
530 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, AUGUST 1999

Mitigating Server-Side Congestion in the
Internet Through Pseudoserving

Keith Kong and Dipak Ghosal

Abstract—Server-side congestion arises when a large number
of users wish to retrieve files from a server over a short period
of time. Under such conditions, users are in a unique position
to benefit enormously by sharing retrieved files. Pseudoserving,
a new paradigm for Internet access, provides incentives for
users to contribute to the speedy dissemination of server files
through a contract set by a “superserver.” Under this contract,
the superserver grants a user a referral to where a copy of
the requested file may be retrieved in exchange for the user’s
assurance to serve other users for a specified period of time.
Simulations that consider only network congestion occurring near
the server show that: 1) pseudoserving is effective because it
self-scales to handle very high request rates; 2) pseudoserving
is feasible because a user who participates as a pseudoserver
benefits enormously in return for a relatively small contribution
of the user’s resources; 3) pseudoserving is robust under realistic
user behavior because it can tolerate a large percentage of
contract breaches; and 4) pseudoserving can exploit locality to
reduce usage of network resources. Experiments performed on a
local area network that account for the processing of additional
layers of protocols and the finite processing and storage capacities
of the server and the clients, corroborate the simulation results.
They also demonstrate the benefits of exploiting network locality
in reducing download times and network traffic while making
referrals to a pseudoserver. Limitations of pseudoserving and
potential solutions to them are also discussed in this paper.

Index Terms—Caching, flash-crowd, Internet server technol-
ogy, pseudoserving.

I. INTRODUCTION

SCARCE bandwidth remains a problem: surveys continue
to report long download times as the number one reason

users are dissatisfied with the Internet [9]. To better meet the
demand for bandwidth, the research community is responding
with innovative technologies on several fronts. A first response
is the development of faster network components, including
modems, switches, and transmission lines. Despite these im-
provements, a flourishing user population and the introduction
of new multimedia applications continue to demand even more
bandwidth. Internet phone, videoconferencing, and downloads
of large multimedia files, for example, remain tolerable only
under the best of network conditions.

Manuscript received August 22, 1997; revised April 16, 1999; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor S. Pink. This work was
supported by the National Science Foundation under Grant ANI-9714668.

K. Kong is with the Department of Electrical and Computer Engi-
neering, University of California at Davis, Davis, CA 95616 (e-mail:
kkong@ece.ucdavis.edu).

D. Ghosal is with the Department of Computer Science, University of
California at Davis, Davis, CA 95616-8562 (e-mail: ghosal@cs.ucdavis.edu).

Publisher Item Identifier S 1063-6692(99)07037-5.

A second response is the development of new protocols that
use bandwidth more efficiently. Examples of these include
Compressed Serial Line Internet Protocol (CSLIP) [26] and
low-bandwidth X [13], which use compression techniques
to reduce redundancy. Other protocols such as Hypertext
Transfer Protocol version 1.1 (HTTP 1.1) [11] and Transac-
tion Transmission Control Protocol (TTCP) [27] improve on
current standards by removing overhead. Still others call for
the removal of entire protocol layers. Work is underway, for
example, to deploy the Internet protocol (IP) directly over the
Synchronous Optical Network (SONET).

A third response is multicasting. It works by aggregating a
large number of requests and broadcasting the server’s data to
them at once. This avoids repeated usage of the same links
to serve a large number of clients individually. Multicasting
has been used successfully for a number of applications. Thus
far, these applications have focused on the distribution of data,
such as audio and video, where reliability is not an overriding
concern. Research is currently underway to develop a reliable
version of multicasting [22], [23].

A fourth response is the development of caching mecha-
nisms within the Internet [4], [10], [21], [25]. These schemes
work by recognizing that files are often requested more than
once. By storing popular files locally, future requests for these
files can be satisfied quickly without the need to retrieve them
from the server. Caching schemes are characterized along
a number of dimensions. Two of the most important ones
include the location of the cache and the degree of cooperation
[7], [14]. Data transfers from a cache that is close to the
client tend to be faster and demand less resource from the
network. Caches that cooperate tend to have fewer cache
misses than ones that operate alone. Although caching schemes
work well and are responsible for much of the reduction of
bandwidth usage today [1], [2], [5], they do not always satisfy
requests. This happens when the request is a first request or
the requested data in the cache has become stale and needs to
be refreshed by retrieving it from the server.

Closely related to caching is prefetching. Rather than keep-
ing retrieved data locally on behalf of future requests, prefetch-
ing works by transferring data to the userbefore they are
needed. Mailing lists, network news, and so-called “push”
technologies belong to this category; data is pushed from the
server to the client in anticipation of future requests. This
technique has two main drawbacks. From the standpoint of
the user, prefetching does not improve response time if the file
requested has not been prefetched. From the standpoint of the
user community, prefetching adds to congestion unnecessarily

1063–6692/99$10.00 1999 IEEE

KONG AND GHOSAL: MITIGATING SERVER-SIDE CONGESTION IN THE INTERNET THROUGH PSEUDOSERVING 531

when prefetched files are never requested. Aggressive use of
prefetching has the potential to cause more delays than it saves.

A fifth response utilizes basic principles of economics
[16]–[19], [24]. It recognizes that bandwidth is a scarce
resource and seeks ways to allocate it optimally. Work in
this area is often concerned with maximizing the welfare of
the user community. This is usually done by granting priority
for the delivery of packets to users who value it more at the
expense of those who value it less. To encourage the truthful
revelation of user values, these schemes often institute some
form of pricing based on usage of bandwidth. Mackie–Mason
and Varian’s smart market [18] gives a flavor for how econom-
ics can be applied to the allocation of bandwidth. In it, packets
are routed based on bids placed by users; packets with higher
bids are routed with higher priority over ones with lower bids.
While schemes like the smart market maximize the welfare
of the user community, they tend to be impractical from a
number of standpoints. Prioritizing packets based on bids,
for example, requires that all routers cooperate. This requires
significant changes to the well-entrenched IP protocol and is
therefore difficult to implement. Moreover, pricing schemes
based on usage often incur significant accounting costs, and
basic questions such as who should be billed in a distributed
connectionless environment such as the Internet are difficult
to answer [16].

A. Pseudoserving: Caching + Economics

Pseudoserving [12] provides a new response to the band-
width problem by combining elements of caching and eco-
nomics. It hinges on the observation that users in possession of
popular files from a busy server are in possession of a valuable
resource. If they can be convinced to share this resource,
congestion near the server can be avoided, and the welfare
of the user community would benefit enormously.

Pseudoserving provides the necessary incentives for users to
share files through a contract. In it, the server agrees to provide
information on where the requested file may be immediately
obtained. In exchange, the client agrees to “pay” by serving
the retrieved file to other users within a short period of time.
This payment is used to satisfy requests by other users. We
show later that participants in this exchange can often reduce
total retrieval times byover an order of magnitude.

Pseudoserving exhibits unique characteristics stemming
from the interplay of cooperative caching with economics.
Unlike caching schemes, there are no cache misses; the
contract between the superserver and the pseudoserver
ensures that resources are reserved to meet requests as they
come. This contract also makes possible cooperation at an
interorganizational level. In pseudoserving, users belonging to
different organizations retrieve files from each other. In doing
so, they promote sharing of cached data at a level greater than
is currently done using caching schemes that operate only
within organizations. Pseudoserving is also unique for being a
testbed for a network bartering system. As in pricing schemes,
users who pay receive better service. Unlike pricing schemes,
however, this better service is not provided at the expense of
other users. Because what users “pay” is precisely the goods

in demand, resources are created as necessary as demand for
them grows. In this respect, pseudoserving isself-scaling.

The remainder of this paper is organized as follows.
Section II describes the various types of congestion and
identify those types that can be eliminated or reduced
by pseudoserving. Section III describes the architecture of
a pseudoserving system. Section IV presents results from
simulations illustrating the application of pseudoserving
to dissipating flash-crowds. Section V describes an actual
implementation of pseudoserving and discusses the results of
running it on a local area network (LAN). Section VI discusses
limitations of pseudoserving. Finally, Section VII concludes
with a summary and a discussion of future work.

II. TYPES OF CONGESTION

Broadly speaking, the bottlenecks experienced by data
traversing through the links of the Internet can be categorized
according to their location. We identify three types of
bottlenecks: those that occur near the server, those that occur
near the client, and those that occur at the intermediate links
and nodes.

Server-side bottlenecks occur when a large number of clients
are connected to the server at the same time. For many applica-
tions, such as the File Transfer Protocol (FTP), there is a limit
to the number of connections that can be handled by the server
simultaneously, called server concurrency [26]. Once this limit
has been reached, no new connections can be established
without additional ones being terminated. Because the ratio
of price to performance of computer systems continues to
drop, concurrency is becoming less of an issue, and server-
side bottlenecks are moving toward the server’s link to the
Internet, where it is much more expensive to add capacity.
When the server’s link becomes the bottleneck before server
concurrency is reached, the number of simultaneous transfers
grows until the transfer rate to most clients is much less than
the rate that their links to the Internet can handle. This is a
growing problem for clients that access globally popular sites,
where the competition for bandwidth is intensifying.

A similar problem occurs at the client side. Typically, a
large number of clients share the same link to the Internet
through an Internet Service Provider (ISP). The bandwidth
of this link is divided among all of the clients when they
are using it to transfer files simultaneously. However, client-
side bottlenecks differ from server-side ones because users can
avoid them. One can choose different levels of user sharing
by subscribing to different services. A person who only uses
the Internet for e-mail, for example, may not mind sharing her
Internet connection with many other users. Users who demand
faster connections can subscribe to a service where the number
of users per link is smaller. In fact, users can have their own
dedicated links if they are willing to pay for it.

Finally, bottlenecks occur at the intermediate links and
nodes of the Internet. This happens during peak hours of net-
work usage, during which many connections between servers
and clients exist. Because packets belonging to many connec-
tions are handled by the same intermediate links and nodes,
these links and nodes are often points of congestion. File

532 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, AUGUST 1999

transfers that cross many such links often take an intolerably
long time. As is the case with server-side bottlenecks, the user
is powerless in avoiding bottlenecks arising from congested
intermediate links.

Pseudoserving allows individual users to bypass congestion
occurring near the server and at intermediate links and nodes
of the Internet. This is made possible by the storage and
bandwidth resourcesusers can contribute to the network
during periods of congestion. Apseudoserving systemprovides
the mechanism to harness these resources. We describe it in
the following section.

III. T HE PSEUDOSERVINGSYSTEM

A pseudoserving system consists of two components: a
superserverand a set ofpseudoservers.The former grants
the latter access to files in exchange for some amount of
network and storage resources through a contract. This amount
is zero under low-demand conditions, when the superserver
functions as a concurrent server and pseudoservers function as
clients. Under high-demand conditions, when the superserver’s
concurrency limit has been reached, it may be possible to
grant immediate access to the pseudoserver in exchange for
temporary usage of its network and storage resources. Under
these circumstances and subject to the condition that the
contract is met, the superserver gives the pseudoserver a
referral to where the requested data may be obtained.

The following sections describe the components of a pseu-
doserving system in greater detail. For clarity, these descrip-
tions are based on a specific implementation of such a system.
For convenience, we refer to a pseudoserver before it has
retrieved its requested file as a client. We distinguish such
a client from the client of a traditional client/server system by
referring to the latter as atraditional client.

A. The Pseudoserver

The pseudoserver plays essentially the same role in access-
ing data as that of the traditional client. However, there are a
few key differences in the messages the pseudoserver sends to
the server and the responses expected. These differences are
noted below.

• A pseudoserver sends more information to the superserver
in making a request than a traditional client does to a
server. In addition to the name of the file requested, the
client sends information about the resources it is willing
to give in exchange for immediate access to the file. These
resources include the time interval and number of clients
within that interval for which it will act as a server.

• The response a pseudoserver expects from a superserver
is also more varied than what a traditional client expects
from a server. The superserver may send the file directly
to the pseudoserver, in which case, the pseudoserver
is asked to contribute some amount of resource not
exceeding the ones the pseudoserver is willing to give
at the outset. It is worth noting again that this amount
may be zero, for example, under conditions of reduced
demand. The client may be told that it is not possible
for it to be served immediately. In this case, the client

is also told the time it is expected to wait before access
to the file is granted as a function of the resources it is
willing to contribute. Finally, the pseudoserver may be
given a referral to a host from which it can immediately
retrieve the file if the contract has been met. As a measure
of security, a cryptographic checksum for the file is
sent along with the referral. Its purpose is to allow the
pseudoserver to detect whether the file it has retrieved
from the referred host has been modified.

At this point, it is worthwhile to briefly clarify what meeting
a contract entails. In exchange for being served or given
a referral, a pseudoserver guarantees to hold the file it just
retrieved for some period of time. Within thiscontractual file-
holding time,it agrees to serve the file up to some number of
times as specified in the contract. If no clients arrive within
this period, the pseudoserver is released from its obligation. It
is also released from its obligation as soon as it has served the
number of clients it agreed to serve, regardless of whether it
has held the file for the agreed duration.

B. The Superserver

The superserver answers requests according to the flowchart
shown in Fig. 1. This section explains the figure, making
references to the numbered items in it. Let C denote the
number of concurrencies the superserver has allocated to
serving traditional clients and pseudoservers that have not met
the contract, and let PSC denote the number of concurrencies
the superserver has allocated to serving pseudoservers that
have met the contract.

We begin with the top-most box. Requests are handled
differently depending on the size of the file requested. If the
file is small, the client is served immediately by the superserver
(1). Otherwise, the superserver checks to see if a pseudoserver
for the requested file exists (2). If one exists (3) and the
contract conditions are met, the superserver tells the client
the location of the nearest pseudoserver containing the file,
along with the resources actually required from the client (4).
Information regarding these resources and the IP address of
the client are then stored in the superserver’s main memory,
indexed by the file name and the location of the client based
on its IP address. This information is used for the benefit of
future requests for the same file.

If no pseudoserver for the file exists (5), but the number
of pseudoservers the superserver is concurrently serving has
not reached PSC (6) and the contract has been met, the
superserver itself serves the file to the client (7). If this limit
has been reached (8), but the number of traditional clients the
superserver is concurrently serving has not reached C, then the
superserver serves the file to the client (9). This “freebie” route
is also followed whenever a contract has not been met (10).
This is to ensure that the superserver gives at least as much
access to all hosts, regardless of their ability to contribute
resources, as a traditional concurrent server would to a client.
Finally, when it is not possible to give a referral to a client
and it is not possible to serve a client because the server’s
concurrency for both have been reached, the client is told to
retry later (11).

KONG AND GHOSAL: MITIGATING SERVER-SIDE CONGESTION IN THE INTERNET THROUGH PSEUDOSERVING 533

Fig. 1. Superserver flowchart.

C. Contract Policies

The key to a superserver’s power is its ability to set
contracts. In particular, it can set contracts according to
demand for its resources. As demand increases, the super-
server can set contracts that favor the creation of additional
resources. As demand subsides, fewer resources are needed
and thus the conditions of the contract can be relaxed. This
section considers requirements that guide the establishment of
effective contract policies and proposes such a policy.

In order to guarantee speedy access to users, two conditions
need to be met. The first relates to the access of the requested
file. In particular, a pseudoserver must exist that can satisfy
a request as it arrives. This can be achieved by accumulating
pseudoservers as necessary until the number of pseudoservers
is sufficiently large to handle the rate at which requests arrive.
This, in turn, can be achieved by stipulating in the contract
that pseudoservers must handle more than one referral. If
each pseudoserver handles referrals before it leaves the
pseudoserver pool,then with time, denoted by the number
of pseudoservers in the pool grows as where is
the time it takes a pseudoserver to servereferrals. This
expansion modecontinues until the size of the pseudoserver
pool is equal to the product of the request rate and the time it
takes to download the file. When this happens a requester can
be given a referral as soon as it arrives,1 and the contract can
be reduced so that each pseudoserver needs to serve only one
referral to maintain the size of the pool.

Under such circumstances, the superserver is in thesteady-
state mode.If the rate of requests should drop, fewer pseu-
doservers are needed, and the superserver can enter thecon-

1For clarity of discussion, we assume a constant stream of requests. Clearly,
the size of the pool needs to be bigger if the stream of requests is a random
process.

traction mode;clients that make requests during periods of
reduced demand are simply given referrals without any need
for their resources. If there are as many periods of contraction
as there are periods of expansion, a pseudoserver handles on
average only one referral.

The second condition relates to the distribution of the
requested file. In particular, the links and nodes between a
requester and the pseudoserver from which it retrieves the file
must be uncongested. To meet this requirement, it is necessary
that clients can retrieve files from sites without traversing
congested links. This requires knowledge of global network
traffic and therefore can not be done easily without incurring a
large amount of overhead. A more reasonable approach would
be to relax the condition; rather than looking for a solution that
guarantees files can be retrieved from sites that do not traverse
congested links, we look for a solution that guarantees files can
be retrieved from sites that are, on average, less congested
than if the files were directly retrieved from the server. This
can be done in the framework of pseudoserving by setting
contracts based on the pattern of requests coming from groups
of closely-linked networks, ornetwork clusters,and making
referrals only to a pseudoserver located in the same network
cluster as the client. Section IV-B-4 discusses this in more
detail.

IV. DISSIPATING FLASH-CROWDS

Flash-crowd conditions arise whenever a large number of
requests are made over a short period of time for a small
set of files contained on a server. This happens, for example,
when the location of a server containing information of global
interest is broadcast on national television. The unfortunate
result is a sudden overload of the server’s network and nearby
routers and intolerably long download times. Users often

534 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, AUGUST 1999

exacerbate the problem by reattempting to make connections
when connections are not established the first time.

There are many examples of such flash-crowds. In 1994,
when the Shoemaker–Levy 9 Jupiter Images were processed
in European Southern Observatory (ESO) and posted on the
WWW server, the number of accesses per weekday jumped
from 2500 to 40 000 and stayed consistently at this value
for the entire week during the comet collision. The server’s
link to the Internet was completely saturated [20]. This is,
in fact, a worsening problem as the number of Internet users
continues to explode. In 1996, the Netscape homepages were
recording more than 80 million hits a day [8]. In June 1997, the
sites that were maintaining the Mars Pathfinder pictures saw
an aggregate of 160 million hits per day [15]. More recent
examples occurred following the release in the Internet of
newsworthy reports from the government, applications for free
personal computers, and popular movie trailers.

We present a detailed simulation analysis of pseudoserving
in dissipating flash-crowds. First, we describe our simulation
model and its parameters. Then we discuss the simulations
themselves, illustrating the effectiveness and feasibility of
pseudoserving under a variety of conditions.

A. Simulation Model

The simulator is a C program that takes input describing
the conditions of the simulation and produces output logs
of important events organized into separate files. The input
includes the parameters describing a superserver, parameters
describing the superserver’s link to the Internet, and parame-
ters describing individual pseudoservers, including the time at
which they make their initial requests. The simulator assumes
the Internet itself has infinite bandwidth and hence does not
model delays caused by congestion at intermediate links.

1) Link Model: We model a link as being composed of
two independent portions, an uplink and a downlink. The
downlink receives messages from clients and transfers them
to the superserver. Similarly, the uplink receives messages
from the superserver and transfers them to clients. Each link
has a finite bandwidth that affects the rate at which messages
are transferred. A link with bandwidth bits/s is able to
completely transfer a message of bits in s. This
assumes that the link is not transferring any other messages,
and that for the duration of the transfer, no new messages
arrive and no pending messages depart.

The link model accounts for the effects of message arrivals
and departures by keeping track of message completion times.
Using the link bandwidth, the number of messages currently
served by the link, and the size of a newly arriving message,
two operations are performed when a new message arrives.
First, a message completion time is computed for the new
message. Second, the message completion times of all pending
messages are updated to reflect the additional bandwidth taken
by the new message. This is also done whenever a message
departs from the link; message completion times are updated
to reflect the extra bandwidth released by message departures.

Although this is a simple model, it captures the average load
on a link. In a real network, data are transferred as packets

TABLE I
FOUR DIFFERENT USER PROFILES FOR THEUSERS

PARTICIPATING IN THE FLASH-CROWD

from buffer to buffer. Under conditions of heavy traffic, some
packets are transferred at the expense of others, in which case,
timeouts occur. The simulator, on the other hand, treats all
requests with equal priority: a request handed to the link will
be put in the link. A nice consequence of this is that the load
on a link can be accounted for by simply noting the number
of simultaneous messages in the link as a function of time.

2) Network Model: In the simulations, users are connected
to the Internet through 28.8-kb/s links and make requests for
the same 100-KB file stored on a server, which is connected to
the Internet through a 1.544-Mb/s link. Each protocol message,
examples of which include request message, reject messages,
and referral messages, takes 500 bytes. The concurrency of
the server was set to 54, with 53 concurrencies allocated for
serving traditional clients, and 1 allocated for pseudoservers.
This number was chosen so that when the server is fully
utilized, the rate at which data is transferred on any individual
connection is 28.8 kb/s.

3) User Model: The parameters of all the simulations were
set according to flash-crowd conditions experienced in the
telephone network reported in [6]. Although there are clear
differences between the telephone network and the Internet,
these conditions provide a reasonable starting point for ex-
perimentation. Further simulations based on server traces are
planned for the future.

The parameters account for user behavior by modeling
four types of users with profiles specified by Table I. A few
comments should be made regarding these profiles. First, the
relative magnitudes of each of the entries in the request
rate and duration columns are based on the model used
in [6]. The actual values, however, were obtained through
experimentation; the values in the request rate column lead to
peak rates of requests on par with peak rates of popular WWW
sites, on the order of a few hundred requests per second;
the values in the duration column lead to plots that clearly
show both the transient and steady state behavior of various
parameters. F was set to 1800 s in all of the simulations except
for the last ones concerned with network clustering, in which
F was set to 7200 s. Second, the values of each of the entries
in the retry probability and retry delay columns are based on
the behavior of telephone users. Although we expect retries
to be faster for Web users, we expect them to be significantly
less persistent in making the reattempts. The simulation results
should be interpreted in light of these comments.

4) Pseudoserving System:The pseudoserving system is the
same as the one described in Sections III-A and III-B except
for one detail. In the previous description, the superserver
keeps track of the IP address of users who agree to contracts.

KONG AND GHOSAL: MITIGATING SERVER-SIDE CONGESTION IN THE INTERNET THROUGH PSEUDOSERVING 535

Fig. 2. Request rate under traditional client/server model.

The superserver in the simulator does not do this; rather, it
relies on pseudoservers to report to it when they are ready to
serve their files. This modification simplifies the handling of
user dishonesty—dishonest users simply do not report back to
the superserver.

While the system is essentially the same, the contract
policy used in the simulator is quite different. Section III-
C describes a policy in which users serve zero, one, or
two other users depending on the state of the pseudoserving
system. The contract policy used in the simulator, on the other
hand, requires that users serve two other users all the time
as a condition for obtaining referrals. This more stringent
requirement provides resources to buffer a pseudoserving
system against the effects of user dishonesty.

B. Results and Discussion

We show the results in four steps. First, we show the
effectiveness of pseudoserving in dissipating flash-crowds.
Second, we show that pseudoserving is feasible in the sense
that the contract can be met by a typical user. Third, we show
that pseudoserving is effective even when a large percentage
of users are dishonest. Finally, we show the behavior of the
pseudoserving system when locality is exploited under realistic
patterns of network access.

1) Effectiveness of Pseudoserving:Pseudoserving is effec-
tive because it provides the necessary bandwidth to satisfy very
high rates of requests. This section compares the gross perfor-
mance of a pseudoserving system with that of a traditional
client/server system.

Fig. 2 shows the rate of request seen by the server of a
traditional client/server system. This rate is measured by the
server using a window size of 10 s. Notice that while the
peak rate of first-attempt requests is 9.9 requests/s (sum of
request rates in Table I), the rate seen by the server is actually
much larger due to reattempts initiated by users who were
rejected. With this request profile, the server is unable to
service requests as they arrive after reaching its concurrency
limit, which happens on the order of 5 s.

The actual time that it takes for a user to retrieve the file,
the total retrieval time,depends on two factors. The first factor

Fig. 3. Total retrieval time under traditional client/server model (give-ups
mapped to�50).

Fig. 4. Number of messages in server’s downlink averaged over 100-s
intervals.

is competition for access to the server, which depends on the
server’s concurrency and the number of users competing for
access. This fact can be seen in Fig. 3, which shows a plot
of the total retrieval time as a function of when a request is
made. The retrieval time depends on how fortunate a user is in
making a reattempt the moment the server has finished serving
a request. But on average, this duration decreases with time as
manifested by the decreasing envelope of the plot. Fewer users
are competing for access because requests have been satisfied
or users have given up. Note that “give-ups” are mapped to

50 in the plot.
The second factor is the bandwidth available for receiv-

ing and serving requests. The crucial point to note here
is the bandwidth used for sending protocol messages can
be significant. While Fig. 4 shows the server’s downlink is
able to comfortably receive requests at the rate specified in
Fig. 2, Fig. 5 shows the uplink is unable to keep pace with
the messages it needs to send. In addition to serving 54
concurrent requests, the uplink needs to send reject messages.
Unfortunately, the uplink does not have sufficient bandwidth
to do so, resulting in an accumulation of messages in the link.
It is not until near the end of the simulation that the number of

536 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, AUGUST 1999

Fig. 5. Number of messages in server’s uplink averaged over 100-s intervals.

Fig. 6. Request rate under the pseudoserver model.

messages in the link recedes to a number close to the server’s
concurrency of 54.

Fig. 6 shows the rate of request seen by a superserver. Its
shape and scale is clearly far different from the corresponding
plot for the traditional client/server system. The peak rate
is on the order of 190 requests/s, or roughly half that of
the client/server system. Moreover, this peak rate does not
dominate nearly as much time as that of the client/server
system. In fact, the rate of request for the pseudoserving
system plummets to rates on the order of the arrival rate of
unique requests by about 470 s into the simulation.

The plot for total retrieval times for the pseudoserving
system, shown in Fig. 7, is also far different from the cor-
responding plot for the client/server system in Fig. 3. The
maximum retrieval time is almost a sixth of the maximum
retrieval time for the client/server system. Moreover, by about
470 s, the retrieval time reaches the minimum, corresponding
to the time it takes to download the file at the rate supported
by the modem.

Such dramatic reduction in the total retrieval time is made
possible by the extra bandwidth provided by pseudoservers.
Fig. 8 shows the number of pseudoservers actively serving
requests as a function of time. Note how this number tracks the

Fig. 7. Total retrieval time under the pseudoserver model (give-ups mapped
to �50).

Fig. 8. Number of active pseudoservers.

rate of requests shown in Fig. 6. When the request rate is high,
pseudoservers are accumulated to provide extra bandwidth;
when the request rate is steady, this number also remains
steady; when the request rate drops, this number also drops.

In fact, the number of active pseudoservers is proportional
to the request rate. To see this, one can view the pseudoserver
pool as an adaptive server with a thruput of requests per
second. This thruput is equal to the product of the number
of pseudoservers actively servicing requests and the rate at
which each pseudoserver can service a request. In other words,

Under steady-state conditions, equals the rate at which
requests arrive. If we denote this rate by
is therefore equal to This result is
corroborated by the steady-state regions in Fig. 8. Between
about 1000–1500 s, for example, the request rate is 4.4
requests/s, as specified by Table I. At 28.8 kb/s, the download
time for the 100-KB file is 28 s. Hence, we expect the
number of active pseudoservers to be 4.428, or 123. Fig. 8
verifies this result. Note that reattempts by users do not skew
the request rate in the steady-state because all first-attempt
requests are satisfied by the pseudoserving system.

KONG AND GHOSAL: MITIGATING SERVER-SIDE CONGESTION IN THE INTERNET THROUGH PSEUDOSERVING 537

Fig. 9. Comparison of number of give-ups.

An interesting measure of the effectiveness of a scheme
in handling flash-crowd situations is the number of users who
give up. Give-ups occur as a result of users not being persistent
enough in retrying until access is granted. Fig. 9 shows the
cumulative number of give-ups derived from Figs. 3 and 7.
By the end of the simulation, about ten times as many users
give up in the traditional client/server case as there are users
who give up in the pseudoserving case. Notice that there are
no additional give-ups after 400 s for the pseudoserving case,
while give-ups continue to occur for the entire duration of the
simulation for the client/server case.

2) Feasibility of Pseudoserving:Recall that a contract en-
tails having the pseudoserver hold the file for a contractual
file-holding time, within which it is to serve requests directed
to it. If this duration is too large, users may not want to
participate in pseudoserving. Hence, it is important to quantify
its value. This simulation sheds light on this issue.

In the simulation, the contractual file-holding time was set to
1 s, and all pseudoservers observe a 1-s grace period beyond
this agreed-upon file-holding time. Its purpose is to allow a
referral to be made on the edge of the contractual file-holding
time and still be accepted by the pseudoserver, which might not
otherwise have done so due to the nonzero time it takes for the
referrals to be sent from the superserver to the pseudoserver.
This grace period also conveniently marks those instances
when a pseudoserver has reached its contractual file-holding
time without having served the maximum number of requests.

Fig. 10 shows the actual file-holding time of each pseu-
doserver in the simulation. The horizontal coordinate of each
dot corresponds to the time when the pseudoserver has gotten
its requested file and is ready to serve. The length of time
transpired between this point and when it receives its second
request to serve is represented by the dot’s vertical coordinate.

From this plot, one can see there is no file-holding time
greater than 2 s, corresponding to the 1-s contractual file-
holding time plus another second for the grace period. Most of
the file-holding time reside between 1–1.4 s. Hence, for this
simulation in which the size of protocol messages is set to
500 bytes, a nonzero grace period is important. A significant

Fig. 10. File-holding time of pseudoservers that served.

Fig. 11. Fraction of pseudoservers that reached contractual file-holding time
over 100-s intervals.

amount of time is spent transferring referral messages to
clients.

Fig. 11 shows the fraction of pseudoservers that held onto
their files for the maximum file-holding time plus the grace
period. This fraction is zero near the beginning of the simula-
tion because pseudoservers fulfill their contract by serving two
users long before they hold their files for the contractual file-
holding time. As the number of pseudoservers grow beyond
what is necessary to satisfy the stream of requests, more
pseudoservers hold their files for the contractual file-holding
time. The figure in fact shows that more than 50% of the pseu-
doservers created belong to this category after user-initiated
retransmissions stop near 300 s into the simulation. This
suggests that a smart superserver that dynamically changes the
file-holding time according to request patterns can significantly
reduce the average length of time pseudoservers need to hold
their files, thus making it easier for hosts to participate as
pseudoservers.

3) Robustness of Pseudoserving Under Realistic User Be-
havior: Because pseudoserving depends on the promise of
users to satisfy contracts, and not all users are honest, it is

538 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, AUGUST 1999

Fig. 12. Number of active pseudoservers.

important to address the issue of how sensitive pseudoserving
is to breaches of contracts. Under the simulator’s particular
implementation of pseudoserving, in which all pseudoservers
are required to serve two other users within a file-holding
time, the answer is simple: on average, there will always be
growth in the number of pseudoservers if more than half of
the users satisfy their contracts. To see this, suppose there
are pseudoservers, and of them breach their contracts
by not serving any other user. In the next iteration, the
honest pseudoservers will generate or new
pseudoservers, so that in next iteration after that, there will
still be pseudoservers. The honest users are in a sense
“subsidizing” the dishonest users. The expected number
of pseudoservers will always grow if user dishonesty is less
than 50%.

These points are illustrated by Figs. 12 and 13, which plot
the number of active pseudoservers and the number of give-
ups as a function of time for the case of 40% user dishonesty.
Even with user dishonesty of this magnitude, pseudoserving is
still quite effective, as can be seen in Fig. 13. Note that beyond
about 700 s into the simulation, which coincides with the time
where the peak number of active pseudoservers occurs, there
are very few give-ups. This is an important point. It means
under flash-crowd conditions, the detrimental effects of user
dishonesty of up to 50% is limited to only the initial growth
phase of the pseudoserver pool. Beyond that, user dishonesty
does not affect the retrieval time for new users because the
honest users and the superserver “subsidize” the dishonest
users by serving requests not served by them.

4) Feasibility of Pseudoserving Under Realistic Network
Access Patterns:So far, referrals were made without regard
to the relative locations of the requester and the pseudoserver
serving the request. Clearly, it makes sense to ensure referrals
are made to the pseudoserver closest to the requester. Every-
thing else being equal, files transfers that cross fewer links
are faster and generate less network traffic. They are therefore
beneficial both from the standpoint of the individual user, who
wishes to reduce latency associated with file transfers, and
from the standpoint of the user community, whose members
all benefit when fewer links are crossed for each transfer.

Fig. 13. Cumulative number of give-ups for 40% dishonesty.

One way to ensure that a requester is served by a pseu-
doserver close to it is to make referrals only to the same
network as the requester. The superserver can do this by
storing each member of the pseudoserver pool in a data
structure indexed by the member’s network address. Transfers
based on referrals are then ensured to be within the same
network by making referrals only when a pseudoserver exists
in the same network as the requester. However, there is a cost
in implementing this policy; the contract needs to be set so
that the file-holding time is sufficiently long. In particular, it
must be long enough so that a request arrives from a network
before the file-holding time expires for all the pseudoservers
in that network.

But ensuring referrals are made to the same network may
be too inflexible; requests for the same file on a superserver
from users on the same network may come too few and far in
between. As a result, the file-holding time may not be easily
satisfied by a typical user who is connected to the Internet
only temporarily. Rather than ensuring network locality, it is
more feasible from the standpoint of setting file-holding times
reasonably satisfiable by pseudoservers to ensure transfers are
made within groups of nearby networks, ornetwork clusters.

We address the issue of how referrals can be made to
network clusters only briefly here. In principle, the superserver
can form such network clusters based ona priori information
regarding the location of each network and the number and
types of links connecting them (we do not consider mobility
here). A host’s network ID can then be used to determine the
network cluster to which the host belongs. Another possibility
would be to have the client send its “network cluster address”
along with its request. By encoding topological information,
such an address would obviate the need for the server to keep a
vast table of network addresses and their relative topological
locations.

We used statistics reported in [2] as the basis for setting
parameters in the simulation. In particular, a typical server is
accessed by thousands of domains, 10% of which account for
75% of the requests. We assumed a server is accessed by 5000
domains, 500 of which account for 75% of the requests(hot

KONG AND GHOSAL: MITIGATING SERVER-SIDE CONGESTION IN THE INTERNET THROUGH PSEUDOSERVING 539

Fig. 14. File-holding time of pseudoservers in the hot domain.

Fig. 15. File-holding time of pseudoservers in the cold domain.

domains)and 4500 of which account for the remaining 25%
of the requests(cold domains).

To test whether pseudoserving on a per cluster basis is
feasible, we set the contractual file-holding time to a very large
number (100 000 s) and observed the actual file-holding time
for the various cases of hot and cold domains. The network
cluster size was set to ten, so that each of the clients from the
5000 networks that accessed the superserver came from one
of 500 network clusters.

Figs. 14–17 show plots of the actual file-holding time as
a function of when requests are made. Before we begin the
discussion, it is important to note that these plots show only
the cases in which a pseudoserver has servedtwo referrals.
Pseudoservers that served less than two times had to hold onto
their files for the entire duration of the contractual file-holding
time. These cases were filtered out of the plots for the purpose
of clarifying the discussion to follow.

First, the figures show that even for the simple contract
policy in which all pseudoservers are required to serve two
other users within a specified file-holding time, the longest
time that a pseudoserver actually needs to hold is on the order
of 5600 s, or about an hour and a half, for the hot domain

Fig. 16. File-holding time of pseudoservers in the hot domain averaged over
200-s intervals.

Fig. 17. File-holding time of pseudoservers in the cold domain averaged
over 200-s intervals.

case. The peak average time using a window size of 100 s is
about half as long, on the order of 50 min.

As expected, the file-holding time is very small at the
beginning of the simulation. There are far more requests than
there are pseudoservers to handle them. But within about 250
s, more than enough pseudoservers are generated to handle the
requests. As a result, pseudoservers have to hold on to their
files for a longer period of time before a referral is directed to
them. This is evident in Fig. 14 in which the average file-
holding time grows with the time of request, up to about
1700 s.

Somewhat surprising is that for much of the early part of
the simulation, the file-holding time of hot domains is actually
larger than that of the cold domains. The reason for this
relates to the exponential nature by which pseudoservers are
created. In the case of the hot domains, many more excess
pseudoservers are created than are created in the cold domains.
As a result, there is more competition for new requests in
the hot domains than in the cold domains, and the average
file-holding time is thus larger for the hot domains.

540 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, AUGUST 1999

These simulations show that there is clearly much to be
gained by setting contracts more intelligently. In particular,
when the rate of request is low on a per-domain basis, contracts
should be set so that pseudoservers do not grow in number;
doing so creates unnecessary pseudoservers and causes the
file-holding time to increase beyond what is necessary.

V. EXPERIMENTS

To further investigate the effectiveness of pseudoserving,
we tested a prototype system on a LAN of 113 workstations.
One of the machines was used to run the superserver process,
while a subset of the others were used to run pseudoserver
processes. We conducted a series of experiments in which each
pseudoserver requested the same file from the superserver over
a period of several minutes. This section discusses the details
of these experiments and their results.

This preliminary work serves two important purposes. First,
it brings pseudoserving from the realm of ideas and simula-
tions onto firmer ground; factors not accounted for in previous
work on pseudoserving are accounted for in the experiments.
These include limited disk to memory bandwidth, nonzero
processing times, overhead of lower level protocols, limited
backbone bandwidth, and network topology. The latter two are
especially important and are considered later in this section.

The prototype system is also the first step toward the
integration of pseudoserving into the WWW. It is important
that pseudoserving works in conjunction with current Web
technologies, in particular, caching mechanisms. Toward this
end, we would like to implement the pseudoserver as a module
in an existing cache framework, and the code developed in the
prototype system serves as a starting point for this purpose.

A. Overview

The experiments were run on workstations within the De-
partment of Computer Science during the summer, outside the
regular academic year. These machines are a collection of 64
Dec 5000’s running Ultrix 4.4, 25 HP 712’s running HP-UX
10.1, and 24 SGI Indy’s running IRIX 5.3 connected to each
other through a standard shared-medium (nonswitched) 10-
Mb/s Ethernet LAN. Casual surveys show that only about 10%
of the machines are used in a typical summer day.

The scope of the experiments was constrained by the state of
these machines at various times of the day and at various days
of the week. Many of the machines were down for maintenance
reasons as well as day to day breakdowns due to imperfect
software running in a heterogeneous environment. A further
constraint was imposed by the number of processes that could
be run and the free space that was available on the local disk
of each machine.

A process spawner was written to exploit the resources
available. It takes as input user-specified parameters concern-
ing the number of processes to spawn and the machines on
which to spawn them. It then probes the specified machines
individually to determine the number of processes each can
run, mindful of the file size and the disk space available
on the machine. Next, it spawns the pseudoserver processes
and synchronizes their local clocks. Finally, it instructs each

process to retrieve a specified file from the superserver at a cer-
tain time and to report important statistics regarding retrieval
times to astatistics collector. The statistics
collector itself as well as thesuperserver were run
manually.

The manner in which pseudoservers were spawned has
important implications on locality. Pseudoservers are spawned
on each machine in a round-robin fashion. For experiments
in which the number of pseudoservers desired exceeds the
number of machines, at least one machine runs more than one
process. Typically, on the order of ten processes ran on each
of about a hundred machines so that about one percent of the
requests were satisfied from the same host when pseudoserving
is active. As will be discussed later, a parameter can be set
to ensure that requests are satisfied either by the superserver
or by a pseudoserver residing on the same machine as the
requester. When this parameter, which specifies locality, is set,
the percentage of requests satisfied from the same machine
rises to the order of 90%.

The superserver is an implementation of the super-
server described in Section IV-A-4 with some important dif-
ferences noted below.

• Instead of responding with either a referral or a refusal,
the superserver responds with either a referral or a notice
to put the requester inwaiting mode.When the latter
happens, the superserver stores the requester’s IP address
and the requester, in turn, waits to be served by a
pseudoserver. This modification has two effects. It has the
negative effect of increasing the storage requirements of
the superserver. Each request requires extra storage space
in the superserver’s main memory. It has the positive
effect of discouraging reattempts initiated by the user
because reattempts do not hasten the establishment of
connections; reattempts simply put users further behind
in a waiting queue.2

Although this queuing mechanism could be imple-
mented on traditional servers, it is much more appropriate
to do so on superservers. Under pseudoserving, requests
on the waiting queue are satisfied quickly because re-
sources are created exponentially to fulfill them. Were
such a mechanism implemented on traditional servers, the
server could run out of memory very quickly because the
rate at which requests arrive is much higher than the rate
at which they can be served.

• To simplify the design of the superserver, the superserver
does not keep track of the period of time that each
pseudoserver has kept its file. Instead, the superserver
relies on the pseudoserver to report when it has finished
retrieving the file and is ready to serve. This adds an extra
connection to the superserver for each request.

• The superserver responds to a request to service by telling
the pseudoserver that it need not serve, it needs to serve
a client in waiting mode, or it needs to be put instandby

2This assumes the superserver serves waiting queues on a first-come-first-
serve basis. With locality turned off, that is precisely what happens. With
locality turned on, requests are satisfied on a first come first serve basis within
the same network cluster.

KONG AND GHOSAL: MITIGATING SERVER-SIDE CONGESTION IN THE INTERNET THROUGH PSEUDOSERVING 541

mode. In the last case, the pseudoserver becomes part of
the pool of pseudoservers waiting to service referrals.

The pseudoserver is the same as the one described in
Section III-A. There are three important points to note. First,
in all the experiments in which the pseudoserver operated in
client/server mode, the pseudoservers were set so that they
continue to make requests until the file is retrieved. Second,
user dishonesty is not accounted for, i.e., the pseudoservers
are always cooperative. Finally, pseudoservers send important
statistics concerning their operation to thestatistics
collector , which keeps track of important events reported
by each pseudoserver as it is run in the experiments. These
statistics are:

Connection Time:Amount of time that transpired since the
first request is made until the pseudoserver has either been
told to retrieve the file directly from the superserver, given a
referral to where the file can be retrieved, or served by a host
requesting to serve a pseudoserver.

Average Waiting Time:(AWT) is the average of the total
waiting time which includes the connection time and the time
it takes to download the requested file.

Source IP: The host address from which a client retrieves
its file. The percentage of requests from the superserver, from
the same host, and from other hosts are designated as SS%,
SH%, and OH%, respectively.

Standby Time:Amount of time transpired since the pseu-
doserver has completed its download until it has either fulfilled
its contract by serving two clients or holding onto the retrieved
file for the contractual file holding time.

B. Experimental Parameters

The parameters of the process spawner define the experi-
ments. Some of these parameters were common to all of the
experiments while others were different. The common ones
include:

Interarrival Time: Once the process spawner has
spawned the pseudoserver processes, it notifies each of them
when to make its first request. This parameter determines the
time between consecutive first requests and is set to 1 s.

Concurrency:This is the superserver’s concurrency. It is
set to ten.

Size of Pseudoserver Pool:Determines the superserver’s
response to requests to serve sent by the pseudoserver. If the
size of the current pool of pseudoservers is smaller than this
parameter, the pseudoserver is added to the pool. Otherwise,
the pseudoserver is told that it need not serve. This parameter
is set to 100.

The experiments were differentiated by setting the following
parameters:

Processes Wanted:Number of pseudoserver processes that
is requested for a particular experiment. The actual number of
processes spawned, designated PROCS, depends on the state
of the machines.

File Size: Designated FS, is the size of the file to be
pseudoserved.

Pseudoserving:Designated PS?, is on if pseudoserving is
turned on. Otherwise, the superserver operates as a traditional
server.

TABLE II
EXPERIMENTAL RESULTS

File Holding Time: Designated FHT, is the contractual file
holding time.

Locality: Designated LCL?, is on if requests are satisfied
only either directly by the superserver or by a pseudoserver
located in the same host as the requester. Otherwise, requests
are satisfied regardless of the relative location of the requester
and the requestee.

C. Experimental Results

The experiments are described in Table II. Each row rep-
resents an experiment. The first five columns show the pa-
rameters of the experiment, and the others show the results
of running it.

The experiments can be understood by first noting that they
are grouped according to file sizes of 1 KB, 10 KB, 100 KB,
1 MB, 3 MB, and 10 MB, and that the average waiting time
increases accordingly. Also note that each of these groups
contains three experiments. The first corresponds to the case
where pseudoserving is turned off; the second corresponds
to the case where pseudoserving is turned on but locality is
turned off; and the third corresponds to the case where both
pseudoserving and locality are turned on.

The average waiting times are what we expect from pseu-
doserving operating under the different regimes. When the
file is small, server concurrency and bandwidth is not an
issue and the user sees little difference in retrieving files
from a traditional server or from a superserver. In fact,
retrieving from a superserver takes slightly longer due to
the overhead associated with implementing the pseudoserver
protocol. When the file is large, both server concurrency
and bandwidth become bottlenecks and we see pseudoserving
working effectively by reducing the total retrieval time several-
fold. When transferring a 3-MB file, for example, the retrieval
time is reduced from about half an hour to about 5 min. When
locality is turned on, the transfer time is reduced to less than
10 s.

While the LAN within which the experiments were run is
not the Internet, the experiments demonstrate first order effects
that applies to arbitrary networks including the Internet. The
Ethernet connecting many hosts can be likened to an Internet
backbone connecting many network gateways. While it is clear

542 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, AUGUST 1999

that pseudoserving can be used to bypass server concurrency,
the experiments show that significant gains can be had by
bypassing the backbone as well. Experiments 14 and 15, for
example, show a reduction in the retrieval time by a factor
of 40 when the “Ethernet backbone” was bypassed. Clearly,
we do not expect transfers to take place from within the same
host as it is done in the experiments. At the same time, we
do expect significant improvements in the retrieval time when
referrals are made to the same network cluster as the requester.

An earlier version of the system was actually run with the
superserver behind a 28.8-kb/s modem. The pseudoservers
themselves were connected to each other through a 10-Mb/s
LAN. Not surprisingly, the time it took to retrieve a 100-
KB file was reduced from several minutes to essentially zero
once one of the pseudoservers retrieved the requested file
from the superserver. Nevertheless, this simple experiment
is a very real demonstration of the power of pseudoserving:
by shifting the burden of distributing data to the clients,
pseudoserving enables content providers to distribute their
content very cheaply.

VI. L IMITATIONS

We discuss the boundaries of pseudoserving in this section.
These include the conditions under which a pseudoserving
system functions effectively and the new bottleneck that arises
when pseudoserving is implemented.

A. Environments Suitable for Pseudoserving

Pseudoserving functions most favorably under two condi-
tions: 1) when everyone wishes to retrieve the same file and
2) when the file size is large. If users retrieve many different
files from a server, sharing files becomes more difficult. If the
file size is small, the overhead of the pseudoserving protocol
may outweigh the benefits of pseudoserving. We discuss these
considerations in the following subsections.

1) Pseudoserving Multiple Files:Although pseudoserving
works well when the file requested is the same for every-
one, this is not a necessary condition. Pseudoserving can be
applied on a per-file basis in which referrals are made only
to pseudoservers that contain the requested file. If the rate of
request for each file is sufficiently high, pseudoserving on a
per-file basis works equally well.

A problem arises if the rate of request is high, but the
rate of request for individual files is low. Recall that when
the number of pseudoservers equalsrequest rate
download time , a pseudoserver becomes available just as
a new request arrives.

Consider the situation in whichrequest rate down-
load time . This can happen, for example, when a
superserver contains many files but requests for any individual
file arrive few and far in between. Under such circumstances,
the contractual file holding time must be set sufficiently long
so that pseudoservers are available when referrals are directed
to them.

The problem, then, is as follows. Applying pseudoserving
on a per-file basis effectively reduces the rate at which requests
are made. For sufficiently large reductions, pseudoservers must

TABLE III
BANDWIDTH SAVING WITH PSEUDOSERVING FORDIFFERENT FILE SIZES

make their files available to requesters for a longer period
of time. This may not be acceptable for users who are, for
example, connected to the Internet only temporarily. It should
be noted that this is the same problem described in Section IV-
B-3 in which pseudoserving is applied in a per-network-cluster
basis.

2) Effectiveness of Pseudoserving According to File Size:
Pseudoserving shifts the role of the server from serving files to
one of serving pointers to where files can be retrieved. Hence,
bandwidth usage on the server’s link to the Internet is reduced
by a factor offilesize/pointersize.

Most of the bytes of a pointer are taken by the overhead
associated with protocols at the transport and lower layers.
Assuming the TCP/IP protocol, for example, it takes seven
packets to set up and terminate a connection. Each of these
packets takes 40 bytes, for a total of 280 bytes. Using the
implementation of the superserver described in Section III-B,
a referral is simply a 4-byte IP address plus a checksum for
the file.

We assume conservatively each pointer uses 500 bytes.
With this pointer size, the savings in server bandwidth under
pseudoserving are shown in Table III.

Even for text-based web pages, there is roughly a four-
times reduction in the usage of valuable server bandwidth.
Pseudoserving therefore significantly reduces the number of
bytes the server transfers even when the file is small. Clearly,
when the files are large, the savings become tremendous.

Note that the reduction in the number of bytes that the server
transfers does not necessarily translate to a corresponding
reduction in the total retrieval time. Pseudoserving requires
that a client establish a second connection with a pseudoserver
after having established a first one with the superserver. This
overhead often becomes more visible to the user when the
file to be transferred is small, as experimental results show in
Section V. But when the network is heavily congested, when
data dribble to users at a rate of tens of bytes per second,
bandwidth again becomes an issue even for the transfer of
small files.

B. Superserver Bottleneck

As Section II stated, once the bottleneck due to server con-
currency is removed, the server’s link to the Internet becomes
the new bottleneck; data can be transferred to clients only as
fast as the link is able to move them. Similarly, a superserver
can only process messages as fast as they arrive from the
clients through the link. To a first order, pseudoserving reaches
its limit for effectively handling arbitrary rates of requests
when the rate at which requests are made exceeds the rate
at which they can be processed by the server’s link to the
Internet.

KONG AND GHOSAL: MITIGATING SERVER-SIDE CONGESTION IN THE INTERNET THROUGH PSEUDOSERVING 543

TABLE IV
LIMIT OF PSEUDOSERVING FORDIFFERENT TYPES OF LINKS

We can characterize this new limit by assuming the size of
requests to be 500 bytes each, accounting for the overhead
involved in setting up a connection as we did earlier for
the pointer size. The limit for pseudoserving is therefore
bandwidth of link/500 bytes . Table IV shows this
limit as applied to typical server links.

VII. CONCLUSION

Pseudoserving is a new paradigm for accessing information
in the Internet that allows its participants to bypass congestion
at the server by combining elements of caching and economics.
A referral may be obtained to where the requested file may
be found if the requester agrees to serve the retrieved file to a
small number of users within a short period of time.

Simulations based on the behavior of users under flash-
crowd conditions demonstrate the effectiveness and feasibility
of pseudoserving in dissipating flash-crowds under a variety
of conditions. In particular, they show the number of pseu-
doservers grows to meet even very high demand. Within about
5 min, for example, enough pseudoservers are generated to
reduce the total retrieval time to its minimum. As a result, not
only are new requests serviced over an order of magnitude
faster, but the number of users who give up because they
were unable to obtain a connection to the server after many
reattempts is reduced by about ten times. Pseudoserving is
also robust against user dishonesty. In particular, even with
40% of the users breaching their contracts, the number of
pseudoservers still grows. As a result, the total retrieval time
can still be driven to its minimum, albeit at a slower rate. The
number of give-ups even with 40% user dishonesty is less
than half that associated with a client/server system. Finally,
simulations show that pseudoserving is feasible, even under
fairly conservative conditions. In particular, when referrals
are made only to pseudoservers that are in the same network
cluster as the requester, the peak actual file-holding time is
on the order of two hours and the average file-holding time
is about 40 min. It is important to note that these durations
were derived using a simple-minded contract policy in which
all users are required to serve two other users, regardless of
the rate of request. Policies that account for the rate of request
are expected to perform much better.

An implementation of a pseudoserving system has also
been developed and tested on a LAN of over a hundred
workstations. Experimental results show that pseudoserving
reduces the total retrieval time of large files by over an order
of magnitude by allowing clients to bypass limits placed by the
server’s concurrency. They also show that further, significant
reductions are possible by exploiting network locality.

Future work revolves around experiments we plan to per-
form on another implementation of the superserver. We are
in the process of enhancing an Apache WWW server with
pseudoserving capabilities. After this work is completed, we
wish to explore two areas. The first is the performance of the
superserver under extreme loads. We are especially interested
in the overhead of the pseudoserving protocol and how it
impacts the performance of the superserver under different
loading conditions. We are also interested in wide-area exper-
iments that shed light on the effectiveness of pseudoserving in
exploiting network locality. The results from this work promise
both to be interesting and to have practical implications for
pseudoserving.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
and the editor, Dr. S. Pink, for their reviews. The reviews were
helpful in preparing the final version of the paper.

REFERENCES

[1] M. Abrams, C. Standridge, G. Abdulla, S. Williams, and E. A. Fox,
“Caching proxies: Limitations and potentials,” inProc. 4th Int. World
Wide Web Conf.,Boston, MA, Dec. 1995.

[2] M. F. Arlitt and C. L. Williamson, “Web server workload characteriza-
tion: The search for invariants,” inProc. 1996 ACM SIGMETRICS Int.
Conf. Measurement and Modeling of Computer Systems,Philadelphia,
PA, June 1996, vol. 24, no. 1, pp. 126–137.

[3] M. Baentsch, G. Molter, and P. Sturm, “Introducing application-level
replication and naming into today’s Web,”Comput. Networks ISDN
Syst., vol. 28, pp. 921–930, 1996.

[4] A. Bestavros, R. L. Carter, and M. E. Crovella, “Application-level
document caching in the Internet,” Comput. Sci. Dept., Boston Univ.,
Boston, MA, Tech. Rep. BU-CS-95-002, Mar. 1995.

[5] J. Bolot and P. Hoschka “Performance engineering of the World Wide
Web: Application to dimensioning and cache design,” inProc. 5th Int.
World Wide Web Conf.,Paris, France, May 1996, pp. 1397–1405.

[6] J. E. Burns and D. Ghosal, “Automatic detection and control of
media stimulated focussed overloads,” inProc. Int. Teletraffic Congress,
Washington, DC, June 1997, pp. 889–900.

[7] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson,
“Cooperative caching: Using remote client memory to improve file
system performance,” inProc. 1st Symp. Operating System Desing and
Implementation (OSDI),1994, pp. 267–280.

[8] S. L. Garfinkel, “The wizard of netscape,”WebServer Mag.,pp. 58–64,
July/Aug. 1996.

[9] GVU’s 4th, 5th, 6th, 7th, and 9th WWW User Survey, Oct. 1995, Apr.
1996, Oct. 1996, Apr. 1997, Apr. 1998. [Online]. Available HTTP:
http://www.cc.gatech.edu/gvu/user_surveys

[10] J. Gwertzman and M. Seltzer, “The case for geographical push-caching,”
in Proc. of the 1995 Workshop on Hot Operating Systems,1995, pp.
51–555.

[11] HTTP 1.1 Specification. [Online]. Available HTTP: http://www.cis.ohio-
state.edu/htbin/rfc/rfc2068.html

[12] K. Kong and D. Ghosal, “Pseudo-serving: A user-responsible paradigm
for Internet access,” inProc.6th Int. WWW Conf.,Santa Clara, CA, Apr.
1997, pp. 546–557.

[13] Low-bandwidth X. [Online]. Available HTTP: http://www.thphy.uni-
duesseldorf.de/kielhorn/xfaq/X-FAQ_toc.html

[14] R. Malpani, J. Lorch, and D. Berger, “Making world wide web caching
servers cooperate,” inProc. 4th Int. World Wide Web Conf.,Boston,
MA, Dec. 1995.

[15] Mars Path Finder. [Online]. Available HTTP: http://mpfwww.jpl.nasa.
com/index.html

[16] J. K. Mackie-Mason and H. R. Varian, “Some FAQS about usage-based
pricing,” in Internet Economics,L. W. McKnight and J. P. Bailey, Eds.
Cambridge, MA: MIT Press, 1997.

[17] L. W. McKnight and J. P. Bailey, “An introduction to Internet eco-
nomics,” in Internet Economics,L. W. McKnight and J. P. Bailey, Eds.
Cambridge, MA: MIT Press, 1997.

544 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, AUGUST 1999

[18] J. K. Mackie-Mason and H. R. Varian, “Pricing congestible network
resources,” Univ. of Michigan, Nov. 1994.

[19] , “Pricing the Internet,” inPublic Access to the Internet,B. Kahin
and J. Keller, Eds. Englewood Cliffs, NJ: Prentice-Hall, 1995.

[20] F. Murtagh, “Data on the number of access to the WWW Server in ESO
(European Southern Observatory),” private communication, May 1994.

[21] D. Neal, “The harvest object cache in New Zealand,”Comput. Networks
ISDN Syst.,vol. 28, pp. 1415–1430, 1996.

[22] M. Parsa and J. J. Garcia-Luna-Aceves, “Scalable Internet multicast
routing,” IEEE J. Select. Areas Commun.,vol. 15, pp. 316–331, Apr.
1997.

[23] S. Paul, K. Sabnani, J. Lin, and S. Bhattacharyya, “Reliable multicast
transport protocol (RMTP),”IEEE J. Select. Areas Commun., Special
Issue on Network Support for Multipoint Communication,vol. 15, pp.
407–421, Apr. 1997.

[24] S. Shenker, D. Clark, D. Estrin, and S. Herzog, “Pricing in computer
networks: Reshaping the research agenda,”Telecommunications Policy,
vol. 20, no. 3, pp. 183–201, 1996.

[25] N. G. Smith, “The UK national web cache—The state of the art,”
Comput. Networks ISDN Syst.,vol. 28, pp. 1407–1414, 1996.

[26] W. R. Stevens,TCP/IP Illustrated Volume 1: Protocols.Addison-
Wesley, 1994.

[27] , TCP/IP Illustrated Volume 3: TCP for Transactions, HTTP,
NNTP, and UNIX Domain Protocols.Reading, MA: Addison-Wesley,
Professional Computing Series, 1996.

[28] B. Laurie and P. Laurie,Apache: The Definitive Guide. Sebastopol,
CA: O’Reilly, Inc., Mar. 1997.

Keith Kong received the B.S. degree in electrical
engineering from the University of California at
Berkeley in 1993. He is currently working toward
the Ph.D. degree at the University of California at
Davis.

His current research interests are in the area of
caching and high-level network protocols and their
application in mitigating congestion in wide area
networks.

Dipak Ghosal received the B.Tech degree in elec-
trical engineering from the Indian Institute of Tech-
nology, Kanpur, India, in 1983, the M.S. degree
in computer science from the Indian Institute of
Science, Bangalore, India, in 1985, and the Ph.D.
degree in computer science from the University of
Southwestern Louisiana, Lafayette, in 1988.

From 1988 to 1990, he was a Research Associate
at the Institute for Advanced Computer Studies,
University of Maryland at College Park. From 1990
to 1996, he was a Member of Technical Staff at

Bell Communications Research/Bellcore, (presently Telecordia Technologies),
Red Bank, NJ. Currently, he is an Associate Professor in the Department of
Computer Science, University of California at Davis, His research interests
include control and management of high-speed networks, personal communi-
cation services, and performance evaluation of computer and communication
systems.

