
1

Free-riding in BitTorrent Networks with the Large View Expl oit

Michael Sirivianos Jong Han Park Rex Chen Xiaowei Yang
Department of Computer Science
University of California, Irvine

{msirivia,jonghanp,rex,xwy}@ics.uci.edu

Abstract— This paper presents an experimental study
on the behavior of BitTorrent networks when selfish
peers attempt to maintain high download rates without
uploading. We modified a BitTorrent client so that it
acquires a larger than normal view of a BitTorrent swarm
and connects to all peers in its view. At the same time,
the modified client does not upload any data to its peers.
Our experimental results show that: a) our modified free-
rider client can achieve better download rates than a
compliant client in most common-case public torrents;
b) when the percentage of our modified free-rider clients
in PlanetLab-residing torrents with ∼300 leechers is less
than 40%, free-riders on average outperform compliant
clients; and c) as the number of free-riders increases,
both free-riders and compliant clients incur substantial
performance degradation. These results suggest that the
large view exploit is effective, and it has the potential for
wide adoption.

I. Introduction
Peer-to-peer (P2P) content distribution networks are

powerful systems that utilize the bandwidth resources of
their users. The performance of a P2P network is highly
dependent on the users’ willingness to contribute their
bandwidth. However, selfish (rational) users tend not to
share their bandwidth without incentives. A study that
revisited the free-riding issue in Gnutella revealed that
85% of the peers do not share any files [10].

The popular BitTorrent P2P protocol [7] employs the
rate-based tit-for-tat incentive mechanism to motivate
users to upload. In theory, the data exchange between
two BitTorrent peers can be modeled as an iterated
prisoner dilemma game, and tit-for-tat is shown to be
the winning strategy that optimizes a player’s payoff [5].
However, it has been suggested that BitTorrent’s incen-
tives are vulnerable to manipulation [11, 13, 16], because
it is difficult to enforce strict tit-for-tat in practice.

We contribute to the study of BitTorrent manipulation
by revealing a new aspect of the free-riding problem.
We show that clients can refrain from uploading any
data and still achieve better downloading rates than tit-
for-tat compliant clients. If a selfish client attains a
much lower downloading rate when it free-rides than
when it uploads, the selfish client has less incentive

to free-ride. On the other hand, if a free-riding client
can achieve a better or only slightly worse downloading
rate than a tit-for-tat compliant client, a selfish client
may have incentive to free ride. In practice, users may
value their uplink bandwidth more than slightly faster
download rates, thus they may be motivated to free-
ride. For example, clients with access providers that
impose quotas on outgoing traffic or clients with limited
uplink bandwidth (e.g. 1.5Mbps/128Kbps ADSL) may
wish to save their uplink for other critical tasks. A
dire prediction is that if more and more users start to
free-ride, BitTorrent communities will experience the
“tragedy of the commons,” manifested as system-wide
performance degradation in BitTorrent networks.

We design, implement and experimentally evaluate
a new BitTorrent free-riding technique, the large view
exploit: a selfish BitTorrent client acquires a larger than
normal view of the torrent (swarm), and connects to
all peers in its view. In this way, the client increases
the likelihood of becoming unchoked by leechers and
discovering seeders. At the same time, the selfish client
never uploads any data to its peers.

We run experiments with modified BitTorrent clients
using this exploit in public torrents and PlanetLab-
residing torrents with∼300 leechers. Our results show
that in most public torrents, a free-riding client per-
forms better than its tit-for-tat compliant counterpart.
In PlanetLab-residing torrents, when the torrent consists
mainly of compliant clients (>60%), free-riders on av-
erage outperform compliant clients. Moreover, as the
number of free-riders increases, both compliant and free-
riding clients experience substantially increased down-
loading times. These results suggest that the large view
exploit has the potential to be widely adopted; if the
client population is not dominated by free-riders, the
download rates of free-riders are high when compared
to those of compliant clients.

The rest of this paper is organized as follows. Section
II compares our work with related work. Section III
describes the design rationale and implementation of
the large view exploit. Section IV presents experimental
results. We discuss a technique to prevent the exploit in
Section V and conclude in Section VI.

2

II. Related Work

Several studies have conjectured and experimentally
demonstrated the free-riding phenomenon in BitTorrent.
Jun et al. [11] show that in a PlanetLab-residing swarm
with ∼150 leechers, 75 free-riders can attain average
download completion times, almost as good as tit-for-tat
compliant peers. However, they define a free-rider as a
peer that uploads with rates up to 4KB/sec, while other
peers upload with rates up to 100KB/sec. In contrast,
our work shows that a client using the large-view exploit
can download as fast as or faster than a compliant client
without uploading any data.

Liogkas et al. [13] show that peers that discover
many seeders in a swarm can connect to seeders only,
thus substantially increasing their download rates without
contributing bandwidth. In addition, Andrade et al. [4]
demonstrate that free-riders may have better sharing-ratio
(the amount of uploaded data divided by downloaded
data) than compliant peers when a swarm has many
seeders.

Schneidman et al. [16] conjectured that a peer can
increase the frequency with which it gets optimistically
unchoked by presenting multiple identities to a tracker.
As a result, the tracker reports this peer to other peers
multiple times, and other peers are now more likely to
unchoke this peer. In addition, they state that a peer
can probe other peers to more frequently optimistically
unchoke him by reconnecting to them and getting better
placement in the unchoking queue. The large-view ex-
ploit we implement does not require a peer to present
multiple identities.

The weakness of BitTorrent’s incentives presented in
this paper has been experimentally demonstrated in two
very recent works that were almost concurrent with ours.
Locher et al. [14] describe and evaluate an exploit that
bears much similarity to the large-view exploit described
in this paper. Piatek et al. [15] showed that a client
that connects to many peers, and carefully selects its
peers and per-peer upload rates can achieve significantly
higher download rates than mainstream clients, while
substantially reducing its uplink bandwidth utilization.

Our paper complements Locher et al.’s work and
offers additional insights in the following ways (we
list the most important ones). First, we test our exploit
in medium-scale private torrents on PlanetLab (∼300
leechers). These experiments allow us to systematically
study how the number of free-riders affects system-
wide performance in BitTorrent swarms. Locher et al.’s
work presents an experiment for a small private torrent
consisting of 4 leechers and one seeder. Second, we
modify an existing BitTorrent implementation only with

respect to the aspects of our exploit. In contrast, the free-
rider “BitThief” in [14] is a client built from scratch.
As a result, it inherently has features that are different
from mainstream clients (e.g. it always uses random
chunk selection instead of rarest first). We expect that
our approach further demonstrates the effects of the large
view exploit in isolation from other aspects of BitTor-
rent’s implementation. Third, our work investigates the
effectiveness of disconnecting from and reconnecting to
leechers after having been unchoked by them, while
Locher et al.’s work investigates whether uploading
garbage to peers and sending false announcements of
available chunks to them can yield performance gains.
Fourth, we provide a more in-depth explanation of our
exploit in the game-theoretic framework of the tit-for-tat
strategy. Last, since both studies derive conclusions that
concern a widely used content distribution system, our
work’s further validation of their insights is of particular
importance.

III. The Large View Exploit
This section describes the design rational of the large

view exploit and its implementation. For ease of expo-
sition, we first summarize how Bittorrent works.

A. How BitTorrent Works
The BitTorrent protocol involves three parties: the

server of the torrent file, the tracker, and the client. The
torrent file contains meta-data information of the file to
be downloaded, which includes the tracker’s URL, the
file’s name and length, and the SHA-1 hash values of
individual file chunks. Atracker maintains a list of all
the clients that are currently downloading a certain file
(leechers) or have the complete file and only upload
it to others (seeders). The tracker, the leechers, and
the seeders constitute a BitTorrentswarm(also referred
to as torrent). To download a file, a client: 1) obtains
the corresponding torrent file; 2) contacts the tracker to
obtain a partial swarm view, which usually consists of up
to 50 peers; 3) connects to the peers in the partial view;
and 4) downloads file chunks from the seeders and/or
exchanges file chunks with the leechers.

B. Design Rational
BitTorrent clients use a tit-for-tat scheme for chunk

exchanges: a client always cooperates in the first move
by uploading to another peer (optimistic unchoking).
Thereafter, it uploads to peers that reciprocally upload
to it. Cohen [7] describes that this strategy leads to
cooperation, as the data exchange between two peers
can be modeled as a repeated prisoner dilemma game
and tit-for-tat is the winning strategy [5].

3

However, in BitTorrent, a client plays a finite number
of rounds of the iterated prisoner’s dilemma game with
each of its peers. It can abandon the game once its peers
have cooperated a certain number of times, i.e. when
it has downloaded from its peers all the content that
it needs. Consequently, if the client can play the game
with many players from a large population of tit-for-
tat compliant players, the best strategy may be to not
cooperate and abandon the game with each peer after
the first round. By not cooperating in the first move,
it exploits the initial offers of the tit-for-tat compliant
players and obtains a large portion of the needed content
without incurring any cost. In addition, BitTorrent’s
implementation does not strictly abide by the tit-for-tat
strategy due to the tradeoff between performance and
susceptibility to free-riding.

At any time, a BitTorrent leecher unchokes (uploads
to) n clients (typically four to ten). Among thosen peers,
the n−1 are the peers that are the fastest uploaders and
are also interested in the leecher’s content. The leecher
revises its list of unchoked peers every 10 seconds and
optimistically unchokesone peer every 30 seconds. 10
and 20 seconds after the last optimistic unchoking, the
leecher samples the upload rates of all its interested
peers, except of the one that it optimistically unchoked.
If a sampled and currently unchoked peer is among
the fastestn−1 uploaders, the leecher keeps that peer
unchoked. Otherwise, the leecher chokes that peer and
unchokes another sampled peer that is now among the
n− 1 fastest uploaders. 30 seconds after the last opti-
mistic unchoking, the leecher samples the upload rates
of all its interested peers and keeps unchoked only the
n−1 fastest uploaders among them. It also optimistically
unchokes one previously choked peer regardless of that
peer’s upload rate. Optimistic unchoking allows a leecher
to discover peers that possess content of interest and
that may be able to upload to it at higher rates than the
currently unchoked peers.

BitTorrent seeders favor for unchoking the fastest
downloaders or the most recently unchoked peers, re-
gardless of whether the downloaders are cooperative with
other leechers.

Based on the above observations and previous work
on BitTorrent exploitation [11, 13, 16], we conclude that
even if a client does not upload to its peers, it may
be able to download at rates equal to orhigher than
those of tit-for-tat compliant clients. In a sufficiently
large swarm, a client that connects to many more peers
than the protocol specifies can increase the likelihood of
becoming optimistically unchoked, as more peers have
it in their list of candidates to unchoke. It can also find
more seeders, which do not abide by the tit-for-tat rule.

C. Implementation

Drawing from the above conclusion, we implement a
BitTorrent client that employs a new free-riding tech-
nique, thelarge viewexploit, as follows:
1. It never uploadsany file chunks to its peers.
2. It initiates a connection to the tracker every 15
seconds to mimic the behavior of a new client joining
the swarm, and repeatedly requests and obtains partial
swarm views.
3. Connects to all peers in its larger than normal swarm
view.

The tracker could maintain state for each client and
use authentication mechanisms to limit the rate with
which clients obtain partial swarm views in step 2. How-
ever, modified clients could assume multiple identities
(Sybil attack [8]). In addition, clients can exchange peer
lists in order to widen their view of the swarm. We
note that the latter mechanism is already incorporated
and validated in mainstream and benevolent BitTorrent
implementations [3] to improve the resilience of the
system in the event of tracker failure.

Certain BitTorrent implementations, such as CTorrent
[2], select peers to become unchoked according to crite-
ria that allow new clients to quickly become uploaders
[17]. A CTorrent client does not optimistically unchoke
peers that have been recently optimistically unchoked. In
contrast, it favors for optimistic unchoking peers that: a)
claim to have no pieces; b) claim to have pieces that the
client is missing; c) have been choked for the longest
period of time; and d) in the past, have uploaded the
most content to the client. Therefore, we consider an
additional step that a free-rider may employ:
4. Disconnects from leechers and reconnects to them
after the leechers have unchoked it, uploaded data to
it, and then choked it again. This causes the leechers
to remove any reference to the client’s past transactions
with them.

Step 4 has the potential to yield additional gains, as
it may further increase the frequency with which a free-
riding client becomes optimistically unchoked. We call
this stepwhitewashing[9] with leechers.

IV. Evaluation
In this section, we evaluate the effectiveness of the

large view exploit and demonstrate its detrimental impact
on the system-wide performance of BitTorrent swarms.

We use BNBT[1] and Enhanced CTorrent 1.3.4 [2]
as the BitTorrent tracker and client, respectively. Un-
less noted otherwise, in our experiments, free-riders are
implemented as described in Section III-C, except that
they do not employ whitewashing with leechers (they do

4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n

Completion Time (sec)

100% Compliant

10% Free-rider

90% Compliant

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n

Completion Time (sec)

100% Compliant

40% Free-rider

60% Compliant

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n

Completion Time (sec)

100% Compliant

40% Compliant

60% Free-rider

(c)

Fig. 1. The BitTorrent large view exploit in PlanetLab-residing torrents for a 12MB file. Free-riders acquire a large view and
connect to all peers,without performing whitewashing with leechers. There is one initial seeder and∼300 leechers. All leechers’
are rate-limited to download and upload at 30KB/sec: (a) 10%free-riders; (b) 40% free-riders; and (c) 60% free-riders. The mean
download completion times over all clients of each type are:(a) free-rider 823 sec and compliant 872 sec; (b) free-rider1299 sec and
compliant 1290 sec; and (c) free-rider 1720 sec and compliant 1581 sec. All figures include a plot for swarms with no free-riders
for the purpose of comparison. The mean download completiontime in the swarms without free-riders is 741 sec.

not perform step 4). We perform experiments both for
PlanetLab-residing torrents and for public torrents. For
the former, we spawn VServers on multiple PlanetLab
[6] nodes. For the latter, one compliant and one free-
rider client run on two distinct machines, which have
exactly the same configuration and reside in the same
LAN. Compliant clients connect to at most 50 peers.
Recall that free-riders do not upload any data.

A. PlanetLab-residing Torrents

Figure 1 illustrates the impact of the large view
exploit in PlanetLab swarms. In each experiment, there
is one initial seederand a mixed population of∼300
compliant and modified leechers, running on distinct
PlanetLab nodes. The leechers and the initial seeder join
the swarm almost simultaneously and upon download
completion, compliant leechers remain online to seed
the file. In all cases, the compliant and the free-riding
leechers download a 12MB file. We rate-limit all clients
at 30KB/s for both upload and download to ensure that
they have equal resources. Free-riders obtain a swarm
view of ∼250 clients on average after∼150 seconds in
the downloading process. For every experiment config-
uration, we strive to involve the same PlanetLab nodes,
and derive mean file download completion times for each
node. For every node, we collect 8 to 10 measurements,
depending on the node’s availability.

As we observe in Figure 1, the download completion
times of clients increases substantially as the percentage
of free-riders increases. In Figure 1(a), when there are
10% free-riders, free-riders have shorter download com-
pletion times than compliant clients. For 40% free-riders,
Figure 1(b), we observe that free-riders have download
times that are on average almost equal to the ones of
compliant clients. We also observe that the standard

deviation of downloading times for compliant peers is
larger than the one of free-riders. We believe that this is
a consequence of the fact that compliant clients connect
to different subsets of peers in the swarm, whereas large
view free-riders connect to almost the same set of peers,
which approximates the entire swarm.

When 60% of the client population are free-riders,
Figure 1(c), the compliant clients outperform the free-
riders. This is because despite their large views, free-
riders have difficulty in making the fewer compliant
peers to upload to them, as the probability of getting
optimistically unchoked is substantially reduced. On the
contrary, compliant peers upload, thereby prompting
other compliant peers to unchoke them. Eventually,
compliant clients form clusters in which they download
faster by employing tit-for-tat.

B. Public Torrents

Figure 2 shows the downloading time of our free-
riding CTorrent client together with that of a compliant
CTorrent client in 15 public BitTorrent swarms. Both
clients join the same torrent simultaneously to download
the file and they are not rate-limited. We randomly select
torrents fromwww.torrentportal.com with file size
approximately between 500MB and 2GB and swarm size
roughly between 50 and 650 peers. For each torrent we
run the experiment only once.

Figure 2 shows that the modified free-riding client is
able to download faster than the compliant client in 12
out of 15 torrents. Table I shows the downloaded file
size as well as the average number of seeders and the
average number of leechers in each experiment over the
duration of the file download. In torrents 2, 3 and 13,
the swarm size and the number of seeders are too small
for the modified client to benefit. Given that the typical

5

Torrent# File Size (MB) Avg # seeders Avg # leechers
1 538 106.20 323.82
2 738 9.88 41.21
3 683 14.19 59.14
4 955 157.42 438.16
5 782 43.41 139.61
6 889 42.29 481.18
7 697 30.83 51.89
8 873 23.12 171.43
9 1284 59.52 199.20
10 1409 242.18 341.92
11 1016 63.28 492.01
12 1146 51.35 337.21
13 1401 8.48 63.52
14 1870 91.49 392.15
15 1788 196.37 455.60

TABLE I. The file size, and the average number of seeders and
leechers over the duration of the entire file download in each
public torrent experiment.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 2 4 6 8 10 12 14 16

C
o

m
p

le
ti
o

n
 T

im
e

 (
s
e

c
)

Experiment Number

Compliant

Free-Rider

Fig. 2. The large view exploit in public torrents.

peer list size sent by a tracker is 50, the clients that
use the exploit do not acquire a substantially larger view
than compliant clients. This explains why the free-riding
client does not perform better than the compliant one.

Although the swarm size of torrent 7 is small, the free-
rider performs better than the compliant client because of
the existence of relatively many seeders. In this case, the
larger view allows free-riders to discover all the seeders
in the swarm (∼31). We note that it is more likely for
a free-rider to download content from a seeder and for
longer periods of time than it is for a free-rider to be
unchoked by a leecher that possesses missing chunks.
Therefore, even a small increase of the number of seeders
in the client’s view can yield substantial gains.

We did not observe correlation between the file size
and the effectiveness of the exploit.

C. Impact of Whitewashing

With this experiment we aim at determining the impact
of whitewashing with leechers (step 4 in Section III-C).
As can be seen in Figure 3, free-riders that combine
large view with whitewashing still outperform compliant
clients in the case of 10% free-riders.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n

Completion Time (sec)

100% Compliant clients

10% Free-rider

90% Compliant

Fig. 3. The BitTorrent large view exploit in PlanetLab-residing
torrents for a 12MB file. Free-riders acquire large view and
perform whitewashing with peers. There is one initial seeder
and ∼300 leechers. All leechers’ are rate-limited to download
and upload at 30KB/sec: We depict the cases for 10% free-
riders. Free-riders and compliant clients have mean download
completion times equal to 852 sec and 903 sec, respectively.

However, by comparing mean download completion
times, we observe that both the compliant and free-
riding clients when whitewashingis not employed (Fig-
ure 1(a)), outperform their counterparts when white-
washing is employed (Figure 3). We believe that this
is because whitewashing interferes with the optimistic
unchoking mechanism, thereby it prevents compliant
clients from discovering cooperative clients and effi-
ciently performing tit-for-tat data exchanges. Conse-
quently, the rate with which content is disseminated in
the swarm decreases. On the other hand, when free-riders
do not employ whitewashing, cooperative clients have
more opportunities to discover each other. As a result,
all peers download at higher rates.

When the swarm has 1% free-riders, the free-riders
that employ only large view attain better mean down-
load completion time (644 sec, not depicted) than their
counterparts that combine large view with whitewashing
(680 sec, not depicted). Since the performance of both
free-riding and compliant clients is adversely affected
when free-riders employ whitewashing, a free-rideris
not motivated to whitewash its leechers.

V. Addressing the Exploit
In this section, we take a step further to speculate on

how to prevent the large view exploit. We propose a
variation of theverifiable pseudorandom peer selection
technique presented in [12]. Their technique assumes
that each client has a certifiable public/private key pair
and that clients only leave the network and never join
it. In contrast, our variation takes into account the high
join/leave churn of BitTorrent swarms and the impracti-
cality of assigning certifiable public/private key pairs to
BitTorrent clients.

We propose to modify the tracker and the BitTorrent

6

clients so that all clients have a consistent and complete
view of the swarm. Each client is identified by its IP
address. The tracker is synchronized with its clients and
time proceeds in intervals of durationT. When a client
first joins the network during intervalt, it obtains from
the tracker the complete view of the swarm at the end
of interval t−1. A newly joined client does not attempt
to connect to peers until intervalt elapses. Clients strive
to stay connected to the tracker for the duration of their
download. At the end of each interval and if the client set
has changed, the tracker sends to every client an update
with the clients that have joined and the clients that have
left the swarm during this interval. Clients do not attempt
to connect to new clients right after an interval elapses.
Instead, they wait for timea << T until the tracker has
send the updates to all clients.

Each client deterministically selects its peers using
a pseudo-random number generator (common to all
clients) seeded with its IP and the current time interval
t. When a clientA accepts a connection from a client
B, it uses the same pseudorandom generator function to
generateN values. Subsequently, clientA maps these
values toN IPs in the complete swarm view that both
A and B possess.A accepts the connection ifA’s IP is
among the resultingN IPs. Otherwise,A infers thatB is
a free-rider that attempts to connect to more peers than
the protocol allows. In this case, the rational client or
seederA, disconnects fromB.

However, it is problematic for clients to identify their
peers based on the IP address. The reason is that clients
that reside behind the same Network Address Translator
(NAT) are allowed to connect only to the same set of
peers. At the same time, most BitTorrent clients by
default disallow more than one concurrent connections
from the same IP, as a measure against free-riders that
attempt to increase their chances of becoming unchoked.
To address this issue, we do not restrict each IP to the
small 50-peer swarm view with which trackers typically
respond to view requests. Instead, we setN > 50, while
compliant clients attempt to connect only to 50 peers.
In this way, compliant clients behind the same NAT are
able to connect to disjoint set of peers.

The proposed technique imposes increased load on the
tracker and it is our future work to assess its scalability,
as well as to determine good values for parametersT and
a. It is also our future work to empirically determine the
tunable parameterN, so that typical BitTorrent swarms
maintain connectivity, while they are not susceptible to
the large view exploit.

VI. Conclusion
We experimentally demonstrate a new aspect of the

free-riding problem in BitTorrent. When a client obtains
a larger than normal view of the BitTorrent swarm, it
increases its chances to become unchoked by leechers
and to discover seeders. Consequently, it is able to attain
good download rates without uploading. We show that
in public torrents, a free-rider can perform better than a
compliant peer. We also show that in PlanetLab-residing
torrents, free-riders on average outperform compliant
clients, except when free-riders dominate the swarm, in
which case the performance of both compliant and free-
riding clients is substantially degraded.

These results suggest that selfish (rational) users may
have incentive to adopt the exploit. To address this
problem, we suggest a technique that enables BitTorrent
clients to determine whether their newly connected peers
are attempting to free-ride.

VII. Acknowledgements
We thank Nikitas Liogkas for the numerous fruitful

discussions on this work. This work was supported in
part by NSF award CNS-0627166.

References
[1] Bnbt easy tracker.bnbteasytracker.sourceforge.net.
[2] Enhanced ctorrent.www.rahul.net/dholmes/ctorrent/.
[3] Peer exchange. www.azureuswiki.com/index.php/Peer

Exchange.
[4] N. Andrade, M. Mowbray, A. Lima, G. Wagner, and M. Ri-

peanu. Influences on cooperation in bittorrent communities. In
P2PEcon, June 2005.

[5] R. Axelrod. The evolution of cooperation. Basic Books, 1984.
[6] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawr-

zoniak, and M. Bowman. Planetlab: an overlay testbed for
broad-coverage services. InSIGCOMM CCR, July 2003.

[7] B. Cohen. Incentives build robustness in bittorrent. InP2PEcon,
June 2003.

[8] J. R. Douceur. The sybil attack. InIPTPS, March 2002.
[9] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica. Free-

riding and whitewashing in peer-to-peer systems. InIEEE
JSAC, May 2006.

[10] D. Hughes, G. Coulson, and J. Walkerdine. Free riding on
gnutella revisited: The bell tolls? InIEEE Distributed Systems
Online, June 2005.

[11] S. Jun and M. Ahamad. Incentives in bittorrent induce free
riding. In P2PEcon, August 2005.

[12] H. Li, A. Clement, E. Wong, J. Napper, I. Roy, L. Alvisi, and
M. Dahlin. BAR gossip. InOSDI, November 2006.

[13] N. Liogkas, N. R., E. Kohler, and L. Zhang. Exploiting
bittorrent for fun (but not profit). InIPTPS, February 2006.

[14] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free Riding
in BitTorrent is Cheap. InHotNets, November 2006.

[15] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and
A. Venkataramani. Do incentives build robustness in bittorrent?
In NSDI, December 2006.

[16] J. Shneidman, D. Parkes, and L. Massoulie. Faithfulness in
internet algorithms. InPINS, September 2004.

[17] B. P. Specification.www.bittorrent.org/protocol.html.

