The Importance of History in a Media Delivery System

Richard J. Dunn, Steven D. Gribble, Henry M. Levy, John Zgdror
University of Washington
E-mail: {rdunn,gribble,levy,zahorjan}@cs.washington.edu

Abstract

We examine the performance dynamics of a generic me-
dia delivery service, in which a single provider distributes
to a set of peers using a BitTorrent-like protocol. Previ-
ous studies of BitTorrent have examined its performance
in delivering single objects; here we discuss the dynamics
of distributing a population of objects. Specifically, we
assume that peers cache objects they download, and ex-
amine strategies for choosing which objects peers should
serve while participating in the system. We examine a set
of strategies, and show that a simple strategy yields per-
formance gains over that employed by current BitTorrent-
like systems.

1. Introduction

In recent years, the BitTorrent protocol has proved
an efficient means to distribute content from a single
provider to a set of interested peers. Its success is such
that recently several proposals [5, 9, 8] have been made
to utilize this protocol as part of a media delivery ser-
vice, delivering non-real-time media content (movies, mu-
sic). Such a service utilizes the interested peers to reduce
bandwidth demands on the content provider.

In this paper, we examine the performance dynamics
of such a system. We are interested in how to manage the
limited resource of the peers in the most efficient manner.
Previous studies of BitTorrent have focused on its perfor-
mance in delivering a single object. Here we focus on how
to manage resources across a wide population of objects.
Specifically, we assume that peers cache downloaded con-
tent for some time, and seek to determine which objects
peers should serve while participating in the system.

We approach the problem by simulating a generic me-
dia delivery system. Using a model developed from traces
of P2P file-sharing systems, we drive a simulation with a
request pattern that exhibits the characteristics of mea-
sured requests to media objects. Using this simulation,
we determine performance based on the bandwidth re-
quirement placed on the content provider.

Our key result is to show that good performance in me-
dia delivery relies on clients caching and re-distributing
objects they download, referred to as “seeding” in Bit-
Torrent parlance. We show the the current default be-
havior of many BitTorrent clients (seeding the last object
downloaded), is far less than optimal, and that a simple
change in seeding strategy can yield tremendous perfor-
mance improvement.

In the next section, we examine the structure of our
simulation, outlining our models of requests, peer avail-
ability, and object delivery. In Section 3, we examine the
best and worst possible performance of any strategy, and
the performance of a strategy implicitly used by exist-
ing BitTorrent clients. In Sections 4 and 5, we examine
improvements on this strategy, and conclude in Section 6.

2. Methodology

Our approach is to simulate a generic media deliv-
ery system and to measure the effect that certain design
choices have on its overall performance. We begin by
framing the general structure of a media delivery system:

e There is a single content provider, who possesses a
set of objects. The provider has unlimited band-
width with which to serve these objects (more pre-
cisely, the provider has enough bandwidth to serve
to all peers at their maximum download rate, con-
sistent with a well-provisioned service.)

e There is a set of peers, who over time make requests
on and download objects from the provider. Peers
have fixed download and upload bandwidths, and we
further assume that download bandwidth exceeds
upload bandwidth by some constant factor.

e The provider faces a fundamental trade-off between
the bandwidth it expends to deliver the objects to
the peers, and the rate (and therefore latency) at
which peers can download an object. To resolve
this trade-off, we assume the provider serves objects
such that each peer can download at its full down-
load bandwidth, regardless of the total bandwidth
expended by the provider. This is consistent with
providing a good user experience; our goal is to re-
duce bandwidth through other means.

e We assume that the peers are willing to use their
upload bandwidth to relieve the bandwidth require-
ments on the provider. Peers can serve objects they
are currently downloading or have downloaded in
the past, as long as they are online in the system.
We assume peers are online whenever they are down-
loading an object and at select other times, de-
scribed below.

We simulate the dynamics of this system, with peers
coming on- and offline, making requests, and retrieving



objects. We drive the simulation with a time series of
requests from the peers. Aside from the general struc-
ture of the system described above, we require three key
inputs:

1. A model of requests. We use this to develop the
time-series pattern of requests from the clients to
the object population. For this, we will utilize an
artificial stream generated by a previously published
model based on traces of existing P2P systems.

2. A model of peer availability. This governs when each
peer is offline, online and downloading an object,
or online without actively downloading. We rely
on a simplified model based on standard usage of
BitTorrent systems.

3. A model of efficient delivery of objects. This governs
how we use the resources of the content provider
and the peers to distribute individual objects. We
assume an idealized version of BitTorrent based on
published studies of its performance.

In the next three sections, we discuss the details of
each of these models separately.

2.1 Model of Object Requests

We utilize the model first proposed in [3], and extended
by [2]. This model was developed to mimic the proper-
ties of request streams seen in measurements of various
P2P file-sharing systems. The model takes as input a
per-peer request rate, peer and object population size,
and a rate of introduction of new objects, and produces
request streams of arbitrary duration. The generated re-
quest streams exhibit patterns of requests with appropri-
ate distribution of those requests across objects, across
peers and, for each object, across time.

Several properties of these distributions are key to our
results. First, requests are distributed across objects fol-
lowing a power-law (or Zipf-like) distribution, in which a
few objects receive a large portion of the requests, but un-
popular objects as a whole also receive a large portion of
requests. Requests across time to particular objects ex-
hibit a peak of popularity when an object is introduced
into the system, waning as the object ages. Also, new ob-
jects tend to start as popular objects, displacing existing
popular objects.

For the simulations that we show results for in the next
few sections, we assume a peer population of 100,000,
an initial object population of 70,000, a request rate of
40,000 per day (and thus each peer makes a request ev-
ery 2-3 days), and an object arrival rate of 10 per day.
Objects are all around the standard size of movies (700
MB). We simulate using a 100-day long request stream.
(Though our quantitative results reflect these chosen num-
bers, reasonable variations from these values do not qual-
itatively change our conclusions.)

2.2 Model of Peer Availability

We adopt a simplified model of peer availability based
on the current perceived usage of BitTorrent. Namely,
a client will become available when it wishes to make a

request to the system (governed by the request model).
The client will remain available as it downloads the ob-
ject. After it has obtained the full copy of the object, it
will remain available for some period of time, which we
call the “seed time” and which is the single parameter for
the availability model.

Two studies of BitTorrent systems [6, 4] note that
the vast majority of clients follow the pattern described
above, with seed times on the order of hours. This model
also agrees with anecdotal evidence of how users inter-
act with BitTorrent objects. Since the download is not a
real-time stream, users will often “fire and forget” allow-
ing the download to proceed and checking back later that
it has finished. Torrent sites also often encourage users
to seed after their download has finished. In our experi-
ments, we vary the average seed time between 3 and 15
hours after each download.

2.3 Model of Object Delivery

We assume an idealized BitTorrent model of object
delivery, with additional unicast delivery of objects to
fill each peer’s download capacity. Performance analy-
ses of BitTorrent [7, 1] have shown that it achieves a
near-optimal efficient use of peer upload capacities. For
the purpose of a single provider distributing an object,
this means that up to a particular upload rate (equal
to the average upload bandwidth of the clients), each
peer (regardless of the number of peers) will receive that
download rate, making delivery to more than one peer
essentially “free”

In a world with asymmetric bandwidths and content
providers with excess bandwidth, however, we may do
better by having the content provider use less-efficient
unicast delivery to fully fill the excess download capacities
of users. Based on our assumptions earlier, we assume our
content provider provides distributed delivery up to the
peer upload rate, and unicast delivery beyond that until
all peers are downloading at capacity.

To achieve the above effect, all peers downloading an
object must also devote their upload bandwidth to that
object (this condition is implicit in the analyses cited
above). Therefore, we assume that while a peer is down-
loading, it is seeding that object, but that during the seed
time (no active download), it is free to seed any object
it has previously downloaded. If we assume N peers are
downloading an object, M peers (above the N download-
ing) are seeding it, and each peer has download capacity
D and upload capacity U, the demand on the content
provider for that object is then:

BW=U+((D—U)*N)— (Mx*U) (1)

To reflect real-world asymmetries in download versus up-
load capacity of peers, we set D/U = 3, specifically
D = 60KB/s, U = 20KB/s. (As above, changing these
values or their ratio does not quantitatively affect our
conclusions.)

2.4 Bringing it Together

Given the models above for requests, availability, and



delivery method, we can outline the design of the system
simulation as a whole. We begin with a population of P
peers, all initially offline. As time progresses, we receive
requests from peers. If a peer p makes a request at time ¢,
it then comes online and begins downloading the object
at its download capacity D. When the object is fully
downloaded, the peer begins seeding some object that it
has previously downloaded, and will continue to do so
for the seed time S. The peer will then go offline until it
makes its next request.

Using the notation of Equation 1, the total demand on
the content provider (across all objects i) is Bprovider =
>, U+ ((D—=U) xn;) — (m; *U). Our goal is to mini-
mize Bprovider- We assume that most of the parameters
in our model are fixed. That is, we have no control over
the request pattern, object population, delivery model,
or download and upload bandwidths of peers (and we
believe this to be a reasonable real-world assumption).
Our remaining control over the system is limited to the
seeding strategy of peers (i.e. which object each peer
should seed) and (to a likely far lesser extent) the av-
erage seed time for peers. Thus our goal in this paper
is to explore the space of seeding strategies, evaluating
which ones most effectively minimize the bandwidth re-
quirement on the content provider.

2.5 Experimental Approach

Over the next few sections, we will evaluate the per-
formance (demand on the content provider) of several
different seeding strategies. We begin by first bracketing
the achievable performance of any seeding strategy. We
show the worst-case performance, namely the demand on
the content provider when peers contribute no seeding
resources. We then show a measure of the best possible
performance, given the constraints of peer upload capac-
ities and histories of downloaded objects.

With a minimum and maximum in place, we show
the performance of the existing BitTorrent strategy, in
which peers seed the object they most recently down-
loaded. To improve on the performance of this strategy,
we then consider two types of approaches. The first (Sec-
tion 4) are object-centered approaches, in which we at-
tempt to move peers around to optimize the performance
of a single object at a time. The second (Section 5) are
peer-centered approaches, in which each peer indepen-
dently decides which object to seed. Our results compare
each proposed strategy to the existing strategy and the
minimum and maximum possible performance.

3. Basic Performance of the System

We first consider the basic dynamics of the system, and
then examine the performance using a seeding strategy
based on common usage of BitTorrent. As stated in the
previous section, our measure of performance for our de-
livery system is the total bandwidth demand on the con-
tent provider, after accounting for bandwidth provided
by the peers. We first evaluate the minimum and maxi-
mum bandwidth demands we expect to see at the content
provider: these provide boundaries for any seeding strat-
egy we evaluate. We then evaluate the performance of

1%}
@
o

N

15}
S
S

Requested

n
a
1=}

~
Wasted Peer BW

N
=3
=

With Seeding

/L / Minimum Required

3 4 5 6 7 8 9 10 11 12 13 14 15
Seed time (hours)

Provider BW (GB/s)
@
<)

=)
1=y

o
=}

o

Figure 1. Bandwidth vs. seed time (last-object seed-
ing). This shows the demand on the central con-
tent provider across a variety of peer seed times.
1) Requested: total demand, 2) Minimum required:
minimum demand possible, 3) With seeding: using
a last-downloaded seeding strategy, 4) Wasted Peer
BW: unused peer capacity using last-downloaded
strategy.

a seeding strategy employed by most BitTorrent client
applications.

3.1 Bounds on System Performance

There is clearly a maximum on this requested band-
width; at any time, some finite number of peers P, are
actively downloading objects. Since we assume all peers
download at rate D, the maximum demand on the con-
tent provider is P; x D. The line labeled “Requested” in
Figure 1 show this maximum requested bandwidth at a
single point in time (day 50) of our generated trace, across
a variety of seed times ranging from 3 to 15 hours. We
see that the value is constant; this is expected, since we
are considering maximum requested bandwidth, which is
unaffected by any bandwidth provided by the peers.

The minimum bandwidth demand is harder to account
for. Recall that our bandwidth demand is lowered by
peers in their seeding phase providing bandwidth to the
downloading peers. A logical conclusion is that if more
peers are in their seeding phase, more bandwidth will
be offloaded from the content provider, driving its band-
width towards zero. Two factors play a role in the effect
that seeding peers have:

1. We can only reduce the bandwidth on the content
provider to the extent that there are seeding peers
in the system. That is, there is a maximum upload
capacity that the set of seeding peers can provide,
and we can only increase performance by this value.

2. However, even if sufficient absolute bandwidth ex-
ists on the seeding peers, the peers cannot serve ob-
jects they do not have. For any particular object, it
is possible that the number of peers who have pre-
viously downloaded the object and are now in their
seeding phase is insufficient to satisfy the demand
on that object. Across all the objects, the sum of
these deficits correlates the maximum performance
improvement.



As stated, both these factors independently determine a
minimum demand on the content provider. The maxi-
mum of these two factors is thus an absolute minimum
of the demand.

The line labeled “Minimum required” in Figure 1 shows
this minimum value, again across a variety of hold times.
times. We see that the minimum is far below the max-
imum requested bandwidth and, as expected, improves
with seed time. Note the sharp knee at a seed time of 7
hours. This represents the point at which the two mini-
mums trade dominance. At fewer than 7 hours, the first
minimum dominates, since these low seed times introduce
very little total peer bandwidth. However, the situation
improves very quickly, and after 7 hours the second min-
imum dominates.

3.2 Performance of a Basic Seeding Strategy

Given a maximum and minimum demand on the con-
tent provider, we can now evaluate the performance of
specific seeding strategies. In this section, we consider
the current model of BitTorrent seeding, namely, to seed
the last object downloaded. While this strategy is not
inherent in the design of the BitTorrent protocol, most
implementations of BitTorrent clients foster this behav-
ior:

e Several BitTorrent client applications (ex. the canon-
ical BitTorrent client, BitComet) use the concept of
single application instance per torrent file (and ob-
ject). Once this instance is closed for some reason,
there is no incentive to re-open that particular file,
and thus older objects are unlikely to be seeded.

e Even in the case of one application instance han-
dling several files at once, several applications (ex.
uTorrent, Azureus) explicitly encourage the seeding
of recently downloaded files over older files.

In our simulation of this strategy, a peer comes up at the
time of a request, fully downloads the object, then seeds
this object for the duration of the seed time.

The line labeled “With Seeding” in Figure 1 shows
the demand on the content provider when the peers in
our simulation adopt the last-downloaded seeding strat-
egy. As we can see, utilizing client upload bandwidth can
significantly reduce the demand on the central provider;
however, there is also a significant gap between the de-
mand seen and the minimum possible demand, suggesting
alternate strategies might yield improved performance.

Additional analysis reveals that many peers have wasted
bandwidth: that is, many objects have more seeders than
is necessary to accommodate the demand on those ob-
jects. The wasted bandwidth is high enough that it
should be possible to reduce the demand on the content
provider to the minimum possible demand. In the next
two sections, we introduce a variety of seeding strategies
that attempt to do just that.

4. Object-centered Approaches

As mentioned at the end of the previous section, the
key drawback to a last-downloaded approach is that cer-
tain objects (currently or very recently popular objects)

have a surplus of peers seeding, at the expense of other
(usually older) objects. To resolve this problem, we re-
quire a more intelligent scheme for choosing which objects
a particular peer should seed. In this section, we consider
object-centered approaches: that is, we will attempt to
optimize the performance of particular objects by moving
peers with wasted bandwidth to those objects.
Object-centered approaches are appealing because Bit-
Torrent is an object-based system. The tracker represents
a centralized point of information with regard to each in-
dividual object. Therefore, it is reasonable to assume
that choices could be made there for optimization of an
object. We consider two approaches, which use succes-
sively more information to achieve better performance.

4.1 Poaching

Let us define the “seeding balance” of an object. We
take the seeding balance as the difference between the
available peer seeding bandwidth and the demand on the
object. If for a particular object there are M peers seed-
ing, each with upload capacity U, and N clients down-
loading with capacity D, then the seeding balance is
M «U — N % D). An object with a positive seeding bal-
ance thus wastes bandwidth (too many peers are seed-
ing), while an object with a negative balance forces the
provider to expend bandwidth. We will define a neutral
balance as balance which is either zero, or positive with
a value less than U (i.e. removing a single seeding peer
from a neutral object will result in that object having a
negative balance).

We first consider a method of seed selection we call
poaching. In this method, an object with a negative
seeding balance can “poach” a peer to act as a seeder
for that object. Specifically, whenever an object under-
goes a change in its balance (e.g. a new request, or a
download finishes), the tracker will iterate over all peers
that hold a copy of that object. For each of these peers, it
will determine if they are currently seeding an object and,
if so, whether that object has a positive seeding balance
(and thus wasted seed bandwidth).

If so, the peer is tasked to seed the object in question,
rather than its current object, simultaneously reducing
the wasted bandwidth and the demand on the central
seeder. The process is repeated until the object in ques-
tion obtains a neutral balance, or no peers fit the crite-
ria above. We modified our simulator to implement this
strategy (i.e. optimize each object via the above method
after all events affecting that object).

Figure 2 shows the bandwidth demand on the content
provider when utilizing this new strategy. For compari-
son, we show the bandwidth requirements using the last-
downloaded seeding strategy, and the minimum require-
ment, both from Figure 1. The line labeled “Poaching”
represents the bandwidth demand under the poaching
strategy described above. We see that poaching sharply
decreases the demand, to 50-60% of that using the last-
downloaded seeding strategy. Further, the total demand
is very close to the minimum possible demand.

Implementing poaching would require that each tracker
keep a history of all peers who have downloaded the ob-
ject in the past, as well as a method for the tracker to



200
@
o Normal Seeding
S 150 ¥
=
[
5
% 100 4 2-level Poaching
a Poaching
“
50 q
Minimum
0 T T T T T T T T T
3 4 5 6 7 8 9 10 11 12 13 14 15
Seed time (hours)
Figure 2. Performance of object-centered approaches. De-

mand on the central content provider under a va-
riety of object-centered approaches. 1) Minimum:
minimum demand possible, 2) Normal seeding: us-
ing a last-downloaded approach, 3) Poaching: mov-
ing peers serving objects with positive seeding bal-
ances, 4) 2-level poaching: as above, using chains
of two peers.

query each peer as to its current seeding status. Main-
taining the list of previous peers should be trivial; track-
ers already know who is currently downloading, and they
need simply to not forget those peers when they finish.
However, it may be infeasible for the tracker to contact
peers which, unlike the trackers, may not have public IP
addresses.

4.2 2-level Poaching

While the decrease in demand using a poaching strat-
egy is significant, there is still some room for improve-
ment, and it is useful to know why the above approach
is not ideal. This is best illustrated by a simple exam-
ple. Suppose we have three objects (O, Oz, Os), and
two peers (P; and P,). P; hold objects O; and O2, and
is currently seeding object O2. P> holds objects Oy and
O3, and is currently seeding Os3. Finally, suppose object
O; has a negative seeding balance, object Oy has a neu-
tral seeding balance, and object O3 has a positive balance
and thus wasted bandwidth.

Now suppose we wish to optimize object O;. We can-
not poach P, since the object it is seeding does not have
spare capacity. And we cannot poach P, because it does
not hold O;. However, we could make a double change,
and let P, seed Oz, which now gives O enough spare
capacity that we can poach P; to seed O;.

We modified our simulator to take these possibilities
into account by increasing the number of peers contacted
when optimizing an object, and checking for the above
condition. The line labeled “2-level poaching” (we con-
sider switching the objects of two different peers at a
time) in Figure 2 shows the bandwidth demand when we
take this into account. We see that this approach es-
sentially reaches the minimum possible bandwidth value;
the remaining difference is likely due to extensions of the
above scenario (i.e. changing 3 or more peers to achieve
improvement.)

5. Peer-centered Approaches

In an object-centered approach, we focused on individ-
ual object, and made decisions about whether to re-task
the potential seeds of that object to increase performance.
In a peer-centered approach, we instead consider individ-
ual peers, and the decision becomes which object that
peer should seed. Thus each peer independently deter-
mines which object to seed, regardless of the other peers’
decisions.

Recall that an implementation issue for the object-
centered approaches was that each tracker would need
to maintain a history of peers that had downloaded the
object, rather than just the current set of peers seed-
ing or downloading the object. Further, the approaches
required communication between the tracker and (poten-
tially a great many) other peers. In a peer-centered ap-
proach, we need only maintain the list of objects a peer
has downloaded (which we presumably would keep any-
way). Further, there is no need for communication be-
yond querying objects for their seeding balance, and this
operation is integral to existing BitTorrent systems (and
trackers are by their nature publicly available). There-
fore, if peer-centered approaches can provide similar per-
formance gains as object-centered approaches, we will
tend to prefer the peer-centered approach.

5.1 Best-object Seeding

We first consider a simple change to the current Bit-
Torrent seeding strategy. Currently when a peer finishes
downloading an object, it starts seeding that object im-
mediately. We have shown that this results in wasted
bandwidth, because very popular objects will have many
more seeders than necessary. Thus it is likely that a peer
will start seeding an object with a positive seeding bal-
ance, wasting bandwidth. So a better approach is that
when a peer finishes downloading an object (and thus en-
ters its seeding phase), it instead iterates over all objects
it has downloaded in the past, and seeds one of the ob-
jects it holds that has a negative seeding ratio (if any).
We call this approach best-object seeding.

Figure 3, like Figure 2, shows the minimum central
provider demand and the demand of the current BitTor-
rent policy. The line labeled “Best-object” shows the
effect of the change above. We can see that this ap-
proach shows some reduction in bandwidth, mostly at
lower seed times. However, there is significant room for
improvement when compared to the minimum.

5.2 Continuous Best-Object Seeding

The problem with best-object seeding as described
above is that it still retains one of the problems of the cur-
rent (last-downloaded) strategy, namely that we are com-
mitting to seeding a single object for a certain amount of
time. It is quite possible that during that time period,
the demand on the object will decrease to the point that
our seeding is simply wasted bandwidth. Poaching in
some sense overcomes this; if demand shifts such that a
particular peer is wasting bandwidth, that peer becomes
eligible to be poached.

Best-object seeding, while an improvement over last-



250

n
o
5]

Normal Seeding
X N

4 Best-object

/ Continuous

o
S

Provider BW (GB/s)
>
8

153
S
L

Minimum

3 4 5 6 7 8 9 10 11 12 13 14 15
Seed time (hours)

Figure 3. Performance of peer-centered approaches. De-
mand on the central content provider under a vari-
ety of peer-centered approaches. 1) Minimum: min-
imum demand possible, 2) Normal seeding: using
a last-downloaded approach, 8) Best-object: seeding
the object with the worst seeding balance, 4) Contin-
wous: Continuous update of object with worst seed-
ing balance.

downloaded seeding, does not have this property of poach-
ing. However, a simple change is to reconsider the seeding
choice at a finer granularity than a single seeding period.
If we instead reconsider this decision every, say, 10 min-
utes, each peer would notice that it was wasting band-
width, and shift to seeding a better object. We call this
approach continuous best-object seeding.

The line labeled as such in Figure 3 shows the band-
width demand when peers adopt this approach. We see
that like 2-level poaching, this approach yields almost all
the benefit possible: the bandwidth demanded is very
close to the minimum required. This result, combined
with the simplicity of this approach, implies that this
technique is an obvious best choice for the seeding strat-
egy of any BitTorrent client.

6. Conclusions

In this paper, we considered a specific P2P-based sys-
tem design: assuming a central source of objects, we
wish to minimize the demand on that source by utilizing
the upload capacities of peers downloading those objects.
Each peer uploads the object it is downloading until com-
plete, and then donates a period of time in which is seeds
some object it has previously downloaded.

We showed that the approach taken by most BitTor-
rent client of seeding the last downloaded object yields a
significant reduction in demand on the source, but with
significant room for improvement. Two approaches to op-
timization are to focus on objects (attempting to move
peers to improve the performance of a particular objects)
and on peers (each peer decides which object to seed
based on its performance). We showed that the best of
the object-centered approaches could yield near-ideal per-
formance improvements, but only a great cost in terms
of communication.

The best approach is peer-based, where each peer seeds
any object in need of seeders, re-evaluating its choice reg-
ularly to minimize wasted bandwidth. This approach

also yields near-ideal performance, but with only small
changes necessary in the BitTorrent client applications,
and little communication overhead.

A full evaluation of these methods is desirable. We
simulated performance of the system by idealizing several
portions, especially the BitTorrent-like delivery system.
An implementation of such a system, and an emulation
(or measurement of real-world usage) would serve to ver-
ify these results, though we are confident that our general
conclusions will hold.

The main lesson of these experiments is that history
matters: since popularity of media objects peaks early
in their lifetime and gradually trails off, if we focus only
on the currently popular objects (which last-downloaded
seeding does) we end up wasting bandwidth with too
many peers seeding an object which is waning in popu-
larity. This comes at the expense of other objects, which
have too few downloads to generate seeds using a last-
downloaded strategy, but enough downloads that having
seeds matters.

Though we have proposed a specific approach that
works, in general we argue that a media delivery sys-
tem either enforce or encourage clients to retain and seed
objects they have downloaded in the past. This should
not be difficult; it seems natural that clients will cache
recently downloaded objects. The potential performance
gains from not forgetting past objects are tremendous.

7. References

(1] A. R. Bharambe, C. Herley, and V. N. Padmanabhan.
Analyzing and improving a BitTorrent network’s performance
mechanisms. In Proceedings of IEEE Infocom 2006,
Barcelona, Spain.

(2] R.J. Dunn. Improving P2P Distribution of a Media Workload.
PhD thesis, University of Washington, December 2006.

(3] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M.
Levy, and J. Zahorjan. Measurement, modeling, and analysis
of a peer-to-peer file-sharing workload. In Proceedings of the
19th ACM Symposium on Operating Systems Principles
(SOSP), Lake George, NY, USA, October 2003.

[4] M. Izal, G. Urvoy-Kellera, E. Biersack, P. Felber, A. A.
Hamra, and L. Garcés-Erice. Dissecting BitTorrent: Five
months in a torrent’s lifetime. In Proceedings of the 2004
Passive and Active Measurement Workshop (PAM), Antibes
Juan-les-Pins, France, April 2004.

[5] S. McBride. Warner Bros. to try file sharing of films, TV
shows in Germany. Wall Street Journal. January 30, 2006.

(6] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. The
BitTorrent P2P file-sharing system: Measurement and
analysis. In Proceedings of the 4th International Workshop on
Peer-to-Peer Systems (IPTPS 2005), Ithaca, NY, USA,
February 2005.

[7] D. Qiu and R. Srikant. Modeling and performance analysis of
BitTorrent-like peer-to-peer networks. In Proceedings of ACM
SIGCOMM, Portland, OR, USA, August/September 2004.

[8] G. Sandoval. BitTorrent inks licensing deal with studios.
CNET News.com. July 10, 2006.

[9] G. Sandoval. BitTorrent inks studio distribution deal. CNET
News.com. May 8, 2006.



