Slurpie: A Cooperative Bulk Data Transfer Protocol

Rob Sherwood Ryan Braud Bobby Bhattacharjee
Department of Computer Science, University of Maryland, College Park, Maryland, USA
{capveg, ryan, bobby} @ cs.umd.edu

Abstract—We present Slurpie: a peer-to-peer protocol for
bulk data transfer. Slurpie is specifically designed to re-
duce client download times for large, popular files, and to
reduce load on servers that serve these files. Slurpie employs
a novel adaptive downloading strategy to increase client per-
formance, and employs a randomized backoff strategy to
precisely control load on the server. We describe a full imple-
mentation of the Slurpie protocol, and present results from
both controlled local-area and wide-area testbeds. Our re-
sults show that Slurpie clients improve performance as the
size of the network increases, and the server is completely
insulated from large flash crowds entering the Slurpie net-
work.

Keywords— peer-to-peer communications, overlay net-
works, system design

I. INTRODUCTION

Consider a situation where many Internet hosts all try to
simultaneously download a large file from a central server,
e.g. when a new CD image or critical patch is released for
a popular operating system. As the number of clients in-
creases beyond a critical threshold, the data rate each client
receives from the server tends towards zero. When the
server is so stressed, the processing and storage resources
the server needs to handle client connection state is ex-
hausted, and new clients are denied access to the server.
Unfortunately, existing clients do not get adequate service
either, since their data connections (using TCP) compete
with each other and with new connection requests. Under
severe contention on the server access link, the network re-
gresses to congestion collapse and no client is able to make
progress. Thus, it is not uncommon for extremely popular
downloads to take many (tens of) hours or longer, when
uncontested, the file could be downloaded in minutes. It
is also not uncommon for the downloads to fail entirely,
because the TCP connections either do not get created or
time out due to packet losses.

In this paper, we present a protocol, named Slurpie’,
to handle this precise problem. Specifically, the goal of
Slurpie is to minimize client-side wall clock time taken
to download large, popular files. Our work on Slurpie
is motivated by the following observation: while the re-

!Slurpie was originally designed as part of the CS 711 graduate net-
working course at the Univ. of Maryland.

O/CCICICICERRIO

Fig. 1. Traditional data Fig. 2. Slurpie: Clients
transfer: all data is form a mesh and most
transferred from the data can be gotten from
server. mesh neighbors.

sources, both bandwidth and processing, at the server are
completely exhausted, the clients themselves usually have
ample spare capacity. Using spare processing and band-
width on inter-peer paths, Slurpie creates a dynamic peer-
to-peer network (Figure 2) of clients who want the same
file with the goal of reducing client download time and
server load. Our design goals for Slurpie were the follow-
ing:

Scalable: Slurpie should be scalable and robust: specif-
ically, the protocol should be able to handle very large
(103-10%) simultaneous clients. Further, an explicit goal
of our protocol is to maintain load at the server indepen-
dent of the number of Slurpie clients. Thus, the entire
Slurpie client set should appear as a configurable number
of clients at the server, regardless of the size of the Slurpie
network.

Beneficial: Clearly, the first property implies that a prop-
erly designed Slurpie protocol will reduce load at the
server. However, clients will not use Slurpie unless their
own download time is reduced. The second explicit design
goal of Slurpie is to minimize the client download times;
as we shall see, almost all clients decrease their download
times by using Slurpie rather than getting the file directly
from the server.

Deployable: A design goal of Slurpie is the ability to be
deployed without infrastructure support. Specifically, we
do not require deployment or router co-location of any new
dedicated servers and it is reasonably easy for any ad-hoc
groups of nodes to start their own instantiation of Slurpie.
As described in the protocol description, Slurpie requires a
demultiplexing host which it uses to locate other peers; we
have designed the protocol such that the load —in terms of
processing bandwidth, and state— on this host is minimal.

Adaptive: Slurpie is designed to adapt to different net-
work conditions, and tailor its download strategy to the
amount of available bandwidth and processing capacity at
the client.

Compatible: Lastly, we designed Slurpie such that it re-
quires no server-side changes. In fact, a server that is serv-
ing a set of Slurpie clients cannot determine whether these
clients are using Slurpie (except for the reduction in server
load). Thus, Slurpie can be used with existing data transfer
protocols including HTTP and FTP.

Inherent to our solution is the assumption that the server
is the data transfer bottleneck, and that clients have addi-
tional resources (both processing and bandwidth) that they
are willing to use to decrease their download times. Addi-
tionally, we also make the following assumptions:
 Slurpie will be used for bulk data transfer. Thus, latency
and jitter are of secondary importance to overall through-
put, and clients can receive and process data out of order.
o Users are not required to persist in the system after they
finish downloading their file. Of course, system perfor-
mance will increase if benevolent users choose to persist,
since they can then serve parts of the the file to new users.
« An end-to-end data integrity check is available out of
band. The download protocols we consider, HTTP and
FTP, do not provide a cryptographically strong integrity
check on transferred data. The concern due to the lack
of a check is amplified when parts of the file are received
from unknown nodes in the network. We assume that an
application-level check is available out of band; note that
this is the current norm as most popular downloads are
accompanied with a MDS5 checksum of the content.

A. Approach

Cooperative downloads, where the load on the server is
mitigated by using other network hosts, have previously
been studied and implemented in many forms. These prior
efforts fall into three main categories: infrastructure-based
solutions such as content-distribution networks (e.g. Aka-
mai [1]) where server providers provision in-network hosts
to alleviate load on the central server. The complemen-
tary approach is client-deployed cache hierarchies (e.g.
Squid [2]) that reduce client access times (and in turn
server load). There has been significant work in deploy-
ing and choosing mirror servers that replicate content. All
of these approaches require fixed investment in infrastruc-
ture support and work perfectly well as long as the de-
mand can be anticipated (and hence provisioned for). A
new generation of p2p protocols (NICE [3], Narada [4],
CAN-multicast [5], Scribe [6], etc.) have been developed
for application-layer multicast in which streaming content
is replicated and forwarded using the only resources of

peers who themselves want this data. The inherent advan-
tage of these schemes is extreme scalability. This is be-
cause, these protocols proportionately increase the amount
of resources devoted to transferring data as the number of
clients who want the data increase. The research focus on
application-layer multicast has been on building efficient
topologies that provide low end-to-end latencies. Slurpie
uses this same paradigm in which peers form a dynamic
structure without any extra investment in infrastructure.
However, unlike prior work, our focus is on creating an
efficient structure for quickly locating and disseminating
bulk data. The Slurpie protocol is loosely based on the
following schematic:

Suppose a popular file is available from a heavily loaded
web server (called the “source server” in the rest of this
paper). When a node wants to download this file, it regis-
ters with a centrally known fopology server and retrieves
a complete list of other nodes downloading the same file.
The file is logically divided into fixed sized blocks, and
successful completion of the download consists of down-
loading this set of blocks. The set of nodes downloading
the same file form a per file mesh. Update messages of
which nodes have which blocks are propagated through the
mesh. With the update knowledge, each node can either
download a given block from a peer, or from the source
server.

The schematic described above is appealing, and has a
number of desirable properties (e.g. reduction in server
load). However, in practice, a number of problems have to
be solved in order to derive a usable solution. For exam-
ple, the schematic requires the topology server to maintain
exact state about all peers downloading a file. Clearly, this
will not scale since flash crowds of many tens of thousands
can often request the same file within a very small period
of time. There are many other practical problems, such as
deciding on a “good” number of blocks to divide the files
into, and deciding how many connections each peer should
open. We also need to decide precisely how the mesh is
formed, how updates are propagated, and how a peer de-
cides to approach the server as opposed to downloading
a block from the peer network. Finally, any cooperative
download protocol must have a good solution for the “last
block” problem, where all the nodes in the system have all
but one block, and they all try to get the last block from
the server! This focus of this paper is on solving precisely
this set of problems, and developing a protocol that meets
our stated design goals.

B. Roadmap

The rest of this paper is structured as follows: in the
next section, we describe prior work, and compare Slurpie

to related work. In Section III, we present specifics of the
Slurpie protocol. We present experimental results in Sec-
tion IV, discuss deployment issues in Section V, and con-
clude in Section VI.

II. RELATED WORK

The general problem of getting popular content off
of heavily loaded servers is well studied. We divide
existing approaches down into categories of multicast,
infrastructure-based solutions, and existing peer-to-peer
efforts. We also discuss the effects of erasure encoding
the data transfers.

A. Multicast

One method of reducing load at a server is to replace
a number of unicast streams with one single multicast
stream. This can be done either at the IP layer [7], e.g. us-
ing cyclic multicast [8], or in the application layer [3], [4],
[5], [6]. The main difference between these approaches
and Slurpie is that Slurpie incorporates both a discovery
and a separate data transfer phase, i.e. in Slurpie the de-
cision of where to get the next piece of data is made dy-
namically depending on network conditions and on which
nodes have what data. In contrast, in all multicast-based
schemes, the data source is, by default the original server,
and alternate paths are used primarily for loss recovery [9],
[10], [11]. Slurpie is also designed for bulk data transfer,
and downloads blocks in a random order, while a num-
ber of the multicast protocols are optimized for streaming.
Compared to Slurpie, most multicast protocols are much
more careful about creating a topology that approximates
a shortest path tree (or some some other good topologi-
cal property). The Slurpie topology is essentially ad-hoc,
and data transfer links are added and kept only for transfer-
ring a few blocks. We could potentially incorporate a more
sophisticated topology construction algorithm in Slurpie,
but Slurpie peers stay in the network for a very short pe-
riod of time and our main objective in creating the topol-
ogy is minimizing control overhead, and not necessarily
network-level efficiency. Many (if not most) multicast pro-
tocols will not operate well if peers stayed in the network
for only a few minutes, as is the norm in Slurpie. Finally,
Slurpie provides complete reliability, while for the most
part, reliable multicast is still has many difficult open re-
search issues.

B. Infrastructure-based Solutions

Content distribution networks (CDNs) such as Aka-
mai [1], [12] and web-caching hierarchies [2] are often
used to alleviate load on popular servers. CDNs are de-
ployed by the content providers (i.e. the servers), and

web-caches are usually deployed by clients. A similar so-
lution employed by some content providers is to employ a
fixed number of static content mirrors (e.g. See http://
www.gnu.org/prep/ftp.html for GNU software
mirrors). Regardless of how these mirrors, caches, or CDN
nodes are deployed, they are explicitly provisioned for cer-
tain load levels, and if a flash crowd exceeds this provi-
sioned amount, then the performance of the system de-
grades again. In contrast, resources available to Slurpie
increase as the client set increases, and thus, we believe
Slurpie is able to handle larger client sets.

C. Peer-to-peer Bulk Transfer Protocols

Two peer-to-peer projects, CoopNet and BitTorrent, im-
plement cooperative downloads.

C.1 CoopNet

In CoopNet [13], clients get redirect messages from
the server to clients that have previously downloaded the
same file. Clients are expected to remain in the system for
some amount of time after they are finished downloading
to serve files to future clients. The server provides multiple
peers in the redirect, and an estimate of the best client is
calculated. The server stores the last n (n=5-50 in simu-
lations) clients to have requested the file, and the redirects
are useful as long as one of the n clients is still serving the
file. All state is stored at the server, and it is assumed that
both the client and servers are CoopNet aware.

The intended application of CoopNet is downloading
small HTML files, unlike Slurpie which targets bulk data
transfer. There is no notion of serving a partially down-
loaded file, and all data transfers necessarily involve the
server (in order to get the redirect list).

C.2 BitTorrent

BitTorrent [14], [15] is the work closest to Slurpie, as
it targets bulk data transfer and has similar assumptions.
A “tracker” service is set up to help peers downloading
the same file find each other. A random mesh is formed
to propagate announcements, and peers download from as
many other peers as they can find. A novel feature of Bit-
Torrent is connection choking. Peer A will stop sending
blocks to peer B (this is called “choking” the connection)
until peer B sends A a block, or a time out occurs. The
choking encourages cooperation, as well as implicitly rate
limits the data going out of a loaded peer. It is assumed that
a BitTorrent client was started a priori on the web server,
and that the client stays in the system indefinitely serving
the file. The web server itself serves a file with a “.tor-
rent” extension, which contains both a set of hashes for

the files contents, and a URL for the tracker. From the Bit-
Torrent documentation, it is not clear how much state the
tracker keeps, but from examining the source, it appears to
be O(n), where n is the number of nodes downloading the
file.

Compared to Slurpie, BitTorrent does not adapt to vary-
ing bandwidth conditions, or scale its number of neighbors
as the group size increases. Each client appears to keep
O(n) state, and they periodically reconnect to the tracker
to provide update information. The tracker system lim-
its the scalability of the system to the order of thousands
of nodes [15]. In Section IV, we present performance
comparisons that show that Slurpie out performs BitTor-
rent, with respect to both average download times and also
download time variance.

D. Erasure Encoding

Erasure codes have been used to efficiently transfer bulk
data [16], [17]. With modest overhead, they have the ben-
efits of resilience to packet loss and eliminate the need for
stateful data transfers.

As pointed out in [16], the limitations of a stateful sys-
tem, like Slurpie, typically include: lack of data distribu-
tion, per connection state, and the “last block” problem.
Slurpie explicitly addresses each of these concerns via ran-
dom block selection, fixed state per node, and backing off
from the webserver, respectively. Finally, it is possible
to incorporate erasure coding and similar encodings into
Slurpie to potentially further improve performance. This
is an avenue of future work.

III. SLURPIE: PROTOCOL DETAILS

The Slurpie protocol implements the basic schematic in-
troduced in Section I, but includes a number of refinements
that are necessary for proper functioning with large client
sets. At a high level, all nodes downloading the same file
initially contact a topology server (Figure 3). Using infor-
mation returned by the topology server, the nodes form a
random mesh (Figure 4), and propagate progress updates
to other nodes (Figure 5). The updates contain informa-
tion about which blocks are available where, and this in-
formation is used to coordinate the actual data transfer
(Figure 6). Slurpie uses an available bandwidth estima-
tion technique, described below, that returns three states:
underutilized, throttle-back, and at-capacity. Using this
information, the protocol makes informed decisions about
the number of edges to keep in the mesh, the rate at which
to propagate updates, and the number of simultaneous
data connections to keep open. Slurpie coordinates group
downloading decisions without global information by em-
ploying a number of techniques, such as a random back off

which controls load at the source server. It is not feasible
for Slurpie clients to keep per-peer state for large download
groups; we employ a mesh size estimation technique to de-
termine the mesh size using only data stored locally. In the
rest of this section, we describe different components of
the Slurpie protocol, beginning with the mesh formation.

A. Mesh Formation and Update Propagation

The join procedure discussed in Section I did not scale
because it assumed that the topology server kept state for
the entire set of nodes downloading the same file. How-
ever, note that given a single seed node downloading the
same file, a newly joined node can receive updates from
that seed, and use the update messages to discover new
peers and add new edges in the mesh. Thus, the topol-
ogy server only needs to maintain information about a sin-
gle node that is currently downloading a file (instead of all
nodes that are downloading the file). But the question then
becomes: which node id. does the topology server store,
and how does it guarantee that the node is still in the sys-
tem? In Slurpie, we always return the identity of the last
node to query the topology server (for that same file). The
intuition is that the node that most recently started down-
loading a file is the node that most likely to be still in the
system. In practice, the topology server maintains and re-
turns the last ¢ nodes, where 1) is a small constant. Note
that this procedure is identical to the mesh joining proce-
dure in Narada [4].

Given a set of seed nodes, the newly joined node makes
bi-directional “neighbor” links to a random subset of these
nodes. Each node has a target number of neighbors () that
it seeks to maintain. The value of 7 is continually updated
depending on available bandwidth, and as new neighbors
are discovered. The bandwidth estimation algorithm is run
once a second, and if it consistently returns underutilized,
a new neighbor, picked uniformly at random from the set
of known peers, is added. In general, each node tries to
maintain > O(logn), where n is the estimated size of
the total number of nodes in the mesh. Since the mesh is, at
a first approximation, a random graph, the O(log n) degree
implies that the mesh stays connected with high probabil-
ity [18].

A.1 Update Propagation

Along each neighbor link, update messages of the form
(TP-addr, port, block-list, hopcount, node-degree) are
passed. These form the basic information units that alert
peers of new nodes joining the system, and of who has
which blocks. The rate of updates passed along each link
per second, o, is subject to an AIMD flow control algo-
rithm [19], [20] which additively increases and multiplica-

Fig. 3.

Get seed nodes
from topology server;
topology server keeps
constant per file state.

Fig. 4. Discover alive
peers and form mesh;
mesh degree depends
on number of peers.

tively decreases update rates depending on available band-
width estimates. The intuition behind controlling the up-
date rate in this manner is the following: when a node
does not have enough peers to download from to fill its
bandwidth capacity, it should increase its knowledge of the
world (and thus increase the rate at which it receives up-
dates). Correspondingly, as the node’s bandwidth becomes
consumed with useful data downloads, information about
other peers becomes less useful.

A.l.a The Update Tree. In Slurpie updates, the block list
is simply represented as a bit vector. There are certainly a
number of more sophisticated data structures, e.g. Bloom
filters [21] and approximate reconciliation trees [16] that
we could use, for our purposes a simple bit vector has been
sufficient.

logical OR L.
of child :
vectors

Node 0 Node Node 2 Node 3

Fig. 7. Update Tree: nodes with block zero are highlighted

Each node stores information about U other nodes,
where U is a constant chosen locally. The bit vectors
within an update are locally stored in a data structure
known as the update tree (see Figure 7). Bit vectors cor-
responding to individual nodes form the leaves of the tree,
each parent is a bit vector of the logical OR of its chil-
dren, and the root of the tree is the logical OR of all up-
dates. This structure can then be used to efficiently an-
swer queries of the form “which blocks have not been re-
trieved from the web server”, and “which set of machines

Fig. 5. Exchange updates
with mesh peers; up-
date rate controlled by
bw adapatation alg.

Fig. 6. Data Trans-
fer. Server visited only
if no peer has needed
block.

has downloaded this specific block™. Only a single bit vec-
tor is stored for any peer, and newer vectors from a peer
(with more bits set) replace any existing vectors from this
peer. The least hop count for a given node id is also saved;
this approximates the shortest path to the node, and is used
in estimating the mesh size (described next).

B. Group Size Estimation

A number of the algorithms that Slurpie uses assumes
that we know n, the total number of nodes downloading a
given file, so it is important to be able to accurately esti-
mate that number. Recall that U is the number of updates
that any node stores. If n < U, then as time progresses and
updates propagate, each node receives information about
every other node in the system, and can very accurately
estimate n. However, the case where n > U is more inter-
esting.

We know from random graph theory that for an r-
regular graph, the mean distance d between nodes is pro-
portional to log,_1n. Solving this equation for n, we get
n = O((r —1)%). The mesh formed by Slurpie is not ex-
actly an r-regular graph, as nodes have different numbers
of edges, and it is impossible for a single node to know
the exact distance counts to all nodes in the system when
n > U. However, using the U updates in the update tree, it
is possible to estimate averages for both hop counts and de-
grees to gain estimates for d and r, and thus an estimate for
n. Note that such an estimate becomes more accurate as n
increases. In Section IV, we show that in simulations, this
approximation provides reasonable estimates for n, even
for relatively small values of U.

C. Downloading Decisions

In Slurpie, blocks served by peers are downloaded be-
fore blocks served by the source server. When multiple
peers have the same block, we choose a peer uniformly at
random. In an effort to take advantage of an open TCP

window, once a connection to a peer has been established,
the node downloads any blocks that it does not have from
that peer.

In general, multiple downloading connections are
opened in parallel, and it is a non-trivial question to de-
cide how many connections is optimal. Here, Slurpie again
makes use of the bandwidth estimation algorithm. The al-
gorithm is queried every second, and if it returns underuti-
lized, and there exist hosts that have blocks that the local
node does not have, a new connection is opened.

D. Backing Off

Slurpie nodes only connect to the server if they have
excess capacity, and know of no other peers that can pro-
vide them useful data blocks. Recall, however, that a de-
sign goal of the Slurpie protocol is to control the load
on the source server independent of the number of peers
in the Slurpie mesh. We ensure this constant load prop-
erty by employing a random backoff, and in effect, sys-
tem throughput increases as peers do not go to the server,
even if the server is the only node that has a block they
need. This is because if a large enough set of nodes opened
simultaneous connections to the server for even a single
block, none of the nodes would get their data, and overall
system throughput would tend to zero.

Ideally, the host with the best connection to the server
would be the sole machine connected to the server, and ev-
eryone else would receive their data from this host. There
are, however, two problems with this method:

e The best host could download the data and then leave the
system, and the entire process would have to repeat again;
and

« Finding the best host is probably difficult, especially
since this has to be determined quickly, dynamically, and
without server support, and without probing the server

(path).

Instead, we use the following scheme: Every time period
7, each eligible peer decides to go to the server with prob-
ability k/n where n is the estimate of the nodes in the
system, and k is a small constant. The effect is that, on av-
erage, there will be k£ connections from the Slurpie mesh
to the server at any time, and the number of connections to
the server over time is exactly modeled by a binomial dis-
tribution with mean k. Intuitively, £ = 1 is optimal, as it is
closest to the ideal on average. However, setting k = 1 is
too pessimistic, and results in 7o connections at the server
for extended periods of time (about 30% of the time). In
practice, we choose k = 3, which assuming k¥ << n im-
plies there is at least one connection at the server about
90% of the time.

If we view this backoff scheme as essentially time di-
vision multiplexing, then the parameter 7 becomes the
length of the time slice. Logically, 7 should be chosen to
be long enough to guarantee some amount of progress, but
short enough to ensure some amount of fairness. In this
way, even a set of hosts with diverse bandwidth resources
can make progress, as statistically over long downloads all
hosts will eventually fetch some blocks from the server.

E. Block Size

The number of blocks a file is divided into presents a
trade off between download parallelism and overhead. A
small number of blocks is more efficient since it allows
TCP connection overheads to be amortized, but smaller
blocks reduce parallelism. As number of blocks increases,
the size of the bit vector and the Slurpie control overhead
increases. Instead of picking the number of blocks, we
choose a fixed block size, 256KB, and let the number of
blocks vary with the size of the file. We chose 256KB
after conducting experiments on an unloaded system with
different block sizes. A 256KB block was the smallest
size at which the TCP overhead was effectively amortized
(< 1%). Further, the 256KB block size keeps the bit vector
to a manageable size for large files (50 bytes for a 100MB
file).

F. Bandwidth Estimation Technique

Slurpie requires that the bandwidth estimation algo-
rithm only report three different states: underutilized, at-
capacity, and throttle-back. The main design criterion of
our bandwidth estimation algorithm is efficiency: Slurpie
peers cannot use expensive probes [22], [23], [24] to de-
termine precise bandwidth usage or availability. Instead,
the following simplistic approach suffices: we assume that
the user inputs a coarse grained bandwidth estimate of the
form “Modem”, “T1/DSL”, “T3”, etc... that forms the ini-
tial maximum bandwidth estimate B,,,;. Next, we mea-
sure the sum of actual achieved throughput over all data
connections over a 1 second interval, and label that B .
We maintain a moving average of successive By values,
calculating an average throughput, and the standard devi-
ation std of that distribution. Using these numbers, if B¢
drops more than one standard deviation than the average,
we report throttle-back. If B, is more than one standard
deviation less than B, we report underutilized, else we
report at-capacity. If at any time Bgye; > Bjgz, We set
Bmaz = Bact-

IV. EXPERIMENTS

In this section, we present results from our implemen-
tation of Slurpie, and compare against existing protocols.

We begin with a description of our implementation (Sec-
tion IV-A), and describe our experimental setup next.

A. Slurpie Implementation

Slurpie has been implemented in multi-threaded C on
the GNU/Linux system. It currently has a command line
interface similar to the popular program wger [25], taking
a URL and various options as parameters. The source code
is available from the Slurpie sourceforge project[26], and
should be portable to a number of platforms.

B. Experimental Setup

We experimented with Slurpie on two different net-
works: one on the local area network the other on the
wide-area network. We used a 48-node local testbed for
runs where we could precisely control the background traf-
fic. These experiments were useful to precisely quan-
tify Slurpie overheads and benefits, and also to compare
Slurpie against BitTorrent in a predictable environment.
We also deployed both Slurpie and BitTorrent on the Plan-
etLab wide-area testbed.

B.1 Local Testbed Setup

—
o i
<
(<3
ey
o

100 Mb/s

48 Linux Clients

Fig. 8. Local area testbed setup. The server is connected using
a 10Mbps link to force a bottleneck.

The testbed that was setup consisted of an Apache
2.0.45 web server running on an unused Linux machine
with a 2.4.20 version kernel. The machine was connected
to a 10Mb hub, and the the hub to a 100Mb switch, so
as to force a 10Mb bottleneck at the server. The clients
consisted of 48 GNU/Linux machines with 100Mb con-
nections to a separate 100Mb switch, and the two switches
were connected by a series of gigabit Ethernet links, as
shown in Figure 8. Each client machine was a 650Mhz
Pentium III with 768MB of RAM. In each experiment, a
100MB file was downloaded from of the web server by
variable numbers of clients concurrently. The 10Mb hub is
important, as by assumption, it is the server, not the client,
that is the bottleneck.

B.2 PlanetLab Setup

We ran Slurpie on the PlanetLab[27] wide area network.
PlanetLab consists of 55+ different sites, and 160+ differ-
ent machines distributed geographically around the world.
The same web server was used from the local area network
tests, but with different network connectivity to the clients.
From the 100MB switch connected to the web server, there
is a 1Gb/s link to machines participating in Internet2, and a
95Mb/s link to machines on the general Internet. A list of
machines was retrieved from the PlanetLab website, and
one machine per site was chosen at random.

C. BitTorrent Setup

To compare Slurpie’s performance to a comparable pro-
tocol, we downloaded the most current version of BitTor-
rent (version 3.2.1). To facilitate scripting, all experiments
were done using Bit Torrent’s “headless” mode, as op-
posed to GUI or Curses. BitTorrent’s normal mode of op-
eration is not to terminate after finishing downloading the
file, but instead to persist indefinitely. For our experiments,
we modified the BitTorrent code to terminate clients after
a configurable wait after the file download is complete. In
all experiments, both Slurpie and BitTorrent clients persist
for the same amount of time after each experiment.

D. Results

In the results that follow, unless otherwise stated, we
use the parameters listed in Table I. By default, for exper-
iments with concurrent clients, each successive client is
started 3 seconds after the previous one. (We also present
results in which all clients start simultaneously). In all of
the experiments, we consider the following performance
metrics: total completion time and server load. The first
determines client benefit from using Slurpie, and the sec-
ond quantifies the benefit to the server. Finally, we present
simulation results that show how our network size estima-
tion algorithms perform.

Parameter | Description Value

k k/n clients go to server 3

T Server connection length 4 seconds
o Initial Update Rate 8/second
n Initial Number of Neighbors 10

m Mirror Time (described below) 2 seconds
U Number of Updates Stored 100

P Per File State at Topology Server 5

TABLE
DEFAULT SLURPIE PARAMETERS

D.1 Local Testbed Results

First, we compute a baseline measure by measuring the
time for a single client to download the 100MB file uncon-
tested using HTTP. The baseline was measured 5 times,
and the average value was used. It was assumed that all
machines would have the same baseline. In the first ex-
periment, we vary the number of concurrent clients that
download the 100MB file from the server. In Figure 9,
we plot the completion time for plain HTTP, BitTorrent,
and Slurpie as a function of the pre-computed baseline
time. For example, with 48 concurrent clients, each client,
on average received only 2% of their baseline bandwidth
with plain HTTP. The performance was restored to 88%
with BitTorrent, and improved to 1.76 times the baseline
with Slurpie. Each data point is the average measurement
across active clients and then averaged across 10 runs.

As expected, these results clearly show how perfor-
mance deteriorates with plain HTTP as files gain popu-
larity. In our experiments, the BitTorrent protocol restores
performance to essentially the baseline. For the vast ma-
jority of clients using Slurpie, performance increases as
the number of peers in the network increases (recall that in
these experiments, we require clients to persist only for 2
seconds after they have downloaded the entire file). Over-
all, this is an encouraging result indeed, and as we show
later in this section, clients that join the network late are
able to download the entire file at their own maximum
download rate, regardless of the server capacity.

In Figure 10, we plot the cumulative distribution of the
completion times of clients from the 48 concurrent node
runs. Once again, each data point is an average of 10
runs. Compared to BitTorrent, Slurpie decreases average
download time by 51%; more importantly, Slurpie pro-
vides more consistent performance, and the worst Slurpie
client (which is the first client that joined) completes more
than 5.4 times faster than the worst BitTorrent client.

To understand the steady-state dynamic of Slurpie bet-
ter, we conducted a different experiment in which 245
clients joined the network, once again separated by 3 sec-
onds each. In Figure 11, we plot the completion times
of these clients. The z-axis is ordered by the order of
the clients’ arrival times into the system. The horizontal
line is the baseline completion time (i.e. the amount of
time a single client takes to download the file using plain
HTTP, if there are no other clients in the system). There
are several points to note: the first few clients take longer
than the baseline — this is because they have to down-
load the data mostly from the server, and pay for Slurpie
overheads as well. However, once the file permeates the
Slurpie mesh, the vast majority of clients get the file 2—4

1.8 — ‘ ‘
slurpie ——
1.6 f http == 1
BitT e
= 14 itTorrent |
£
g 1.2 1
S 1 1
E 08} 1
S |
3 0.6 |
w045]
02t "\\ _____________]

0 5 10 15 20 25 30 35 40 45
Number of Clients

50

Fig. 9. Normalized completion time for varying num-
ber of clients

100
90 r
80 r
70
60 r
50
40 r
30 -
20
10

BitTorrent

CDF

0 :
0 100 200 300 400 500
Time (s)

600

Fig. 10.
nodes

CDF of completion times, 48 concurrent

times faster. There is an interesting periodic behavior ev-
ident in the completion times. This is because once the
complete file is downloaded into the Slurpie network, it is
distributed quickly using the mesh. However, soon clients
who have the complete file leave the network (2 seconds
after their download is complete), and some blocks have
to be fetched from the server. This slows down completion
time for a few clients who have to wait for the slow source
download. However, as soon as these blocks reappear in
the Slurpie network, performance increases back up until
these nodes leave the network and the cycle repeats. The
periodic behavior is mitigated if clients persist longer in
the network.

E. PlanetLab Results

We repeated the same experiment over the wide-area
PlanetLab testbed. In Figure 12, we present the normal-
ized completion times of varying numbers of clients us-
ing both BitTorrent and Slurpie. Once again, Slurpie out-
performs BitTorrent across the client set, and our results

Time (s)

Factor Improvement

140 . . : :
120 :
Completion Time for Single Client
100 ||’ with No Contention (93 seconds) J
. iﬂ |
ol |
ol |
N |
0
0 50 100 150 200 250
Client Index, sorted by start time
Fig. 11. Absolute completion times, 250 nodes
2.2 ; : , :
Slurpie ——
Bittorrent -—---x----
““x,'/ -
1 L L L L L
0 10 20 30 40 50 60

Number of Clients

Fig. 12. Normalized completion time vs. number of
clients on the PlanetLab

show that both the average and maximum time taken by
Slurpie is better than BitTorrent in all runs. Note that as
the number of clients increases, the relative performance
with respect to the baseline reduces somewhat on the Plan-
etLab testbed (whereas on our local area network, the rela-
tive performance increases). This is because the PlanetLab
hosts were being rather heavily used during the period we
conducted our tests, and many of the hosts do not have
much excess capacity for downloading faster from peers.
Thus, as the client set increases, the number of clients with
extra resources decreases as a proportion, and the average
with respect to the baseline also decreases. We believe
the PlanetLab hosts are uncommonly loaded compared to
most Internet hosts, and in a “real” deployment, Slurpie
performance would indeed increase with larger client sets.

Factor Improvement

2.3 T

16 L L L L L

0 5 10 15 20 25
Seconds in the System After Finishing

30

Fig. 13. Normalized completion time vs. mirror time

E.1 Mirror Time

In Slurpie, we do not require nodes to persist in the
system after they finish downloading their file. It is nev-
ertheless interesting to study the effects of benevolence,
i.e. consider how completion times decrease as users stay
longer after completing their download. In Figure 13, we
plot completion times (again normalized against the base-
line completion time), for 48 concurrent users, as users
persist in the system. Interestingly, for Slurpie, almost all
benefits of such mirroring is achieved if users stay in the
system for only 3 extra seconds. For much larger files, we
expect this number to increase, but it is clear even nominal
amounts of benevolence leads to substantial benefit.

F. Coordinated Backoff

The most novel component of Slurpie is its coordinated
backoft algorithm. In this section, we show how perfor-
mance increases as the number of clients that go to the
server is carefully controlled. In Figure 14, we plot the
number of connections at the server with 48 concurrent
clients with and without the backoff algorithm enabled.
Without backoff, clients eventually all go the server to-
gether because some blocks are not available in the Slurpie
network. The backoff algorithm carefully controls the
number of clients that visit the server, and on average, the
Slurpie network maintains the expected number of connec-
tions (3) to the server. Note that the number of connections
drops off around 100 seconds because almost all clients
complete their download by that time. As expected, the
backoff algorithm controls server load. Client-side perfor-
mance is also improved (Figure 15). Specifically, without
backoff, the Slurpie protocol is not able to ultimately gain
from the larger numbers of nodes in the network. A closer
look at our data shows that without backoff, the clients all

Number of Connections

Factor Improvement

" No Backoff ——
With Backoff, k=3

35

Number of Connections at Server

i

P) ;
1 L 1Y SN

0 L A _saa Y
0 20 40 60 80 100 120 140 160 180
Time(s)
Fig. 14. Number of Connections at the server, over
time
Backing Off ——
No Backing Off -----------
1.8 1
1.6 1
14 1
12 ¢ 1
1 £ 4
08 L L L L L L L
10 15 20 25 30 35 40 45 50

Number of Clients, 3s Apart

Fig. 15. Performance effects of the back off algorithm

quickly download almost all blocks, and than all visit the
server for a few (sometimes just one) blocks. However,
since the server is heavily loaded, all benefits from having
received the other blocks quickly is negated.

F.1 Effects of Flash Crowds

In our previous experiments, we start concurrent clients
3 seconds apart deterministically. We have also experi-
mented with random offsets between clients. However, in
the worst case, all clients would start exactly at the same
time. In Figure 16, we plot the number of open connec-
tions at the web server over time as the number of clients
on the LAN that start at the same time is varied from 10—
48.

Recall that a client tries to estimate the number of nodes
in the mesh n, and tries to connect to the server with prob-
ability k/n, where k is set to 4. The y-axis in the plot is set
to the same scale as Figure 14. Recall that in that experi-

10

40 . ‘ ‘ _
10 clients
I 20 clients]
> 32 clients -~
30 ¢ 48 clients
25 + |
20 |
15 |

100
time (s)

150 200 250

16. Number of connections at server with differ-
ent numbers of clients, all started simultaneously

Fig.

ment, without backoff, even with clients started 3-seconds
apart, the number of simultaneous connections increased
to more than 40. In Figure 16, there are different curves for
10, 20, 32, and 48 simultaneous connections, but it is dif-
ficult to distinguish these cases. Thus, the Slurpie size es-
timation algorithm is effective: server load is independent
of the Slurpie mesh size. We note that 48 clients arriving
at exactly the same time is indicative of severe conges-
tion (several thousand new connections per second), and
Slurpie is able to easily contend with such load spikes.

G. Group Size Estimation

In an effort to gauge the quality of the group size es-
timation, we simulated the neighbor mesh algorithm with
large group sizes. The simulator took three parameters, 7,
the number of nodes in the system, r, the target degree of
each node, and U, the number of updates stored. Then,
using the formula described in Section III, the simulation
returned ', the average estimate of the system size. We
present results in Table II for meshes with target out de-
gree fixed at 10. The estimation error levels decrease as
the state per node increases, and as the number of nodes
in the system increases. This is because the estimation is
derived from an asymptotic formula which provides better
bounds with larger group sizes. Note that in almost all real-
istic scenarios, we do not expect to use the estimation with
less than 1000 nodes in the system (with 1000 nodes, each
client has to keep a maximum of 6MB of update state for a
100MB file). Finally, note that the backoff algorithm does
not require very precise estimations of group size, e.g. es-
timating n with +33.3% error and k = 3 will, on average,
result in + one extra connection to the source server.

n 20 50 100
200 | 17.5% 13.2% 10.9%
1000 | 59% 42% 2.6%
5000 | 11.3% 7.5% 6.0%

10000 | 3.8% 08% 0.4%
TABLE II

% ERROR IN GROUP SIZE ESTIMATION

V. DISCUSSION

In the results section, we have concentrated entirely on
the data transfer dynamics of Slurpie. In this section, we
discuss the implementation and deployment of the two
other components: the topology server and security issues.

A. Topology Server

The topology server in Slurpie serves the same purpose
as the rendezvous point in Narada [4] or the BSE in the
NICE [3] protocol. One possible concern is the scalabil-
ity of the Slurpie topology server: a scalable network does
no good if clients cannot join because the server required
for joining is overloaded! In practice, the topology server
stores the IP address and port of the last five nodes to re-
quest a given file. This amounts to state of 30 bytes per file
plus the file name, so any reasonable machine can store
state for millions of files. Since the server performs no
client-specific processing, the processing requirements at
the server are minimal.

Of more concern is the network overhead at the topol-
ogy server. Upon joining the system, every node makes
a TCP connection to the topology server, tells it which
file they are downloading, and then receives the IP ad-
dress/port pairs of the last 5 nodes to download that same
file. The entire transaction uses one packet in either direc-
tion, plus TCP overhead, so it is conceivable for a single
server to handle tens of thousands of downloads per sec-
ond. If the Slurpie system grows to the point where this
is insufficient, the topology server functionality could be
distributed. Specifically, a number of hosts that provide
this service could form a DHT [28], [29], [30], and the file
name could be used to look up the server responsible for
the specific file. However, we do not believe the scalabil-
ity of the topology server will be the limiting factor in the
deployment of a system such as Slurpie.

B. Security Concerns

Using Slurpie introduces potentially new security and
data integrity concerns for end hosts. In the best case,
Slurpie clients will download almost all parts of files from

11

unknown nodes on the Internet. However, we argue that
this does not add significantly new security risks. A se-
curity integrity check should be performed for sensitive
files, even if it is downloaded from the source server.
As we mentioned in Section I, servers often publish an
MDS5 or similar checksum which is used to verify file in-
tegrity. Such a checksum could be used by Slurpie clients
as well. It is possible for a determined adversary to attack
the Slurpie network by propagating both false blocks and
a corresponding false checksum. Note that this is a prob-
lem even in the source download case, since a determined
adversary can mount any number of attacks that base IP is
susceptible to, including DNS spoofing or TCP connection
hijacking. The solution, of course, is to distribute a signed
integrity check, where the clients can independently verify
the checksum since it is signed by a trusted server. Such a
solution requires an out-of-band channel by which clients
get the server’s public key, and once implemented, is suf-
ficient for both plain IP and for Slurpie.

Another potential problem is a DoS attack against the
Slurpie topology server. If the topology server does not
function, new nodes cannot join the network. Once again,
we believe this is a general problem and not specific to
Slurpie, and the solutions are no different from the ones
that can be employed to protect any source server.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have described the Slurpie protocol for
scalable downloading of bulk data over the Internet. We
believe the Slurpie protocol fulfills its design goals of sys-
tem scalability, improved client performance, and insula-
tion of the server from load variance in the client popula-
tion. We have presented extensive experimental analysis of
different components of the Slurpie protocol using a com-
plete implementation over a local- and wide-area testbed.
Specifically, our results show that client performance in-
creases as the client population increases. This is because
clients can now download parts of files from other clients
without accessing highly contested server resources. Fur-
ther, our results indicate that the Slurpie randomized back-
off scheme is effective, and is able to precisely control
server load regardless of the size or variation in client pop-
ulation.

There are a number of interesting open issues with
Slurpie design. We believe it is possible to implement bet-
ter estimates of the network size, especially if the under-
lying graph structure of the Slurpie mesh was studied in
more detail. One problem with the current interface is it is
insufficient for mass deployment, since it requires users to
explicitly invoke the Slurpie protocol to download popular
files. An obvious extension is to deploy a Slurpie proxy

that intercepts all user download requests, and automati-
cally routes requests for popular files to a Slurpie network.
A number of the contributions of this work are indepen-
dent of the data transfer path, so another avenue of research
might be to implement Slurpie’s data transfer using more
sophisticated encoding schemes, e.g. erasure codes.

It is also worth considering schemes where (possibly
with a small amount of server side assistance), clients can
quickly tell whether a particular block they have down-
loaded is corrupt or not. It is trivial to implement such a
scheme with O(#blocks) overhead, but it is not clear if an
asymptotically better scheme is feasible. Lastly, our eval-
uation was constrained to fifty node testbeds. While this
is a good beginning, evaluation on larger networks would
obviously provide more compelling evidence.

REFERENCES

See www.akamai.com.

See www.squid-cache.org.

S. Banerjee, B. Bhattacharjee, and C. Kommreddy, “Scalable Ap-
plication Layer Multicast,” in Proceedings of ACM SIGCOMM,
2002.

Y.-H. Chu, S. G. Rao, and H. Zhang, “A Case for End System
Multicast,” in Proceedings of ACM SIGMETRICS, June 2000.

S. Ratnasamy, M. Handley, R. Karp, and S. Shenker,
“Application-level multicast using content-addressable net-
works,” in Proceedings of 3rd International Workshop on Net-
worked Group Communications, Nov. 2001.

M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron,
“SCRIBE: A large-scale and decentralized application-level mul-
ticast infrastructure,” IEEE Journal on Selected Areas in commu-
nications (JSAC), 2002.

S. Deering and D. Cheriton, “Multicast Routing in Datagram In-
ternetworks and Extended LANS,” in ACM Transactions on Com-
puter Systems, May 1990.

K. C. Almeroth, M. H. Ammar, and Z. Fei, “Scalable delivery of
web pages using cyclic best-effort multicast,” in Proceedings of
INFOCOM, 1998, pp. 1214-1221.

S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan, “Re-
silient multicast using overlays,” ACM Sigmetrics, June 2003.

S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang,
“Reliable multicast framework for light-weight sessions and
application level framing,” in Proceedings of SIGCOMM,
Cambridge, Massachusetts, Sept. 1995. [Online]. Available:
ftp://ftp.ee.lbl.gov/papers/srm.ps.Z

X. Rex Xu, A. Myers, H. Zhang, and R. Yavatkar, “Resilient
multicast support for continuous-media applications,” in Pro-
ceedings of NOSSDAV, St. Louis, Missouri, May 1997. [Online].
Available: ftp://ftp.cs.cmu.edu/user/hzhang/NOSSDAV97.ps.Z
S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and
S. Khuller, “Construction of an efficient overlay multicast infras-
tructure for real-time applications,” in Proc. IEEE Infocom, June
2003.

V. N. Padmanabhan and K. Sripanidkulchai, “The case for coop-
erative networking,” in IPTPS, 2002.

See www.bitconjurer.org/BitTorrent.

B. Cohen, “Incentives build robustness in bittorrent,” in P2P Eco-
nomics Workshop, 2003.

(1]
(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]
[15]

(16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]
(26]
[27]
(28]

(29]

(30]

12

J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed
content delivery across adaptive overlay networks,” in Proceed-
ings of the ACM SIGCOMM 2002 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Com-
munications (SIGCOMM-02), ser. Computer Communication Re-
view, J. Wroclawski, Ed., vol. 32, 4. New York: ACM Press,
Aug. 19-23 2002, pp. 47-60.

J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital
fountain approach to reliable distribution of bulk data,” in Pro-
ceedings of the ACM SIGCOMM 98 conference on Applications,
technologies, architectures, and protocols for computer commu-
nication. ACM Press, 1998, pp. 56-67.

B. Bollobas, Random Graphs. Academic Press, 1985.

V. Jacobson, “Congestion Avoidance and Control,” in Proceed-
ings, SIGCOMM 88 Workshop, ACM SIGCOMM. ACM Press,
Aug. 1988, pp. 314-329, stanford, CA.

R. Jain and K. K. Ramakrishnan, “Congestion avoidance in
computer networks with a connectionless network layer: Con-
cepts,,” Proceedings of the Computer Networking Symposium;
IEEE; Washington, DC, pp. 134-143, 1988. [Online]. Available:
citeseer.nj.nec.com/article/jain97congestion.html

B. H. Bloom, “Space/time trade-offs in hash coding with allow-
able errors,” Communications of the Association for Computing
Machinery, vol. 13, no. 7, pp. 422-426, 1970.

R. L. Carter and M. E. Crovella, “Server selection using dynamic
path characterization in wide-area networks,” in Proceedings of
INFOCOM, Kobe, Japan, Apr. 1997.

K. Lai and M. Baker, “Measuring link bandwidths using a deter-
ministic model of packet delay,” in Proceedings of SIGCOMM,
2000, pp. 283-294.

A. B. Downey, “Using pathchar to estimate internet link
characteristics,” in Proceedings of SIGCOMM, 1999, pp. 222—
223. [Online]. Available: citeseer.nj.nec.com/downey99using.
html

“See http://www.gnu.org/software/wget/wget.html.”
“http://slurpie.sourceforge.net.”

See www.planet-lab.org.

L. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrish-
nan, “Chord: A scalable peer-to-peer lookup service for internet
applications,” in Proceedings of the ACM SIGCOMM °01 Confer-
ence, San Diego, California, August 2001.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content addressable network,” in In Proceedings of
the ACM SIGCOMM 2001 Technical Conference, 2001.

A. Rowstran and P. Druschel, “Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems,” in
Proceedings of the 18th IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware 2001), 2001.

