in Symphony is that a message
could follow several paths from a source to a des-
tination. We suspect that Chord might benefit by
employing 1-Lookahead.

Let us see how additional links could possibly be
used by various DHT protocols to improve perfor-
mance. Chord could use a larger finger table. To
change average degree at run-time in response to
changes in network sizes, Chord could deploy Sym-
phony’s Estimation protocol for estimating n. A
CAN node maintains connections with its immediate
neighbors in a d-dimensional torus. A natural way
for CAN to use more links would be to increase its di-
mensionality. However, this is a fixed parameter and
it is not clear how dimensionality could be changed
at run time cleanly. CAN could presumably use ad-
ditional links to connect to farther nodes along each
dimension, giving it a flavor of Chord/Symphony per
dimension. Viceroy uses seven links no matter how
large n is. It remains unclear how Viceroy would
employ more links if available; presumably it would
entail a construction built on a d-way butterfly for
d > 2. Pastry and Tapestry could use more links by
increasing the digit-size which is a parameter fixed
at the outset. Since the expected number of links is
given by the formula (2°logn)/b, the possible val-
ues of average out-degree are limited and far apart.
Symphony and a modified version of Chord appear
to be the only protocols that offer a smooth trade-
off between average latency and number of links per
node.

6 Conclusions

We have presented Symphony, a simple protocol
for managing a distributed hash table in a dy-
namic network of hosts with relatively short life-
times. Through a series of systematic experiments,
we have shown that Symphony scales well, has low
lookup latency and maintenance cost with only a
few neighbors per node. In particular, s = 3 neigh-
bors suffice for the Estimation Protocol and k = 4
long distance links with Bidirectional routing and
1-Lookahead are sufficient for low latencies in net-
works as big as 2!% nodes. We believe that Sym-
phony is a viable alternative to existing proposals
for distributed hashing.

We plan to adapt Symphony to an environment
with heterogeneous nodes and gain experience with
the implementation we are currently working on. An
important next step in implementation is to take
network proximity between nodes and heterogeneity
into account.

7 Acknowledgments

We thank Geoff Voelker for his insightful comments
that went a long way in improving the paper. We
also thank the anonymous referees, Shankar Pon-
nekanti and Ramesh Chandra for their feedback.
This work was partially supported by a grant from
SNRC.

References

[1] L. Barriere, P. Fraigniaud, E. Kranakis, and
D. Krizanc. Efficient routing in networks with
long range contacts. In Proc. 15th Intl. Symp.
on Distributed Computing (DISC 01), pages
270-284, 2001.

[2] M. Bawa, G. S. Manku, and P. Raghavan.
SETS: Search Enhanced by Topic Segmenta-
tion. Submatted for publication, 2003.

[3] W. J. Bolosky, J. R. Douceur, D. Ely, and
M. Theimer. Feasibility of a serverless dis-
tributed file system deployed on an existing set
of desktop pcs. In ACM SIGMETRICS 2000,
pages 34-43, 2000.

[4] 1. Clarke, T. Hong, S. Miller, O. Sandberg,
and B. Wiley. Protecting Free Expression On-
line with Freenet. IEEFE Internet Computing,
6(1):40-49, 2002.

[5]

[13]

R. Cox, A. Muthitacharoen, and R. T. Mor-
ris. Serving dns using a peer-to-peer lookup
service. In Proc. 1st Intl. Workshop on Peer-
to-Peer Systems (IPTPS 2002), pages 155165,
2002.

F. Dabek, M. F. Kaashoek, D. Karger, R. Mor-
ris, and I. Stoica. Wide-area cooperative stor-
age with CFS. In Proc. 18th ACM Symposium
on Operating Systems Principles (SOSP 2001),
pages 202-215, 2001.

S. D. Gribble, E. A. Brewer, J. M. Hellerstein,
and D. Culler. Scalable, distributed data struc-
tures for internet service construction. In Proc.
4th Symposium on Operating System Design
and Implementation (OSDI 2000), pages 319-
332, 2000.

K. Hildrum, J. D. Kubiatowicz, S. Rao, and
B. Y. Zhao. Distributed object location in a
dynamic network. In Proc. 14th ACM Sympo-
stum on Parallel Algorithms and Architectures

(SPAA 2002), pages 41-52, 2002.

S. Iyer, A. I. T. Rowstron, and P. Druschel.
Squirrel: A decentralized, peer-to-peer web
cache. In Proc. 21st ACM Symposium on Prin-
ciples of Distributed Computing (PODC 2002),
pages 213-222, 2002.

J. Kleinberg. The small-world phenomenon: An
algorithmic perspective. In Proc. 32nd ACM
Symposium on Theory of Computing (STOC
2000), pages 163-170, 2000.

J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weath-
erspoon, W. Weimer, C. Wells, and B. Zhao.
Oceanstore: An architecture for global-scale
persistent storage. In Proc. 9th Intl. conference
on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS 2000),
pages 190-201, 2000.

W. Litwin, M. Neimat, and D. A. Schnei-
der. Lh*-a scalable, distributed data struc-
ture. ACM Transactions on Database Systems,

21(4):480-525, 1996.

D. Malkhi, M. Naor, and D. Ratajczak.
Viceroy: A scalable and dynamic emulation of
the butterfly. In Proc 21st ACM Symposium
on Principles of Distributed Computing (PODC
2002), pages 183-192, 2002.

S. Milgram. The small world problem. Psychol-
ogy Today, 67(1), 1967.

[15]

[16]

[17]

[18]

[22]

[23]

C. G. Plaxton, R. Rajaraman, and A. W. Richa.
Accessing nearby copies of replicated objects in
a distributed environment. In Proc. 9th ACM

Symposium on Parallel Algorithms and Archi-
tectures (SPAA 1997), pages 311-320, 1997.

S. Ratnasamy, P. Francis, M. Handley, and
R. M. Karp. A Scalable Content-Addressable
Network. In Proc. ACM SIGCOMM 2001,
pages 161-172, 2001.

S. Ratnasamy, S. Handley, R. M. Karp, and
S. Shenker. Application-level multicast using
content addressable networks. In Proc. 3rd

Intl. Networked Group Communication Work-
shop (NGC 2001), pages 14-29, 2001.

A. I. T. Rowstron and P. Druschel. Pas-
try: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In
IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware 2001),
pages 329-350, 2001.

A. 1. T. Rowstron and P. Druschel. Storage
management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility. In
Proc 18th ACM Symposium on Operating Sys-
tems Principles (SOSP 2001), pages 188-201,
2001.

A. 1. T. Rowstron, A.-M. Kermarrec, M. Cas-
tro, and P. Druschel. SCRIBE: The design of a
large-scale event notification infrastructure. In
Proc. 3rd Intl. Networked Group Communica-
tion Workshop (NGC 2001), pages 30-43, 2001.

S. Saroiu, P. Gummadi, and S. Gribble. A mea-
surement study of peer-to-peer file sharing sys-
tems. In Proceedings of the Multimedia Com-
puting and Networking (MMCN’02), 2002.

I. Stoica, R. Morris, D. Karger, M. F.
Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet
applications. In Proc. ACM SIGCOMM 2001,
pages 149-160, 2001.

S. Zhang, B. Zhao, B. Joseph, R. H. Katz, and
J. Kubiatowicz. Bayeux: An architecture for
wide-area, fault-tolerant data dissemination. In
Proc. 11th Intl. Workshop on Network and Op-

erating System Support for Digital Audio and
Video (NOSSDAV 2001), pages 11-20, 2001.

