Enabling Contribution Awareness in an Overlay
Broadcasting System

Yu-Wei Sung, Michael Bishop, and Sanjay Rao
Department of Electrical and Computer Engineering
Purdue University

{sungy,bishopma,sanjay} @ purdue.edu

ABSTRACT

We consider the design of bandwidth-demanding broadcast-
ing applications using overlays in environments character-
ized by hosts with limited and asymmetric bandwidth, and
significant heterogeneity in outgoing bandwidth. Such envi-
ronments are critical to consider to extend the applicability
of overlay multicast to mainstream Internet environments
where insufficient bandwidth exists to support all hosts, but
have not received adequate attention from the research com-
munity. We leverage the multi-tree framework and design
heuristics to enable it to consider host contribution and op-
erate in bandwidth-scarce environments. Our extensions
seek to simultaneously achieve good utilization of system re-
sources, performance to hosts commensurate to their contri-
butions, and consistent performance. We have implemented
the system and conducted an Internet evaluation on Planet-
Lab using real traces from previous operational deployments
of an overlay broadcasting system. Our results indicate for
these traces, our heuristics can improve the performance of
high contributors by 10-240% and facilitate equitable band-
width distribution among hosts with similar contributions.

Categories and Subject Descriptors: C.2.4 [Computer-
Communication Networks]: Distributed Systems

General Terms: Algorithms, Design, Experimentation

Keywords: Overlay multicast, Multi-tree, Incentive

1. INTRODUCTION

In the last few years, application-level overlay multicast
has emerged as a key alternative to enable broadcasting ap-
plications on the Internet. In this scheme, participants in
the broadcast self-organize into efficient overlays where video
content is disseminated by the broadcast source without sup-
port from the network. There has been significant effort in
recent years devoted to validating the architecture [7, 10,
13, 18, 21}, designing protocols [1, 3, 4, 7, 10, 13, 14, 16, 17,
19, 24, 27], and deploying real systems [6, 23, 25].

Much success with overlay broadcast deployments has been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCOMM 06, September 11-15, 2006, Pisa, Italy.

Copyright 2006 ACM 1-59593-308-5/06/0009 ...$5.00.

411

restricted to homogeneous university environments, and broad-

casts involving scientific conferences and lectures. For ex-
ample, a recent work on experience with an overlay broad-
casting system [6] indicates substantial success in achiev-
ing good performance in university-based environments, but
highlights several performance issues when mainstream en-
vironments are considered. In this paper, we seek to enable
overlay broadcast in environments characterized by two key
properties. First, we consider highly heterogeneous envi-
ronments where hosts make unequal contributions to the
overlay. Such heterogeneity may arise due to different node
outgoing capabilities (Ethernet vs. DSL) or different will-
ingness to contribute bandwidth resources. For example, [6]
reports the fraction of resource-poor hosts (i.e. with low
outgoing bandwidth) in several real broadcast deployments
range from 43% to 81%. Second, the bandwidth resources
contributed by all hosts may be insufficient for everyone to
receive the full source rate.

We present the design of an overlay broadcast system tar-
geted at these environments. Our primary goal is to en-
able hosts to receive different levels of performance based
on their contributions while effectively utilizing the band-
width resources available in the system. To achieve this,
our system leverages the multi-tree framework [3] to enable
application-level adaptation. In our system, the source de-
livers data along multiple overlay trees. Each node sub-
scribes to all trees but is only entitled to a subset of them.
The number of trees a node is entitled to depends on the
amount of bandwidth it contributes. This in turn deter-
mines the bandwidth, and consequently quality, it receives.
While the multi-tree framework was originally proposed to
improve resiliency, our focus is on using multiple trees to en-
able application-level adaptation and differential treatment.

We enforce bandwidth distribution policies where a node
must contribute more than it is entitled to receive. Such
policies are shown to better utilize bandwidth of resource-
rich hosts and offer better performance to resource-poor
hosts than naive bit-for-bit policies [12]. They facilitate the
”contribution-aware” policy: the more a node contributes,
the more it is entitled to receive. To support this policy
in a distributed manner, we design distributed heuristics for
monitoring of overall system resources, differential and equi-
table distribution of bandwidth resources, and application-
level adaptation to changes in host contribution. While our
system framework is motivated by [3, 12], we go substan-
tially beyond these works by presenting a comprehensive
contribution-aware design and implementation experience
on an operational overlay broadcasting system [6].

We have conducted an evaluation of our contribution-
aware broadcasting system on PlanetLab using traces from
real overlay broadcast deployments. Our results show that
our heuristics offer differential and equitable resource distri-
bution when compared to a contribution-agnostic system. In
particular, the 10th-percentile performance of high contribu-
tors (nodes contributing more than 175% of the source rate)
is increased by 10-240% and variation of bandwidth received
among nodes with similar contributions is reduced across
our set of traces. Achieving these improvements does incur
a 20 — 38% decrease in the time between quality changes
seen by a host, but achieves a 10-fold reduction in average
time to recover from these changes for high contributors.

Section 2 discusses our assumptions and motivations in
detail. Section 3 presents the design of contribution-aware
heuristics. Section 4 describes the broadcasting system our
implementation is based on and the process of integrating
the multi-tree framework into this system. Section 5 dis-
cusses our evaluation methods and metrics. Evaluation re-
sults are presented in Section 6. Based on these results,
we draw conclusions on our contribution-aware heuristics in
heterogeneous, resource-scarce environments in Section 7.

2. ASSUMPTIONS AND MOTIVATIONS

In this section, we describe the assumptions made on user
behavior in Section 2.1. Section 2.2 introduces the multi-
tree overlay we leverage to achieve differential resource dis-
tribution to nodes of diverse contribution levels. Section 2.3
presents a bandwidth distribution policy which we leverage
to distribute bandwidth among peers. We discuss the goals
of our contribution-aware system design in Section 2.4.

2.1 Broadcast User Model

To simplify our design, we make certain assumptions about
the behavior of broadcast participants. Although we believe
our conclusions may be generalized past some of these as-
sumptions, we limit our discussion to this user model.

A peer i in the broadcast is capable of both receiving and
forwarding data. Without loss of generality, we assume that
every peer is capable of receiving the full source rate S in the
event the system is capable of providing it to them. This
is reasonable, given many ”broadband” users today have
asymmetric connections with a reasonably large download-
ing capacity. Most DSL hosts would easily be able to receive
S but not forward one full-rate video stream. In academic
or business environments, symmetric connections (eg: Eth-
ernet) are more common. Such hosts frequently would be
able to receive and forward several times more than S.

We do not assume a homogeneous forwarding bound, but
consider different levels of actual contribution. A peer i’s
actual contribution f; is bounded by either ability or will-
ingness. We assume that this forwarding bound F; is deter-
mined by user willingness and is never over-estimated by the
user (i.e. willingness < ability). We assume that F; is known
only to the user and is non-zero — every peer will contribute
some bandwidth upon request. We believe this is realistic
since all Internet hosts have some upstream bandwidth. f;
may vary over the course of i’s stay in the system due to
changes in the number of children ¢ supports. Therefore, we
target our design to react to users’ actual contribution.

An important assumption is users are not strategic. While
we offer incentives to encourage users to increase willingness
to contribute, we do not model users who attempt to con-

412

Encoder
{source rate: S Kbps)

Figure 1: A multi-tree broadcast with two trees.

tribute minimum possible in order to achieve their desired
performance. Instead, a peer ¢ only ensures f; does not ex-
ceed F; when adopting a new child. Therefore, we assume
heterogeneity in F; will be reflected by heterogeneity in f;.

Lastly, we assume hosts honestly report their f;, inferred
by the number of children they currently support, and the
bandwidth received from parents. However, we believe our
heuristics can be easily integrated with recent research in
distributed auditing and rating of nodes [8, 2, 15] to verify
the claimed contribution of nodes. With these assumptions
in mind, our goal is to encourage a host i to relax its Fj,
particularly under resource-scarce operating environments.

2.2 Multi-tree-based Data Dissemination

Our system is targeted at regimes where insufficient re-
sources are present in the system for all hosts to receive
the full source rate. While we have assumed that all hosts
contribute some outgoing bandwidth, we do not assume that
everyone can forward the full source rate. In resource-scarce
environments, we must also utilize any outgoing bandwidth
which is less than the source rate. Therefore, we require
a means by which hosts may receive and contribute gradu-
ated levels of bandwidth and transition smoothly as avail-
able resources change. To realize these goals, we leverage
the multi-tree data delivery framework [3, 17]. Although
it was first introduced in the context of protocols based on
Distributed Hash Table (DHT) [20, 4, 26, 22], the multi-tree
framework is not dependent on the use of DHT overlays.

In this framework, participants self-organize into a for-
est of T trees rooted at a source. The source encodes video
with source rate S evenly into T stripes of size S/T, each dis-
tributed along one tree. The quality that a host gets depends
on the number of stripes that it receives. Typically, a layered
codec based on Multiple Description Coding (MDC) [11, 5]
is used to realize this goal. The trees are interior-disjoint;
that is, a host ¢ allocates F; to only one tree but attempts to
connect to all of the T" trees. When Fj is normalized by S, we
call the resulting value the degree of host i. For example, if
F; = 300kbps and S = 400kbps, i’s degree is 300/400 = 0.75.
We also define the tree-degree to be degree « T', which is the
maximum number of children a host can support in the tree
it contributes. Figure 1 illustrates how broadcast content is
delivered with 7' = 2. Host A and B both have a degree of
1 and allocate their bandwidth in Tree2 and Treel, respec-
tively, where each can support two children (i.e. tree-degree
of 2). C receives S/2 each from A and B to reconstruct
the original content. While this multi-tree framework was
originally proposed to improve resiliency [3, 17], we use it
as a convenient building block and focus on issues regarding
heterogeneity and resource allocation mechanisms.

This framework meets our needs, because it allows nodes
to connect to a subset of trees and contribute in smaller
bandwidth increments (i.e. stripes). Any node having a
degree greater or equal to 1/T (i.e. tree-degree > 1) is able
to contribute. By setting T properly, we allow resource-
poor nodes with limited outgoing bandwidth to contribute,
thereby spreading the forwarding load across all peers.

2.3 Bandwidth Distribution Policies

A key design consideration is the selection of policies for
distributing bandwidth in the broadcast among participat-
ing hosts based on their contributions. Assuming there are
N hosts, and host i forwards bandwidth f;, our heuristics
determine the bandwidth r; each host is entitled to receive.

The multi-tree framework enables us to consider settings
where hosts can obtain different video qualities based on the
bandwidth they are entitled to, by connecting to a subset of
trees at a high priority. Note that the granularity is limited
by the number of trees, T', in the forest. Having a larger T’
enables greater granularity, however one potential cost is an
increased overhead due to the MDC coding.

Our heuristics do not prescribe any particular bandwidth
distribution policy; however, it is designed with the goal of
providing a framework that can enable the implementation
of a range of policies. One simple bit-for-bit policy is to
require each node to forward as much as it receives, that
is, r; = f;. Under this policy, it is straightforward for each
node to determine the bandwidth it should receive, as the
decision is easy to compute locally. However, this policy is
restrictive in two ways. First, it does not account for the fact
that nodes may contribute less bandwidth than the source
rate. Further, it does not provide any incentive to a node
to donate more than the source rate even if it is capable of
doing so. This is an issue in Internet environments today.
Consider the fact that Internet broadcasts typically involve a
source rate of 300-400 kbps, with a majority of hosts behind
DSL and Ethernet. Hosts behind DSL can receive the source
rate, but are not capable of forwarding it. Hosts behind
Ethernet are capable of contributing much more than the
source rate, and a policy such as r; = f; neither utilizes
the bandwidth, nor incentivizes them to contribute more.
On the other hand, arbitrarily sophisticated policies may be
extremely difficult to implement in a distributed fashion.

Instead, we will consider a generic cost function of the
form proposed in [12] to provide differential distribution:

1 t—1
i = T x Ji
=g rlit—

LS L
N
7

(1)

ri is the bandwidth peer i is entitled to receive, f; is the
bandwidth ¢ contributes to the system. N is the number
of participating peers. t is the "tax rate”, which specifies
a peer must contribute ¢ * r; units of bandwidth to receive
r; unit of entitled bandwidth. ¢ must be greater than 1.
If t = 1, we have a simple bit-for-bit policy. If ¢ < 1, no
surplus exists and some peers will not receive their entitled
bandwidth. r; is the sum of two terms. The first term rep-
resents the minimum bandwidth a peer is entitled to receive
by contributing f;, and the second term is the average left-
over bandwidth per node. By using a tax rate greater than
1, we are assured extra bandwidth in the system. For exam-
ple, if t is 2, a peer i which contributes 2S5 will consume S
from the system. The leftover resource S contributed by i is

413

excessive. We aim to distribute all such excessive resources
evenly among all peers, and this is represented by the sec-
ond term. Since every byte of bandwidth received by a peer
must be contributed by another peer(s). We can easily con-
firm that bandwidth is conserved by summing up both side
of Equation (1) over all nodes, leading to .7 =), fi.
For our later evaluation, we pick a tax rate of 2.

We will focus on (1), as it lends itself to implementation in
a distributed fashion. Section 3.1.1 describes a distributed
way to obtain system-wide estimates such as), fi and N.

2.4 Design Criteria

There are some criteria we wish to address in the design
of our system. These criteria are targeted to offer good ap-
plication performance, but also to improve user experiences
while preferentially treating high-contributing nodes.
Good Utilization: Given sufficient resource, users should
receive bandwidth close to the source rate. While it is not
possible for all users to receive the full rate in resource-scarce
environments, the bandwidth provided to them should be
optimized by making good use of available resources, and
there should ideally be no untapped bandwidth. Each node
should contribute to the extent of its ability and willingness.
Equitable Distribution: When allocating bandwidth re-
sources among hosts with similar contribution levels, they
should receive similar performance.

Differential Distribution: The allocation of bandwidth
should favor those which make greater contributions. We
also wish to offer some minimum performance to low con-
tributors and give them improved performance if possible.
Stability: Performance should be consistent over time. We
expect that a node which sees performance improvements
retains them and a node which sees a performance dip re-
covers quickly.

3. SYSTEM DESIGN

To differentially treat a node based on its contribution in
the multi-tree framework, we consider the following prob-
lem: given a peer i, we wish to obtain a direct mapping
between the actual amount of bandwidth, f;, ¢ contributes
and the amount of bandwidth, 7;, the system should offer
in return. Recall that 7 allocates its entire bandwidth F; to
only one tree, called i’s Contributor Tree, but attempts to
receive from all of the T trees. Extra bandwidth, if any,
should be distributed evenly among participants once all of
them get their deserved bandwidth. Equation (1) helps us
obtain such mapping in a distributed fashion. We refer to
r; as the Entitled Bandwidth of i. The natural solution is
to have 7 simply receive r; by subscribing to Ls—rﬁj trees as
an Entitled Node. These trees are the Entitled Trees of i.
However, there are two reasons why this may not suffice.
First, each node can only be entitled to an integral number
of trees. If r; is not an integral multiple of the stripe rate,
S/T, the fractional portion of the r; becomes superfluous.
Second, there may be nodes whose Entitled bandwidth 7; is
larger than S, and they will not consume all of r; entitled
to them. Consequently, not all bandwidth is used by nodes
entitled to it, and there exists some additional bandwidth in
the system remained to be utilized. When a node’s Entitled
bandwidth is lower than the source rate S, it may utilize
some of these additional bandwidth available in trees they
are not entitled to. We refer to the additional bandwidth

that nodes are not entitled to but utilize to reach the source
rate as Ezcess Bandwidth, and nodes looking for or utilizing
this bandwidth as Ezcess Nodes.

In summary, a broadcast participant may assume two
”main” classes in the forest, that is, it may be an Entitled
node in some trees and an Excess node in some other trees.
To treat different types of nodes with a better granularity,
our system further classifies them and assigns them different
priorities. When distributing system resources, our goal is
to favor Entitled nodes over Fxcess nodes and evenly dis-
tributes the Ezcess bandwidth among all participants until
they receive the source rate or no more resources remain.

Before presenting our design details, we want to make
an important distinction between two concepts used in our
multi-tree design: join/subscribe and receive/connect. A
node joins/subscribes to a tree if it is aware of its partic-
ipation within the tree, whether connected or disconnected,
and a node connects to/receives in a tree if it has attached
to a parent in that tree and is receiving the data forwarded
by the tree. We also define a slot as an allocated bandwidth
of size S/T by a parent. A slot can be in one of three states:
(i) occupied by an Entitled node, (ii) occupied by an Ezcess
node, or (iii) unused. We next show how to distribute En-
titled and Ezcess bandwidth and how nodes are prioritized
based on whether they are Entitled or Excess nodes.

3.1 Determining Number of Entitled Trees

To enable a node i to compute its FEntitled bandwidth r;
using Equation (1), our system includes distributed mech-
anisms to periodically approximate the total resources uti-
lized (ie.), fi) and the number of peers N. We then
determine the number of trees i is required to join to receive
r;. However, these global parameters may change any time
due to group and network dynamics, leading to fluctuation
of r;. This may reduce the stability of the system because
hosts overreact to system states. Therefore, our system in-
cludes a way to smooth out the impacts sudden changes in
r; have on the number of Entitled trees.

3.1.1 Distributed System Sampling

Collections of various system-wide parameters, for exam-
ple, 3. fi and N, are necessary to compute r; using Equa-
tion (1) and for some of our heuristics. We accomplish this
by having each node in a tree periodically obtain the state of
the subtree rooted at it and passing such information up the
tree to the source. The source collects the state from each
tree, generates system-wide information by aggregation, and
propagates it down each tree to keep participating nodes in-
formed about the system states in order to make cooperative
decisions. To minimize message overhead while attempting
to maintain a reasonable estimate of the transient system
states, we choose a sampling period of 10 seconds.

Every 10 seconds, a node i informs its parent in each tree:
(i) the bandwidth it is currently receiving from the tree, (ii)
the total bandwidth received by its descendants, and (iii)
the number of its descendants in each node class. The par-
ent assembles these information from its children, aggregates
with its own performance, and continues the process of pass-
ing information further up the tree. The source gathers the
most recent updates every 10 seconds from its children in
each tree, processes them, and sends along each tree a con-
trol update containing a monotonically increasing sequence
number and the following system states: (i) the total contri-

414

bution of the forest, >, fi, by summing up the bandwidth
received by all nodes in the forest (ii) the total number of
participants, N, measured by the total number of Contrib-
utors in the system (since each peer contributes in exactly
one tree), and (iii) the number of Ezcess nodes connected to
each tree. Since a host may receive control updates at differ-
ent times from different trees it connects to, it will extract
data from the update with the greatest sequence number.

3.1.2 Computing Number of Entitled Trees

After joining the multi-tree system, a host ¢ periodically
(every 3 seconds) computes the number of trees it should be
entitled to using the three-step process below:

a. Determine T;_,, . : A host i computes r; based on
Equation (1), using the most recent sample of system states.
To convert r; to a raw computation of Entitled trees T;,,,....

for peer i, we normalize it by the size of a single stripe:

ri
S/T

The computation occurs more frequent (once every 3 sec-

onds) than sampling (once every 10 seconds) because f; is a
transient value. Keeping the computation frequent enough
enables a node to quickly adapt to the dynamics of its chil-
dren and the system as a whole.
b. Smoothing T;_,, . Since r; can change abruptly at
any time with f; and NV, it is advisable to implement some
form of smoothing on 7T}, .. to prevent the host from over-
reacting to peer and network dynamics. There are two tran-
sitions that could occur: Ts_,,, . may either increase or de-
crease. It will increase either if more resources are utilized
per node in the system, or if the node’s contribution has in-
creased. In either case, the change is likely to be relatively
long-lived and should be quickly responded to. In contrast,
the value will decrease with a drop in system resources or
with the departure of i’s children. Children departures may
be considered transient, as another child will be acquired
quickly in resource-scarce environments.

Thus, we have implemented a smoothing scheme which
tracks immediate increases in T;_,,,,,., but only gradually
responds to decreases. That is, we optimistically assume
that reductions are transient and improvements persist. To
achieve this, i calculates its estimated number of Entitled
trees, Tj,,,, in this way:

If Tiwmple <T;

Tipoy =L —a)*Ti,, g +axT;
Else, Tiest =

isample

sample—old?

(2)

sample

tsample

When the current sample, T;_,,. ., is less than its previous
sample, T;_ ... 1. o4» We smooth the sample using Equation
(2) where T;,,, is a weighted combination of Tj_,, _,,, the
previous value of T;,,, and T, ,.- To put more weights on
recent samples than on old samples, we set a to be 0.125,
which from our experience has worked well. We call this
particular smoothing scheme SmoothDown-Only. We have
also evaluated other possible smoothing methods, and the
results are presented in Section 6.5.

c. Calculate Tieff: To further ensure the number of trees
entitled to a node depends on the node’s immediate history,
T;.,, is fed through a hysteresis processor, with a thresh-
old of +0.1 around an integral tree value. The greater the
threshold is, the more damping is imposed on T; The

est*

output of this processor is the effective number of Entitled
trees, T;,,,. For example, if the last T}, ., calculated was
2.8, the current T;.,, must exceed 3.1 to have a T; ,, of
3. Finally, we restrict T;,,, to the range [1,7] and the re-
sulting value is the number of trees to which i is entitled.
It is lower-bounded by 1 since a host is always entitled to
its Contributor Tree and upper-bounded by T because when
T ;; is greater than the total number of trees, ¢ will simply
be entitled to all trees.

3.2 Locating Excess Bandwidth

Since having a tax rate greater than 1 enforces each node
to contribute more than its FEntitled bandwidth, there will
be leftover bandwidth in the system after nodes get their
Entitled bandwidth. However, given the system does not
know the bandwidth F; a node i is willing to forward, it is
difficult to determine the amount of theses leftover resources
and where they are located until they are found and utilized.
Thus, we choose to have a host ¢ periodically explore for free
slots in trees where it is not entitled, as an Fxcess node, until
successfully connected. We call these trees Fzxcess Trees of
i. Any successful connection represents a slot which is not
currently used to satisfy demands from Entitled nodes and
becomes a part of system’s Fzcess bandwidth.

Having nodes actively probe for Fzcess bandwidth has

an additional benefit. When a node joins the system, its
contribution level is not known. A node cannot contribute
without any demand for resources, but in a steady state
this demand would not exist until it begins to contribute.
In order to accelerate this bootstrap process, there must be
an ongoing demand for bandwidth to enable under-utilized
nodes to raise their actual contribution. However, such ag-
gressive probing by Fzcess nodes may not be fruitful under
resource-constrained environments, as many of them may
often compete with other nodes, including Entitled nodes,
for the same slot, which may destabilize the tree structure.
Thus, our system proposes a backoff scheme, in which an Ez-
cess node adaptively adjusts the aggressiveness of probing
based on feedbacks received from the tree.
Backoff in Excess Trees: When an FEzxcess node actively
explores for Ezcess bandwidth, there exists a possibility that
the attempt will fail due to (i) an inherent lack of resources
(no free slots nor preemptable children, will be clear later)
in the tree, or (ii) resources exist but the node is not able to
locate them. In either case, the node presumes that the tree
is saturated and will enter a phase of exponential backoff in
which it waits for tyeckors seconds before retry. Consecutive
failures will result in an exponential increase in the backoff
timer, which is computed as follows:

tbackoff = thase * rand(ﬁk + Tie:ccess)

®3)

where tpqse is the backoff base, (8 is the backoff factor, k is
the number of consecutive failures, and T;,,..,, is node i’s
overall number of connected Fzcess trees. rand(z) returns a
random number in (0, z]. Currently, tqsc and 3 are set to 5
and 2, respectively. Since our results show that the average
reconnection time for low-contributing nodes is around 1
minute, our choice of parameter values allow an Ezcess node
to successfully connect in 3-4 attempts.

This backup algorithm improves system stability since
there is less contention for slots in a tree. A node attempts to
connect to its Fzcess trees at a low priority level, implying
it may take longer to connect to the tree, and even if it does,

Table 1: Preemption Matrix: Can a disconnected
node A displace/preempt a connected node B?

A | B || Contributor (C) | Entitled-NC (ENC) Excess (EX)
C By contribution Yes Yes
ENC No By contribution Yes
EX No No By # Excess trees

415

chances are it will quickly be displaced by a higher priority
node. In addition, the heuristic scales the delay based on
Tieweess tO improve stability further because it biases Ezcess
nodes connecting to fewer Ezcess trees, which have a higher
priority than those connecting to more FEzcess trees. We
confirm this benefit in Section 6.5.2. The prioritization pol-
icy will be explained in detail in the next section. Finally,
to prevent nodes from repeatedly contending for the same
slot(s) in the future, we use a rand function to inject some
randomness in the backoff computation.

3.3 Contribution-Aware Node Prioritization

In order to provide differential treatment to nodes for-
warding at different levels, we introduce the notion of a
class-based design. In this design, we further distinguish
an Entitled node by whether it contributes or not. A node
in a given tree belongs to one of three classes, in decreasing
order of priority:

Entitled Contributor (Contributor): A Contributor is
entitled to the tree and forwards its received stripe to its
children based on its forwarding bound F;.

Entitled Non-Contributor (Entitled-NC): An Entitled-
NC'is entitled to the tree but contributes no bandwidth.
FExcess: An Excess node is not entitled to the tree and
contributes no bandwidth. It actively explores for a slot in
the tree and is able to connect only if free slots or slots of
lower priorities are available.

A host subscribes to multiple trees, but it may assume a
different class in each tree. At any time, a peer joins one
tree as a Contributor. This allows all hosts, regardless of
its contribution level, to be entitled to at least one stripe
upon entering the system, which in turn guarantees them
with some minimum quality.

To assign priorities by class, we have implemented a class-
based prioritization, summarized in Table 1. In this scheme,
when a disconnected node of higher class cannot find an
empty slot, it will displace/preempt a node of a lower class.
That is, when disconnected, Contributors may displace non-
contributors, whether Entitled-NC or Excess, and Entitled-
NCs may displace an Fzcess node. Further, when a parent
chooses between two FEntitled nodes of the same class, the
node with a higher contribution level f; in its Contributor
tree is chosen. When choosing between two Fxcess nodes,
the node with fewer overall connected FExzcess trees is chosen.
This preference is only given for a difference of more than one
Ezcess tree, since otherwise a displaced node could immedi-
ately reclaim its position and destabilize the tree structure.
This provides incentives, since those nodes who contribute
more will reach the full source rate with fewer connected
Ezcess trees, and receive higher priorities over other Excess
nodes. This type of preemption aims to allow each host to
connect to the same number of Ezcess trees.

Finally, to offer more stability /protection to nodes with
higher priorities, in the case a node can not find an empty
slot, it will preempt, among nodes it knows, the one with

the lowest priority. Thus, Fxcess nodes with more connected
Ezcess trees than others are most likely to be displaced.

3.4 Multi-Tree Join Management

Upon joining the multi-tree broadcast, a host ¢ contacts
the broadcast source and retrieves the following information
about the system: (i) the number of trees T', (ii) the source
rate S, (iii) the total number of participating hosts N, (iv)
the total contribution in the system). fi, and (v) the num-
ber of Fxcess nodes in each tree. i will select, with higher
probability, the tree containing fewer FEzcess nodes as its
Contributor Tree. Without any knowledge of i’s willingness
to contribute (i.e. F}), balancing the non-entitled resources
(i.e. Excess and unused slots) across each tree at join-time is
difficult. Our join mechanism strives to keep each tree bal-
anced in resources by encouraging new hosts to contribute
in the tree with fewer Excess slots, which implies a shortage
of resources in the tree. In Section 6.5.3, we show that using
this join mechanism maintains trees in reasonable balance.
At this point, ¢ does not know how many trees it is entitled
to since it has not begun to contribute. An optimistic deci-
sion could provide the host with more opportunities initially
than it deserves. Thus we permit the host to initially join
the remaining 7' — 1 trees as an Ezcess node.

Note that the effective number of Entitled trees T;,,, com-
puted by a host ¢ may change upon every computation pe-
riod. In case of an increase, among i’s Fxcess trees, it picks
one with the most Fzcess nodes and upgrades its class to
Entitled-NC. On the other hand, in case of an decrease,
among trees in which ¢ is an FEntitled-NC, it picks one with
the fewest Ezcess nodes and downgrades its class to Excess.
These processes repeat until 7 is entitled to T;_,, trees.

4. IMPLEMENTATION

To evaluate our heuristics on a real system, we have chosen
to implement them on the ESM Broadcasting System [9].
ESM is a functional overlay broadcast application that has
been used in academic conferences and workshops. The code
for the ESM client is approximately 43,000 lines. Having
this code base available provided a well-structured platform
to experiment with our contribution-aware heuristics. The
original ESM protocol uses a single-tree overlay to delivery
broadcast content. The rest of the section summarizes ESM
and describes how we extend it to use multiple overlay trees.

The ESM protocol [6] relies on a gossip-based group mem-
bership process to create a single overlay broadcast tree
among participating peers. For each node, knowledge about
other members is seeded by the source at join-time and aug-
mented through ongoing contact with other nodes. A node
periodically sends information about a subset of members
it knows to another node picked at random. The mem-
ber receiving this message will then update its knowledge
about other members. When a node 7 is disconnected from
the tree, it starts the parent selection process by probing
a random subset of the nodes it knows to inquire whether
they could accept it as a child. Each probed node responds
with information about whether it has a free space or a pre-
emptable child (a node with a lower priority than). After
a timeout, the node evaluates potential parents, picks the
best one based on some configurable metrics and requests
addition as a child. An acceptance of this request means a
parent node will begin forwarding data to the node, while a
rejection causes i to restart the parent selection process.

416

Multi-Tree Agen
Single-Tree
Protocol Agent

Multi-tree ESM

Single-Tree
Protocol Agent

Original ESM

Figure 2: Original vs Multi-tree implementation.

We employ a minimalist approach in adapting the code
base to the multi-tree framework. In our multi-tree im-
plementation, we have added a layer called the Multi-Tree
Agent (MA) which contains an array of Single-Tree Protocol
Agents (SPA, the single-tree protocol is ESM in our case) as
shown in Figure 2. Each SPA is associated with one tree in
the forest. The MA maintains global states, makes global
decisions, multiplexes and de-multiplexes outgoing and in-
coming messages for a given tree to the associated SPA.
Each tree operates independently and in parallel, interact-
ing with the MA but not with the other SPAs. Finally, we
incorporate our contribution-aware heuristics introduced in
Section 3 into the Multi-tree ESM Broadcasting System.

S. EXPERIMENTAL EVALUATION

We have evaluated our contribution-aware heuristics with
a view to answering the following questions:

e How effective are they in ensuring good overall perfor-
mance by utilizing the heterogeneous nature in the outgoing
bandwidth of nodes in the system?

e How effective are they in offering differential and equitable
performance to nodes based on their contributions?

e How stable is the resulting system, in terms of frequency
of changes in the number of connected trees?

To answer these questions, we have conducted experi-
ments on PlanetLab employing real traces of join/leave dy-
namics to compare the following two systems:
Cont-Agnostic: This system refers to multi-tree ESM with-
out any contribution-aware heuristics (e.g. no backoff). When
distributing bandwidth, it does not consider nodes’ contri-
bution. The only possible preemption is that a Contributor
can preempt an Entitled-NC or Ezcess node. This system is
very similar to SplitStream [3] and CoopNet [17].
Cont-Aware: This system refers to multi-tree ESM with
our contribution-aware heuristics described in Section 3.

5.1 Performance Metrics

We evaluate our system based on the following metrics:

e Bandwidth: For each node, we measure the mean ap-
plication throughput in kbps over its lifetime. To maximize
quality of the received video stream, this metric should be
as close to the source rate as possible.

e Time Between Tree Reductions: This metric mea-
sures the impact of our heuristics on the stability of the
system using the average time between reductions in the
number of connected trees a node experiences. The implicit
assumption is that the user perceived quality is dictated by
the number of trees a node is connected to so each reduc-
tion degrades the user perceived streaming quality. We re-
quire they not be frequent so this metric should be as large
as possible, or application performance will be inconsistent.
However, we should be careful while interpreting this metric

Table 2: Constitution of hosts in a 20-minute segment
for each real-world trace.

Broadcast Avg | Low High Total Peak
Event RI Speed Speed Group | Group
100Kbps | 10Mbps | Size Size
SIGCOMM2002 || 1.32 | 34% 66% 88 78
SOSP2003 1.31 | 47% 53% 95 51
Rally 0.96 | 73% 27% 401 239
Slashdot 0.87 | 66% 34% 328 156
GrandChallenge || 0.51 | 88% 12% 281 149

as it does not distinguish different types of reductions. For
example, in a forest of four trees, a reduction from four to
three trees is treated the same as a reduction from one to
zero trees. Thus a reduction does not necessarily mean a
user sees bad quality.

e Reconnection Time: When a node is disconnected from
a tree, it should be able to reconnect quickly. This may
entail preempting nodes of lower priority or locating a un-
used slot. Time between tree reductions measures how fre-
quently a user experiences a dip in performance; this metric
describes how long such dip persists.

e Utilization: Computed as the total bandwidth consumed
by all hosts over the total forwarding limits of the hosts at a
given time, the metric indicates what fraction of the system
resources are being correctly located and leveraged.

5.2 Experimental Methodology

Our study is conducted based on real-world traces ob-
tained from previous operational deployments of the ESM
Broadcasting System [6]. Each trace lasts for several hours,
and it is clearly not feasible to emulate the full duration.
Thus, for each trace, we select a twenty-minute segment with
characteristics shown in Table 2. The high-speed and low-
speed hosts are generally behind Ethernet and asymmetric
DSL/cable connections, respectively. The traces include the
join/leave patterns of different nodes, as well as estimates
of the outgoing bandwidth of each node. To quantify the
resources available in these traces, we introduce Resource
Index (RI) [6], defined as the total forwarding capacity in
the system divided by the bandwidth required for all hosts
to receive the full source rate. We classify traces with an RI
above one to be resource-rich and resource-scarce otherwise.

The primary trace we use for evaluation is the Slash-
dot trace, which is from a resource-scarce broadcast to an
interest-group where the majority of hosts are behind DSL.
SIGCOMM?2002 and SOSP2003 are broadcasts of confer-
ences, and thus have a much larger fraction of hosts behind
high bandwidth university machines; as such, they represent
resource-rich environments for comparison. GrandChallenge
is a broadcast of a vehicular competition, and Rally refers to
a broadcast of an election campaign. These traces represent
resource-scarce environments. We focus our evaluation on
the Slashdot trace and use other traces to study how sen-
sitive our systems are to various operating environments.
Figure 3 shows RI as a function of time for the five trace
segments. We emulate the traces by mapping each client
to a PlanetLab host and use the same client join/leave pat-
terns as in the trace segments to drive the experiment. Fur-
thermore, we emulate DSL/cable and Ethernet hosts with a
degree of 0.25 and 2, respectively.

For each experiment, four multicast trees are formed. Al-
though one could improve the granularity of bandwidth dis-
tribution by using more trees to produce smaller stripes, the

417

>
=3
=
@
(=]
=
o
w
L o6t b

RO AR, PO o bnaamtP e L L

SIGCOMM2002

0.4 r SOSP2003

Rally

02 | Slashdot

-)) GrandChallenge -
o 200 400 600 800 1000 1200

Time (Seconds)

Figure 3: Resource Indices for real-world traces in a
20-minute segment. Traces with an RI above 1 are con-
sidered resource-rich and resource-limited otherwise.

network and video-codec overheads increase with the num-
ber of trees. We consider four trees small enough to be
efficient, while large enough to provide reasonable flexibility
in varying the bandwidth. We use a source data rate of 400
kbps, a typical size of streaming videos on the Internet [6].
The source streams a stripe of 100 kbps to each tree. The
clients already present before the start of the segment join
the broadcast in a burst and begin contributing in the their
respective Contributor trees. We allow them 2 minutes to
reach a steady state, after which the rest of the clients follow
the join/leave patterns in the trace for the next 20 minutes,
and experimental data is collected over that period.

We consider hosts with mean contributions greater than
700 kbps to be High Contributors (HC) and those with mean
contributions between 75 and 100 kbps to be Low Contribu-
tors (LC). This splits hosts with various contribution levels
into two groups and helps us evaluate them separately. Each
result is aggregated or averaged over three runs with a con-
sistent set of PlanetLab machines. When presenting results
in the next section, we filter out hosts which stay for less
than 2 minutes to highlight the results for hosts which par-
ticipate for a reasonable amount of time. We will study the
impact of node stay time in Section 6.2.

6. EXPERIMENTAL RESULTS

We begin by showing the behavior of a typical host under
the Cont-Aware system in a resource-scarce environment us-
ing the Slashdot trace in Section 6.1. Next, under the same
setting, we compare the performance and average time be-
tween reductions in the number of trees of hosts in Cont-
Aware to those in Cont-Agnostic in Section 6.2 and Sec-
tion 6.3, followed by a detailed evaluation of various key
design components in Section 6.5. Section 6.6 explores how
Cont-Aware behaves in different operating environments.

6.1 Results with a Typical Run

Figure 4 shows the performance of a typical high con-
tributor in our system. The node begins by making zero
contribution and connecting to its Contributor tree. Over
the next minute, the number of children the node supports
goes from zero to eight. As the number of adopted children
increases, the number of successfully connected trees also in-
creases quickly, as the node becomes entitled to them. The
actual performance fluctuates due to the fact that ESM uses
non-blocking TCP to transfer data across each overlay link,
leading to burstiness on the received bandwidth.

800

700

600

500

400

Bandwidth(Kbps)

300

200

projected performance

100 actual performance - 1
oL . . . _transient contribution -s-sseeeeeer
(0] 50 100 150 200 250 300 350 400 450

Time(sec)

Figure 4: Behavior of a typical high contributor under
Cont-Aware. The top curve shows the bandwidth con-
tributed, the solid curve shows the Entitled bandwidth,
and the dashed line shows the actual bandwidth received.

100 p . T T T T T
Cont-Aware
Cont-Agnostic ===

80 r p
2 60 | i
5)
<3
e ;
& o i B

."'
20 - , J
o . R — eenes ‘ ‘
o 50 100 150 200 250 300 350 400

Average Bandwidth Received (kbps)

Figure 5: Cumulative distribution of average received
bandwidth for high contributors.

Note that because we smooth away transient drops in con-
tribution, the sudden loss of children between 255 and 300
seconds does not impact performance, and the node quickly
acquires new children. The node is briefly disconnected from
one tree at 250 seconds as shown by a 100 kbps dip of the
solid line. This is due to the departure of the node’s parent.
However, because the node is contributing significantly to
the system, the recovery time is very brief — the node finds
a new location in the tree in under 6 seconds.

6.2 System Performance

In this section, we would like to evaluate how well Cont-
Aware leverages the system resources and distributes them
based on the contribution of each host as compared to Cont-
Agnostic. In particular, hosts with similar contributions
should see similar performance; hosts with higher contri-
butions should see equal or better performance than those
with lower contributions.

Figure 5 plots the cumulative distribution of the mean
session bandwidth of high contributors for the two schemes:
Cont-Aware and Cont-Agnostic. There are two curves, each
corresponding to one scheme. The y-axis is the CDF and
the x-axis is the mean bandwidth ranging from 0 to 400 kbps
(i.e. source rate). The more a curve is toward the right, the
better the overall performance is. Cont-Aware significantly
improves the performance of high contributors with 80% of
them receiving the source rate of 400 kbps. Cont-Agnostic
however allows only 20% of high contributors to receive the
source rate. Furthermore, almost all high contributors un-

418

100 ‘ N T T T T T
Cont-Aware
Cont-Agnostic ===
s
80 - Ve
g
&
ke
:'i:) 6o r ’.-' .
= y
3 P
<4 P
& 40 | [- |
&
"’J
20 L |
.f";
----- ”"
o s - ‘ ‘ ‘
[0] 50 100 150 200 250 300 350 400

Average Bandwidth Received (kbps)

Figure 6: Cumulative distribution of average received
bandwidth for low contributors.

der Cont-Aware obtain bandwidth greater than 350 kbps
whereas Cont-Agnostic does much worse, with only half of
high contributors receiving more than 350 kbps. By prior-
itizing high contributors, Cont-Aware allocates about two
more stripes to each high contributor than Cont-Agnostic.

While Figure 5 plots the mean bandwidth CDF for high
contributors alone, Figure 6 plots the same type of graph,
but for low contributors. We see that with Cont-Agnostic,
almost all low contributors receive anywhere from 100 kbps
up to the source rate. Cont-Aware reduces this spread to
200-350 kbps, bringing the performance of all low contrib-
utors toward the mean. This shows Cont-Aware enables
nodes contributing similarly to receive similar bandwidth.
To quantify this observation, we compute the mean and
standard deviation of both curves and find that although
low contributors in both schemes receive a mean bandwidth
around 300 kbps, with Cont-Aware, the standard deviation
significantly drops from 80.5 to 34.8.

When looking at Figure 5 and 6 together, we see Cont-
Agnostic gives high and low contributors a similar allocation
pattern while Cont-Aware treat high contributors more fa-
vorably. Figure 5 also suggests Cont-Aware reduces the per-
formance spread for high contributors. Furthermore, all low
contributors under Cont-Aware receive at least one stripe
of 100 kbps. Thus we conclude that our contribution-aware
heuristics achieve equitable and differential distribution of
bandwidth based on nodes’ contributions while offering some
minimum guarantee on performance for low contributors.
This offers incentives to nodes to contribute more and keep
low contributors stay interested in the broadcast.

One question is whether it is possible to make the dis-
tribution among low contributors in Cont-Aware even more
equitable, in which case most of them should receive closer to
the average bandwidth of 300 kbps — for example, 8% of the
low contributors receive less than 250 kbps. We see various
reasons for this. First, we are limited by the granularity im-
posed by the multi-tree framework, and more equality could
result if more trees are created. Second, some clients are lim-
ited by the bandwidth near them — further, there are issues
related to our experimental artifact as several clients may be
mapped to the same PlanetLab machine and compete for in-
coming bandwidth, causing them to under-perform. Third,
there are convergence issues: short-lived low contributors
do not remain in the system long enough to connect to their
Ezxcess trees, and due to the distributed nature of the sys-
tem, resources are not always quickly located. In an extreme
case, an FEzcess node which fails frequently on consecutive

100

>Omih i j T T T T
>2min -
>5min -
80 r |
2 60 - |
=
3
=4
& a0t 7
20 - f |
(o] .) A ‘ |
o 50 100 150 200 250 300 350 400

Average Bandwidth Received (kbps)

Figure 7: Cumulative distribution of received band-
width for LC staying for more than 0, 2, and 5 minutes.

80

Cont-Aware |
Cont-Agnostic --

70 |
60 | g]

50 ; J

40 ,. i

Percentile

30 |

20 | 1
10 + e B

(0] 100 200 300 400 500
Average Time (sec) between Tree Disconnections

600

Figure 8: Cumulative distribution of time between
tree reductions for all nodes.

connection attempts may work up to a large backoff time,
meaning they may never attempt to acquire a parent before
they leave the system.

Figure 7 further studies the convergence issues. Each
curve corresponds to the performance for low contributors
staying longer than X minutes, with X being 0, 2, and 5
minutes. The middle curve is the same as the Cont-Aware
curve in Figure 6. As we can see, there is a minor improve-
ment in the performance of the tail when longer-lived nodes
are considered, however the impact of stay time on perfor-
mance is negligible overall.

6.3 Time between Tree Reductions

We wish to show a node’s received bandwidth is not fre-
quently interrupted by measuring the time between reduc-
tions in the number of connected tree. Figure 8 shows the
CDF of time between reductions in the number of connected
trees for all nodes. We truncate the x-axis at 600 seconds,
since nodes with fewer than one reduction in 10 minutes are
considered stable. The higher the curve, the less stable the
system is, since a greater percentage of nodes experience a
smaller time between reductions in the number of connected
tree. Although Cont-Aware appears to produce less consis-
tent performance for all nodes, it does not necessarily imply
users see bad performance due to two reasons.

First, the curve does not distinguish between different
types of reductions. For example, a reduction from four
to three trees is treated the same as a reduction from two
to one trees. Table 3 shows a breakdown of different types
of reductions in the number of connected trees. We see that
for Cont-Aware, only 2.5% of reductions are from two to one

419

Table 3: Breakdown of different types of reductions in

the number of connected trees.
Reduction Cont-Agnostic_[| Cont-Aware |
from—to LC [HC ['LC [HC |
1 — 0 trees [[0.8% 0% 0% 0.1%
2 — 1 trees || 4.0% 3.1% 2.1% 0.3%
3 — 2 trees || 15.6% | 13.8% || 31.6% | 2.5%
4 — 3 trees 29.6% | 33.1% 16.3% | 47.1%
20
80.82
80 |
E 69.83
g 70 - 65.26
© 60
E 53.08
§40 L @ Cont-Aware
g
& 30
[}
& 20
2
< 10
o
HC LC OVERALL

Figure 9: Average post-preemption reconnection time
in seconds for nodes in different contribution levels.

trees and virtually none from one to zero trees whereas for
Cont-Agnostic, almost 8% of reductions are of these types.
We can also observe that almost all reductions high contrib-
utors in Cont-Awareexperience are from four to three trees,
which have very little impact on application performance.
In contrast, such preferential treatment for high contribu-
tors is not obvious under Cont-Agnostic. Second, we find
that 90% of reduction result from preemptions rather than
from parent departures, and Cont-Aware allows preempted
nodes to reconnect much faster. Figure 9 shows a breakdown
of average reconnection time after preemptions. We see that
by considering node contribution, the reconnection time for
both groups of nodes are reduced, and the reconnection time
for high contributors is much shorter than low contributors.
In particular, the reconnection time of high contributors in
Cont-Aware is only 1/11 of that in Cont-Agnostic. In Cont-
Agnostic, a node which is preempted cannot preempt an-
other node. In contrast, since Cont-Aware establishes finer
prioritization levels among nodes, a preempted node can of-
ten quickly find a new location in the tree, and the cost of
preemption is much cheaper.

To further understand why Cont-Aware reduces the re-
connection time, Table 4 compares different types of pre-
emptions that may occur based Table 1 and how long the
preempted node remains disconnected. In particular, there
are three types of preemptions:

e EN by EN: An FEntitled node may be preempted by an-
other Entitled node of higher priority. Such type of preemp-
tion improves the tree structure by accepting a node which
contributes more. The preempted node is also entitled to
the tree and should reconnect quickly.

¢ EX by EN: An FEntitled node may preempt an Ezcess
node. This type of preemption is not quickly recovered from,
but since the node was not entitled to the tree in which it
was preempted, the loss of performance is less significant.

¢ EX by EX: An Ezcess node may be preempted by another
Excess node. They take place in order to effect equitable per-
formance. An FEzcess node receiving many FEzcess trees will

Table 4: Breakdown of number of preemptions for each
preemption type and the average reconnection times fol-
lowing each type of preemption.

Type HC | LC Overall | Avg Recon Time
EN by EN || 164 | 307 508 5.95

EX by EN || 86 1449 | 1591 50.51

EX by EX || 19 735 784 71.44

be preempted by an excess receiving few, thereby equalizing
their bandwidth. If a preempted excess was receiving too
many trees, these preemptions should not recover quickly.

In Table 4, we see that the reconnection time following
each type of preemption are consistent with our predictions.
An Entitled node reconnects quickly after a preemption. An
Ezcess node preempted by an Entitled node does not quickly
reconnect. An Fzcess node which is receiving in too many
trees and is preempted does not recover quickly at all. We
have also observed that most preemptions among high con-
tributors are of the first type, since they are entitled to all
four trees most of the time. These preemptions occur when
few Excess nodes exist in the system. In this case, a Contrib-
utor sometimes will preempt an Entitled-NC. With a recon-
nection time under 6 seconds, such types of preemption are
acceptable. We also see that some high contributor preemp-
tions take place while the high contributor is an Ezcess in a
tree; this situation primarily occurs at the beginning of the
high contributor’s lifetime, before it begins to contribute.

Most preemptions are of the second type, since under
resource-scarce environments like Slashdot, most Entitled
nodes are required to connect by preempting other nodes.
Since an Entitled node prefers to preempt an Ezcess node
rather than anther FEntitled node, the more trees a node is
entitled to, the more stable it will be. This ensures nodes are
generally connected in their Entitled trees for an extended
period of time.

6.4 Utilization

In resource-scarce Slashdot environment, Cont-Agnostic
utilizes 95% of the resources in average, whereas the utiliza-
tion of Cont-Aware is about 93%, demonstrating that our
heuristics does not adversely impact the efficiency of ESM in
locating and leveraging the available resources despite with
numerous backoffs and preemptions taking place.

6.5 System Dissection

In this section, we evaluate the impact of various heuris-
tics in Cont-Aware. We wish to demonstrate the value added
by each heuristic and better understand its contribution to
the improved performance.

6.5.1 Smoothing Schemes

The goal of smoothing is to enable hosts to experience less
frequent reductions in the number of connected trees by not
overreacting to global and local transients. In this section,
we study three smoothing policies: No-Smooth, Smooth,
and SmoothDown-Only, and explain why our heuristics pick
SmoothDown-Only over the other two schemes to compute
the estimated number of Entitled trees, T;,,,. Using the no-
tations defined in Section 3.1.2, we first define each policy:
e No-Smooth: No smoothing at all (i.e. T;,.,, =
regardless of how abruptly T5_,,, . changes.

e Smooth: Always smooth by using Equation (2) to calcu-
late T;,., whenever T; changes.

isa,”m,ple)7

sample

420

60

"No-Smooth
Smooth -

50 | SmoothDown-Only -

40
2
€
1] 30
>
o

20

10

o =] . . .

(0] 100 200 300 400 500 600

Average Time (sec) between Tree Disconnections

Figure 10: Comparison of time between tree reduc-
tions for high contributors under different smooth-
ing schemes.

100 . i
Backoff
No-Backoff =sssssseeen
80 -
2 60 -
=
3
1=
& 40 +
20
0 w ‘ ‘ ‘ ‘
(o] 50 100 150 200 250 300 350 400

Average Bandwidth Received (kbps)

Figure 11: Cumulative distribution of received band-
width for all nodes under different backoff schemes.

e SmoothDown-Only: Smooth by using Equation (2) to
calculate T;, , only when T;_,, ., decreases.

Our results show that, regardless of the smoothing schemes
used, low contributors see similar low time between reduc-
tions in the number of connected trees. Figure 10 plots CDF
of the average time between reductions in the number of con-
nected trees for high contributors. We see that No-Smooth
does not perform well because T;,,, fluctuates with 75, .
whereas Smooth is as bad because it does not quickly reward
nodes whose contributions go up. SmoothDown-Only signif-
icantly increases the stability for high-contributors over the
other two scheme because many decreases in T;,,,, . are
caused by transient situations, such as a child departure, in
which case another child will be acquired quickly in highly-
utilized resource-scarce environments.

est

6.5.2 Backoff Schemes

In this section, we first justify why we incorporate the
backoff mechanism in Cont-Aware. Then we investigate why
it is beneficial to adding the scaling factor, Tj,, ..., in the
computation of the backoff timer. We first define three vari-
ations of backoff policies:

e No-Backoff: No backoff at all. A disconnected Ezxcess
node immediately attempts to reconnect.

e Backoff: When failing to connect, backoff using the timer
computed by Equation (3).
e Backoff w/o Ti.,....:
off using timer computed by Equation (3) with
moved.

Benefit of Backoff: We now examine whether Ezcess nodes

When failing to connect, back-
T re-

lexcess

100 T

NO-Backoff e
Backoff w/o Tiexcess --
Backoff
80 [
@ 60 |]
=
3
1=}
& 40 1
20 | 1
O ¥ L L L L L
(0] 100 200 300 400 500 600
Average Time (sec) between Tree Disconnections
Figure 12: Cumulative distribution of time between tree
reductions for all nodes under different backoff schemes.
1.4 - E
1.2 R
>
(<)
o
=
[}
e
=]
o
(2]
D
o
0.4 - TreeQ -------- b
Treel
2+ Tree2 i
0 Tree3 -------
o))) perfeqt balance‘
(0] 200 400 600 800 1000 1200

Time (Seconds)

Figure 13: Comparison of resource indices in each tree
as compared to perfect load balancing.

should backoff when they are unable to connect by compar-
ing two systems: Backoff and No-Backoff. In Figure 11,
we observe that although No-Backoff improves the overall
performance slightly, Figure 12 shows that Backoff signifi-
cantly improves system stability. Since the environment we
consider is resource-scare, Fzxcess nodes are very likely be
preempted. By trying less frequently to connect to an Fz-
cess tree unless more resources are available, an Ezcess node
is less likely to be quickly preempted, leading to less frequent
reductions in the number of connected trees.

Counsider T;,,..,, in Backoff Timer: In Backoff, in addi-
tion to double the backoff timer after each consecutive fail-
ure in connection attempts for an Fzcess node, the backoff
time is scaled by the number of Excess trees the node is cur-
rently connected, T;_,...,- Figure 12 compares the stability
of Backoff w/o T;.,.... with Backoff. We see that Backoff
leads to a more stable system than Backoff w/o T;.,.... by
forcing peers receiving in more Ezcess trees to wait longer
before the next reconnection attempt because even if they
get connected, they are likely to be immediately preempted
by other Fzcess nodes with a lower T;

excess

6.5.3 Load Balancing

We believe that choosing to balance the number of Ez-
cess nodes in each tree would approximately balance the
resources in each tree in resource-scarce environments. Fig-
ure 13 plots four dashed curves showing the resource index
for each tree over time. The solid line represents the ideal
RI over time if we have perfect balancing. Although at some
instant, the RI for each tree deviates from the ideal curve,

421

O HC - Cont-Agnostic
D HC - Cont-Aware

m Overall - Cont-Agnostic
m Overall - Cont-Aware

Average Bandwidth Received (kbps)

s 3 & & 5
bo@\e & o@@ 5
o =&
Figure 14: 10th-percentile of received bandwidth for
high contributors and all nodes in each trace.
1400
M Cont-Agnostic
1200
O Cont-Aware
1000
800

Average Time between Disconnections (sec)

600 |-
400 |
o W
0

GrandChallenge Slashdot Rally SIGCOMM2002 SOSP2003

Figure 15: Median of average time between tree reduc-
tions for all nodes in each trace.

the resources each tree have remain close to perfect balanc-
ing for the most of the duration. Thus, we conclude that our
heuristics maintain trees in reasonable balance in resource-
scarce environments.

6.6 Sensitivity to Trace

In this section, we evaluate our contribution-aware heuris-
tics under environments with varying resource levels by us-
ing five different traces. We include Slashdot among these
for comparison to results in previous sections.

Figure 14 shows the 10th-percentile performance of the
entire set of nodes and high contributors across each trace
for Cont-Aware and Cont-Agnostic. That is, 90% of all
nodes see better performance than the numbers presented
here. The traces are ordered based on their resource in-
dices, with the lowest RI on the very left. The three traces
on the left are resource-scarce whereas the two on the right
are resource-rich. Each trace has 4 bars, with 2 bars for
high contributors and 2 bars for all nodes in Cont-Aware
and Cont-Agnostic. For resource-scarce traces, our heuris-
tics offer improved tail performance for all nodes and high
contributors alone. The significant improvement for high
contributors confirm that they are prioritized for resources
in Cont-Aware whereas improvement for all nodes implies
their received bandwidth is pulled toward the mean. For
resource-rich traces, we see similar performance — everyone
successfully receives the source rate.

In Figure 15, we examine the sensitivity of the average
time between reductions in the number of connected trees to
different traces by comparing the median value of all nodes.

OHC - Cont-Agnostic
O HC - Cont-Aware
M LC - Cont-Agnostic
HLC - Cont-Aware

100

80

60
40

Ahh..

20
Slashdot Rally SIGCOMM2002 SOSP2003

Average Reconnection Time (sec)

GrandChallenge

Figure 16: Average post-preemption reconnection time
for high contributors and all nodes in each trace.

Notice that for resource-scarce traces, Cont-Aware causes
nodes to experience reductions more frequently. In resource-
rich environments, reductions are infrequent for both as
most nodes can connect to empty slots.

Finally, we compare the reconnection time after preemp-
tions in Figure 16. Note that for all resource-scarce envi-
ronments our heuristics significantly improve reconnection
time for both high and low contributors. In resource-rich
environments, we offer substantially similar recovery time.

7. SUMMARY

In this paper, we present the design and implementation
experience of an overlay broadcasting system targeted at
environments where not all nodes can receive the source
rate and node contributions are heterogeneous. To incenvi-
tizes nodes to increase their contributions, the system is
contribution-aware: it distributes more bandwidth to nodes
which contribute more. We have conducted a detailed eval-
uation of the system on PlanetLab using traces from real

broadcasts, which helps demonstrate the benefits of the heuris-

tics we introduce. When compared with contribution-agnostic
system, our results indicate that in resource-scarce environ-
ments, our contribution-aware system can improve the 10th-
percentile performance of all nodes and high contributors
alone by 2-35% and 10-240%, respectively. The system also
distributes the available bandwidth more equitably among
nodes of similar contributions. For example, in one trace,
bandwidth received by 90% of low contributors is within 100
kbps of the mean. Although nodes in our system suffer tree
reductions a little more frequently, they require only 70% as
much time to recover. We believe these results are promis-
ing and display the potential to extend overlay broadcasting
toward ubiquitous deployment in mainstream Internet.

8. REFERENCES
(1

S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable
Application Layer Multicast. In Proceedings of ACM
SIGCOMM, Aug. 2002.

S. Buchegger and J. Boudec. A robust reputation system for
p2p and mobile ad-hoc networks. In Proceedings of the Second
Workshop on Economics of Peer-to-Peer Systems, June 2003.
M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh. SplitStream: High-bandwidth Content
Distribution in Cooperative Environments. In Proceedings of
SOSP, 2003.

M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron.
Scribe: A Large-Scale and Decentralized Application-Level
Multicast Infrastructure. In IEEE Journal on Selected Areas
in Communications Vol. 20 No. 8, Oct 2002.

(2]

(3]

(4]

422

5]

(6]

(7]

(13]

[14]

(18]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

(27]

P. Chou, H. Wang, and V. Padmanabhan. Layered Multiple
Description Coding. In In Proceedings of Packet Video
Workship, 2003.

Y. Chu, A. Ganjam, T. S. E. Ng, S. G. Rao,

K. Sripanidkulchai, J. Zhan, and H. Zhang. Early Experience
with an Internet Broadcast System Based on Overlay
Multicast. In Proceedings of USENIX, June 2004.

Y. Chu, S. G. Rao, and H. Zhang. A Case for End System
Multicast. In Proceedings of ACM Sigmetrics, June 2000.

D. Dutta, A. Goel, R. Govindan, and H. Zhang. The design of
a distributed rating scheme for peer-to-peer systems. In
Proceedings of the First Workshop on Economics of
Peer-to-Peer Systems, June 2003.

Esm broadcast system. http://esm.cs.cmu.edu/.

P. Francis. Yoid: Extending the Internet Multicast
Architecture. Apr 2000.

V. K. Goyal. Multiple Description Coding: Compression Meets
the Network. IEEE Signal Processing Magazine, Vol. 18,
pages 74-93, 2001.

Y. hua Chu, J. Chuang, and H. Zhang. A case for taxation in
peer-to-peer streaming broadcast. In PINS ’04: Proceedings of
the ACM SIGCOMM workshop on Practice and theory of
incentives in networked systems, pages 205-212, New York,
NY, USA, 2004. ACM Press.

J. Jannotti, D. Gifford, K. L. Johnson, M. F. Kaashoek, and
J. W. O. Jr. Overcast: Reliable Multicasting with an Overlay
Network. In Proceedings of the Fourth Symposium on
Operating System Design and Implementation (OSDI), Oct.
2000.

D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet:
High Bandwidth Data Dissemination Using an Overlay Mesh.
In Proceedings of SOSP, 2003.

H. T. Kung and C.-H. Wu. Differentiated admission for
peer-to-peer systems: Incentivizing peers to contribute their
resources. In Proceedings of the First Workshop on
Economics of Peer-to-Peer Systems, June 2003.

J. Liebeherr and M. Nahas. Application-layer Multicast with
Delaunay Triangulations. In Proceedings of IEEE Globecom,
Nov. 2001.

V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai.
Distributing Streaming Media Content Using Cooperative
Networking. In Proceedings of NOSSDAV, May 2002.

D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI:
An Application Level Multicast Infrastructure. In Proceedings
of 3rd Useniz Symposium on Internet Technologies €
Systems (USITS), March 2001.

S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Application-level Multicast using Content-Addressable
Networks. In Proceedings of NGC, 2001.

A. Rowstron and P. Druschel. Pastry: Scalable, Distributed
Object Location and Routing for Large-Scale Peer-to-Peer
Systems. In IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), 2001.

K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang. The
Feasibility of Supporting Large-Scale Live Streaming
Applications with Dynamic Application End-Points. In
Proceedings of ACM SIGCOMM, 2004.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and

H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. In Proceedings of ACM
SIGCOMM, 2001.

Tmesh broadcast system.
http://warriors.eecs.umich.edu/tmesh/tmeshv.html.

W. Wang, D. Helder, S. Jamin, and L. Zhang. Overlay
Optimizations for End-host Multicast. In Proceedings of
Fourth International Workshop on Networked Group
Communication (NGC), Oct. 2002.

X. Zhang, J. Liu, B. Li, and T.-S. P. Yum.
DONet/CoolStreaming: A Data-driven Overlay Network for
Live Media Streaming. In Proceedings of IEEE INFOCOM,
2005.

B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An
Infrastructure for Wide-area Fault-tolerant Location and
Routing. U. C. Berkeley Technical Report
UCB//CSD-01-1141, Apr 2000.

S. Q. Zhuang, B. Y. Zhao, J. D. Kubiatowicz, and A. D.
Joseph. Bayeux: An Architecture for Scalable and
Fault-Tolerant Wide-Area Data Dissemination. In Proceedings
of NOSSDAV, Apr. 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

