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Abstract—In a P2P system, a client peer may select up its files; a content publisher might purchase storage
one or more server peers to download a specific file. In and bandwidth from thousands of peers to create a peer-
a P2P resource economythe server peers charge the driven content distribution network; a biotechnology
client for the downloading. A server peer's price would - company might purchase CPU cycles from thousands
naturally depend on the specific object being downloaded, o heaers for distributed computation. If such a flourish-
the duration of the download, and the rate at which . . o

ing resource market existed, individual peers would be

the download is to occur. The optimal peer selection . 3. . .
problem is to select, from the set of peers that have incited to contribute their resources to the marketplace,

the desired object, the subset of peers and downloadthereby unleashing the untapped resource pool.

rates that minimizes cost. In this paper we examine e envision dree-market resource econorimywhich

a number of natural peer selection problems for both peers buy and sell resources directly from each other [7],

P2P downloadingand P2P streaming For downloading, [8]. In this market, selling peers are free to set the prices

we obtain the optimal solution for minimizing the of their resources as they please. A client peer, interested

download delay subject to a budget constraint, as jy purchasing a specific resource, is permitted to “shop”

well as the corresponding Nash equilibrium. For the o gittarent server peers and choose the peers that best

streaming problem, we obtain a solution that minimizes . : . . I
satisfy its needs at the best prices. The “money” paid by

cost subject to continuous playback while allowing for 4
one or more server peers to fail during the streaming the client peers and earned by the server peers may be

process. The methodologies developed in this paper areféal money, or some pseudo-currency similar to frequent
applicable to a variety of P2P resource economy problems. flyer miles. When a seller earns money, it can later spend
the money in the resource market, obtaining resources
Keywords — Economics, Mathematical Program- from other seller peers.
ming/optimization. In a P2P resource economy a client peer can select one
or more server peers for downloading a file or streaming
a stored audio/video object. In general, multiple server
Today many computers participate in peer-to-peer fifgers may have the object available, with each offering
sharing applications in which widely distributed nodesa different price. A serving peer’s price will naturally
contribute storage and bandwidth resources [1], [2], [3]epend on the specific object, the duration of the trans-
[4]. It is widely documented, however, that these P2mission, and the rate at which the transmission is to
systems are havens for “free riders”: a significant fractiarccur. The client may obtain different portions of the
of users do not contribute any significant resources, aobject in parallel from different serving peers, as is
a minute fraction of users contribute the majority of theurrently already the case with KaZaA and other file
resources [1], [5], [6]. Thus, to improve the performancgharing systems. The optimal peer selection problem is
of existing P2P file sharing systems, and to enaliie select, from the subset of the peers that have the
new classes of P2P applications, a compelling incentidesired object, a set of peers and downloading rates that
system needs to be put in place to encourage usersminimize cost and/or delay.
make their resources available. More specifically, when a client peer wants to obtain
Now suppose the existence of an online marketplagespecific object, the following steps may be taken:
where entities - such as peers, companies, users etc(t) Discovery: The client first uses a look-up service
buy and sell surplus resources. In this market place, to discover server peers that have a copy of the
a peer might purchase storage and bandwidth from a object. KaZaA is one example of such a lookup
dozen other peers for the purpose of remotely backing service, but structured DHTs could also be used

. INTRODUCTION



for this. may contract with a large number of peers to store
(2) Pricing: The client then queries the server peershunks of video files. When another peer, say Alice, asks
for their prices. Alternatively, price informationCNN to see a video, CNN may select the peers on Alice’s
might be available via the lookup service. behalf. The selected peers would then either stream or
(3) Reputation: The client may also use a reputatiompload the object, depending on the delivery scheme. The
service to determine the reliability of each of thenethodology developed in this paper is applicable when
server peers. (Reputation services are beyond the client peer is to select the server peers, or when an
scope of this paper; see [9], [10].) intermediate peer (such as CNN) selects the server peers
(4) Server and rate selection:From the subset of on the client’s behalf.
reputable server peers offering the object, the clientThe contribution of our work is the development
peer selects the server peers from which it obtainé theoretical methodologies for these types of peer
the object. The client obtains different segments gklection problems. To facilitate the analysis, we use a
the object from each of the selected server peersodel of the network where delivery rates can more or
The servers may offer a segment at different uplodeks be guaranteed. As discussed in the next section, this
rates, and advertise an upload price as a functionagsumption can be partially justified due to the abun-
the upload rate. The client peer will naturally wantlance of bandwidth in the Internet core. Implementation
to choose the server peers (and rates) to minimiaépeer selection techniques in more accurate networking
cost and delay. models, while not explicitly addressed in this paper, can
(5) Payment: Money is transferred from the clientmore easily be accomplished by using our results as a
peer to the server peers. A protocol for transferrirguide or starting point.

money in a P2P resource market is described in [7],
[8]. [l. PRICING MODEL

In this paper we study the optimal peer selection In this section we describe our pricing model. As
problem for two delivery schemeg:) streaming, where mentioned in the introduction, each server is free to set
the portions of the object must arrive in a timely manndis own prices. Consider a server peerAs part of a
such that the client peer can render the object withodglivery session, peéwill transfer a portion of the bytes
glitches; (ii) downloading, where the client wants toof some objecb to a client peer. For such a delivery,
receive the entire file as quickly and inexpensively dbe server peer will fix an appropriate price that could
possible, but does not render the file during the downaturally depend on:
load. For both schemes, there are many variations ofs The object itself: For example, recently-released
the optimal peer selection problem. For example, for objects (e.g., videos) might be more expensive than
downloading, one can minimize the download delay older objects.
subject to a cost constraint, or minimize the cost subjects Rate of transfer: The server may be able to transfer
to a download delay constraint. We do not attempt to the object at different rates, and charge different
solve all possible variations in an encyclopedic manner. prices for different rates. In this paper we suppose
Instead, we have formulated a few problems that we that peeri has a maximum transfer rate and can
feel are particularly representative and important. The transfer at any raté in the interval|0, u;].
techniques developed in this paper can be extended t@ Duration of transfer: The longer the transfer
other natural variations. (at some constant rate), the more a server should

For the downloading problem, we formulate and solve charge. We typically expect the server’s price to be
the problem of minimizing the (parallel) downloading  proportional to the duration of the transfer.
time subject to a budget constraint. We find that theyr a particular object, we consider pricing functions
optimal solution is a greedy one in which costly servegy the form
are fully excluded from downloading. We also determine
the Nash equilibrium for the servers’ prices. For the
streaming problem, we consider the problem of minwhereb;, € [0,u;] is the rate (in bytes per second) of
mizing cost subject to a continuous-playback constraitihe transfer from server and ¢; is the duration of the
Because server peers often fail (because of intentionali@nsfer for servet. Thus, for a given transfer ratg the
unintentional disconnects from the P2P system), we alsnce is proportional to the duration of transfer.
consider peer failures in our formulation. We are able to It is natural to assume that(0) = 0 andc¢;(-) is non-
find the optimal solution when any subset pfchosen decreasing for alt = 1, ..., I. Furthermore, depending
peers may fail. We solve the streaming problem for botin the broader context, a cost-rate functigfr) may
convex and concave cost functions. be either convex or concave. For example, if a server

For both schemes, a content publisher may also beiansharing its upstream bandwidth resources between
active component of the system. For example, CNN.caime P2P downloading application and other applications,

price =¢;(b;) - t;



then the marginal cost to the server of allocating mooase the client wants to receive the entire file as quickly
bandwidth to the streaming application can be increasiagd inexpensively as possible, but does not render the
with b;, in which casec;(-) is convex. On the other file while downloading.
hand, the server may prefer to sell in bulk to individual Naturally, a client desiring a specific objectwould
clients (because of client acquisition costs), in whidike to obtain the object as quickly as possible and at
caser;(-) is naturally concave. We therefore analyze botbwest possible cost. These two objectives will often be
the convex and concave cases for both the downloadicanflicting, as servers that provide high transfer rates
and streaming problems. may also demand high per-byte transfer costs. There
Note that if a server sends at raigbytes/sec for a are many ways to formulate an optimization problem
duration oft; seconds, then the server transfers= b;¢; that takes into account these conflicting goals. In this
bytes. This implies that the price can also be defined $ection, we consider one natural formulation: the client
terms of the raté; and the object size; since the price selects the peers and rates in order to minimize the total
is equal toc;(b;)t; = [ci(bi)/bi]x;. Thus,c(b) is the cost download time subject to a budget constraint for the
per unit time for data streamed at rdieand¢(b)/b is download. (Although not considered here, the problem
the cost per byte for data streamed at rate of minimizing the cost subject to a constraint on the
Before proceeding, let us examine more carefully whebwnload time is also tractable.)
it means for a server to be able to transfer bytes at aWe can now define the optimal downloading problem.
specific rateh. A server: will have access to the InternetConsider a client peer that wants to download a dile
with some upstream ratg. At any given time, the serverLet F' be the size (in bytes) of the file. As described in
peeri could be transferring files to multiple peers, witlthe introduction, the client peer uses a location service
each file transfer taking place at its negotiated rate. o find the set of peers, denoted in the following as
order to meet its commitment, servierof course, must {1,---, 1}, that have a copy of the file. Each server peer
ensure that the sum of all the committed transfer ratei this set advertises a price functiofib; ), b; € [0, u;].
does not exceed its upstream access #atdn today’s We assume that the client peer has a budgéor this
Internet (and in the foreseeable future), the bottlenepRrticular download, that is, the client peer is prepared
is typically in the access and not in the Internet coré spend up tak units on the download.
Furthermore, in most broadband residential connectiond-et ¢; be the transfer time for servérin this down-
today (including cable modem and ADSL), the upstreal®ad, i.e., the amount of time thatparticipates in the
rate is significantly less than the downstream rate. Thagwnload. If the client peer does not select server peer
in many cases the bandwidth bottleneck between servethent; = 0. The number of bytes transferred by server
and client is the server's upload rate. It is therefofgeer: is b;t;. Because the client wants to obtain the entire
reasonable to assume that a server can provide an offdied we havebit; + --- + b;t; = F. Our optimal peer
rateb as long as the sum of server's committed ongoirgglection problem is to determirtg, 7 = 1,...,1, and
rates is less than,. Even when this assumption ist;, ¢ = 1,...,1, that minimize the total download time
unreasonable, the formulations and results of this pageibject to the budget constraint. Because the client is
provide a framework and starting point for studyinglownloading from multiple server peers in parallel, the
scenarios without the assumption. total download time is the maximum of the Thus, the
There will be situations, however, when the serv@ptimization problem is
will not be able to honor its commitment due to unusual
congestion or service failures in the core. In this case, min max{ty,...,tr} 1)
the client peer may want some form of a refund. Fur-
thermore, either the server or the client may be dishonest
and may not agree on whether the service was actually c1(b)tr 4+ -+ (bt < K (2)
rendered. Thus, some form of arbitration - preferably

subject to

lightweight - may be needed in a realistic P2P resource bity +---+ bty 2 F (3)
market; see, e.g., [7]. In Section IV, we will describe a 0<b;<w i=1,...,1 (4)
client strategy that allows one or more of the contracted .

peers to fail, either because of technical problems or ti>0 i=1,...,1 (5)
dishonesty. Note that since the the cost functiongb) are non-

decreasing, any optimal solution must make the con-

straint in (3) binding. (For otherwise, we can decrease
As discussed in the Introduction, in this paper wk and/ort; for some:, while maintaining feasibility and

explore the optimal peer selection problem for twaoot increasing the objective value.)

delivery schemes, streaming and downloading. In thisAlso note that without the budget constraint (2), the

section we consider the downloading problem, in whiabptimal solution is given by; = u;, t; = F/(u1 4+ -+

1. OPTIMAL PEER SELECTION FORDOWNLOADING



ur), © = 1,...,I, and the resulting minimal downloadTo see the equivalence, suppasg, tf),i=1,...,1,is
time is F'/(u1 + --- + uy). In other words, without an optimal solution to the original problem. Then, letting
the budget constraint, in the optimal solution, the client . » v e

downloads from all of the servers at their maximum rates vy = mﬁx{ti bowp =it =101

until all client have received all the bytes in the file. Thus _ _ _ .
F/(ui +---+uy) is a lower bound for the value of thef€sults in a feasible solution to the LP, taking into

optimization problem (1). account by = 0 or u; for all i. Conversely, if
(y*,x7,...,x7) is the optimal LP solution, then a feasi-
A. Concave Pricing Functions ble solution to the original problem is obtained by letting

) ) ) ) for eachi, b, = ¢t;, = 0 if z; = 0, andb; = u; and
As discussed in Section II, depending on the broader— ., /y, if z; > 0.

context, a cost functiom;(-) may be either convex or = Therefore, it suffices to solve the LP problem. To this
concave. We first consider the scenario whelh), b €  end, re-order the server peers such that

[0, u;] is concave, for ali = 1,..., 1. As it will become
evident below, this scenario also provides the solution O0<c <---<cy. (20)
for the case when each server is capable of transmittin%
at only the rateu; at coste; = ¢;(u;)/u; per byte. Also, denote
Lemma 1: Suppose forali = 1,...,1, ¢;(b) is concave j j
for b € [0, u;]. Then, there exists an optimal solution such Bj := Z wi, B = Z U;Ci. (11)
that foreachi=1,...,1I: b; =0 if t; =0, andb; = u; i=1 i=1
if ¢; > 0. . . . S
Prolof: If ¢, = 0 for somei, then lettingb; = 0 will not Itis easy to verify thal;/B; is increasing iry, since
affect either the constraints or the objective value. Bi _ By .

To argue the case @f > 0 implying b; = u;, we first B; < Byt iff 3 < Bjcjra,

note that the concavity of;(b), along with¢;(0) = 0,
implies thatc;(b)/b is non-increasing irb. Hence, start and the last inequality follows from (10). We note that
with any optimal solution(b;, ¢;)!_, if t; >0 andb; < if i/B1 > K/F, that is, K < Fc, then there is

u; for somej, we can then modify the solution to no feasible solution to the LP. Henceforth, we assume

p1/B1 < K/F.
b = uy, th = bt u; < t;. Theorem 1: Suppose for alli = 1,...,1, ¢;(b) is
_ . o concave forb € [0,u;]. Then the solution to the LP,
This way, b3t = bjt;, hence, the constraint in (3)and hence the original downloading problem, takes the
remains intact, while the constraint in (2) continues #®llowing form: (a) If K/F > B7/By, thenz; = uy for
hold since all i, wherey = F'/B;. (b) Otherwise, suppose for some
¢ (b))t < ¢j(bj)t;, j < I we have
which is equivalent to Bi K B
ANITY, J F Bia
¢j(b3) /b5 < ¢j(bj)/bj, Then

i.e., the non-increasing property of(b)/b mentioned

- . - ;= ; ) < ) — M . = — . .
above. Furthermore, smdg < t;, the objective value ri=wiy, 1<j-L vy =F=yBj;

will not increase O T = =z, =0
. . . .. 7+1 n )
The above lemma implies that the optimal decision on
the ratesp,’s, follows directly from the optimat;’s, and where r K
hence can be eliminated from the problem formulation. y= 97
Specifically, lettinge; := ¢;(u;)/u;, the original prob- cjBj — p;

lem can be reduced to the following equivalent line

orogram (LP): 9h both casesy is the optimal objective value.

Proof: If 5;/B;r < K/F, then it is easily seen that =
6) WY for all 7, wherey = F'/By, is a feasible solution to

oy the LP, with a download time equal to the lower bound
s.t. Zcﬂi <K, (7) F/By. Thus, this solution is clearly optimal.
i Next, consider the case of;/B; < K/F. The dual
Zmi > F, (8) of the above LP is as follows, with the dual variabtes
i and w corresponding, respectively, to the constraints in

0 <z <wy, Vi (9) (7) and (8), anc; corresponding ta:; < w;y in (9):



We still need to verify primal feasibility and comple-
mentary slackness. First note that> 0 follows from

min Fw — Kv (12) (17): both terms on its LHS are positive. Thep > 0
st.  w—z —cv<O0, (13) is equivalent to
dowiz <1, (14) F _F (F3
. > 4 (2 K
’ Br1 — By * ( By )v[’

v>0, w>0, z >0, Vi.
which simplifies (with some algebra) t > 21 the

Below, we start deriving a dual feasible solution, whicfSSumed condition in Case (ii). Other aspects of primal
2asibility hold trivially. Complementary slackness is

then leads to a primal feasible solution via compleme . o . ; .
qdily verified: all primal variables are positive, and all

tary slackness. Once these are verified — dual and priréﬁlj | ; bindina: all dual variabl
feasibility and complementary slackness — the problefyi@! constraints are binding; all dual variables excgpt

is completely solved are positive, and all primal constraints except< u;y,

; ote o e I-th constraint in (9), are binding.
Letting the constraints in (13) and (14) be binding, wib Next supposek /' falls into the following range:

get:
Zi = W — G, (15) Br-1 > E > ﬁlfz'
1+ Br1 F 7 Bro
_ 1+4vpr (16)
Y= T Then, the dual solution is:
Then, the dual objective becomes V=g = 1 w 1+vr-101-1
(cr—1Br-1 — fBr-1)’ Br1
Fuw— Kv— L (—FﬂI—K)
w v = B[ B V. and
Consider, for the time being% > K> %. Then zi=w—cv, 1<I-1; 2z = 0.

v =wy :=1/(crBr — fr). Notecy By > fr follows from  The primal solution is:
(10); and for alls,
r=uy, 1<I1-2 wxp1=F—yBro, x5=0;

1 Br
“ =B T (E Ci)w =0 and
follows from Y= Feg,n—K — Fea - K .
1 . cr-1Br—2 = PBr—2  cr-1Br-1 — fr-1
vr < B — Br Vi: By > fr, Feasibility (primal and dual) and complementary slack-

ness can be verified as befofe.

sincécy, > ¢;. Also note thate,, = 0. Roughly speaking, Theorem 1 indicates that the client

vaLZeaiugllf)evs:'lble solution results in a dual Objecnv(?ownlpads i_n parallel from the least expensive servers
' at their maximum rates. The number of parallel servers
F n (L@ _ K) . 1 _ Fa-K (17) is determined from the budget constraint. To meet the
By By ctBr—08r  ciBr—pBr budget constraint with equality, one of the selected
For the corresponding primal solution, consider the fof€rVers transmits for less time than the other parallel
lowing: servers. Again, this result is true for two important
special cases(i) when the the cost per byte is linear
T = wy, Vi#l; xy=F —yBr_1; (18) in b for all servers; andii) when each selected server

where y is the primal objective value, obtained via 2" transmit only at one rate.

substituting the above solution into (7) and making th®. Convex Pricing Functions

latter an equality: We now consider the downloading problem for convex
B _ pricing functions. Specifically, in this section we suppose
yPr-1ter <F yBI_l) =K, thatc;(b) is convex with respect toforall i =1,..., 1.
from which we can obtain We'll see that this scenario gives rise to a completely
Fe;— K Fej — K different form for the optimal solution. In particular,
Y= = , (19) for many natural pricing functions, all servers will be
crBry =B erBr =i selected with none of servers transmitting at its maximal

i.e., the primal objective value is equal to the duahte. Lett* denote the minimal download time for the
objective value in (17). downloading problem.



Theorem 2: Supposec;(b) is convex inb for all ¢ = access systems), the downstream bandwidth is typically
1,...,I. Then, there exists an optimal solution for théarger than the upstream bandwidth. However, a client
downloading problem with; = ¢* for all i. peer downloading from multiple server peers would
Proof: First note that the convexity of(b) implies that eventually saturate the client's downstream bandwidth
¢i(b)/b is non-decreasing ib. Suppose; < t* for some d. We note that if each server peer can transmit only at
i. Then, we can increasg to ¢t* while decreasing); one rateu; then the problem of selecting an optimal set
to b, = b;t;/t*. This way, there is no increase in thef peers and rates for downloading a file under a client
objective value; the constraint in (3) remains intact; arlshndwidth restriction can be easily shown to be NP-
the constraint in (2) still holds, since Complete, by a reduction from the Knapsack problem
. [11]. The problem of selecting a set of servers with

ci(bi)ts 2 ¢i(by)t, aggregate bandwidth as close as possible, but not larger
ie. than, the client bandwidth is basically just the Knapsack

ci(b:) /b > c: (b)) /b problem.

i(b0)/b 2 i(b1) /B, From the discussions in the last two subsections, in
which follows from the non-decreasing property Oparticular the proofs of Lemma 1 and Theorem 2, it is
ci(b)/b mentioned above, ag < b;. O clear that the required concavity or convexity of the cost

We remark that Theorem 2 does not necessarily impiynctions ¢;(b) can be relaxed to the weaker condition
that all peers are selected when the cost functions @fec;(s)/b being non-increasing or non-decreasing, re-
convex. Indeed, for an optimal solution with= ¢* for = spectively. Note that a functiorf(x) with z > 0 and
all 4, we may haveh; = 0 for one or more server peersf(0) = ( is termed “star-shaped” iff (x)/x is non-
J. The peers wittb; = 0 are not selected. decreasing. This is a standard property in reliability
Theorem 2 leads to a recipe for identifying the optimaheory, refer to [12]. It is well-known (and easy to verify)

solution. To this end, again let denote the optimal that a convex function is star-shaped, but a star-shaped

download time and leb;, i = 1,...,I, be the corre- function need not be either convex or concave.
sponding optimal rates. By Theorem 2 and (2)-(5) we

know that these rates must satisfy C. Nash Equilibrium

cl(b)t" + -+ er(bnt" < K (20)  Suppose a client is interested in downloading thedfile
N of size F, and it makes its budgdt” known to the server
byt b =Fft (21) peers. Suppose now that each peer seirveffree to set
0<b<wu i=1,...,1 (22) its pricing functionc;(b), 0 < b < wu;. We now turn
_ _ _ our attention to the problem of what pricing function
Thus, to find the optimal solution we can search over Qil server should propose to this client. To simplify the
values oft > F'/(uy +---+uy); for each value of we analysis, suppose each server can transmit at either rate

solve the optimization problem: 0 or u;. Lete; == ¢;(u;)/u;. We refertoc = (i, ..., ¢r),
consisting of all the proposed prices, as the pricing
minimize vector.
(b))t + - +er(br)t (23) For a given pricing vectorc, the peer client will
bi determine the optimal number of bytes to allocate to
subject to each server. Letz;(c),...,z;(c)) denote the optimal
byt +br=F/t (24) " allocation for pricing vectoe = (¢, ..., cr). Foragiven
0<b;<w i=1,...,1 (25) ¢, serveri earns revenudy;(c) = c;z;(c). Assuming

_ _ o that the servers are rational, a serv@vould modify its
The optimal ¢* is found by finding the smallest costc; if it could increase its revenu®;(c). A pricing

such that the objective value for (23)-(25) is no greate#; ¢;,..., ¢}) is said to be aNash equilibriumif

than K. The optimization problem is a marginal analysis

problem; it can be efficiently solved with the techniques R;(cj,...,cf +4,...,¢]) < Ri(c},...,cf,...,cf)

in Section IV. Moreover, since the cost functions are

convex, the value of the optimization problem (23)-(29pr all 6 and all i = 1,...,I. In other words,

is convex int (see Section IV). Thus, the optimakan (c,c3,...,c7) is a Nash equilibrium if no server can

be found with a binary search. improve its revenue by unilaterally changing its price.
We remark in passing that another interesting aspecflo analyze the Nash equilibrium, we remark that when

to consider is a restriction on the maximum downloag) = K/F for all i = 1,...,1, then@; = w; F/(u; +

rate d to the client. In this case we would have the--+ uj), i = 1,...,1I, is optimal for the downloading

additional constrainb; + - - - 4+ b; < d at all times. With problem. To see this, note that,,...,z;) is feasible

asymmetric access (as in ADSL and most cable modéon the pricing vector¢ = (¢é4,...,¢7) and gives the



minimal costF'/(u1 + --- + uy). We can now state theproblem is, therefore, to select the peers in order to

following corollary of Theorem 1. minimize the total streaming cost subject to continuous
Corollary 1: ¢; = K/F for all i = 1,...,I is a Nash playback. To simplify the analysis and to see the forest
equilibrium. through the trees, throughout we assume that there is no
Proof: We first observe that whe; = K/F for all initial client buffering before rendering, that is, the client
i=1,...,1,thenz; = w; F/(u1+---+uy),i=1,...,I begins playback as soon as it begins to receive bytes
is optimal for (6). To see this, note théat,,...,z;) is from any server. Note that for streaming, it is highly
feasible for the pricing vectat = (¢4, ..., ¢7) and gives desirable that the playback can continue even if some of
the minimal costF'/(uy + - - - + uy). the server peers fail to provide their services. (In contrast,

Now let ¢ be a pricing vector that is identical #®© for downloading a server failure will merely result in a
for all components except componeitfor which é; = delay in the total download time.) Thus, it is important to

¢; + 6. It suffices to show that fof # 0, explicitly account for failure in the optimal peer selection
RA(E) < Ra(é 26 problem.
i(€) < 1;(©). (26) " As in the previous section, denofe, ..., T} for the

First consider the cas& < 0. For the pricing vectog, —set of server peers that have a copy of the desired object,
the allocation(iy, ... ,4;) is optimal since it is feasible and denoter;(b) for the cost per unit time when peér
and it gives the minimal cosF/(u; + - -- + u;). Thus transfers at raté. To simplify the discussion, we remove
R;(€) = (¢ + 6)#; < ¢j#; = R;(¢), establishing (26). the restrictiorb; < u;; thus, we allowb; to take any value
Now supposé > 0, so thatz; > ¢; forall i # j. Reorder in [0,r] foralli=1,... 1.

the indices so thaf = I. With the pricing vectorc, we Note that in general, the client must not only select
have3/B > K/F = [3;_1/By. Thus, from Theorem 1, a subset of peer servers, but it must also determine
¥y =F —yB;_1 Wherey = (F¢r — K)/(¢;By — (7). It and schedule the specific portions of the file that are
is straightforward to show that; B; — 3; = §B;_; and downloaded from each selected peer, as well as the
FC;— K =0F. Thus,y = F/B;_; andz; = 0. Thus download rate from each selected peer. There are two
Ri(e) = (¢ + 0)zr = 0 < Ry(¢), again establishing broad approaches that can be taken to solve this problem:

(26). 0 time segmentation and rate segmentation In time
The Nash equilibrium in Corollary 1 has severategmentation, the video is partitioned along the time
notable proprerties: axis in distinct segments, and each server is responsible
1) The priceé; does not depend on;, the upload for streaming only one of the segments in the partition.
rate of servetr. Typically in the optimal solution for time segmentation,
2) All peers have the same price in the Nash equilifbe client will begin downloading segments from vari-
rium. ous servers before the scheduled playout times of the

3) For each peer, the Nash price is exactly equal st bytes of those segments. Thus, client buffering is
the price per byte that the client is willing to payrequired. Furthermore, in the optimal solution, the client

namely, K/ F. will typically receive segments from all the selected
servers at the beginning of the video and from only
V. OPTIMAL SELECTION FORSTREAMING one of the selected servers at the end of the video. This

In this section, we consider streaming of encodéfeans that the client must be able to download (at the

(compressed) audio or video. The delivery constraints 4t@ginning of the video) at a rate that is equal to the
more stringent than for downloading: in order to prevestim of the server download rates, which will exceed the
glitches in playback, the servers must continuously dalayback rate. In the rate segmentation approach, each
liver segments of the object on or before their schedul@fl the selected servers contributes bytes for each of the
playout times. frames in the video, and at any instant of time the client
An important parameter for the streaming delivery @0wnloads at the playback rate. In this paper we focus
the object’s playback rate, denoted byFor an object ON rate segmentation.
of size F' with playback rater, the viewing time is  To justify focusing on rate segmentation, we now
T = F/r seconds. Suppose the user at the client begigmonstrate that for convex cost functions, time seg-
to view the video at time&. A fundamental constraint mentation is at least as expensive as rate segmentation in
in the streaming problem is that for all timeswith terms of download cost. Since time segmentation has the
0 <t < T, the client must receive the first ¢ bytes of additional drawbacks of requiring both client buffering
the object. We refer to this constraint as the “continuougnd higher client download rates, rate segmentation for
playback” constraint. Thus, when selecting the servedch cost functions will usually be the better strategy.
peers and the object portions to be obtained from eatheorem 3: Supposec;(b) is convex with respect to
server peer, the client must ensure that this continuodsfor all ¢ = 1,...,I. Then for any solutionS that
playback constraint is satisfied. A natural optimizationses time segmentation, there is a solutfrusing rate



segmentation that has no larger cost. We therefore arrive at the following optimization prob-
Proof: Recall thatF' is the size (in bytes) of the objectlem:
being streamed; is the rate of playback, anfl = F'/r

is the renqlermg time of the object. The convexity of the min  ey(by) 4+ + cr(br) (29)
cost functions implies that for any rakeand any\ > 1, ,
¢i(Ab) > A¢i(b). In solution S, let x; be the number .. Zbi 2r, j=L....L
of bytes of the object sent by serveand lett; be the i
length of time during which serversends these bytes. 0<b;<r i=1...,1I
Sincet; < T for all 4, Without loss of generality we have included the con-
I straintsh; < r for all i = 1, ..., I. Indeed, if an optimal
time segmentation cost = Zcz‘(bi)ti solution hasb; > r for somej, we can always reduce
i=1 b; to r without violating feasibility and without having
I T to increase the objective value (sineg(-) is a non-
i ¢ .
= > (=) decreasing function).
o Tt Before proceeding to solve this streaming problem,
I o we briefly say a few words about implementation. The
> Z ?Ci(?z)ti optimal solution to (29) typically has; + --- + bx >
. (2

r, that is, the aggregate streaming rate (before failure)
I . exceeds the encoded video ratdn practice, the video
= Z c,-(?z) -T. (27) would be erasure encoded in a manner that sérsends
i=1 x; = b;T bytes and that client can reconstruct the video
if any I — 1 of the I streams are received. Although

. , L 4
In solutionS’, server: still sendsx; bytes, but these arebeyond the scope of this paper, it is indeed possible to

sent at a rate of; = %+ = 7 over the entirel’ seconds. . .
devise such erasure encoding schemes.

Sincey; z; = I', we see thab_, b; = and thus the "“rpe apove problem can be solved by first solving the
rate constraint is satisfied in solutidf. Furthermore, following problem: for any giveny: 0 < y < r

I

rate segmentation cost= Zlci(bi)ti min  e1(by) + - + e (br) (30)
Z; s.t. Z b; >r+uvy,
ZT; B
- ;Ci(?)'T‘ (28) 0<b <y, i=1,.. 1
Comparing (27) and (28), we see that the costSok ) .
as least as great as that$f O DenoteC(y) as the corresponding optimal value. Then,
solve the problemmin,<, C(y).

A. Problem Formulation To show that the two problems are equivalent, det

e the set of feasible solutions for (29) addy) be the

In the rate-segmentation streaming problem, to ens . ) : , :
d gp @f{t of feasible solutions for (30). It is easily seen that if

continuous playback the client must receive (at least)
rate r at all times. Thus the objective of the streamin
problem is to choose the server ratgs...,b; which , .
minimize the total cost; (by)T + - - - + ¢ (by)T subject that if (b1,...,br) belongs to® then it also belongs to
to the constraint that the total received rate is at least®(¥), Wherey = max;{b;} < r. Thus,
Because the servers in a P2P system are inherently H — U D(y)

unreliable, we must ensure that the client continues to
receive at rate even when one or more of the selected

servers fails. In the ensuing analysis, we allow for upnd hence minimizing; (b1) + - - - + cr(by) over ® can
to one server failure (in the next subsection we exte®g solved by minimizing:; (b;) + - - - +¢;(by) over each
the analysis to multiple server failures). If servefails ®(y) and then taking the minimum over @l<y <r.

during some period of the streaming, then the cliept
receives at ratij#j b;. Thus, to ensure that the client™"

1,...,br) belongs to®(y) for some0 < y < r, then
1,...,br) also belongs tob. Furthermore, it is seen

y<r

Convex Costs

continues to receive the video at rateven when there _ SUPPOse;(.) is a convex function, forall=1,..., 1.
is one failure, the rates;, . . .,b; must satisfy For a giveny, _the subproblem (30) can be. solved in
a variety of different ways. For example, if the cost
Zbi >r, j=1,...,I functions are also differentiable, then (30) can be solved

i by solving ¢(b;) = « for i« = 1,...,I, and then



searching througla so thatb} + --- 4+ b7 = r +y. We Itis straightforward to verify thatb; (y1)+(1—a)b;(y2),
now provide a marginal allocation algorithm, which doeg = 1,...,I, is a feasible solution to this problem.
not require differentiability: Therefore, we have

Marginal Allocation:

o Start withS := {1,...,I} andb; =0 for all i € S.
« In each step identify

¢ = argmin{ci(b; + A) —ci(bi)}

> ei(abi(yn) + (1= a)b;(y2)) = Cly),
and hence

where A > 0 is a pre-specified small incrementC(y;) + (1 — a)C(y2) > C(y) = Clay; + (1 — a)ys).
(depending on required precision), and rdset—
bi- + A. Whenevem; > y— A, resetS «— S — {i}.

« Continue until the constraing_;b; > r + y is
satisfied.

Note that the complexity of this algorithm is propor
tional toI(r+y)/A. To determine the begt we can do
aline search o’ (y) = 0, fory € [, r]. (If y < 55,
then (30) is infeasible.)

If C(y) is convex iny, then min, C(y) is itself
greedily solvable: We can start with = "=, increase
y by a small increment each time, solve the problem
(30), and stop wheit’(y) ceases to decrease 9= r C. Concave Costs
is reached.

In this alaorith h ¢ lue t Now, suppose the costg(-),i = 1,..., I, areconcave
n this aigorithm, when we go Irom ong valu€ 10 - jqie5d of convex) functions. The equivalence of (29)
the next, sayy + 4, we do not have to do the marginal

. X nd (30) continues to hold. However, there are two
allocation that generat&s(y+4) from scratch (i.e., start- chang(ges)'

ing from all z; values being zero and := {1,...,I}). , . . . .
W% can start from where th% previous rouéd of mz}al)rgina@) The marginal allocation will not generate the opti-
mal solution to (30).

allocation — the one that generat — first hits .. . . . .

a boundary, i.e.b; = y for s?)mej, aégé/)continue from (i) C(y)is no Ionge_:r a convex function. (Neither is it
there. Or, if nob, has hit the boundary in the previous _ & concave function, for that matter.) o

round, then simply start from where the previous round The reason for (i) is evident from examining the
ends (i.e., continue with the solution generated by t§&rlier argument that established the convexity’¢f).
previous round). [Recally € [-Z;,r]. As y increases, The reason for (i) is that the marginal allocation typically
the number ofb; values that {;al,{ hit the boundary irfenerates a solution that is at timéerior of the feasible

the marginal allocation will decrease. Specifically, wheiggion of the problem in (30), which is a polytope. As

y € [z57, 715, for k = 3, ..., I, the number ob; values such the solution can be expressed as a convex com-

that can hit the boundary cannot excéedince we have bination of the extreme points (vertices) of the feasible
ky > 71+l region. (This follows from the well-known Cardabdory
The convexity ofC(y), in turn, is guaranteed if the Theorem.) Due to the concavity, the objective value
¢;(-) are convex functions. To see this, 16t (y))._, corresponding to this solution will dominate (i.e., be no
" 1 1= . . . .
denote the optimal solution to the problem in (30), arginaller than) the convex combination of the objective
consider two such problems, correspondingyte= y; values corresponding to the extreme points, and hence

andy = y», respectively. For any € (0,1), we have ~dominate the smallest of these values. _
Therefore, to solve the optimization problem in (30)

in this case, we only need to consider the extreme points

That is, C(y) is a convex function. To summarize, we
have:

Theorem 4: Suppose for each = 1,...,I, ¢(-) is a
convex function. Then, the optimal value in (30)(y),

is convex iny. In this case, the streaming problem in (29)
is greedily solvable: In each step increasby a small
increment (starting fromy = ), apply the marginal
allocation algorithm to generat€'(y), and stop when
ﬁ%(y) ceases to decrease @k r is reached.

aC(y1) + (1 — a)C(y2) of its feasible region.
= a) cilbj)+ (1 =) cilbj(y) First, observe that the constraifit; b; > r+y must be
j j binding at optimality; otherwise, we could always reduce
> (b 1—ab some of theb; values and thereby improve the objective
- ch(a 5(1) + (1= )b (y2), value while maintaining feasibility.
J . e .
Second, we divide the rangg € [;7¢,r] into seg-
where the inequality follows from the convexity of thements [."5, ;*5], for & = 3,..,1. Then, with the
cj. Next, consider a third version of (30), with = constraint}_;b; > r + y binding, it is clear that the

ayr + (1 — a)yo. number ofb; values at the boundary, = y, cannot



exceedk wheny € [71, -5|. (Here we assumé > 3; they dominate, respectivelyl,3,4;2) and (1,2,3;4).

the case off = 2 is trivial: the optimal solution is Hence, in this case, there are only 2 non-dominant

bi=by=y=r.) points. Specifically, any point that involves /4, such
Consequently, whep € [+, 55|, we only need to thati, violates theincreasingorder in the permutation

consider extreme points that take the following form(iy,is,...,4,) cannot be a dominant point. This is the

b; =y for k — 1 distinct indicesj, by = r — (k—2)y for case for 1 and 3 in the permutati¢®, 4,1, 3,5) in the

another distinct index, andb; = 0 for all the remaining above example.

i's. For each such extreme point, thés sum up to The full details of this example can be worked out as

follows:
k—1 —(k—=2)y = . .
( Jy+r—( Jy=r+y, e y €[}, %), k=5 the non-dominant points are:
making the constraint_; b; > r + y binding.

Specifically, with y a given value in the interval (1,3,4,5:2), (1,2,3,5:4), (1,2,3,4;5).
[#51+ 2], without loss of generality, suppose e y €[5, %), k= 4: the non-dominant points are:
c1(y) <eay) < - <erly), (31) (1,3,4;2), (1,2,3;4).

ci(r—(k=2)y) < < (r—(k=2)y), (32) . :
_ _ o y € [5,r], k = 3: the non-dominant points are:
where(iy, ..., i) is a permutation ofl,..., 7). Denote

(1,3;2), (1,2;4).
o =ci(y),  Bi=clr—(k—2)y). I o " imal solution (to (30) is obtained b
: n each case, the optimal solution (to is obtained by
Clearly, we only need to consider no more than comparing theC'(y) values of the non-dominant points

such extreme points, which we shall refer to ramn- L -
dominant Each of the other extreme pointsdeminant 32%3(:‘('“9 the one corresponding to the smallé)

'(?éhebseegfeletgg‘: gss ?at?jeé:tglse)vg;lge(gf) ;’r\]"e” ﬂgmlcri]g:ﬁin ginally, a comment on the line search mentioned in
T 9 FhE above proposition. Suppose we divide the interval

points. r : '_

Let a_; denote the vectofoy, as, . . . , ay;) Without the [7{7372;'"] into equal segments, each of lengthLet N =
componenta; for somei = 1, ..., k. Then, specifically, 74 denote the number of such segments. Wheis
these (possibly) non-dominant points are sufficiently small, we can safely assume that the ordering

in (31) does not change over any given segment. This
(@15 61), (@2;B2),- -+ (a—k,B6)  (33) means that for any that belongs to a given segment,
(o—g; Brr1), (=25 Bks2)s---, (a—k, Br)- (34) the optimal valueC(y) is determined by a single non-

As before, letC'(y) denote the optimal objective value offominant pointlar—;,; 5, ). That is,
(30). Then theC(y) value corresponding to an extreme Cly) = Z ci(y) + ¢, (r — (k —2)y).

point is the sum ok — 1 values ofc; (for k£ — 1 distinct i<kidie
i's) and one value ofi; for a j that is distinct from all o _ )
the i’s. Hence,C(y) is a concave function over this segment,

Theorem 5: Suppose that for all = 1,...,1, ¢;(-) is a since thec; and ¢;, are all concave functions. Conse-

concave function. Then, the optimal solution to (30), fatuently, the minimum ofC(y) can only be attained at
y € [+57, 755), k = 3,...,1, is generated by taking thethe two end points of the segment. Therefore, the line
minimum of the objective valueg;(y), corresponding S€arch to minimiz&’(y) amounts to evaluatingy values
to the I points in (33) and (34). The solution to theof C(y) and picking the smallest one. This way, the
streaming problem in (29) is then obtained by applyirgfreaming problem is solved by an algorithm@fNI)
a line search tanin,c}, /(7-1),] C(y). time. _
’ Example: We now completely work out the optimal
We may be able to further eliminate some of thbandWIdth prOfIle for the problem In (29) in the case of

non-dominant points. Let us illustrate this through agPncave cost functions. Let= 5 and

example. Considen = 5. Suppose the permutation in a(h) = b
(31) is (i1,...,i5) = (2,4,1,3,5). Considerk = 4. ! - ,
Then, the following four points correspond to the ones c2(b) = 0.5b%
in (33): cs(b) = 0.7b3

(1,3,4;2), (1,2,3;4), (2,3,4;1), (1,2,4;3). (35) ca(b) = 0.5b
A closer examination tells us, however, that the last ro=95

two of the four points in (35) are, in fact, dominant:
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Fig. 1. (a) shows the various concave cost functionsOfot b < 5. (b) is the corresponding plot for the objective functiéify) for
5/3<y<5.

In Figure 1(a) we plot the four concave cost functiorisecomes

ci(b) for 0 < b <. . b
Let C(y) be defined as in (30). Then the minimal cost min - ci(by) ci(br) (37)
(29) is given by s.t. ij >+ fy,
J
Copt: m}n C’(y) 0<b;<y<r, 1=1,...,1
velr ] The key observation here is that the optimal solution

to (36) must satisfy the property that the largéstalues
We use the solution procedure described in Section IVdE, are all equal. Specifically, without loss of generality,
to evaluateC'(y) for y € [, r]. This result is plotted suppose
in Figure 1(b). As can be seen from Figure 1(6)y) bL>by by >bpy > > by (38)
is neither a concave nor a convex function, implying _ _
that a line search has to be done for findifg,. It IS an optimal solution to (36). Then, we must haye=
can also be seen that,, is achieved aty = 2.5. b2 =---=bs. Consider any < f, and hence. > b;.
The corresponding optimal bandwidth profile is given bye can reduceé,. to by and still do no worse on the
by =0, by = 2.5, bg = 2.5, by = 2.5. The corresponding objective value (as the’s are non-decreasing functions),
cost of downloading i€",,; = C(2.5) = 3.4557. while maintaining feasibility. To see this, consider the
constraint

D. Multiple Unavailable Servers be +bppp 4405 2. (39)

. Reducingb, to b, turns the above into
The above approach extends readily to the general case 9o !

when multiple servers can become unavailable. Lbe bf+bpro+--+br =, (40)
the maximum number of servers that can be unavailabighich certainly holds as it is one of the constraints
where1 < f < I —1. In this case, the probleminyolving b;. Furthermore, any other constraint that

formulation in (29) becomes, involvesb, has a left hand side that is at least as large as
the left hand side of (39) — due to the ordering in (38).
min c1(by) + -+ er(by) (36) Hence, it will also remain feasible when is reduced
st Z bj >, dny...ip=1,...1. to by, since its left hand side, after the reduction, will

still dominate the left hand side of (40).
Therefore, we can solve the following equivalent prob-
lem:

j#ili“'vif
0<bi<r, i=1,...1I

In the above optimization problem, the notation min  cq(by) + - +er(br) (41)
i1,...,if = 1,...,I means one such constraint for every s.t. ij >r+ fy,
subset off elements from{1,...,}. j

We claim that the equivalent problem, for< y < r, 0<bh;<y<r, i=1,...,1.



This equivalence is similarly argued as before. First, amy most one server peer can fail. We then extended the
feasible solution to (36) is a feasible to (41) witlset at results to the scenario in which up foserver peers can
the largesb; value. (Note, as before, the optimal solutiofail, for any value off. We again analyzed both convex
to (36) must satisfyb; < r for all i.) Second, given a and concave cases. We found that each case requires

feasible solution to (41), we must have a different methodology, although both cases are quite
tractable.
Z bj = r+fy—biy —-—b The contribution of our work is the development
JF iy of theoretical methodologies for these types of peer
> r+fy— fy=r, selection problems. We have formulated and solved

a rich array of optimal downloading and streaming

I.e., it satisfies the constraint in (.36) as well. . roblems. The techniques presented here should be
Hence, we can solve the equivalent problem in (4fkinhfyl in solving alternative formulations of peer
as in the case of = 1, for both convex and concavegglection problems.

cost functions. It is easy to see that, for both types

of cost functions, we must havg > ;=; otherwise, acknowledgments: The work of Micah Adler was
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