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Abstract— In a P2P system, a client peer may select
one or more server peers to download a specific file. In
a P2P resource economy, the server peers charge the
client for the downloading. A server peer’s price would
naturally depend on the specific object being downloaded,
the duration of the download, and the rate at which
the download is to occur. The optimal peer selection
problem is to select, from the set of peers that have
the desired object, the subset of peers and download
rates that minimizes cost. In this paper we examine
a number of natural peer selection problems for both
P2P downloadingand P2P streaming. For downloading,
we obtain the optimal solution for minimizing the
download delay subject to a budget constraint, as
well as the corresponding Nash equilibrium. For the
streaming problem, we obtain a solution that minimizes
cost subject to continuous playback while allowing for
one or more server peers to fail during the streaming
process. The methodologies developed in this paper are
applicable to a variety of P2P resource economy problems.

Keywords — Economics, Mathematical Program-
ming/optimization.

I. I NTRODUCTION

Today many computers participate in peer-to-peer file
sharing applications in which widely distributed nodes
contribute storage and bandwidth resources [1], [2], [3],
[4]. It is widely documented, however, that these P2P
systems are havens for “free riders”: a significant fraction
of users do not contribute any significant resources, and
a minute fraction of users contribute the majority of the
resources [1], [5], [6]. Thus, to improve the performance
of existing P2P file sharing systems, and to enable
new classes of P2P applications, a compelling incentive
system needs to be put in place to encourage users to
make their resources available.

Now suppose the existence of an online marketplace
where entities - such as peers, companies, users etc. -
buy and sell surplus resources. In this market place,
a peer might purchase storage and bandwidth from a
dozen other peers for the purpose of remotely backing

up its files; a content publisher might purchase storage
and bandwidth from thousands of peers to create a peer-
driven content distribution network; a biotechnology
company might purchase CPU cycles from thousands
of peers for distributed computation. If such a flourish-
ing resource market existed, individual peers would be
incited to contribute their resources to the marketplace,
thereby unleashing the untapped resource pool.

We envision afree-market resource economyin which
peers buy and sell resources directly from each other [7],
[8]. In this market, selling peers are free to set the prices
of their resources as they please. A client peer, interested
in purchasing a specific resource, is permitted to “shop”
the different server peers and choose the peers that best
satisfy its needs at the best prices. The “money” paid by
the client peers and earned by the server peers may be
real money, or some pseudo-currency similar to frequent
flyer miles. When a seller earns money, it can later spend
the money in the resource market, obtaining resources
from other seller peers.

In a P2P resource economy a client peer can select one
or more server peers for downloading a file or streaming
a stored audio/video object. In general, multiple server
peers may have the object available, with each offering
a different price. A serving peer’s price will naturally
depend on the specific object, the duration of the trans-
mission, and the rate at which the transmission is to
occur. The client may obtain different portions of the
object in parallel from different serving peers, as is
currently already the case with KaZaA and other file
sharing systems. The optimal peer selection problem is
to select, from the subset of the peers that have the
desired object, a set of peers and downloading rates that
minimize cost and/or delay.

More specifically, when a client peer wants to obtain
a specific object, the following steps may be taken:

(1) Discovery: The client first uses a look-up service
to discover server peers that have a copy of the
object. KaZaA is one example of such a lookup
service, but structured DHTs could also be used



for this.
(2) Pricing: The client then queries the server peers

for their prices. Alternatively, price information
might be available via the lookup service.

(3) Reputation: The client may also use a reputation
service to determine the reliability of each of the
server peers. (Reputation services are beyond the
scope of this paper; see [9], [10].)

(4) Server and rate selection:From the subset of
reputable server peers offering the object, the client
peer selects the server peers from which it obtains
the object. The client obtains different segments of
the object from each of the selected server peers.
The servers may offer a segment at different upload
rates, and advertise an upload price as a function of
the upload rate. The client peer will naturally want
to choose the server peers (and rates) to minimize
cost and delay.

(5) Payment: Money is transferred from the client
peer to the server peers. A protocol for transferring
money in a P2P resource market is described in [7],
[8].

In this paper we study the optimal peer selection
problem for two delivery schemes:(i) streaming, where
the portions of the object must arrive in a timely manner
such that the client peer can render the object without
glitches; (ii) downloading, where the client wants to
receive the entire file as quickly and inexpensively as
possible, but does not render the file during the down-
load. For both schemes, there are many variations of
the optimal peer selection problem. For example, for
downloading, one can minimize the download delay
subject to a cost constraint, or minimize the cost subject
to a download delay constraint. We do not attempt to
solve all possible variations in an encyclopedic manner.
Instead, we have formulated a few problems that we
feel are particularly representative and important. The
techniques developed in this paper can be extended to
other natural variations.

For the downloading problem, we formulate and solve
the problem of minimizing the (parallel) downloading
time subject to a budget constraint. We find that the
optimal solution is a greedy one in which costly servers
are fully excluded from downloading. We also determine
the Nash equilibrium for the servers’ prices. For the
streaming problem, we consider the problem of mini-
mizing cost subject to a continuous-playback constraint.
Because server peers often fail (because of intentional or
unintentional disconnects from the P2P system), we also
consider peer failures in our formulation. We are able to
find the optimal solution when any subset off chosen
peers may fail. We solve the streaming problem for both
convex and concave cost functions.

For both schemes, a content publisher may also be an
active component of the system. For example, CNN.com

may contract with a large number of peers to store
chunks of video files. When another peer, say Alice, asks
CNN to see a video, CNN may select the peers on Alice’s
behalf. The selected peers would then either stream or
upload the object, depending on the delivery scheme. The
methodology developed in this paper is applicable when
the client peer is to select the server peers, or when an
intermediate peer (such as CNN) selects the server peers
on the client’s behalf.

The contribution of our work is the development
of theoretical methodologies for these types of peer
selection problems. To facilitate the analysis, we use a
model of the network where delivery rates can more or
less be guaranteed. As discussed in the next section, this
assumption can be partially justified due to the abun-
dance of bandwidth in the Internet core. Implementation
of peer selection techniques in more accurate networking
models, while not explicitly addressed in this paper, can
more easily be accomplished by using our results as a
guide or starting point.

II. PRICING MODEL

In this section we describe our pricing model. As
mentioned in the introduction, each server is free to set
its own prices. Consider a server peeri. As part of a
delivery session, peeri will transfer a portion of the bytes
of some objecto to a client peer. For such a delivery,
the server peer will fix an appropriate price that could
naturally depend on:
• The object itself: For example, recently-released

objects (e.g., videos) might be more expensive than
older objects.

• Rate of transfer: The server may be able to transfer
the object at different rates, and charge different
prices for different rates. In this paper we suppose
that peeri has a maximum transfer rateui and can
transfer at any rateb in the interval[0, ui].

• Duration of transfer: The longer the transfer
(at some constant rate), the more a server should
charge. We typically expect the server’s price to be
proportional to the duration of the transfer.

For a particular objecto, we consider pricing functions
of the form

price = ci(bi) · ti
where bi ∈ [0, ui] is the rate (in bytes per second) of
the transfer from serveri and ti is the duration of the
transfer for serveri. Thus, for a given transfer ratebi the
price is proportional to the duration of transfer.

It is natural to assume thatci(0) = 0 andci(·) is non-
decreasing for alli = 1, . . . , I. Furthermore, depending
on the broader context, a cost-rate functionci(·) may
be either convex or concave. For example, if a server
is sharing its upstream bandwidth resources between
the P2P downloading application and other applications,



then the marginal cost to the server of allocating more
bandwidth to the streaming application can be increasing
with bi, in which caseci(·) is convex. On the other
hand, the server may prefer to sell in bulk to individual
clients (because of client acquisition costs), in which
caseci(·) is naturally concave. We therefore analyze both
the convex and concave cases for both the downloading
and streaming problems.

Note that if a server sends at ratebi bytes/sec for a
duration ofti seconds, then the server transfersxi = biti
bytes. This implies that the price can also be defined in
terms of the ratebi and the object sizexi since the price
is equal toci(bi)ti = [ci(bi)/bi]xi. Thus,c(b) is the cost
per unit time for data streamed at rateb, and c(b)/b is
the cost per byte for data streamed at rateb.

Before proceeding, let us examine more carefully what
it means for a server to be able to transfer bytes at a
specific rateb. A serveri will have access to the Internet
with some upstream rateui. At any given time, the server
peeri could be transferring files to multiple peers, with
each file transfer taking place at its negotiated rate. In
order to meet its commitment, serveri, of course, must
ensure that the sum of all the committed transfer rates
does not exceed its upstream access rateui. In today’s
Internet (and in the foreseeable future), the bottleneck
is typically in the access and not in the Internet core.
Furthermore, in most broadband residential connections
today (including cable modem and ADSL), the upstream
rate is significantly less than the downstream rate. Thus,
in many cases the bandwidth bottleneck between server
and client is the server’s upload rate. It is therefore
reasonable to assume that a server can provide an offered
rateb as long as the sum of server’s committed ongoing
rates is less thanui. Even when this assumption is
unreasonable, the formulations and results of this paper
provide a framework and starting point for studying
scenarios without the assumption.

There will be situations, however, when the server
will not be able to honor its commitment due to unusual
congestion or service failures in the core. In this case,
the client peer may want some form of a refund. Fur-
thermore, either the server or the client may be dishonest
and may not agree on whether the service was actually
rendered. Thus, some form of arbitration - preferably
lightweight - may be needed in a realistic P2P resource
market; see, e.g., [7]. In Section IV, we will describe a
client strategy that allows one or more of the contracted
peers to fail, either because of technical problems or
dishonesty.

III. O PTIMAL PEER SELECTION FORDOWNLOADING

As discussed in the Introduction, in this paper we
explore the optimal peer selection problem for two
delivery schemes, streaming and downloading. In this
section we consider the downloading problem, in which

case the client wants to receive the entire file as quickly
and inexpensively as possible, but does not render the
file while downloading.

Naturally, a client desiring a specific objecto would
like to obtain the object as quickly as possible and at
lowest possible cost. These two objectives will often be
conflicting, as servers that provide high transfer rates
may also demand high per-byte transfer costs. There
are many ways to formulate an optimization problem
that takes into account these conflicting goals. In this
section, we consider one natural formulation: the client
selects the peers and rates in order to minimize the total
download time subject to a budget constraint for the
download. (Although not considered here, the problem
of minimizing the cost subject to a constraint on the
download time is also tractable.)

We can now define the optimal downloading problem.
Consider a client peer that wants to download a fileo.
Let F be the size (in bytes) of the file. As described in
the introduction, the client peer uses a location service
to find the set of peers, denoted in the following as
{1, · · · , I}, that have a copy of the file. Each server peer
i in this set advertises a price functionci(bi), bi ∈ [0, ui].
We assume that the client peer has a budgetK for this
particular download, that is, the client peer is prepared
to spend up toK units on the download.

Let ti be the transfer time for serveri in this down-
load, i.e., the amount of time thati participates in the
download. If the client peer does not select server peer
i, thenti = 0. The number of bytes transferred by server
peeri is biti. Because the client wants to obtain the entire
file, we haveb1t1 + · · · + bItI = F . Our optimal peer
selection problem is to determinebi, i = 1, . . . , I, and
ti, i = 1, . . . , I, that minimize the total download time
subject to the budget constraint. Because the client is
downloading from multiple server peers in parallel, the
total download time is the maximum of theti. Thus, the
optimization problem is

minmax{t1, . . . , tI} (1)

subject to

c1(b1)t1 + · · ·+ cI(bI)tI ≤ K (2)

b1t1 + · · ·+ bItI ≥ F (3)

0 ≤ bi ≤ ui i = 1, . . . , I (4)

ti ≥ 0 i = 1, . . . , I (5)

Note that since the the cost functionsci(b) are non-
decreasing, any optimal solution must make the con-
straint in (3) binding. (For otherwise, we can decrease
bi and/orti for somei, while maintaining feasibility and
not increasing the objective value.)

Also note that without the budget constraint (2), the
optimal solution is given bybi = ui, ti = F/(u1 + · · ·+



uI), i = 1, . . . , I, and the resulting minimal download
time is F/(u1 + · · · + uI). In other words, without
the budget constraint, in the optimal solution, the client
downloads from all of the servers at their maximum rates
until all client have received all the bytes in the file. Thus
F/(u1 + · · ·+ uI) is a lower bound for the value of the
optimization problem (1).

A. Concave Pricing Functions

As discussed in Section II, depending on the broader
context, a cost functionci(·) may be either convex or
concave. We first consider the scenario whenci(b), b ∈
[0, ui] is concave, for alli = 1, . . . , I. As it will become
evident below, this scenario also provides the solution
for the case when each server is capable of transmitting
at only the rateui at costci = ci(ui)/ui per byte.
Lemma 1: Suppose for alli = 1, . . . , I, ci(b) is concave
for b ∈ [0, ui]. Then, there exists an optimal solution such
that for eachi = 1, . . . , I: bi = 0 if ti = 0, andbi = ui

if ti > 0.
Proof: If ti = 0 for somei, then lettingbi = 0 will not
affect either the constraints or the objective value.

To argue the case ofti > 0 implying bi = ui, we first
note that the concavity ofci(b), along with ci(0) = 0,
implies thatci(b)/b is non-increasing inb. Hence, start
with any optimal solution(bi, ti)I

i=0, if tj > 0 andbj <
uj for somej, we can then modify the solution to

b′j = uj , t′j = bjtj/uj ≤ tj .

This way, b′jt
′
j = bjtj , hence, the constraint in (3)

remains intact, while the constraint in (2) continues to
hold since

cj(b′j)t
′
j ≤ cj(bj)tj ,

which is equivalent to

cj(b′j)/b′j ≤ cj(bj)/bj ,

i.e., the non-increasing property ofcj(b)/b mentioned
above. Furthermore, sincet′j ≤ tj , the objective value
will not increase.2

The above lemma implies that the optimal decision on
the rates,bi’s, follows directly from the optimalti’s, and
hence can be eliminated from the problem formulation.
Specifically, lettingci := ci(ui)/ui, the original prob-
lem can be reduced to the following equivalent linear
program (LP):

min y (6)

s.t.
∑

i

cixi ≤ K, (7)

∑

i

xi ≥ F, (8)

0 ≤ xi ≤ uiy, ∀i. (9)

To see the equivalence, suppose(b∗i , t
∗
i ), i = 1, . . . , I, is

an optimal solution to the original problem. Then, letting

y∗ = max
i
{t∗i }; x∗i = b∗i t

∗
i , i = 1, . . . , I

results in a feasible solution to the LP, taking into
account b∗i = 0 or ui for all i. Conversely, if
(y∗, x∗1, . . . , x∗I) is the optimal LP solution, then a feasi-
ble solution to the original problem is obtained by letting
for each i, bi = ti = 0 if xi = 0, and bi = ui and
ti = xi/ui if xi > 0.

Therefore, it suffices to solve the LP problem. To this
end, re-order the server peers such that

0 < c1 < · · · < cI . (10)

Also, denote

Bj :=
j∑

i=1

ui, βj :=
j∑

i=1

uici. (11)

It is easy to verify thatβj/Bj is increasing inj, since

βj

Bj
≤ βj+1

Bj+1
iff βj ≤ Bjcj+1,

and the last inequality follows from (10). We note that
if β1/B1 > K/F , that is, K < Fc1, then there is
no feasible solution to the LP. Henceforth, we assume
β1/B1 ≤ K/F .
Theorem 1: Suppose for alli = 1, . . . , I, ci(b) is
concave forb ∈ [0, ui]. Then the solution to the LP,
and hence the original downloading problem, takes the
following form: (a) If K/F ≥ βI/BI , thenxi = uiy for
all i, wherey = F/BI . (b) Otherwise, suppose for some
j ≤ I we have

βj

Bj
>

K

F
≥ βj−1

Bj−1
.

Then,

xi = uiy, i ≤ j − 1; xj = F − yBj−1;

xj+1 = · · · = xn = 0;

where

y =
Fcj −K

cjBj − βj
.

In both cases,y is the optimal objective value.
Proof: If βI/BI ≤ K/F , then it is easily seen thatxi =
uiy for all i, wherey = F/BI , is a feasible solution to
the LP, with a download time equal to the lower bound
F/BI . Thus, this solution is clearly optimal.

Next, consider the case ofβI/BI < K/F . The dual
of the above LP is as follows, with the dual variablesv
and w corresponding, respectively, to the constraints in
(7) and (8), andzi corresponding toxi ≤ uiy in (9):



minFw −Kv (12)

s.t. w − zi − civ ≤ 0, (13)∑

i

uizi ≤ 1, (14)

v ≥ 0, w ≥ 0, zi ≥ 0, ∀i.

Below, we start deriving a dual feasible solution, which
then leads to a primal feasible solution via complemen-
tary slackness. Once these are verified — dual and primal
feasibility and complementary slackness — the problem
is completely solved.

Letting the constraints in (13) and (14) be binding, we
get:

zi = w − civ, (15)

w =
1 + vβI

BI
. (16)

Then, the dual objective becomes

Fw −Kv =
F

BI
+

(FβI

B
−K

)
v.

Consider, for the time being,βI

BI
> K

F ≥ βI−1

BI−1
. Then

v = vI := 1/(cIBI−βI). NotecIBI > βI follows from
(10); and for alli,

zi =
1

BI
+

( βI

BI
− ci

)
vI ≥ 0

follows from

vI ≤ 1
ciBI − βI

, ∀i : ciBI > βI ,

sincecn ≥ ci. Also note thatzn = 0.
The dual feasible solution results in a dual objective

value as follows:
F

BI
+

(FβI

BI
−K

)
· 1
cIBI − βI

=
FcI −K

cIBI − βI
. (17)

For the corresponding primal solution, consider the fol-
lowing:

xi = uiy, ∀i 6= I; xI = F − yBI−1; (18)

where y is the primal objective value, obtained via
substituting the above solution into (7) and making the
latter an equality:

yβI−1 + cI

(
F − yBI−1

)
= K,

from which we can obtain

y =
FcI −K

cIBI−1 − βI−1
=

FcI −K

cIBI − βI
, (19)

i.e., the primal objective value is equal to the dual
objective value in (17).

We still need to verify primal feasibility and comple-
mentary slackness. First note thaty ≥ 0 follows from
(17): both terms on its LHS are positive. Thenxn ≥ 0
is equivalent to

F

BI−1
≥ F

BI
+

(FβI

BI
−K

)
vI ,

which simplifies (with some algebra) toKF ≥ βI−1

BI−1
, the

assumed condition in Case (ii). Other aspects of primal
feasibility hold trivially. Complementary slackness is
readily verified: all primal variables are positive, and all
dual constraints are binding; all dual variables exceptzI

are positive, and all primal constraints exceptxI ≤ uIy,
the I-th constraint in (9), are binding.

Next supposeK/F falls into the following range:

βI−1

BI−1
>

K

F
≥ βI−2

BI−2
.

Then, the dual solution is:

v = vI−1 :=
1

(cI−1BI−1 − βI−1)
, w =

1 + vI−1βI−1

BI−1
,

and

zi = w − civ, i ≤ I − 1; zI = 0.

The primal solution is:

x = uiy, i ≤ I − 2; xI−1 = F − yBI−2, xI = 0;

and

y =
FcI−1 −K

cI−1BI−2 − βI−2
=

FcI−1 −K

cI−1BI−1 − βI−1
.

Feasibility (primal and dual) and complementary slack-
ness can be verified as before.2

Roughly speaking, Theorem 1 indicates that the client
downloads in parallel from the least expensive servers
at their maximum rates. The number of parallel servers
is determined from the budget constraint. To meet the
budget constraint with equality, one of the selected
servers transmits for less time than the other parallel
servers. Again, this result is true for two important
special cases:(i) when the the cost per byte is linear
in b for all servers; and(ii) when each selected server
can transmit only at one rate.

B. Convex Pricing Functions

We now consider the downloading problem for convex
pricing functions. Specifically, in this section we suppose
thatci(b) is convex with respect tob for all i = 1, . . . , I.
We’ll see that this scenario gives rise to a completely
different form for the optimal solution. In particular,
for many natural pricing functions, allI servers will be
selected with none of servers transmitting at its maximal
rate. Lett∗ denote the minimal download time for the
downloading problem.



Theorem 2: Supposeci(b) is convex inb for all i =
1, . . . , I. Then, there exists an optimal solution for the
downloading problem withti = t∗ for all i.
Proof: First note that the convexity ofci(b) implies that
ci(b)/b is non-decreasing inb. Supposeti < t∗ for some
i. Then, we can increaseti to t∗ while decreasingbi

to b′i = biti/t∗. This way, there is no increase in the
objective value; the constraint in (3) remains intact; and
the constraint in (2) still holds, since

ci(bi)ti ≥ ci(b′i)t
∗,

i.e.,
ci(bi)/bi ≥ ci(b′i)/b′i,

which follows from the non-decreasing property of
ci(b)/b mentioned above, asb′i ≤ bi. 2

We remark that Theorem 2 does not necessarily imply
that all peers are selected when the cost functions are
convex. Indeed, for an optimal solution withti = t∗ for
all i, we may havebj = 0 for one or more server peers
j. The peers withbj = 0 are not selected.

Theorem 2 leads to a recipe for identifying the optimal
solution. To this end, again lett∗ denote the optimal
download time and letbi, i = 1, . . . , I, be the corre-
sponding optimal rates. By Theorem 2 and (2)-(5) we
know that these rates must satisfy

c1(b1)t∗ + · · ·+ cI(bI)t∗ ≤ K (20)

b1 + · · ·+ bI = F/t∗ (21)

0 ≤ bi ≤ ui i = 1, . . . , I (22)

Thus, to find the optimal solution we can search over all
values oft ≥ F/(u1 + · · ·+ uI); for each value oft we
solve the optimization problem:

minimize
c1(b1)t + · · ·+ cI(bI)t (23)

subject to
b1 + · · ·+ bI = F/t (24)

0 ≤ bi ≤ ui i = 1, . . . , I (25)

The optimal t∗ is found by finding the smallestt
such that the objective value for (23)-(25) is no greater
thanK. The optimization problem is a marginal analysis
problem; it can be efficiently solved with the techniques
in Section IV. Moreover, since the cost functions are
convex, the value of the optimization problem (23)-(25)
is convex int (see Section IV). Thus, the optimalt can
be found with a binary search.

We remark in passing that another interesting aspect
to consider is a restriction on the maximum download
rate d to the client. In this case we would have the
additional constraintb1 + · · ·+ bI ≤ d at all times. With
asymmetric access (as in ADSL and most cable modem

access systems), the downstream bandwidth is typically
larger than the upstream bandwidth. However, a client
peer downloading from multiple server peers would
eventually saturate the client’s downstream bandwidth
d. We note that if each server peer can transmit only at
one rateui then the problem of selecting an optimal set
of peers and rates for downloading a file under a client
bandwidth restriction can be easily shown to be NP-
Complete, by a reduction from the Knapsack problem
[11]. The problem of selecting a set of servers with
aggregate bandwidth as close as possible, but not larger
than, the client bandwidth is basically just the Knapsack
problem.

From the discussions in the last two subsections, in
particular the proofs of Lemma 1 and Theorem 2, it is
clear that the required concavity or convexity of the cost
functions ci(b) can be relaxed to the weaker condition
of ci(b)/b being non-increasing or non-decreasing, re-
spectively. Note that a functionf(x) with x ≥ 0 and
f(0) = 0 is termed “star-shaped” iff(x)/x is non-
decreasing. This is a standard property in reliability
theory, refer to [12]. It is well-known (and easy to verify)
that a convex function is star-shaped, but a star-shaped
function need not be either convex or concave.

C. Nash Equilibrium

Suppose a client is interested in downloading the fileo
of sizeF , and it makes its budgetK known to the server
peers. Suppose now that each peer serveri is free to set
its pricing function ci(b), 0 ≤ b ≤ ui. We now turn
our attention to the problem of what pricing function
a server should propose to this client. To simplify the
analysis, suppose each server can transmit at either rate
0 or ui. Let ci := ci(ui)/ui. We refer toc = (c1, . . . , cI),
consisting of all the proposed prices, as the pricing
vector.

For a given pricing vectorc, the peer client will
determine the optimal number of bytes to allocate to
each server. Let(x1(c), . . . , xI(c)) denote the optimal
allocation for pricing vectorc = (c1, . . . , cI). For a given
c, server i earns revenueRi(c) = cixi(c). Assuming
that the servers are rational, a serveri would modify its
cost ci if it could increase its revenueRi(c). A pricing
(c∗1, c∗2, . . . , c∗I) is said to be aNash equilibriumif

Ri(c∗1, . . . , c
∗
i + δ, . . . , c∗I) ≤ Ri(c∗1, . . . , c

∗
i , . . . , c

∗
I)

for all δ and all i = 1, . . . , I. In other words,
(c∗1, c∗2, . . . , c∗I) is a Nash equilibrium if no server can
improve its revenue by unilaterally changing its price.

To analyze the Nash equilibrium, we remark that when
ĉi = K/F for all i = 1, . . . , I, then x̂i = uiF/(u1 +
· · · + uI), i = 1, . . . , I, is optimal for the downloading
problem. To see this, note that(x̂1, . . . , x̂I) is feasible
for the pricing vectorĉ = (ĉ1, . . . , ĉI) and gives the



minimal costF/(u1 + · · · + uI). We can now state the
following corollary of Theorem 1.
Corollary 1: ĉi = K/F for all i = 1, . . . , I is a Nash
equilibrium.
Proof: We first observe that when̂ci = K/F for all
i = 1, . . . , I, thenx̂i = uiF/(u1+· · ·+uI), i = 1, . . . , I
is optimal for (6). To see this, note that(x̂1, . . . , x̂I) is
feasible for the pricing vector̂c = (ĉ1, . . . , ĉI) and gives
the minimal costF/(u1 + · · ·+ uI).

Now let c̃ be a pricing vector that is identical tôc
for all components except componentj, for which c̃j =
ĉj + δ. It suffices to show that forδ 6= 0,

Rj(c̃) < Rj(ĉ). (26)

First consider the caseδ < 0. For the pricing vector̃c,
the allocation(x̂1, . . . , x̂I) is optimal since it is feasible
and it gives the minimal costF/(u1 + · · · + uI). Thus
Rj(c̃) = (ĉj + δ)x̂j < ĉj x̂j = Rj(ĉ), establishing (26).
Now supposeδ > 0, so that̃cj > c̃i for all i 6= j. Reorder
the indices so thatj = I. With the pricing vector̃c, we
haveβ/B > K/F = βI−1/BI . Thus, from Theorem 1,
x̃I = F − yBI−1 wherey = (F ĉI −K)/(ĉIBI −βI). It
is straightforward to show thatcIBI − βI = δBI−1 and
FCI −K = δF . Thus,y = F/BI−1 and x̃I = 0. Thus
RI(c̃) = (ĉI + δ)x̃I = 0 < RI(ĉ), again establishing
(26). 2

The Nash equilibrium in Corollary 1 has several
notable proprerties:

1) The price ĉi does not depend onui, the upload
rate of serveri.

2) All peers have the same price in the Nash equilib-
rium.

3) For each peer, the Nash price is exactly equal to
the price per byte that the client is willing to pay,
namely,K/F .

IV. OPTIMAL SELECTION FORSTREAMING

In this section, we consider streaming of encoded
(compressed) audio or video. The delivery constraints are
more stringent than for downloading: in order to prevent
glitches in playback, the servers must continuously de-
liver segments of the object on or before their scheduled
playout times.

An important parameter for the streaming delivery is
the object’s playback rate, denoted byr. For an object
of size F with playback rater, the viewing time is
T = F/r seconds. Suppose the user at the client begins
to view the video at time0. A fundamental constraint
in the streaming problem is that for all timest with
0 ≤ t ≤ T , the client must receive the firstr · t bytes of
the object. We refer to this constraint as the “continuous-
playback” constraint. Thus, when selecting the server
peers and the object portions to be obtained from each
server peer, the client must ensure that this continuous-
playback constraint is satisfied. A natural optimization

problem is, therefore, to select the peers in order to
minimize the total streaming cost subject to continuous
playback. To simplify the analysis and to see the forest
through the trees, throughout we assume that there is no
initial client buffering before rendering, that is, the client
begins playback as soon as it begins to receive bytes
from any server. Note that for streaming, it is highly
desirable that the playback can continue even if some of
the server peers fail to provide their services. (In contrast,
for downloading a server failure will merely result in a
delay in the total download time.) Thus, it is important to
explicitly account for failure in the optimal peer selection
problem.

As in the previous section, denote{1, . . . , I} for the
set of server peers that have a copy of the desired object,
and denoteci(b) for the cost per unit time when peeri
transfers at rateb. To simplify the discussion, we remove
the restrictionbi ≤ ui; thus, we allowbi to take any value
in [0, r] for all i = 1, . . . , I.

Note that in general, the client must not only select
a subset of peer servers, but it must also determine
and schedule the specific portions of the file that are
downloaded from each selected peer, as well as the
download rate from each selected peer. There are two
broad approaches that can be taken to solve this problem:
time segmentation and rate segmentation. In time
segmentation, the video is partitioned along the time
axis in distinct segments, and each server is responsible
for streaming only one of the segments in the partition.
Typically in the optimal solution for time segmentation,
the client will begin downloading segments from vari-
ous servers before the scheduled playout times of the
first bytes of those segments. Thus, client buffering is
required. Furthermore, in the optimal solution, the client
will typically receive segments from all the selected
servers at the beginning of the video and from only
one of the selected servers at the end of the video. This
means that the client must be able to download (at the
beginning of the video) at a rate that is equal to the
sum of the server download rates, which will exceed the
playback rate. In the rate segmentation approach, each
of the selected servers contributes bytes for each of the
frames in the video, and at any instant of time the client
downloads at the playback rate. In this paper we focus
on rate segmentation.

To justify focusing on rate segmentation, we now
demonstrate that for convex cost functions, time seg-
mentation is at least as expensive as rate segmentation in
terms of download cost. Since time segmentation has the
additional drawbacks of requiring both client buffering
and higher client download rates, rate segmentation for
such cost functions will usually be the better strategy.
Theorem 3: Supposeci(b) is convex with respect to
b for all i = 1, . . . , I. Then for any solutionS that
uses time segmentation, there is a solutionS ′ using rate



segmentation that has no larger cost.
Proof: Recall thatF is the size (in bytes) of the object
being streamed,r is the rate of playback, andT = F/r
is the rendering time of the object. The convexity of the
cost functions implies that for any rateb and anyλ ≥ 1,
ci(λb) ≥ λci(b). In solution S, let xi be the number
of bytes of the object sent by serveri and letti be the
length of time during which serveri sends these bytes.
Sinceti ≤ T for all i,

time segmentation cost =
I∑

i=1

ci(bi)ti

=
I∑

i=1

ci(
xi

T

T

ti
)ti

≥
I∑

i=1

T

ti
ci(

xi

T
)ti

=
I∑

i=1

ci(
xi

T
) · T. (27)

In solutionS ′, serveri still sendsxi bytes, but these are
sent at a rate ofbi = xir

F = xi

T over the entireT seconds.
Since

∑
i xi = F , we see that

∑
i bi = r and thus the

rate constraint is satisfied in solutionS ′. Furthermore,

rate segmentation cost=
I∑

i=1

ci(bi)ti

=
I∑

i=1

ci(
xi

T
) · T. (28)

Comparing (27) and (28), we see that the cost ofS is
as least as great as that ofS ′. 2

A. Problem Formulation

In the rate-segmentation streaming problem, to ensure
continuous playback the client must receive (at least) at
rate r at all times. Thus the objective of the streaming
problem is to choose the server ratesb1, . . . , bI which
minimize the total costc1(b1)T + · · ·+ cI(bI)T subject
to the constraint that the total received rate is at leastr.

Because the servers in a P2P system are inherently
unreliable, we must ensure that the client continues to
receive at rater even when one or more of the selected
servers fails. In the ensuing analysis, we allow for up
to one server failure (in the next subsection we extend
the analysis to multiple server failures). If serverj fails
during some period of the streaming, then the client
receives at rate

∑
i6=j bi. Thus, to ensure that the client

continues to receive the video at rater even when there
is one failure, the ratesb1, . . . , bI must satisfy

∑

i 6=j

bi ≥ r, j = 1, . . . , I.

We therefore arrive at the following optimization prob-
lem:

min c1(b1) + · · ·+ cI(bI) (29)

s.t.
∑

i 6=j

bi ≥ r, j = 1, . . . , I.

0 ≤ bi ≤ r i = 1, . . . , I.

Without loss of generality we have included the con-
straintsbi ≤ r for all i = 1, ..., I. Indeed, if an optimal
solution hasbj > r for somej, we can always reduce
bj to r without violating feasibility and without having
to increase the objective value (sincecj(·) is a non-
decreasing function).

Before proceeding to solve this streaming problem,
we briefly say a few words about implementation. The
optimal solution to (29) typically hasb1 + · · · + bK >
r, that is, the aggregate streaming rate (before failure)
exceeds the encoded video rater. In practice, the video
would be erasure encoded in a manner that serveri sends
xi = biT bytes and that client can reconstruct the video
if any I − 1 of the I streams are received. Although
beyond the scope of this paper, it is indeed possible to
devise such erasure encoding schemes.

The above problem can be solved by first solving the
following problem: for any giveny: 0 ≤ y ≤ r,

min c1(b1) + · · ·+ cI(bI) (30)

s.t.
∑

i

bi ≥ r + y,

0 ≤ bi ≤ y, i = 1, . . . , I.

DenoteC(y) as the corresponding optimal value. Then,
solve the problemminy≤r C(y).

To show that the two problems are equivalent, letΦ
be the set of feasible solutions for (29) and,Φ(y) be the
set of feasible solutions for (30). It is easily seen that if
(b1, . . . , bI) belongs toΦ(y) for some0 ≤ y ≤ r, then
(b1, . . . , bI) also belongs toΦ. Furthermore, it is seen
that if (b1, . . . , bI) belongs toΦ then it also belongs to
Φ(y), wherey = maxi{bi} ≤ r. Thus,

Φ =
⋃

y≤r

Φ(y)

and hence minimizingc1(b1) + · · ·+ cI(bI) over Φ can
be solved by minimizingc1(b1)+ · · ·+ cI(bI) over each
Φ(y) and then taking the minimum over all0 ≤ y ≤ r.

B. Convex Costs

Supposeci(.) is a convex function, for alli = 1, . . . , I.
For a giveny, the subproblem (30) can be solved in
a variety of different ways. For example, if the cost
functions are also differentiable, then (30) can be solved
by solving c′i(b

∗
i ) = α for i = 1, . . . , I, and then



searching throughα so thatb∗1 + · · · + b∗I = r + y. We
now provide a marginal allocation algorithm, which does
not require differentiability:

Marginal Allocation:
• Start withS := {1, ..., I} andbi = 0 for all i ∈ S.
• In each step identify

i∗ = arg min
i∈S

{ci(bi + ∆)− ci(bi)},
where ∆ > 0 is a pre-specified small increment
(depending on required precision), and resetbi∗ ←
bi∗ + ∆. Wheneverbi > y−∆, resetS ← S −{i}.

• Continue until the constraint
∑

j bj ≥ r + y is
satisfied.

Note that the complexity of this algorithm is propor-
tional toI(r+y)/∆. To determine the besty, we can do
a line search onC ′(y) = 0, for y ∈ [ r

I−1 , r]. (If y < r
I−1 ,

then (30) is infeasible.)
If C(y) is convex in y, then miny C(y) is itself

greedily solvable: We can start withy = r
I−1 , increase

y by a small increment each time, solve the problem in
(30), and stop whenC(y) ceases to decrease ory = r
is reached.

In this algorithm, when we go from oney value to
the next, say,y + δ, we do not have to do the marginal
allocation that generatesC(y+δ) from scratch (i.e., start-
ing from all xj values being zero andS := {1, ..., I}).
We can start from where the previous round of marginal
allocation — the one that generatesC(y) — first hits
a boundary, i.e.,bj = y for somej, and continue from
there. Or, if nobj has hit the boundary in the previous
round, then simply start from where the previous round
ends (i.e., continue with the solution generated by the
previous round). [Recall,y ∈ [ r

I−1 , r]. As y increases,
the number ofbj values that can hit the boundary in
the marginal allocation will decrease. Specifically, when
y ∈ [ r

k−1 , r
k−2 ], for k = 3, ..., I, the number ofbj values

that can hit the boundary cannot exceedk, since we have
ky ≥ r + y.]

The convexity ofC(y), in turn, is guaranteed if the
ci(·) are convex functions. To see this, let(bi(y))I

i=1
denote the optimal solution to the problem in (30), and
consider two such problems, corresponding toy = y1

andy = y2, respectively. For anyα ∈ (0, 1), we have

αC(y1) + (1− α)C(y2)

= α
∑

j

cj(bj(y1)) + (1− α)
∑

j

cj(bj(y2))

≥
∑

j

cj(αbj(y1) + (1− α)bj(y2)),

where the inequality follows from the convexity of the
cj . Next, consider a third version of (30), withy =
αy1 + (1− α)y2.

It is straightforward to verify thatαbj(y1)+(1−α)bj(y2),
j = 1, ..., I, is a feasible solution to this problem.
Therefore, we have

∑

j

cj(αbj(y1) + (1− α)bj(y2)) ≥ C(y),

and hence

αC(y1) + (1− α)C(y2) ≥ C(y) = C(αy1 + (1− α)y2).

That is, C(y) is a convex function. To summarize, we
have:
Theorem 4: Suppose for eachi = 1, ..., I, ci(·) is a
convex function. Then, the optimal value in (30),C(y),
is convex iny. In this case, the streaming problem in (29)
is greedily solvable: In each step increasey by a small
increment (starting fromy = r

I−1 ), apply the marginal
allocation algorithm to generateC(y), and stop when
C(y) ceases to decrease ory = r is reached.

C. Concave Costs

Now, suppose the costsci(·), i = 1, . . . , I, areconcave
(instead of convex) functions. The equivalence of (29)
and (30) continues to hold. However, there are two
changes:
(i) The marginal allocation will not generate the opti-

mal solution to (30).
(ii) C(y) is no longer a convex function. (Neither is it

a concave function, for that matter.)
The reason for (ii) is evident from examining the

earlier argument that established the convexity ofC(y).
The reason for (i) is that the marginal allocation typically
generates a solution that is at theinterior of the feasible
region of the problem in (30), which is a polytope. As
such the solution can be expressed as a convex com-
bination of the extreme points (vertices) of the feasible
region. (This follows from the well-known Carathéodory
Theorem.) Due to the concavity, the objective value
corresponding to this solution will dominate (i.e., be no
smaller than) the convex combination of the objective
values corresponding to the extreme points, and hence
dominate the smallest of these values.

Therefore, to solve the optimization problem in (30)
in this case, we only need to consider the extreme points
of its feasible region.

First, observe that the constraint
∑

j bj ≥ r+y must be
binding at optimality; otherwise, we could always reduce
some of thebj values and thereby improve the objective
value while maintaining feasibility.

Second, we divide the rangey ∈ [ r
I−1 , r] into seg-

ments [ r
k−1 , r

k−2 ], for k = 3, ..., I. Then, with the
constraint

∑
j bj ≥ r + y binding, it is clear that the

number of bj values at the boundary,bj = y, cannot



exceedk wheny ∈ [ r
k−1 , r

k−2 ]. (Here we assumeI ≥ 3;
the case ofI = 2 is trivial: the optimal solution is
b1 = b2 = y = r.)

Consequently, wheny ∈ [ r
k−1 , r

k−2 ], we only need to
consider extreme points that take the following form:
bj = y for k− 1 distinct indicesj, b` = r− (k− 2)y for
another distinct index̀, andbi = 0 for all the remaining
i’s. For each such extreme point, thebi’s sum up to

(k − 1)y + r − (k − 2)y = r + y,

making the constraint
∑

j bj ≥ r + y binding.
Specifically, with y a given value in the interval

[ r
k−1 , r

k−2 ], without loss of generality, suppose

c1(y) ≤ c2(y) ≤ · · · ≤ cI(y), (31)

ci1(r − (k − 2)y) ≤ · · · ≤ ciI
(r − (k − 2)y), (32)

where(i1, . . . , iI) is a permutation of(1, . . . , I). Denote

αi := ci(y), βi := ci(r − (k − 2)y).

Clearly, we only need to consider no more thank
such extreme points, which we shall refer to asnon-
dominant. Each of the other extreme points isdominant,
in the sense that it’s objective valueC(y) will dominate
(i.e., be at least as large as) one of the non-dominant
points.

Let α−i denote the vector(α1, α2, . . . , αk) without the
componentαi for somei = 1, ..., k. Then, specifically,
these (possibly) non-dominant points are

(α−1;β1), (α−2;β2), . . . , (α−k, βk) (33)

(α−k;βk+1), (α−2; βk+2), . . . , (α−k, βI). (34)

As before, letC(y) denote the optimal objective value of
(30). Then theC(y) value corresponding to an extreme
point is the sum ofk− 1 values ofαi (for k− 1 distinct
i’s) and one value ofβj for a j that is distinct from all
the i’s.
Theorem 5: Suppose that for alli = 1, ..., I, ci(·) is a
concave function. Then, the optimal solution to (30), for
y ∈ [ r

k−1 , r
k−2 ], k = 3, ..., I, is generated by taking the

minimum of the objective values,C(y), corresponding
to the I points in (33) and (34). The solution to the
streaming problem in (29) is then obtained by applying
a line search tominy∈[r/(I−1),r] C(y).

We may be able to further eliminate some of the
non-dominant points. Let us illustrate this through an
example. Considern = 5. Suppose the permutation in
(31) is (i1, . . . , i5) = (2, 4, 1, 3, 5). Considerk = 4.
Then, the following four points correspond to the ones
in (33):

(1, 3, 4; 2), (1, 2, 3; 4), (2, 3, 4; 1), (1, 2, 4; 3). (35)

A closer examination tells us, however, that the last
two of the four points in (35) are, in fact, dominant:

they dominate, respectively,(1, 3, 4; 2) and (1, 2, 3; 4).
Hence, in this case, there are only 2 non-dominant
points. Specifically, any point that involves aβi`

such
that i` violates theincreasingorder in the permutation
(i1, i2, . . . , in) cannot be a dominant point. This is the
case for 1 and 3 in the permutation(2, 4, 1, 3, 5) in the
above example.

The full details of this example can be worked out as
follows:
• y ∈ [ r

4 , r
3), k = 5: the non-dominant points are:

(1, 3, 4, 5; 2), (1, 2, 3, 5; 4), (1, 2, 3, 4; 5).

• y ∈ [ r
3 , r

2), k = 4: the non-dominant points are:

(1, 3, 4; 2), (1, 2, 3; 4).

• y ∈ [ r
2 , r], k = 3: the non-dominant points are:

(1, 3; 2), (1, 2; 4).

In each case, the optimal solution (to (30)) is obtained by
comparing theC(y) values of the non-dominant points
and picking the one corresponding to the smallestC(y)
value.

Finally, a comment on the line search mentioned in
the above proposition. Suppose we divide the interval
[ r
I−1 , r] into equal segments, each of length∆. Let N :=
r(I−2)
(I−1)∆ denote the number of such segments. When∆ is
sufficiently small, we can safely assume that the ordering
in (31) does not change over any given segment. This
means that for anyy that belongs to a given segment,
the optimal valueC(y) is determined by a single non-
dominant point(α−i`

;βi`
). That is,

C(y) =
∑

i≤k,i 6=i`

ci(y) + ci`
(r − (k − 2)y).

Hence,C(y) is a concave function over this segment,
since theci and ci`

are all concave functions. Conse-
quently, the minimum ofC(y) can only be attained at
the two end points of the segment. Therefore, the line
search to minimizeC(y) amounts to evaluatingN values
of C(y) and picking the smallest one. This way, the
streaming problem is solved by an algorithm ofO(NI)
time.

Example: We now completely work out the optimal
bandwidth profile for the problem in (29) in the case of
concave cost functions. Letr = 5 and

c1(b) =
√

b

c2(b) = 0.5b
3
4

c3(b) = 0.7b
3
5

c4(b) = 0.5b

r = 5



(a) Concaveci(b) functions (b) Objective function C(y)

Fig. 1. (a) shows the various concave cost functions for0 ≤ b ≤ 5. (b) is the corresponding plot for the objective functionC(y) for
5/3 ≤ y ≤ 5.

In Figure 1(a) we plot the four concave cost functions
ci(b) for 0 ≤ b ≤ r.

Let C(y) be defined as in (30). Then the minimal cost
(29) is given by

Copt = min
y∈[ r

I−1
,r]

C(y).

We use the solution procedure described in Section IV-C
to evaluateC(y) for y ∈ [ r

I−1 , r]. This result is plotted
in Figure 1(b). As can be seen from Figure 1(b),C(y)
is neither a concave nor a convex function, implying
that a line search has to be done for findingCopt. It
can also be seen thatCopt is achieved aty = 2.5.
The corresponding optimal bandwidth profile is given by
b1 = 0, b2 = 2.5, b3 = 2.5, b4 = 2.5. The corresponding
cost of downloading isCopt = C(2.5) = 3.4557.

D. Multiple Unavailable Servers

The above approach extends readily to the general case
when multiple servers can become unavailable. Letf be
the maximum number of servers that can be unavailable,
where 1 ≤ f ≤ I − 1. In this case, the problem
formulation in (29) becomes,

min c1(b1) + · · ·+ cI(bI) (36)

s.t.
∑

j 6=i1,...,if

bj ≥ r, i1, . . . , if = 1, . . . , I.

0 ≤ bi ≤ r, i = 1, . . . , I.

In the above optimization problem, the notation
i1, . . . , if = 1, . . . , I means one such constraint for every
subset off elements from{1, . . . , I}.

We claim that the equivalent problem, for0 ≤ y ≤ r,

becomes

min c1(b1) + · · ·+ cI(bI) (37)

s.t.
∑

j

bj ≥ r + fy,

0 ≤ bi ≤ y ≤ r, i = 1, . . . , I.

The key observation here is that the optimal solution
to (36) must satisfy the property that the largestf values
of bi are all equal. Specifically, without loss of generality,
suppose

b1 ≥ b2 · · · ≥ bf ≥ bf+1 ≥ · · · ≥ bI (38)

is an optimal solution to (36). Then, we must haveb1 =
b2 = · · · = bf . Consider anye < f , and hencebe ≥ bf .
We can reducebe to bf and still do no worse on the
objective value (as theci’s are non-decreasing functions),
while maintaining feasibility. To see this, consider the
constraint

be + bf+2 + · · ·+ bI ≥ r. (39)

Reducingbe to bf turns the above into

bf + bf+2 + · · ·+ bI ≥ r, (40)

which certainly holds as it is one of the constraints
involving bf . Furthermore, any other constraint that
involvesbe has a left hand side that is at least as large as
the left hand side of (39) – due to the ordering in (38).
Hence, it will also remain feasible whenbe is reduced
to bf , since its left hand side, after the reduction, will
still dominate the left hand side of (40).

Therefore, we can solve the following equivalent prob-
lem:

min c1(b1) + · · ·+ cI(bI) (41)

s.t.
∑

j

bj ≥ r + fy,

0 ≤ bi ≤ y ≤ r, i = 1, . . . , I.



This equivalence is similarly argued as before. First, any
feasible solution to (36) is a feasible to (41) withy set at
the largestbi value. (Note, as before, the optimal solution
to (36) must satisfybi ≤ r for all i.) Second, given a
feasible solution to (41), we must have

∑

j 6=i1,...,if

bj ≥ r + fy − bi1 − · · · − bif

≥ r + fy − fy = r,

i.e., it satisfies the constraint in (36) as well.
Hence, we can solve the equivalent problem in (41)

as in the case off = 1, for both convex and concave
cost functions. It is easy to see that, for both types
of cost functions, we must havey ≥ r

I−f ; otherwise,
the problem is infeasible. For concave costs, we will
consider the intervalsy ∈ [ r

k−f , r
k−f−1 ], for k = f +

2, . . . , I (assumingf ≤ I − 2, the case off = I − 1
being trivial). For thek-th interval, the non-dominant
points arek − 1 distinct bi values set aty, and another
distinct bj set atr − (k − f − 1)y, with the total being

(k − 1)y + r − (k − f − 1)y = r + fy;

and 0 ≤ r − (k − f − 1)y ≤ y (i.e., bj is feasible), or
y ∈ [ r

k−f , r
k−f−1 ].

V. SUMMARY AND CONCLUSION

We envision a free-market resource economy in which
peers buy and sell resources directly from each other. In
the context of a P2P resource market, we considered
the problem of optimal peer and rate selection. To our
knowledge, this is the first work that considers optimal
peer selection in a P2P resource market.

Throughout this paper we allowed for a natural pricing
function of the formci(bi) · ti, wherei indexes the peer
server,bi is the rate at which the server transmits bytes
to the client, andti is the duration of the transfer. We
considered optimal peer selection for two broad classes
of problems: downloading and for streaming. For both
classes of problems we considered both convex and
concave cost functions.

For the downloading problem with concave cost func-
tions, we provided an explicit solution to the problem,
whereby all selected peers transmit at their maximum
rate ui. For convex cost functions we showed how the
problem can be easily solved with marginal analysis,
and that for many natural convex cost functions, allI
servers are selected, with none of the servers transmitting
at their maximal rates. We also found that in the Nash
equilibrium, each server sets its cost to the price per byte
that the client is willing to pay.

For the streaming problem, we showed that for prob-
lems of practical interest, rate segmentation can always
do as well as time segmentation. We then focused on rate
segmentation. We first considered the scenario in which

at most one server peer can fail. We then extended the
results to the scenario in which up tof server peers can
fail, for any value off . We again analyzed both convex
and concave cases. We found that each case requires
a different methodology, although both cases are quite
tractable.

The contribution of our work is the development
of theoretical methodologies for these types of peer
selection problems. We have formulated and solved
a rich array of optimal downloading and streaming
problems. The techniques presented here should be
helpful in solving alternative formulations of peer
selection problems.
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