A Distributed Event Delivery Method with Load Balancing
for MMORPG

Shinya Yamamoto, Yoshihiro Murata, Keiichi Yasumoto and Minoru Ito
Graduate School of Information Science, Nara Institute of Science and Technology
lkoma, Nara 630-0192, Japan

(shiny-ya,yosihi-m,yasumoto,ito)@is.naist.jp

ABSTRACT

In this paper, we propose a new distributed event deliv-
ery method for MMORPG (Massively Multiplayer Online
Role Playing Games). In our method, the whole game space
is divided into multiple sub spaces with the same size and
some player nodes are selected as responsible nodes to de-
liver game events occurring in their responsible sub spaces.
Our method includes (1) a load balancing mechanism which
allows each responsible node for the crowded sub space to
dynamically construct a tree of multiple nodes and deliver
events along the tree to reduce event forwarding overhead
per node, (2) a technique to reduce end-to-end event deliv-
ery delay by dynamically replacing nodes in the tree, and (3)
a technique to efficiently and seamlessly switch sub spaces
to be observed while each player’s view moves around in
the game space. Through experiments, we show that our
method achieves practical performance for MMORPG.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

General Terms

algorithms

Keywords

Multiplayer Game, Load Balancing, Event Delivery Archi-
tecture

1. INTRODUCTION

In recent years, MMOG (Massively Multiplayer Online
Games) has become popular. Most of commercial MMOGs
have been implemented as client server systems where the
global game state consisting of positions and states of all
players and so on is managed in a centralized way. The cen-
tralized control has advantages in keeping security high and
implementation easy. However, it has several drawbacks in

Permission to make digital or hard copies of all or part of this work for

scalability on the number of players, management cost, and
so on. In order to save the management cost, it is desirable
to compose the game system only of player nodes in a P2P
fashion without specific servers or high-speed networks. So,
we need a method to manage the global game state of the
MMOG in a distributed way by multiple player nodes with
P2P overlay techniques.

When we let multiple player nodes to cooperatively man-
age the global game state, the following criteria should be
satisfied: (1) the computation and communication overhead
of each node is regulated below the specified threshold inde-
pendently of the number of players and (2) the node failure
does not influence the progress of the game. For RPG and
FPS (First Person Shooter) type games, the following crite-
rion should also be satisfied: (3) the update interval of the
game state is small enough.

There are several research efforts which divide the global
game state into multiple sub states, and let multiple nodes
to maintain those sub states [1, 5, 6, 8]D [1] has proposed
a method where a game space is divided into multiple sub
spaces with the same size and the game state in each sub
space is managed by a player node. In [6], a game space
is dynamically divided depending on the positions of player
characters using a technique of Voronoi graph partition algo-
rithm so that player nodes whose characters in the same par-
titioned region directly exchange game events and keep the
same game state. In [5, 8], the global game state is divided
into multiple sub states (i.e., the partial game state of player
nodes in the same sub space or with the same membership).
For each sub state, a selected player node is assigned to
manage it, and other player nodes which require the sub
state can easily retrieve it through distributed hash tables
such as Pastry [2]. These techniques allow player nodes to
obtain any sub state when the membership changes, e.g., by
moving to different location in the game space. These tech-
niques are also robust against node failure by letting more
than one node to backup each sub state.

Techniques in [1, 6, 8] satisfy the above criterion (3) since
they allow player nodes with the same sub state to exchange
game events among those nodes directly or through a man-
agement node. However, as the number of player nodes with
a sub state increases, the amount of communication mes-
sages sent from each player node or its management node

personal or classroom use is granted without fee provided that copies arealso increases. So the above criterion (1) is not satisfied
not made or distributed for profit or commercial advantage and that copies completely. Also, [6] does not satisfy the criterion (1) since

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
NetGames’050Qctober 10-11, 2005, Hawthorne, New York, USA.
Copyright 2005 ACM 1-59593-157-0/05/001(5.00.

positions of player characters are managed in a centralized
way. On the other hand, [5] uses a overlay multicast tech-
nique called SCRIBE [3] to deliver the game events to all

player nodes with the same sub state. So, the amount of
communication messages which each node must forward can
be regulated within a threshold, and thus the criterion (1)
is satisfied. However, in this technique, when the number of
player nodes with a sub state becomes large or the member-
ship of those nodes frequently changes, event delivery delay
and cost for updating distributed hash tables increase. So,
in such a case, it would be difficult to satisfy the above cri-
terion (3). For the criteria (2), [5, 8] have mechanisms to
cope with failure and leaving of nodes in hash tables.

Moreover, if we target MMORPG (Massively Multiplayer
Online Role Playing Games), the global game state should
be divided into many pieces, since so many players may
join the same game at the same time. If the game space is
divided into multiple small sub spaces, then each player’s
view may overlap with multiple sub spaces. So the game
system should satisfy the following criterion: (4) sub spaces
overlapped with each player’s view must be switched quickly
and seamlessly as the view moves around in the game space.
The existing studies [1, 5, 6, 8] do not propose techniques
for achieving the criterion (4) in detail.

In this paper, we propose a new distributed event deliv-
ery method for MMORPG. Similarly to [1], in the proposed
method, the whole game space is divided into multiple sub
spaces with the same size. For each sub space, a player
node called the responsible node is selected among all player
nodes to deriver events which occur in the sub space. In
MMORPG, many player characters are likely to converge to
a specific location in the game space due to special events
or so on. In the proposed method, even when the number
of player characters in a sub space becomes large, commu-
nication and computation overhead of the responsible node
is regulated below the specified threshold, keeping the end-
to-end event delivery as small as possible. To satisfy the
criterion (1), we let each responsible node observe the num-
ber of player characters, and dynamically construct/extend
a tree of multiple nodes (called load balancing tree) so that
the communication and computation overhead of each node
in the tree does not exceed the predefined threshold by de-
livering event messages through the tree. For the criterion
(2), a backup node is assigned to each responsible node so
that it can seamlessly take over the event delivery in the sub
space when the responsible node fails or leaves. To satisfy
the criterion (3), the backup node is also used to shorten
the end-to-end event delivery latency while events are deliv-
ered through the load balancing tree. For the purpose, the
backup node is replaced with one of intermediate nodes in
the tree if the end-to-end latency improves. We also provide
an efficient mechanism for satisfying the criterion (4), where
player nodes can quickly and seamlessly switch responsible
nodes for subscription while the player characters move over
sub spaces.

Through experiments with our prototype system running
on LAN and simulations on ns-2, we have confirmed that the
proposed method can achieve practical performance in terms
of overhead and end-to-end latency required for MMORPG.

2. OUTLINE OF PROPOSED METHOD

In this paper, we suppose MMORPG where multiple play-
ers share the same game space and time and each player has
a bird’s eye view of a part of the game space.

2.1 Definition

We assume that there is a lobby server which manages
login/ logout of player nodes and keeps the list of all player
nodes currently joining the game.

We define that the whole game space consists of the back-
ground image and multiple objects. Each object is either a
player character, a moving object (e.g., character controlled
by the system), or a static object (e.g., weapon, jewel, etc).
Each object has several properties such as the position and
state. We call an incident which may change the proper-
ties of an object, an event. For example, movement of an
object, attack to an enemy character, or change of object’s
color/shape, is an event. We call the information of cur-
rent properties of all objects in the whole game space, the
global game state. We denote the global game state at time ¢
by GS(t). GS(t) changes as the game progresses. In princi-
ple, in order to keep consistency of the game progress, G\S(t)
must be shared among all players. We define that the view of
each player is a sub space centered around the position of the
player character in the game space. The view of each player
corresponds to the part of the whole game space which the
player can see through his/her computer display, and it is
represented as a rectangle. The view of each player may
include several parts of the whole game space which are not
adjacent. For time ¢ and any sub space v, let GS(t,v) de-
note the information of the current properties of all objects
which are in v. That is, GS(¢,v) denotes the game state of
sub space v at time t. For each sub space v and each time t,
we define that the game progress is consistent if all players
whose views overlap with v at time ¢ have GS(t,v).

2.2 Basic Ideas of Proposed Method

In order to achieve the consistent game progress without
specific servers in a P2P environment as well as the criteria
(1) to (4) in Sect. 1, we propose the following mechanisms.

e Distributed Event Delivery Mechanism: As
shown in Fig. 1, we divide the whole game space into
multiple sub spaces with the same size. We assign a
player node (called the responsible node) to each sub
space so that it receives events from all players in the
sub space and delivers those events to the player nodes.

e Event Delivery Control Depending on Player’s
View: Since each player’s view covers multiple sub
spaces, as player character moves in the game space,
the sub spaces in its view also change. So, we pro-
pose a mechanism to quickly and seamlessly switch
the event delivery paths between the player nodes and
the responsible nodes of the sub spaces in the view.

e Dynamic Load balancing: When the number of
player characters in a sub space becomes large, the re-
sponsible node of the sub space would be overloaded
due to communication and computation overhead. So,
we allow each responsible node to dynamically con-
struct a tree of multiple player nodes called the load
balancing tree and deliver events through the tree when
the sub space gets crowded. When game events are de-
livered through the load balancing tree, the end-to-end
event delivery delay becomes larger than without the
tree. So, we propose a technique to shorten the event
delivery delay through the tree.

The above three mechanisms are explained in detail in
Sect. 3, Sect. 4, and Sect. 5, respectively.

o]
[-]
whole game space |:> %
[]

M sub spaces

Figure 1: Division of Whole Game Space

3. EVENT DELIVERY MECHANISM

In our proposed method, the whole game space is di-
vided into M sub spaces with the same size rectangles (Fig.
1). Let vo,v1,..., vm—1 denote sub spaces. The respon-
sible node keeps the list of players in the sub space, and
receives/forwards events from/to those players. The respon-
sible nodes are selected from all player nodes by the lobby
server, according to their computation powers and available
bandwidths.

Each player is informed of the initial position in the game
space as well as the addresses of the responsible nodes whose
responsible sub spaces overlap with his/her view by the
lobby server, when he/she joins the game. Each respon-
sible node knows each player in its responsible sub space
when the player subscribes to the node.

The responsible node of a sub space is allowed to be the
responsible node of another sub space, the intermediate node
of the load balancing tree (explained in Sect. 5.1) and / or
the backup node (explained in Sect. 3.2) at the same time,
as long as it has extra computation power and available
bandwidth.

The responsible node of each sub space v;(0 < i < M —1)
receives events occurred in v; and forwards them to play-
ers (nodes) who can observe v; (i.e., his/her view overlaps
with v;). In our method, we use a publish/subscribe sys-
tem for event delivery. That is, when a player executes an
event in v;, the event message is sent to the responsible
node of v; (i.e., the event is published), and the responsible
node forwards the event message only to player nodes which
have subscribed to v;. Each player node renews game state
GS(t,v;) with published event messages of sub space v;. To
avoid inconsistency of the game state among players, event
messages are collected and delivered every fixed time unit
called timeslot. Also, to prevent the game from being dis-
turbed due to node failure (e.g., physical breakdown, leaving
the game, network congestion, etc), we assign a backup node
to each responsible node. Below, we will explain the details.

3.1 Event Delivery and Game State Update

Let V(p) denote the view of player p. Also, let R(v;)
denote the responsible node of sub space v;.

The clocks of all player nodes are synchronized loosely
with NTP (Network Time Protocol). We represent the time
in the game by the sequence numbers of timeslots. Time slot
t; represents the time [To + i x A, Ty + (i + 1) x A) where
the length of each timeslot is A and the beginning time of
the game is Tp.

In our method, event delivery is carried out in the follow-
ing steps.

1. At the beginning time of the game, each player (node)
p subscribes to each responsible node R(v;) such that
v; overlaps with V(p).

player node 1 player node 2 intermediate node responsible node

timeslot ti.g
publish(event 1)
S
delay for ¢ I
event offer ublish(event 2
| receiving events
~---..__publish(event n
dead line . .

ordering events, timeslot t;

forwarding updating the
] game state, etc

event I publish(t;,
e sending event list

delivery DIy
delay

event delivery through
load balancing tree
| ,\ timeslot {41
time progress

Figure 2: timeslot

2. When R(v;) receives the subscription from p, it sends
the latest game state GS(t,v;) to p.

3. When p wants to publish an event, it sends an event
message to the responsible node of sub space v, where
the location of the event is included in v, *

4. Each responsible node R(v;) receives event messages
from player nodes until deadline of the current times-
lot t; (see Fig. 2) and determines the orders of the re-
ceived event messages 2. Then R(v;) updates the game
state GS(¢;,v;) according to the order of events and
sends a message with the ordered event list to R(v;)’s
subscribers (i.e., player nodes who have subscribed to

R(v;)).

5. Each player node updates the game state to GS(t;, v;)
based on the received event list.

In our method, each player node updates and manages
the latest game state GS(t,v) by itself. This approach is
effective when the amount of events occurring in a time slot
is smaller than that of the game state. In MMORPG, the
amount of the game state of each sub space is likely to be-
come large. Also, with this approach, the recovery is easier
when responsible nodes fail.

When a player node cannot receive an event list in a times-
lot due to message loss or so on, it can request the lost
message or the latest game state by sending a NACK mes-
sage with the timeslot number to the responsible node. This
makes it easy for each player node to keep the consistency
of the game state.

3.2 Coping with Node Failure

We let the lobby server select player nodes which have
higher computation powers and more available bandwidths,
and keep these nodes’ addresses in a buffer called the backup
node queue.

"When a player wants to publish an event in two or more
locations over multiple sub spaces simultaneously, it sends
messages to all responsible nodes of those sub spaces. In
this case, these events are not always processed at the same
time slot, because they may be received in those responsible
nodes at different time.

2The decision method can be either random, the order of
receiving time, their hybrid or so on.

In order to cope with failure or leaving of responsible
nodes, one backup node is assigned to each responsible node
picked up from the backup node queue.

We let each responsible node R(v) communicate with its
backup node (denoted by rp) periodically so that r, checks
whether R(v) is working. Also, r; receives the list of sub-
scribers from R(v). When r, cannot communicate with
R(v), we replace rp with R(v) and let 7, behave as the new
responsible node. After this replacement, r, broadcasts the
replacement notification message to the subscribers and asks
a subscriber to send the latest game state.

4. EVENTDELIVERY CONTROL DEPEND-
ING ON PLAYER’S VIEW

When we manage the global game state as the set of the
sub game states which are managed in the corresponding sub
spaces separately, we need a mechanism to allow each player
to dynamically and seamlessly switch responsible nodes for
subscription as his/her view moves in the game space. [1]
simplifies this mechanism by assuming that each player’s
view always corresponds to a sub space with the same size
in the whole space (see Fig. 1). [5, 8] allow each player to
have a view including two or more sub spaces. However,
they do not provide a detailed method of how each player
dynamically switches the set of sub spaces depending on
movement of player’s view.

4.1 Dynamic Switching of Responsible Nodes

for Subscription

Below, we show the proposed method to achieve the dy-
namic switching of sub spaces depending on movement of
player’s view.

Let {vp,, ..., Up,, } denote a set of sub spaces overlapping
with player p’s view. p subscribes to the responsible node
of each sub space vp, (1 < i < m). We assume that each
player can obtain addresses of responsible nodes whose sub
spaces overlap with his/her initial view informed by the
lobby server, when he/she joins the game.

When a player p’s character moves and a sub space vp,
gets out of p’s view, player node p sends the unsubscribe
message to the responsible node R(vp,). When R(vp,) re-
ceives this message, it removes this player from the list of
subscribers. Similarly, when p’s character moves and a new
sub space vp; comes into p’s view, p sends the subscribe
message to the responsible node R(vp,).

To allow each player node p to get addresses of the respon-
sible nodes of neighbor sub spaces (hereafter called neigh-
bor responsible nodes), we let each responsible node R(vp,)
retain addresses of vp,;’s eight neighbor responsible nodes
(8 directions: north, south, east, west and oblique angles).
When each player node sends a subscribe message to a re-
sponsible node of sub space v, it receives as a reply the latest
game state GS(¢,v) with addresses of v’s neighbor respon-
sible nodes.

When a responsible node is replaced with a backup node
due to node failure or so on (Sect. 3.2) , the new responsible
node sends its address to its neighbor responsible nodes.

4.2 Seamless Switching of Responsible Nodes

for Subscription

In the method where the global game state is maintained
separately in sub spaces, each player cannot receive events

— player's view

e

sub spaces
for subscription

Figure 3: Sub Spaces and Player’s View

occurred in unsubscribed sub spaces. Therefore, if each
player subscribes to a responsible node after a new sub
space comes into his/her view, the player may miss receiving
events which occurred in the new sub space just before the
space comes into his/her view. To cope with this problem,
we define the subscription range. The subscription range of
player p is defined by a rectangle which has the same center
as p’s view and has longer sides than p’s view by constant
length 2 * di. We let each player p subscribe to sub spaces
overlapping with this range instead of p’s view.

When the border of the subscription range and the border
of a sub space are close to each other, and when a player
character moves around in a narrow space, subscription and
unsubscription to the same sub space may be repeated re-
dundantly. To avoid this problem, we define the unsubscrip-
tion range. The unsubscription range of player p is defined
by a rectangle which has the same center of p’s view and has
longer sides than p’s subscription range by constant length
2 x d2. Each player node p cancels the subscription to sub
space v only when v gets out of this range.

With these technique, when a new sub space v approaches
near the border of a player p’s view within distance di, p can
subscribe to R(v) and obtain the latest game state GS(t, v)
before v is displayed on his/her display. Also, whenever a
player character moves around between two points within
distance daz, the redundant repetitions of subscription and
unsubscription are avoided. In general, use of larger values
of di and d2 can increase the effects, but may produce more
control massages. So, we should carefully decide appropriate
values considering tradeoff.

5. DYNAMIC LOAD BALANCING

When the number of players increases in a sub space, load
(i.e., computation and communication overhead) due to re-
ceiving and forwarding event messages at the responsible
node also increases. In the proposed method, the load bal-
ancing tree is used to distribute load of a responsible node
to multiple player nodes.

5.1 Construction of Load Balancing Tree

Let Player(r) denote a set of players who have subscribed
to the responsible node r of a sub space. For a given integer
constant C, when |Player(r)| > C, the responsible node r
dynamically constructs the load balancing tree as a k-ary
tree as shown in Fig. 4. We assume that C and k are given
as constant integers in advance and that C' > k.

To construct the load balancing tree, a player node is
picked up from the backup node queue and assigned as an
intermediate node, which relays event messages between r
and each node in Player(r). r sends event messages along
the load balancing tree so that the load is regulated below
the specified threshold C at each node. The load balancing

game
space
responsible no
overlay

intermediate /| i networks
node i

o Eo ol o o o
o 0 o O O O
player node

Figure 4: Load Balancing Tree for Sub Space

tree construction algorithm is described as follows.

e (Step 1) The responsible node r observes the number
of intermediate nodes (denoted by m) on the load bal-
ancing tree and the number of subscribers | Player(r)|.
r distributes Player(r) among intermediate nodes so
that each intermediate node retains no more than C
subscribers. Let Player®(r) denote the set of sub-
scribers retained by the tree whose root is r. When
subscribers increase and |Player™(r)| > m x C holds,
a new intermediate node is picked up from the backup
node queue and assigned as m + 1-th child node of
r and the value of m is increased. Conversely, if sub-
scribers decrease and |Player™ (r)| < (m—1)x C holds,
an intermediate node is removed and the value of m
is decreased. When a new player subscribes to r, r
forwards the subscription message to one of its child
nodes with less than C' subscribers.

e (Step 2) Let r1,72, ..., rx denote r’s child nodes, and
r1 denote r’s leftmost child node. If m > k holds by
adding an intermediate node, a new node (from the
backup node queue) is assigned as r1’s child node (de-
noted by r1,1). Here, |Player(r1)| is reduced to C' — k,
and k subscribers are taken over by ri,1. Let mi de-
note the number of child nodes of 71. Let Player®(r1)
denotes the set of subscribers retained by the sub tree
whose root is 1. While
|Player®(r1)] < k x C holds with new subscriptions
and unsubscriptions, r1 adds and/or removes interme-
diate nodes (r1’s child nodes) in a similar way to (Step
1). When |Player®(r1)| > k x C holds, (step 2) is ap-
plied to ra, ..., 7% in this order. When |Player* (ry)| >
k x C holds, (step 2) is applied to r1,1,71,2, ..., recur-
sively.

In the above algorithm, for seamless event delivery, we
should allocate each intermediate node and distribute sub-
scribers to the node before the number of subscribers exceeds
the threshold C. In our method, assignment of an interme-
diate node and taking over of subscribers can be carried out
in advance, for example, when condition |Player®(r;)| >
(mi—1) x C'+ 3C holds. The actual event delivery through
the intermediate node (r;’s m; + 1-th child) can be done
when condition |Player®(r;)| > m; x C holds.

5.2 Reduction of End-to-end Event Delivery

Delay

As the number of subscribers increases in a sub space, the
depth of the load balancing tree becomes larger, and thus
the end-to-end event delivery delay becomes larger as well.
However, as we stated as the criterion (3) in Sect. 1, realtime
event delivery for the constant game state update is essential
for MMORPG. According to the report in [7], the game
state must be updated at least every 400 msec to prevent
players from feeling something wrong. So, we propose a
method to reduce end-to-end delay by dynamically replacing
intermediate nodes in the load balancing tree.

The load balancing tree for the sub space v consists of
the responsible node r (root node), intermediate nodes and
subscribers’ nodes (leaf nodes) as shown in Fig. 4. Among
these nodes, subscribers’ nodes are likely to leave the tree
when sub space v gets out of their views. On the other
hand, the responsible node r does not change until it leaves
from the game. Therefore, as a basic policy, we replace each
intermediate node with a backup node of r to reduce the
end-to-end delay. The algorithm is described as follows (see
also Fig. 5).

(1) r attaches time stamp to the list of event messages
collected in each time slot, and sends it to each child
node ;(1 <4 < k). It also sends the current subscriber
list Player(r) to the backup node 7, after attaching
time stamp to it.

(2) When each child node r; receives the event list, it com-
putes delay D; by the difference between the message
arrival time and time stamp in the message, and sends
D; to r,. To mitigate the jitter of delay, D; can be
computed as the average of delays measured over two
or more time slots. Here, we assume that the clocks of
all player nodes are synchronized loosely (a few msec
for the maximum), for example, with NTP.

(3) When 7y receives the message with Player(r) and time
stamp, it computes delay D, by the difference between
the message arrival time and time stamp in the mes-
sage. It also receives the message with delay D; from
r;(1 < ¢ < k), and computes the maximum delay
D (1 <m < k). If Dy, > Dy, it sends the replacement
message to r so that rp is replaced with 7,,.

(4) If r receives the replacement message, it sends the mes-
sage with Player(rp,) (i.e., the list of subscribers as-
signed to r,) to 7, and it forwards the list of event
messages to 7y, hereafter.

(5) When ry, receives the forwarded event list, it sends the
replacement completed message to rp, and behaves as
the m-th child of r, hereafter.

(6) If old ry, receives the replacement completed message,
it is added to the tail of the backup node queue in the
lobby server. Then, a new node is picked up from the
backup node queue and assigned as the new backup
node of r. The above steps (1) to (6) are repeated
until no new replacement happens.

In the case that the height of the load balancing tree is
three or more, the steps (1) to (6) are applied to each child
node of r;(1 < i < k) recursively, after finishing replacement
of all child nodes of r.

responsible node backup node queue

e
N

measuring
link dela;

N ITTTN

Figure 5: Replacement of Intermediate Nodes in
Load Balancing Tree

6. EXPERIMENTS AND EVALUATION

To evaluate the proposed method, we measured compu-
tation and communication overhead at a responsible node
and an intermediate node of the load balancing tree for a
sub space, changing the number of players in the sub space
(Experiment 1).

We also measured end-to-end event delivery delays through
the load balancing tree in WAN by simulations with ns-2
(Experiment 2).

Experiment 1

We have implemented a prototype system based on the pro-
posed method and executed the system on eight PCs con-
nected via a 100BASE-T LAN, where we used two PCs a
and b for player nodes, one PC c¢ for the responsible node,
and five PCs d,e, f,g and h for intermediate nodes in the
load balancing tree. The specifications of PCs are as follows:
the responsible node ¢: Pentium4 3GHZ and 1GB Memory;
and other nodes: Pentium 3/4 0.6 — 3 GHZ and 256 — 1024
MB memory. Debian GNU Linux is installed on all of these
PCs.

To simplify the experiment, we have implemented two
modules for imitating the behavior of all player nodes in
the sub space: the receiver module and the sender module
which were executed on node a and node b, respectively. The
sender module running at node a sends the same number of
event messages as the number of supposed player nodes in
the sub space every timeslot. The receiver module running
at node b receives packets with the list of events from the
responsible node or via the load balancing tree.

The responsible node ¢ receives event messages from node
a until the deadline of each time slot, composes a list of
received events, and forwards it to b or to several internal
nodes when the load balancing tree exists.

In the experiment, since we used 64 byte packet for each
event message, the size of each event list would be 64 byte
x the number of players >. We used A = 400ms for each
timeslot, and C' = 20, k = 5 for the load balancing tree.
The deadline of each timeslot was set to 200ms point from
the beginning of the timeslot.

With the above experimental setting, we measured the

3In each timeslot, some players may not execute any event.
So, actual size of each event list would be smaller.

CPU load (with the system call clock()), the communica-
tion overhead, and the forwarding delay (i.e., time interval
between the deadline and the time when starting to send
the event list) at the responsible node ¢ for both cases with
and without the load balancing tree. The results are shown
in Fig. 6, Fig. 7, and Fig. 8, respectively.

From Fig. 6 and Fig. 7, we see that the CPU load and
the communication overhead increase monotonously as the
number of player nodes increases, in the case without the
load balancing tree (C' = 100). When the number of players
increases to about 100, the CPU load was still low enough
(0.3%), but the communication overhead increased fatally
(more than 10Mbps). With the load balancing tree (C=20),
the CPU load and the communication overhead were reg-
ulated below the reasonable values (below 0.2% and 0.75
Mbps, respectively). This is because the load balancing tree
was constructed and the event list was delivered through the
tree after the number of players exceeded C' = 20. If we set
the smaller value for C, we can make the CPU load and the
communication overhead lower.

Fig. 6 suggests that the load balancing tree can reduce
CPU load of the responsible node to roughly half of that
without the tree. Therefore, with our technique, each re-
sponsible node can treat twice more players with the same
computation power.

We suppose MMORPG with 50 to 100 players per sub
space at peak time (10 to 100 thousand players in the whole
game space). As shown in Fig. 7, when the number of
players is 100, the required network bandwidth at the re-
sponsible node is around 12 Mbps if the load balancing tree
is not used. If the tree is used, the bandwidth is reduced
to 0.75 Mbps. This shows that the proposed method can
keep the communication overheads at the responsible nodes
small enough for practical use.

In Fig. 8, we see that the forwarding delay at the respon-
sible node increases linearly if the load balancing tree is not
used (10ms when the number of players is 100). If we use
the load balancing tree with C' = 20, the delay is regulated
around 3 msec independently of the number of players.

In summary, we confirmed that the proposed method with
the load balancing tree reduces the CPU load, the commu-
nication overhead and the forwarding delay. However, the
proposed method increases the end-to-end event delivery de-
lay since the event messages are sent through intermediate
nodes. So, we must carefully decide the values of k and C,
considering tradeoff.

Experiment 2

To evaluate an effect of the proposed technique in Sect. 5.2,
we measured the end-to-end event delivery delay in WAN
by simulations with ns-2.

In simulations, we generated hierarchical network topolo-
gies with a topology generator called Tiers[10]. Each topol-
ogy contains 1011 nodes with a WAN, 10 MANs per WAN
and 10 LANs per MAN, where each WAN, each MAN and
each LAN include one node, one node and ten nodes, re-
spectively. We set that link delays within the same LAN
are 2ms, link delays between different LANs through a MAN
are 10ms, and link delays between different MANs through
a WAN are 100ms.

Supposing a sub space in the game space, one responsible
node and 125 player nodes were selected at random from
1011 nodes.

processor utilization [%]

1 1121 31 4 51 61 71 81 91
the number of player nodes

Figure 6: CPU Load

delay of computation [ms]

1 1121 31 41 51 61 71 81 91
the number of player nodes

Figure 8: Forwarding Delay

Intermediate nodes of the load balancing tree and the
backup nodes were selected at random from unused nodes.
It is assumed that the frequency of event occurrence is e=2.5
times/second (i.e., timeslot is A = 400msec), the threshold
value is C'=5, and the tree degree is k=5. Here, the height
of the load balancing tree was four: the root node (the re-
sponsible node), five child nodes, 25 grandchild nodes, and
125 player nodes.

To simplify the experiment, we composed the load balanc-
ing tree with all the above intermediate nodes and player
nodes in advance, and applied the algorithm of Sect. 5.2 to
the tree in the simulation, and measured how the end-to-end
event delivery delays change.

The result calculated by the average of the five simulations
is shown in Fig. 9.

In the figure, we see that the maximum, average, and
minimum (MAX, AVE, and MIN in Fig. 9) of the delivery
delay were reduced gradually and converged to the minimum
value after about 90 replacements of intermediate nodes.
After these replacements, the maximum end-to-end delivery
delay was reduced by about 50 percent from the initial delay
and even the maximum delay converged to below 250msec.

In an actual environment, since the number of players in
a sub space increases gradually, the number of intermediate
nodes also increases gradually. Thus, in actual game situa-
tions, the end-to-end event delivery delay could be improved
more quickly.

communication overhead [Mbps]

O =NWHUON®

1 1mo21 31 4 51 61 71 8 91
the number of player nodes

Figure 7: Communication Overhead

450

400
350
300

250

— MAX
—AVE
— MIN

| S

200
150
100

delay of communication [ms]

50

1 1 21 31 4 51 61 71 81 91
updates [times]

Figure 9: Improvement of End-to-end Delay

7. CONCLUSION

In this paper, we proposed a new distributed event deliv-
ery method for MMORPG.

This method includes (1) a load balancing mechanism
which allows each responsible node for the crowded sub
space to dynamically construct a tree of multiple nodes and
deliver events along the tree to reduce event forwarding over-
head per node, and (2) a technique to reduce the end-to-end
event delivery delay through the load balancing tree by re-
placing one of intermediate nodes with the backup node in-
crementally. We also proposed techniques for efficient and
seamless switching of sub spaces for subscription while each
player’s view moves in the game space.

Through experiments with our prototype system running
on LAN and simulations on ns-2, we have confirmed that
the proposed method can regulate computation and com-
munication overhead of each responsible/intermediate node
below the specified threshold, and achieve the end-to-end
delay small enough for MMORPG in realistic environments.

As part of future work, we are planning to implement
the proposed method as middleware library and evaluate its
performance using actual traces of MMORPG.

8. REFERENCES
[1] A. Bharambe, S. Rao and S. Seshan: “Mercury: A
Scalable Publish-Subscribe System for Internet
Games”, Proc. of 1st Workshop on Network and
System Support for Games (NetGames2002), 2002.

[2] A. Rowstron and P. Druschel: “Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems”, Proc. of IFIP/ACM
International Conference on Distributed Systems
Platforms (Middleware2001), LNCS2218, pp. 329-350,
2001.

[3] M. Castro, P. Druschel, A-M. Kermarrec and A.
Rowstron: “SCRIBE: A large-scale and decentralised
application-level multicast infrastructure”, IEEE
Journal on Selected Areas in Communications (JSAC)
(Special issue on Network Support for Multicast
Communications), 2002.

[4] 1. Stoica, R. Morris, D. Karger, M. F. Kaashoek and
H. Balakrishnan: “Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications”, Proc. of
ACM SIGCOMM’01, pp. 149-160, 2001.

[5] B. Knutsson, H. Lu, W. Xu, and B. Hopkins:
Peer-to-Peer Support for Massively Multiplayer
Games, Proc. of INFOCOM 2004, 2004.

[6] S. Y. Hu, G. M. Liao: “Scalable peer-to-peer
networked virtual environment”, Proc. of the 3rd
Workshop on Network and System Support for Games
(NETGAMES 2004), pp. 129-133, 2004.

[7] T. Henderson: “Latency and Behaviour on a
Multiplayer Game Server”, Proc. of 3rd Int’l.
Workshop on Networked Group Communication
(NGC2001), LNCS2233, pp. 1-13, 2001.

[8] T. Iimura, H. Hazeyama and Y. Kadobayashi, “Zoned
Federation of Game Servers: a Peer-to-peer Approach
to Scalable Multiplayer Online Games”, Proc. of the
3rd Workshop on Network and System Support for
Games (NETGAMES 2004), 2004.

[9] http://www.isi.edu/nsnam/ns/index.html.

[10] http://www.isi.edu/nsnam/ns/ns-topogen.html.

