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Can Unstructured P2P Protocols Survive
Flash Crowds?

Dan Rubenstein, Member, IEEE, and Sambit Sahu

Abstract—Today’s Internet periodically suffers from hot spots,
a.k.a., flash crowds. A hot spot is typically triggered by an unan-
ticipated news event that triggers an unanticipated surge of users
that request data objects from a particular site, temporarily
overwhelming the site’s delivery capabilities. During this time,
the large majority of users that attempt to get these objects face
the frustrating experience of not being able to retrieve the content
they want while still being able to communicate effectively with
all other parts of the network. In this paper, we examine whether
simple, undirected peer-to-peer search protocols can be used as a
backup to deliver content whose popularity suddenly spikes. We
model a simple, representative, undirected peer-to-peer search
protocol in which clients cache only those objects they have ex-
plicitly requested. Because the object that becomes hot initially
has limited popularity, the number of cache points, were they to
remain fixed, would be insufficient to handle the level of demand
during the flash crowd. However, as searches complete, more
copies of the object become available. We analyze this natural
scaling phenomenon and show that during the flash crowd, copies
are distributed to requesting clients at a fast enough rate such
that these simple protocols can indeed be used to scalably retrieve
content that suddenly becomes “hot.”

Index Terms—Average case analysis, flash crowds, peer-to-peer.

I. INTRODUCTION

THE Internet has become a main source of access to timely
content ranging from simple news to critical information.

While it almost always provides an acceptable level of service,
it makes no guarantees. Flash crowds (a.k.a., hot spots) are one
such phenomena that limit the Internet’s abilities to adequately
deliver requested information. A well-known example of this
phenomenon occurred on 9/11/2001 when, for most users, news
websites were inaccessible. These phenomena are the result of
an unpredictable, massive overload of requests to a site, seem-
ingly bringing the site’s delivery capabilities to a grind halt even
though all or most of the remaining network capacity is avail-
able and operational at other locations throughout the network.

During these periods of overload, peer-to-peer (P2P) systems
can be used to retrieve duplicates of recently generated objects
(e.g., timely news web pages) that originate at the server that
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is currently exhibiting hot spot symptoms. The object is dis-
tributed to these users that seek it via end-to-end communica-
tion between peers (i.e., the other users that also seek these ob-
jects). The system’s ability to deliver the content during the hot
spot leverages off the fact that these pairwise end-to-end com-
munications remain operational during the hot spot, and that a
small number of users in the peer-to-peer network are still able
to get through to the original server during the flash crowd. Prior
to a hot spot event, users organize themselves into an overlay
network: a directed graph that lies atop the underlying Internet
infrastructure. The overlay enables its participants to communi-
cate with one another by forwarding messages to and through
other participants in the overlay. When a user (or its browser)
finds a server unresponsive to its request, it can then search for
the object by querying other participants within the overlay.

Most studies of search in P2P systems assume that the
popularity of each content item remains fixed with time. In
these scenarios, search costs are reduced by replicating objects
throughout the distributed (but finite) memory of the P2P
system at a frequency that is correlated with the object’s popu-
larity [1]. However, during a flash crowd, an item’s popularity
suddenly spikes such that most likely, an intelligent replication
strategy would not have placed a sufficient number of copies
of the item in the system. Search costs for the suddenly-pop-
ular item would therefore be higher. Does this doom simple,
undirected P2P solutions to failure?

In this paper, we show that even simple P2P solutions natu-
rally handle sudden spikes in demand. We develop a model of
a simple yet representative, undirected search protocol similar
to those used by commercial P2P systems such as Gnutella [2]
that currently deployed in existing networks. As peers search
for, find, and retrieve the “hot” object, they maintain a copy of
this object and can then service subsequent requests that seek the
object. As a result, the number of copies cached in the system
grows over time as peers locate and retrieve the object. Initially,
when the flash crowd first hits, the bandwidth consumed by the
searches is high. However, as P2P members retrieve this “hot”
object, the number of replicas in the system grows, decreasing
expected search costs.

Our mathematical model of a simple, representative P2P
search protocol allows us to examine P2P systems that contain
millions of peers. Using the model, we compute bounds in
large P2P systems on the time it takes for peers to recover
objects, as well as the number of messages that are sent through
the network to perform this recovery. We show that these
simple protocols take orders of magnitude less time to deliver
the object to all users in comparison to the hour-long delays
times observed in practice using conventional methods. More
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specifically, our analysis shows that all users that desire a copy
of the object can expect on average to independently retrieve it
within fewer than 30 communication rounds, where each round
is on the order of a round trip time. In addition, we show that
all users participating in the overlay that desire a copy of the
object can receive this copy while sending and receiving on
average fewer than 400 messages. We compute these results for
two arrival patterns of user requests that lie on opposite ends of
the spectrum in terms of the number of users whose searches
are simultaneously active. First we consider the case where
user requests arrive in sequence such that a user’s search starts
only after a previous search has completed. The other case is
when all users simultaneously become interested in the content
and begin their searches in unison.

The rest of this paper proceeds as follows. Section II discusses
related work. In Section III, we describe the network model
and the protocol within the context of that model. Section IV
presents a simple, back-of-the-envelope analysis that provides
intuition of the scaling phenomenon that we see in our detailed
analysis that appears in Section V. Section VI extends the anal-
ysis when multiple nodes search for the object. Section VII eval-
uates the performance using these analytical results and simu-
lations. Section VIII compares analytical results computed over
fully connected overlays to simulation results computed upon
overlays generated via our shuffling protocol. Section X con-
cludes the paper.

II. RELATED WORK

Much of the research community’s recent attention has fo-
cused on structured P2P systems that efficiently locate content
that is static (unchanging) and easily labeled [3]–[5]. These
schemes were designed to efficiently point large sets of users
looking for different “cold” objects to different parts of the
overlay. A “hot” object would still be problematic in that all
users’ requests would be forwarded to the same point. This can
be remedied by having each node that forward a request cache
a copy of the object once it is located and returned. Caching a
pointer is not sufficient since the location of the stored object
will still be the bottlenecking point. Requiring explicit copying
of this form of every object that passes through the system
is costly. A preliminary proposal that explores how to design
structured P2P networks to handle flash crowds is described in
[6].

Much of the recent work in unstructured search P2P systems
has involved measuring properties of existing architectures [7],
[8]. In [1], an optimal caching strategy is identified for unstruc-
tured search networks where demand varies across the objects
stored in the P2P system, but where each object’s demand is
fixed, i.e., the demand for the object does not suddenly spike.
We have proposed the protocol analyzed in this paper in [9].
There, we used simulation and experimentation in a wide area
prototype to evaluate its performance in more realistic, practical
network settings. However, computational resources limited our
investigation to P2P systems containing at most a few thousand
members. Our analysis here allows us to investigate the pro-
tocol’s scalability into the millions. Recently, alternative P2P

approaches to alleviate flash crowds by means of an unstruc-
tured P2P system is discussed in [10] for web documents and in
[11] for streaming media.

A wide body of work has considered the theoretical problem
of resource location in networks. However, the models consid-
ered are often not directly amenable to the problem of deliv-
ering information that has suddenly become inaccessible as a
result of flash crowds. For instance, in [12] it is assumed that
the user seeks a resource that cannot be replicated, and that the
network can store state of the search to prevent duplicate tra-
versal along network paths. The massive distribution of popular
information is the basis for work in gossip protocols [13]–[15].
A limitation of these gossip-style protocols within a flash crowd
scenario is that efficient gossiping requires that those nodes that
already have the object be in the position to determine whether
this object is worth propagating further. In contrast, in a flash
crowd, it is the set of nodes that are without the object that must
make such a determination.

Last, we note that our results do not necessarily contradict
previous points of view that blatantly claim that Gnutella
cannot scale [16]. We are claiming that this type of protocol
performs well for an application in which everybody wants
a few highly popular objects. These works also suggest that
often clients make use of, but do not assist in the searching and
object delivery phase of the protocol. We also suspect that the
similar content interest also makes it more likely that users of
the system will be willing to be “good citizens” and participate
in the process of delivering content.

III. MODEL

In this section, we introduce a simple probabilistic model of
the overlay network and, in the context of this model, the P2P
protocol that we subsequently analyze. Users in the P2P system
can communicate directly with a subset of other users in the
system. This subset is referred to as the user’s set of neighbors.
The neighbors are determined prior to the initiation of a search
via a separate process. Example methods include the shuffling
approach described in [9] and the neighbor selection process
used within resilient overlay networks (RON) [17], [18].

We begin with a description of the distributed, scoped search
protocol. The reader familiar with this area of work will find
this protocol similar to existing P2P protocols such as that used
within Gnutella. However the abstraction that we consider here
has some minor differences to make the analysis mathematically
tractable.

When a user seeks an object, the user initiates a search. The
search contains up to iterations, where the st iteration is
performed only when the object has not been located during a
previous iteration. During the th iteration, a user searching for
an object transmits a query to of its neighbors in the overlay,
selected uniformly at random. Each user that receives a query
and has a copy of the object notifies the originator of the query
(directly) that it has a copy available for download. If a user
does not have a copy, if the query it receives has not been for-
warded through a chain of users, the query is forwarded to
of its own neighbors, selected uniformly at random. Otherwise,
the query is dropped. This protocol is easily implemented in
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practice by including in the query the identity of the object, the
identity of the node that originated the search, and a TTL field
that is initially set to in the th iteration. The TTL is decre-
mented by each user that receives the query before sending it
further—when a node receives a query with the TTL set to 1,
that query should not be forwarded any further. If a user com-
pletes all iterations without finding the object, the user re-initi-
ates the search, starting from the first iteration.

The above search process is similar but not identical to an
expanding ring search protocol: during the th iteration, neigh-
bors that lie hops away in the overlay may be contacted. This
is slightly different from the traditional flooding approach in
which all neighbors that are within overlay hops are contacted
during the th iteration.

A. Overlay Network Model

Our model of an overlay network is a graph,
where is a set of nodes and is a set of directed edges be-
tween nodes. Each node represents a user that (has a
browser which) is a willing participant within the P2P protocol.
We focus on the retrieval of a single “hot” object that is initially
stored at of nodes in the network where a total of

nodes desire the object (including the that initially have
the object), where . Note that we are as-
suming that , i.e., that some copy of the desired object
has entered the P2P system. Such an assumption is not unrea-
sonable, given that some clients are able to initially download
content before its popularity spikes to excessive levels.

Our description and evaluation of the searching protocol dis-
cretizes time into rounds. Within a round, a node can send
out queries to as many neighbors as it chooses. However, a node
must wait until the subsequent round to transmit any informa-
tion it receives within the previous round. In other words, for a
query to travel along the path from to , from to , ,
from to in the overlay where requires
rounds.

B. Metrics of Interest

Within the context of the model, we measure the performance
of this protocol using two metrics:

• Node Bandwidth: We measure bandwidth in terms of the
number of queries that a node should expect to transmit to
enable all nodes that desire the object have success-
fully retrieved it.1 The total number of queries transmitted
by the protocol for a single object’s retrieval can be ob-
tained by summing over the individual node bandwidths.

• Time (in rounds): We measure time the number of rounds
from the round in which a user initiates its first query until
the round that the object is returned to that user.

Our analytical results are performed upon two arrival
patterns of user search requests:

• Isolated Attempts: This is the case where only one user’s
query propagates through the network at any given time,

1Note that we are interested in the number of transmissions that arrive or
depart from a node, and not in the number of transmissions resulting from a
user’s search request. The former’s load is more evenly shared among overlay
nodes, even in the case where users’ searches are performed sequentially.

i.e., the st user searching for the object does not begin
its search until the th user has already received the object.

• Simultaneous Attempts: This is the case where all users
actively seeking the object issue their queries simultane-
ously.

These patterns represent the two extremes in how an object’s
popularity can grow. The first is the slowest growth possible, the
second is the fastest growth possible.

IV. PRELIMINARY SIMPLE MODELS

Before proceeding with our detailed analysis of the described
protocol, let us first look at the scaling phenomenon using a sig-
nificantly simplified model. We will focus in this section on the
protocol for the case where , i.e., the nodes are searched
in sequence. We show that in this case, the bandwidth cost per
node scales logarithmically with the number of nodes searching
the overlay.

A. Isolated Attempts

Let us first explore a simple model where nodes initially
have a copy of the object and the nodes that desire a copy
of the object perform their searches one after the other. When
the th searching node starts its search, nodes will
have a copy of the object. Assuming a fully connected overlay
where a query is forwarded to a neighbor uniformly at random,
the expected number of queries made on the behalf of this node
to find the object is . The expected number of queries
required for all nodes desiring the object to receive a copy
is . Since each of the nodes in the overlay is as
likely as any other to receive a query, the expected number of
queries a node will receive is . This value is clearly
largest when and , and it is easy to show that

.2

B. Simultaneous Attempts

Our simplified model for the case where users perform their
searches at the same time will be a fluid model. Let us consider
specifically the case where, in the end all nodes desire a copy of
the object. Let be the fraction of users at time with a copy
of the object, where is the initial fraction of nodes
with the object. We assume that the search by each node that
has not found the object by time queries its next node at time

. At time , a fraction of nodes are still searching for
the object and after an additional time , each searcher chooses
a node with a copy of the object with probability . Hence

whose solution is (via substitution of variables, then
)

(1)

where . Note that is increasing, but never
reaches 1, i.e., under this simple model, there is never a point

2The lower and upper bounds are obtained by noting that for i > 1,
1=2 < 1=i � 1=2 .
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in time when all nodes have a copy of the object. This is an
inaccuracy of the fluid model when grows very close to 1.
Note that in practice, if there are nodes in the network, then
once , then there is a single node without a
copy of the object and clearly, in the next interval of time, ,
the copy will be found. Another way to apply our fluid model
is to compute the time where . After this point
of time, half the nodes are transmitting queries, and each query
has probability of at least 0.5 of locating the object. If there are

nodes, then at time , there are nodes, each of which
will send a number of queries whose expected value is bounded
above by 2. This bound of on the expected number of queries
transmitted after time is distributed uniformly among the set
of all nodes, such that the expected number of additional queries
that each node must handle after time is bounded above by
one. We will therefore bound the expected number of queries
per node during the lifetime of the search by determining the
expected number of queries per node sent up to time , and
then adding one to the outcome.

Setting the left-hand side of (1) to 0.5, we get . We
can now compute the expected number of queries in the system
from time 0 to time an arbitrary end-time, . Recall that at time
, there are nodes whose searches generate a query

each , hence

Solving with and setting gives

Setting yields . Since this
bandwidth is distributed evenly among all nodes in the network,
the expected per node is to time , making the
expected number of queries for all nodes to receive the object
bounded above by .

V. PERFORMANCE ANALYSIS

In this section, we develop the more sophisticated mathemat-
ical tools that will allow us to evaluate the bandwidth and time
overheads of the more general searching protocol. To make the
model amenable to a mathematical analysis, as in [1], we as-
sume the overlay graph is fully connected, i.e., a user’s neighbor
set is the set of all nodes. We will demonstrate in Section VIII
that the results match almost identically to the results obtained
through simulation overlays where each node’s neighbor set is
limited via the shuffling approach described in [9].

We begin by considering the case where a single node
wishes to retrieve an object that is stored at a fraction
nodes in the network (i.e., a fraction do not have the object).
With our assumption that the overlay is fully connected, when a
node selects a neighbor uniformly at random, that neighbor has
the object with probability .

In the th round of an iteration, a single query can lead to at
most transmissions. This number occurs only when no node
contacted in the earlier rounds of the iteration had a copy of
the object. We define a schedule to be a list of nodes ,

, , where a node can ap-
pear multiple times in the list. By connecting an directed edge
pointing to from for all nodes where

, a balanced -ary tree is formed whose edges depict
the transmission sequence: if node receives a query and
does not have a copy of the requested object, then it forward
the query onward to set of nodes , ,

. When forwarding a query, we assume that each
node selects a neighbor uniformly at random with replacement,
including itself. This greatly simplifies the analysis in that each

is selected uniformly at random from the set of nodes in
the P2P system.

In any iteration, exactly
queries are forwarded when no node receiving the

query during these rounds has a copy of the object. We define
, which equals the probability

that none of the nodes contacted within the first rounds of
an iteration contains a copy of the object. The probability that
no nodes scheduled for a visit within iteration contain a copy
of the object is . We define the random variable to
equal 0 when no scheduled transmission within the first th iter-
ations arrives at a node, and 1 otherwise. We have

. By convention, we set .
We first turn our attention to determining the expected

number of rounds taken to either locate the object or proceed
through all iterations without locating the object. Define
to be a random variable to equal when the earliest visit in
iteration ’s schedule to a node with a copy of the object occurs
during round , and equals when no such node exists. Then

Let be the number of rounds used by the protocol to
retrieve the object when is the probability that a node does not
hold the object. Then the expected number of rounds for which
the protocol runs, including the case where the object is never
retrieved is

We next turn our attention to determining the expected
number of transmissions a single running of the search protocol
makes (regardless of whether or not the object is located). We
define the random variable to equal 1 if scheduled trans-
mission occurs and equal 0 otherwise. Our assumption
that the node for each entry is selected uniformly at
random over all nodes gives us that that the probability that

does not contain the object is . It follows that

Since is an indicator r.v. which must equal 0 when
, we have

We define be the number of transmissions that take
place during the th iteration. Given that there are sched-
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uled transmissions scheduled in any iteration that contains a th
round, we have

Letting be a random variable equaling the number of trans-
missions performed by the protocol, we have

(2)

Having computed the expected number of rounds and transmis-
sions of a single running of the protocol, we can extend our
analysis to the case where the user reruns the search protocol
until the object is found. Let and respectively be
the number of transmissions and rounds needed during the th
running of the protocol

We define and to respectively be the number of
transmissions and rounds that are required to retrieve the object,
where the protocol is continuously rerun until the object is re-
ceived

VI. MULTIPLE QUERIERS

In the previous section, we considered the cost in terms of
rounds and transmissions for a single querier to retrieve a copy
of the desired object. We now use these results to compute the
expected number of rounds for a node to receive a copy of the
object from the time of its initial query, and the expected number
of transmissions that a node receives (or, equivalently, transmits)
when participating in the overlay for retrieval of one hot object
by multiple users. We assume a network with nodes where
there are nodes that desire the object with of the
nodes starting out with copies of the object.

A. Isolated Attempts

We define and to respectively
be the total number of transmissions and rounds used to deliver
the object to the nodes that desire it when each user transmits
its queries at separate times (i.e., not in parallel). This gives us

(3)

(4)

B. Joined Attempts

We define and to respectively
be the total number of transmissions and rounds used to deliver
the object to the nodes that desire it. We assume the time
intervals over which the nodes perform their searches overlap.
However, we do not assume that all nodes first start their
searches at the exact same time, . To remove the effect of
this unlikely synchrony, we assume that, at time , searches
have been proceeding for nonzero time, but no search has as of
yet located the desired object. We wish to compute the number
of rounds taken and transmissions received by a node who is
actively searching at time from time until it finds the
object.

To perform this analysis we introduce a modified search
process that will be used only to help us analyze the original
search process. We say that the protocol is in renewal mode
when a node, after locating a copy of the object, throws the copy
away (i.e., does not store the object), and initiates a new search
in the next round starting at iteration 1. Any searches in progress
that were initiated by the node who just located the object are
immediately terminated. We say these searches are “artificially
suppressed” since implementing a mechanism to suppress these
searches in practice would require instantaneously locating and
contacting the nodes that are performing the search. When all
nodes operate in renewal mode, the resulting search process
will approach a steady state, where, at time , the probability
that a node’s most recently initiated search has reached the th
round of the th iteration is the same for all nodes and all .
Hence, each node’s search can be viewed as a renewal process
that renews itself whenever the object is located by the current
search.

We assume that all nodes that desire a copy of the object
have been running in renewal mode for an arbitrarily long time
up to time , at time , all nodes exit renewal mode and
resume the normal search operation. Our measurements (time
taken and transmissions received) are counted from the time

.
To achieve a closed form solution, we are extraordinarily con-

servative in estimating the number of transmissions and rounds.
We therefore suspect that these upper bounds are rather loose
and that the actual upper bounds are significantly lower. This
means that values we compute are likely to be much greater than
what a node can expect (in terms of the number of rounds and
the number of queries received/transmitted), and guaranteed not
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to be lower (within the confines of the model considered here.)
Our results demonstrate that even under a worst-case assump-
tion that the upper bound is tight, it is feasible to use such a
system in practice.

We compute an upper bound on the expected number of trans-
missions via the following set of steps:

1) We consider a search where nodes have a copy of the
object and the other nodes are searching for the object
in renewal mode (starting from steady state). We compute
the expected number of rounds that pass from a round in
which an object is located to the next round in which the
object is located. We also compute the expected number
of transmissions that occur during this period.

2) We conservatively count all transmissions of any schedule
of an iteration that is initiated (i.e., even counting those
iterations that were “artificially” suppressed).

3) We show that the expected number of transmissions and
rounds counted above are a monotonically decreasing
function of (i.e., for a graph containing a fixed number
of nodes, as a larger fraction of nodes contain the object,
the expected number of transmissions and rounds needed
for a user to locate an object decreases).

4) We assume that at most one node locates the object in any
given round.

5) We note that at any point in time, if nodes currently
have a copy of the object, then our assumption in step 4
implies that no fewer than
nodes could have had a copy of the object when the
current execution of the protocol was initiated. Using the
monotonicity result in step 3, the steady state expected
number of transmissions and rounds when the fraction

of nodes has the object
upper bounds the the number of transmissions and rounds
that occur when nodes have a copy of the object.

We proceed first with step 1 and analyze the expected number
of rounds and transmissions that occur in the steady state system
in which a node, upon locating an object, does not retrieve the
object but, on the next round, re-initiates the search protocol.
This modified system is a renewal process that renews each time
the node locates its object.

To evaluate the expected number of rounds and transmissions
within this renewal process, we divide rounds into ticks where

is the number of users that are actively seeking an object. We
assume that the transmissions that relate to a particular user’s
query within a given round are assigned their own tick, and are
all transmitted concurrently during their tick. We assume that
if a user is able to locate an object during its tick, then that
user can return a copy of the object in response to subsequent
transmissions to that user during the same round (on subsequent
ticks).3

We define to be the steady state number of transmis-
sions that are performed (at the granularity of a tick) when a
fraction of the nodes contain a copy of the object. Let
be a random variable that equals the number of transmissions
sent during the th tick in system and let be a random

3This assumption greatly simplifies modeling, and we suspect does not have
any significant impact on the metrics of interest.

variable that equals 1 when the object is not located on the th
tick of system where a fraction nodes have the object

(5)

The proof of why the second equality holds, included in the Ap-
pendix, involves partitioning the random variables in the equa-
tion into a series of random variables from which the indepen-
dence results can be observed.

We now proceed on to step 2. To compute an upper bound on
, we consider the renewal process described above. To

perform this computation, we label the states of the protocol as
, which corresponds to the th round within the th itera-

tion. Letting represent the sampled state when the fraction
of nodes with the object is , we use the fact that the system
is a renewal process in which the renewal commences at itera-
tion 1, round 1, giving

(6)

where , i.e., the number of rounds from
the start of the protocol to the point at which the th round of
iteration occurs.

We note that if the object is received during iteration/round
, the protocol might continue to perform transmissions up

until the last round of the th iteration. We upper bound the
number of queries transmitted in by ,
which is the number of transmissions in the schedule from the

th round of iteration to the final round of the iteration. Note
that this not only overestimates the number of transmissions
sent on and after when the object is located during this
round, but it even more grossly overestimates the transmis-
sions that must be counted when the object is not located during
the round. Our upper bound on and an exact computa-
tion of are computed as

(7)

(8)

Combining (5)–(8) and applying algebraic manipulation, we get

(9)

We now proceed onto step 3, which is completed via the fol-
lowing lemma, whose proof is a simple sample-path argument.

Lemma 1: is nondecreasing with increasing . Due
to lack of space, the proof appears in the Appendix.
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Next, we proceed to step 4. This models a system in which if
two nodes locate a copy of the object on the same round, then
only one of them can retrieve the object. A simple sample path
argument similar to the one used to prove Lemma 1 would show
this assumption to be conservative. Last, step 5 follows trivially
from the argument given in the step description. Hence we have
successfully shown that

(10)

completing the computation for the upper bound on
.

1) Expected Rounds: We now compute an upper bound on
the expected number of rounds when users’ searches proceed
in parallel. Let be the time (in terms of rounds) that
elapse until one node receives a copy of the object, where of
nodes are performing the search in a network in which nodes
contain the object. Since each tick takes a fraction of a round
(so that all ticks complete in a single round), we have

(11)

We can then bound the expected number of rounds using our
results from above that count the expected number of tick units
that elapse between users’ searches finding a copy of the object.

Lemma 2: .
Proof: The time taken by a tick, increases as

decreases. Consider any sample path where nodes initially
seek the object, and let be the ticks such that

is the initial tick and is the smallest tick for
which nodes have received the object since tick 0. Let

be the tick values for the starts of rounds up to
tick . To accurately compute the number of rounds that
elapse, the amount of time that should elapse for tick should
be when the tick occurs in a round that commenced
with nodes seeking the object, i.e., ,
and . However, the expression stated in the Lemma
assumes that the time elapsed during tick would be
where . Thus, we have , such that

. Since the are increasing, we have , or
. Thus, our assumed tick time for time ,

.
Lemma 2 yields the upper bound on .

VII. EVALUATION

Using the analysis from the previous section and simulation,
we evaluate the cost of the search protocol as a function of time
(in rounds) for a user to find the object, and of the expected
number of messages that a user can expect to receive and for-
ward. Our simulations are performed on a home-grown, dis-
crete-event simulator that allows us to experiment with varia-
tions in the connectivity of the underlying overlay. In particular,

(a)

(b)

Fig. 1. Total rounds taken and transmissions generated by a single node’s
query for a fixed � . (a) Rounds. (b) Transmissions.

we use simulation to evaluate the performance metrics when
bounding the permitted number of neighbor nodes by a constant,

. All simulation results presented include 95% confidence in-
tervals, where each sample used to compute the confidence in-
tervals is itself the average of 15 sample runs (such that the dis-
tribution was approximately normal). For each point plotted, a
single overlay graph is generated (i.e., the overlay structure is
fixed), but the nodes that initially have the object are chosen
from a uniform distribution for each sample point used within
the average.

Fig. 1 plots (using a log-log scale) statistics for a single user
executing the protocol repeatedly until the object is retrieved as
a function of the fraction, , of nodes that currently have
the object. Fig. 1(a) plots the expected number of rounds that
the search will take to locate the object (3), and Fig. 1(b) plots
the expected number of transmissions that the user’s search for
the object generates [aggregated over all nodes in the network,
(3)]. The different curves in the two figures represent different
protocol configurations: curves labeled , indicate
that there are iterations and the fanout is fixed at .

We observe an obvious result that increasing the fanout or
the number of iterations within the protocol decreases the ex-
pected number of rounds and increases the expected number of
transmissions. We see, however, that reducing the fanout has
little effect on the asymptotic performance of both the number
of rounds and the number of transmissions as . The
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number of iterations appears to increase the number of trans-
missions by at most an order of magnitude. We make some im-
portant observations here.

• Increasing the number of iterations can significantly re-
duce the number of rounds, but does not cause as signifi-
cant an increase in the number of expected transmissions.
By setting , , all users can expect on average
that their search will take no more than 25 rounds when
more than of the nodes in the overlay have a copy
of the object. Most searches, however, are substantially
shorter.

• The expected number of transmissions triggered by
a query throughout the network does not grow much
beyond . In addition, we note that it is only
possible for a fraction of nodes to not contain the object
when there are at least nodes in the system. Since
all nodes in the system are equally likely to receive a
transmission, the number of transmissions that a node
can expect to receive from a query does not appear to
exceed 10 (i.e., it stays constant).

• The number of transmissions decreases at an exponential
rate as is increased. This means that as queries are
resolved and copies of the object propagate throughout the
network, the expected number of transmissions to deliver
the object to the subsequent querier is substantially lower.

We stress that the above observations are based on our use of
a protocol that increases the number of rounds by one from the
previous iteration. Our attempts to utilize other settings led to
situations where the number of transmissions was significantly
increased.

A. Sequential Search Results

Next, we turn our attention to the analysis of the system in
which multiple users wish to retrieve the hot object. We begin
by noting that our equations of interest here, (3), (4), (11), and
(10), are increasing functions of . We limit our consideration
to cases where , since increasing the number of nodes
that desire a copy of the object increases the expected number
of transmissions, giving us a worst-case scenario for this expec-
tation.

Fig. 2(a) plots the expected number of rounds a user can ex-
pect to wait until it retrieves the object. Fig. 2(b) plots the ex-
pected number of transmissions that a node receives over all
queries transmitted in the network by all users’ searches when
they performed sequentially. Since each transmission sent by a
node is also received by a node, this is also the expected number
of transmissions sent by a node. In both figures, the number of
nodes that participate in the overlay is given on the -axis. The
fanout, is fixed at 10 in all curves. The number of iterations is
set for the different curves at 2 and 6. In addition, we vary the
number of nodes, , that initially have the object. To summa-
rize this figure plots the expected total number of transmissions
that a node will receive and transmit during the entire search
process.

In Fig. 2(a), we also plot the expected number of rounds com-
puted by simulations for the case where , , and

for 1000, 2000, 5000, and 10 000 [the curve’s

(a)

(b)

Fig. 2. Total rounds taken and transmissions generated by isolated joiners.
(a) Rounds. (b) Transmissions.

label contains “(sim)”]. In Fig. 2(b), the expected number of
transmissions is plotted by simulation as well. Confidence in-
tervals are plotted for these simulation results but are too tight
to be visible in the graph. We note that in both of these figures,
the simulation results almost exactly match the analytical re-
sults on a fully connected overlay where and .
This demonstrates that our analytical results upon a fully con-
nected overlay provide excellent approximations for these ex-
pected values upon a shuffled overlay in which nodes have a
bounded number of neighbors (in this case, 100).

We also include a curve [containing the label “(max)”] gen-
erated from simulation results that plots the maximum number
of transmissions received by any node while assisting in queries
for all users’ searches, averaged over all simulation runs. These
preliminary results demonstrate that even the maximum number
of transmissions received by any node is most often below 100
for up to 10 000 nodes. The parabolic shape of this curve sug-
gests that for large overlays (of 1 000 000 nodes), it may be the
case that a disproportionate load of requests may overwhelm a
small set of nodes in the network. However, since it is likely that
only a small number of nodes will be overloaded in this manner,
we do not expect this overload to have a significant impact on
overall expected protocol performance.

The total expected number of transmissions is obtained for a
given curve by multiplying the value on the axis by the value
on the axis. We find this quantity to be of lesser interest than
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Fig. 3. Expected transmissions when searching for multiple objects.

the expected number of transmissions received per node since
this number is distributed across a large set of nodes.4

These results show that for the case where users arrive in se-
quence, a user participating in the overlay can expect on average
to receive on the order of at most 60 transmissions during the
lifetime over all users’ searches for the object, even in the case
that there are 1 000 000 nodes searching for the object.

B. Searching for Multiple “Cold” Objects

We have demonstrated that there simple unstructured P2P
search protocols exhibit a natural scaling phenomenon when a
large body of users seek the same object. We now use our an-
alytical model to demonstrate that this same phenomenon does
not arise when there is a large body of searches, where there are
multiple “cold” objects, each of which is being searched for by
a small group of users.

In Fig. 3, we vary along the axis the number of distinct
objects that are searched for within the peer-to-peer overlay.
We assume that one copy of each object resides initially within
the peer-to-peer overlay, and that users seek each object
(where is the number of objects). This keeps the total number
of searches fixed. We plot the expected number of transmissions
that each client can expect to receive for overlays containing
1000, 10 000, and 1 000 000 clients.

We observe an almost linear growth in this number of trans-
missions as a function of the number of distinct objects searched
for within the overlay. This demonstrates that our simple pro-
tocol has low transmission overhead when most peers search
for the same object, as is the situation during a flash crowd. The
protocol has high transmission overhead when used by many
clients to search for many different objects, where each object
is sought after by a relatively small group of clients. These re-
sults emphasize that this type of protocol does not scale well
when users within the same overlay all seek different objects.

C. Simultaneous Search Results

Last, we examine the case where all users’ queries are run
simultaneously (searching for the same object). Fig. 4(a) plots

4A possible exception is if one is concerned that numerous transmissions be-
tween overlay members traverse a common set of links, causing these links to
bottleneck.

(a)

(b)

Fig. 4. Comparison of rounds and transmissions taken by isolated and
simultaneous searches. (a) Rounds. (b) Transmissions.

upper bounds on the expected number of rounds of each user
for this case (since all users start their searches simultaneously,
the users are indistinguishable from the perspective of a mean-
valued analysis) using the upper bound given in (11). Fig. 4(b)
plots upper bounds on the expected number of transmissions
received (or sent) by a node from all the queries of all the users
that seek a copy of the object (11).

We note an interesting oscillatory behavior in the upper bound
on the expected number of transmissions for the case where

. We have no intuition for why the curve exhibits this be-
havior, but note that identifying a reason is not critical, given the
curve is merely a loose upper bound. In fact, we have included
simulation results in the plots [labeled “(sim)”] that demon-
strate that the expected number of rounds and transmissions fall
well below these bounds. These simulation results are gener-
ated from runs of 1000, 2000, 5000, and 10 000 node overlay
topologies with , , and .5 For these sim-
ulations, we emulate a flash-crowd-like environment in which a
user that has not initiated its first query by the th round initi-
ates the query on the st round with probability .
A user will also initiate a query if another user “contacts”

during the round. Each round, each user that has already
initiated a search contacts each user with probability .
This emulates an environment in which users who have initiated

599% Confidence intervals are in fact plotted here but are not visible, i.e., the
confidence interval is too tight to be perceived along the current span of the y

axis.
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searches tell their friends bout the searches who then tell their
friends, etc. The number of users that remain uninterested in the
content diminishes stochastically at an exponential rate.

We see that the average number of rounds computed in sim-
ulation is significantly lower than our upper bounds predict. In
Fig. 4(b), we also include a curve that, as in Fig. 2(b), plots the
average number of transmissions received by the user that re-
ceived the maximum number of transmissions within a given
run. We see that, for the range of values we were able to simu-
late, this maximum value also falls way below our upper bound
estimates.

Forming our conclusions based on our conservative upper
bounds, we conclude that a node can expect on average to
receive no more than 400 transmissions while participating
in a protocol that delivers the object simultaneously to up to
1 000 000 users. In addition, the user should expect to receive
the object in no more than 16 rounds.

We summarize our results in this section by considering their
practical implications. First, we note that this loose upper bound
of 400 transmissions applies to both the expected number of
transmissions a receiver sends as well as the expected number of
transmissions a receiver receives (there is a 1-1 correspondence
between a packet sent and a packet received). Thus, is expected
to handle on average no more than 800 transmissions, plus on
average no more than one transfer of the hot object. With com-
pression, it should be fairly easy to fit most queries into a 64-byte
packet. Thus, 800 queries translates to 50 KB of data to be trans-
mitted in total. A 28.8-baud modem can handle this amount
of data within 15 s. Given that this quantity is based upon a
loose upper bound, it seems clear that even today’s low-end
end-system technology can be a contributing component within
this overlay protocol.

VIII. HOW VALID ARE ANALYSES ON

A FULLY CONNECTED GRAPH?

In this section, we demonstrate that the assumptions made
to make the model more analytically tractable do not signifi-
cantly alter the performance results. We compare the measures
from our analysis to measures performed in simulation using
a protocol where a node selects distinct neighbors (i.e., se-
lected uniformly without replacement) from a set of neigh-
bors where . The set of neighbors is chosen via the dis-
tributed shuffling algorithm described in [9], which is designed
to maintain a random graph even as nodes join and leave the
overlay.

Fig. 5 presents the expected number of rounds [Fig. 5(a)] ex-
perienced by each node and expected number of transmissions
[Fig. 5(b)] experienced by the network as a whole when users
queries are performed sequentially. In both figures, the axis
indicates the fraction of nodes, that do not contain the ob-
ject. The curve labeled “full (analytical)” presents the expected
number of rounds and transmissions derived from our analytical
model on a fully connected overlay. The other curves plot these
expected values of simulations for various values of . The sim-
ulations are performed with (the expected values of

(a)

(b)

Fig. 5. Fully connected overlay versus values for C . (a) Rounds.
(b) Transmissions.

are independent of in the analytical model). The overlay is
created by iterating over the set of nodes 200 times, and within
each iteration, each node initiates a 10-shuffle.

We see that with 95% confidence, a fully connected overlay
provides a good approximation for a shuffled overlay where
each node is restricted to only of 2000 neighbors. For

and , the differences in expected number of
rounds and expected number of transmissions on the shuffled
overlay and on the fully connected overlay are so slight they
cannot be observed within the plots.

IX. DISCUSSION

In the previous sections, we have demonstrated that in theory,
protocols that use randomized, distributed, scoped searches on
a P2P overlay is are an effective means for coping with server
overloads due to flash crowds. Here, we briefly elaborate on
some high level observations one can draw from our results, and
also discuss limitations of our analysis and directions for future
work.

Our analysis allows an exploration of the performance of a
search as a function of several parameters. One can draw the
following high level observations from our results and use these
observations toward the design of P2P protocols that allow net-
works to survive flash crowds:
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• The expected search time to find an object decreases expo-
nentially with the increase in fanout, , whereas the band-
width increases by an amount that appears to be linear
with .

• Setting to very small values decreases the bandwidth
requirements slightly, but significantly increases search
times. In addition, a small value for can potentially
hinder the spread of the object in networks with large di-
ameters.

In summary, increasing and can reduce search times sub-
stantially, but seems to have a minimal effect on the bandwidth.
This would suggest that, if bandwidth is not a highly constrained
resource in the P2P network, that large values of and are
preferred. We note that, since each round of iterations randomly
selects neighbors at each node from the set of total neighbors,
it is important that one not choose a large and a small . Oth-
erwise, this leads to a continual repeat of (almost) the same set
of neighbors selecting during each iteration.

Our analysis made several simplifying assumptions to pro-
duce a tractable analytical solution. One very important set of
assumptions involves the topology and the manner in which
users participate in the searching protocol. First, our analysis
and simulations assumed that nodes did not join and leave the
system during the course of all nodes’ searches. There is a con-
cern that users may join the P2P system, obtain their copy of the
object, and leave the system immediately. However, we expect
that, unless the process to leave immediately after download is
automated, a normal leaving process will not significantly alter
our results. In particular, in the flash crowd scenario we con-
sider in this paper, numerous users’ searches are taking place si-
multaneously or in rapid succession of one another. Since these
searches are close to one another in time, and since our analyt-
ical results demonstrate that searches complete in only a few
rounds after they were started, the rate at which nodes obtain
copies of the object will greatly exceed the rate at which nodes
with the object disconnect from the P2P network.

Second, our analysis is performed atop a fully connected
graph and hence the graph has diameter one. Our simulation re-
sults showed that the bandwidth and temporal costs are similar
when nodes are connected in a uniformly random manner to 20
or so neighbors. We suspect our results will continue to hold for
graphs whose node degrees are described via a power law [19].

Last, our analysis uses a particular form of search protocol
that is analytically tractable where neighbors to which queries
are forwarded are selected at random. We suspect that in prac-
tice, a Gnutella-type protocol where each node contacts its entire
set of neighbors would exhibit similar results. The one caveat
is the case where nodes actually perform their searches in se-
quence. In this case, there is a possibility that a node that per-
forms its search earlier on when copies of the object sparsely
populate the network will be further from the object than the
maximum distance probed by its search. In this case, that node
would fail to receive a copy of the object, and because a repeat
of the search would query the exact same set of nodes, the search
would fail over and over again. Of course, the likelihood that,
during a flash crowd, only a single node performs a search at a
time and that there does not exist a copy of the object nearby
during this search is an unlikely event.

X. CONCLUSION

We have provided a theoretical evaluation of the scalability of
a distributed randomized P2P protocol that provides transmis-
sion of objects from servers currently suffering from hot spot
conditions. The protocol itself is stateless and hierarchy-free,
facilitating implementation and increasing its robustness. Our
mathematical analysis and simulations of the protocol examine
its performance in terms of the expected time to receive a copy
of the desired object as well as the number of transmissions a
node must send and receive as a participant in the overlay. We
show that the times and bandwidth requirements scale even in
scenarios where a minuscule set of users initially has copies of
the object and a large majority of users seek to obtain a copy. Our
results demonstrate that this simple protocol’s performance is
acceptable in overlays of up to 1 000 000 users, showing promise
in a real network setting.

APPENDIX

Here, we prove the result that justifies (5).
Lemma 3: Consider a system in which the time, at which

nodes initiate a query is uniformly distributed between 0 and
, where is the total number of rounds within

its protocol. Then .
Proof: We begin by considering the expected transmis-

sions generated by nodes at a given discrete point in time,
where a fraction nodes have the object and all users enter
the system in their “steady state.” We model the steady state by
considering a renewal process in which each user who receives
the object drops the object and restarts its protocol on the sub-
sequent round. We define the random variable , ,

to be a shift variable that equals 1 when node
initiates its search at a time , and 0 otherwise,
where is the number of rounds within the entire protocol (and
therefore is the number of ticks within the entire protocol).
In addition, we construct random variables and that
are defined equivalently to and respectively for a node
that started its transmission at a time . While
these variables are not identically distributed (their distribution
is a function of the number of transmissions that occur during
the particular round, which is a deterministic quantity), they are
mutually independent. Hence
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By substituting , that

, that , and by

re-indexing over and that

, we obtain equality
with (5).

Proof of Lemma 1: The proof follows from a simple
sample-path analysis. We consider two systems, and that
contain the same total number of nodes. In , a fraction of
nodes do not contain a copy of the object, and in , fraction

nodes do not have a copy of the object. We utilize an
arbitrary 1–1 mapping that maps a node in to a node in
with the property that if a node has a copy of the object,
then has a copy of the object as well. Since , there
are still some nodes in that do not contain the object that are
mapped to nodes in that do contain an object.

We write to indicate that node transmits a query
to node . Consider any legitimate sequence of transmis-
sions in in
in which is the first transmission that success-
fully locates a copy of the object. Then in the sequence

in , in which also contains the object,
and there is perhaps a prior transmission ,

where contains a copy of the object as well.
Finally, note that because nodes are selected from a uniform
distribution, the probability measure of the two sequences is
equal. We construct random variables and that, re-
spectively, map a sequence in and to the index of the first
transmission that locates the object. Since stochastically
dominates , we have that . Finally, we
note that because transmissions are often performed in parallel,
the sequence of transmissions performed by the protocol may
extend beyond the receipt of the object. It is trivial to show that
in the case of the 1–1 mapping provided above, the sequence in

will never be shorter than the sequence in .
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