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ABSTRACT
Due to the limitation of peer upload capacities and high bandwidth
demand of multimedia applications, optimal peer selection to con-
struct high-quality streaming topology represents a major challenge
in peer-to-peer streaming. In this paper, we propose a fully dis-
tributed algorithm to achieve optimal peer selection and streaming
rate allocation, which minimizes end-to-end latencies in the stream-
ing sessions. We design this efficient distributed algorithm based
on the solution to a linear optimization model, which optimizes to-
wards a latency-related objective to decide the best streaming rates
among peers. Combining this optimal peer selection algorithm with
our coding scheme based on rateless codes, we obtain a complete,
fully decentralized minimum-delay peer-to-peer streaming scheme.
Our scheme is resilient to network dynamics that is characteristic
in peer-to-peer networks. The validity and effectiveness of our ap-
proach are demonstrated in extensive simulations.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed Applications; H.3.5 [Information Storage and
Retrieval]: Online Information Services—Data sharing

General Terms
Algorithms, Design, Performance

Keywords
Peer-To-Peer, Media Streaming, Peer Selection, Optimization, Rate-
less Codes

1. INTRODUCTION
The limited bandwidth capacities in peer-to-peer networks pose

a significant technical challenge in peer-to-peer media streaming.
As nodes in peer-to-peer networks reside at the edge of the Inter-
net, they usually have limited availability of upload and download
capacities. In addition, due to peer heterogeneity, the available per-
node bandwidth may differ by at least an order of magnitude. For
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delay-sensitive media streaming applications, the typical streaming
bit rates in modern streaming codecs must be accommodated for
all the peers in a streaming session, in order to ensure their uninter-
rupted streaming playback. Therefore, it is typical for a peer node
to parallelly download from multiple upstream peers, in order to
improve the overall bandwidth availability. In this case, a critical
question arises: What is the best way for the peer nodes to select the
upstream peers and allocate the streaming rates among the selected
peers, such that a specified aggregate streaming bit rate is satisfied
and the end-to-end latencies are minimized at the receivers? It is a
nontrivial problem to obtain a feasible peer selection and stream-
ing rate allocation strategy which guarantees all requesting peers
can acquire the streaming bit rate of the session, not to mention that
which minimizes end-to-end latencies.

When the streaming rates from selected upstream peers have
been optimally allocated, the next question to answer is how to
assign the media contents to be delivered along each link. In the
constructed mesh streaming topology featuring parallel retrievals,
there are always risks that the same contents may be unnecessar-
ily supplied by multiple upstream peers. Therefore, the peer nodes
need to reconcile differences among the sets of content segments
they hold. A content assignment scheme, which schedules which
content segment to retrieve from which upstream peer, needs to be
designed to minimize the delivery redundancy [7, 22].

This paper focuses on tackling the former problem: We first for-
mulate the optimal peer selection problem as a linear optimization
problem, which guarantees bandwidth availability and minimizes
streaming latencies; We then design an efficient and decentralized
algorithm to solve the problem, based on the Lagrangian relaxation
technique and the subgradient algorithm. The main contribution
of the paper is the derived optimal peer selection algorithm, which
computes the optimal streaming rates on the peer-to-peer links in
a fully decentralized and iterative fashion. Our algorithm is also
reactive to network dynamics, including peer joins, departures and
failures.

In our previous work [21], we have proposed an efficient cod-
ing scheme based on rateless codes to address the later problem
of delivery redundancy and reconciliation. Based on the loss re-
silience and “ratelessness” properties of rateless codes, our scheme
provides excellent resilience to network dynamics, and guarantees
that no duplicated contents exist in the network. This completely
eliminates the need for set reconciliation and content assignment
on the links, which otherwise involves high computation and mes-
saging overhead [7].

Combining the optimal peer selection algorithm with the rateless-
code coding scheme, we are able to derive a complete resilient and
optimal peer-to-peer streaming solution.
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The remainder of this paper is organized as follows. In Sec. 2,
we formulate the minimum-delay optimal peer selection problem
as a linear optimization problem, and analyze its combination with
the rateless-code coding scheme. In Sec. 3, we present the efficient
distributed algorithm to solve the problem and compute the optimal
streaming rates over the links. We show the adaptation of the algo-
rithm to peer dynamics in Sec. 4. Simulation results are presented
in Sec. 5. We discuss related work and conclude the paper in Sec. 6
and Sec. 7, respectively.

2. PROBLEM FORMULATION
In this paper, we consider a peer-to-peer streaming session with

one streaming source and multiple participating receivers (Fig. 1).
A subset of the receivers retrieve the media contents directly from
the source, while the others stream from one or more receivers in
the upstream. When a new peer joins the session, it is bootstrapped
with a list of known peers in the session, who may serve as the
initial set of upstream peers. This constructs the initial mesh over-
lay topology for the streaming session. Such a mesh topology can
be modeled as a directed graph G = (N,A), where N is the set
of vertices (peers) and A is the set of directed arcs (directed over-
lay links). Let S be the streaming source, and let T be the set of
receivers in the streaming session. We have N = S ∪ T .

S

t1

t2

t3

t4

Figure 1: An example of the peer-to-peer streaming network
model: S - the streaming source, t1, t2, t3, t4 - the receivers.

Our objective is to stream live multimedia contents, coded to a
constant bit rate bitstream with a current generation codec such as
H.264/AVC, H.263 or MPEG-4. For such live media streaming ap-
plications, a minimized end-to-end latency at each receiver is sig-
nificant to guarantee the high liveness of the streaming media, as
also emphasized by existing work [20, 3]. Therefore, it is desirable
to design an optimal peer selection strategy that constructs an op-
timal streaming topology, on top of which the end-to-end latencies
at all receivers are minimized.

In the following, we set up linear programming models to ad-
dress the optimal peer selection problem. We formulate the objec-
tive functions to reflect the minimization of streaming latencies at
the receivers, and the constraints to reflect the capacity limitations
in the peer-to-peer network. We first formulate the linear program
for the single session streaming case, and then give its extension to
the multiple session streaming case. We motivate our LP formula-
tions by analyzing a unicast streaming session from the streaming
source to a receiver.

2.1 LP for unicast streaming
The unicast flow from the streaming source to a receiver is a stan-

dard network flow following the nice property of flow conservation
at each intermediate node. Let r be the end-to-end streaming rate
of this unicast flow, cij be the delay and fij be the streaming rate
on the link (i, j). Fig. 2(a) depicts an example of a unit unicast
flow from S to t4 in the network as shown in Fig. 1, with r = 1,
cij = 1, ∀(i, j) ∈ A and the streaming rates fij labeled on the

arcs. As shown in this example, a unicast flow may flow along
multiple peer-to-peer paths from the source to the receiver. Thus
it can be viewed as composing of multiple fractional flows, each
going along a different path. Notice that different paths may share
some peer-to-peer links and the streaming rate on each common
link is the sum of the rates of all fractional flows that go through
the link. Fig. 2(b) illustrates the decomposition of the unit unicast
flow into three fractional flows, with the rates of 0.2, 0.3 and 0.5
respectively.
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(a) a unicast flow (b) three fractional flows
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Figure 2: An example of a unicast flow from S to t4 and its
decomposition into three fractional flows.

For the receiver of such a unicast flow, we calculate its average
end-to-end latency, as the weighted average of the end-to-end la-
tencies of all the fractional flows. The weight for the delay of each
fractional flow is the portion of its flow rate in the aggregate unicast
flow rate. For the example shown in Fig. 2, the delays of the three
paths are 3, 3 and 2 respectively, and thus the average end-to-end
latency is 0.2 × 3 + 0.3 × 3 + 0.5 × 2. We further notice that

0.2 × (1 + 1 + 1) + 0.3 × (1 + 1 + 1) + 0.5 × (1 + 1)

= 1 × (0.2 + 0.5) + 1 × 0.3 + 1 × 0.2 + 1 × 0.5 + 1 × 0.3

+1 × (0.2 + 0.3)

= 1 × 0.7 + 1 × 0.3 + 1 × 0.2 + 1 × 0.5 + 1 × 0.3 + 1 × 0.5

=
X

(i,j)∈A

cijfij/r.

For the general case, we prove
P

(i,j)∈A cijfij/r also represents
the average end-to-end delay of a unicast flow, as in the following
proposition.
Proposition. Let r be the end-to-end streaming rate of a unicast
session, cij be the delay and fij be the streaming rate on the link
(i, j), ∀(i, j) ∈ A.

P
(i,j)∈A cijfij/r represents the average end-

to-end delay of this unicast flow.
Proof: Let P be the set of paths from the streaming source to the
receiver in the session. Let f (p) be the rate of the fractional flow
going along path p ∈ P . The average end-to-end latency at the
receiver is

X
p∈P

f (p)

r
(

X
(i,j):(i,j) on p

cij)

=
1

r

X
(i,j)∈A

cij(
X

p:(i,j) on p

f (p))

=
1

r

X
(i,j)∈A

cijfij .

Based on this formulation of the average end-to-end latency, we
formulate the peer selection and streaming rate allocation problem
for the unicast streaming into the following linear program. Here
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uij is the capacity of the link (i, j). Since r is a constant end-to-
end streaming rate, we omit it and use

P
(i,j)∈A cijfij to reflect

the average end-to-end latency.

min
X

(i,j)∈A

cijfij (1)

subject toP
j:(i,j)∈A fij − P

j:(j,i)∈A fji = bi, ∀i ∈ N,

0 ≤ fij ≤ uij , ∀(i, j) ∈ A,

where

bi =

8<
:

r if i = S,
−r if i = t,
0 otherwise.

We can see this is a standard minimum cost flow problem. Practi-
cally, by minimizing the average end-to-end delay, we allocate the
streaming rates in such a way that high end-to-end latency links,
such as satellite and transcontinental links, are avoided as much
as possible. When cij’s (∀(i, j) ∈ A) are of similar magnitude,
we are minimizing the average hop count of the receiver from the
streaming source in the network.

We call the optimal unicast flow decided by this linear program a
minimum-delay flow. This minimum-delay flow is useful for mini-
mum delay multicast streaming in the peer-to-peer network, in that
the multicast streaming flow with minimum delays from the source
to all receivers can be viewed as consisting of multiple minimum-
delay flows. Here we make use of the concept of conceptual flow
introduced in [12]. A multicast flow is conceptually composed of
multiple unicast network flows from the sender to all receivers.
These conceptual flows co-exist in the network without contend-
ing for link capacities, and the multicast flow rate on a link is the
maximum of the rates of all the conceptual flows going along this
link. For the peer-to-peer streaming example shown in Fig. 1, the
multicast streaming flow from S to t1, t2, t3 and t4 can be under-
stood as consisting of four conceptual flows from S to each of the
receivers. When each conceptual flow is a minimum-delay flow, the
end-to-end delays of the multicast session are minimized. Based on
this notion, we formulate the linear optimization model for the opti-
mal peer selection and rate allocation problem for our peer-to-peer
streaming model.

2.2 Single session case
We first consider the case of single session peer-to-peer stream-

ing. A linear program is formulated to obtain the optimal peer se-
lection strategy, with the objective of minimizing the overall end-
to-end streaming delays from the source to all receivers.

Let r be the end-to-end streaming rate of the session. In order
to cope with packet loss and the inherent unreliability of peers in
a peer-to-peer network, we stream the media at an end-to-end rate
that is slightly higher than r. With a tolerance factor α (α ≥ 1
and the actual streaming rate is set to be αr), a receiver can still
receive at a rate at least r for a continuous playback, even with
packet loss and peer failures. The value of α can be dynamically
adjusted based on the dynamics of the peer-to-peer network in prac-
tice, which we will discuss in Sec. 4.

In our linear program, we consider the upload and download ca-
pacity constraints at each peer, rather than link capacity constraints.
This comes from the observations that overlay links in a peer-to-
peer network are usually correlated for sharing certain underlying
physical links, and thus individual overlay link capacities are sub-
ject to changes due to the traffic dynamics. Furthermore, bandwidth

bottlenecks usually occur on the “last-mile” links, and by limiting
the total upload and download capacities at each peer, we take this
into consideration.

In the following linear program, f t denotes the conceptual flow
from S to a receiver t, ∀t ∈ T . f t

ij denotes the rate of f t flowing
through link (i, j). xij is the actual multicast streaming rate on link
(i, j) and cij is the delay on link (i, j), ∀(i, j) ∈ A. For node i, Oi

is its upload capacity and Ii is its download capacity. We assume
all these variables are non-negative.

min
X
t∈T

X
(i,j)∈A

cijf
t
ij (2)

subject to
X

j:(i,j)∈A

f t
ij −

X
j:(j,i)∈A

f t
ji = bt

i, ∀i ∈ N,∀t ∈ T (3)

f t
ij ≥ 0, ∀(i, j) ∈ A, ∀t ∈ T (4)

f t
ij ≤ xij , ∀(i, j) ∈ A, ∀t ∈ T (5)X

j:(i,j)∈A

xij ≤ Oi, ∀i ∈ N (6)

X
j:(j,i)∈A

xji ≤ Ii, ∀i ∈ N (7)

where

bt
i =

8<
:

αr if i = S,
−αr if i = t,

0 otherwise.

We can see that in this linear program, each conceptual flow f t

is a valid network flow, subject to constraints (3)(4)(5) similar to
those in the minimum-delay problem in Eq. (1). The difference lies
in that on link (i, j), f t

ij is bounded by the multicast streaming rate
xij in (5), which is further constrained by the upload and download
capacities at the incident nodes in (6) and (7).

An optimal solution to this linear program provides an optimal
rate f t

ij
∗

for the conceptual flow f t on the link (i, j), ∀(i, j) ∈ A.
Let z be the optimal multicast streaming flow in the network. We
compute the optimal streaming rate on link (i, j), ∀(i, j) ∈ A, as
follows:

zij = max
t∈T

f t
ij . (8)

Thus we obtain an optimal streaming rate allocation scheme for
the minimum-delay peer-to-peer streaming. This also provides the
optimal peer selection strategy. For each receiver t ∈ T , its set
of selected upstream peers includes the ones with non-zero optimal
streaming rate from them to t.

2.3 Multiple session case
In the general case, there may co-exist multiple streaming ses-

sions in the same network. Based on a generalization of our net-
work model, we extend the linear program in Eq. (2) to its multiple
session form, with the similar objective of minimizing the overall
end-to-end streaming delays of all the sessions. Let M be the set
of sessions concurrently existing in the network. Each session m,
∀m ∈ M , has a streaming source Sm and a set of receivers Tm.
Let fmt be the conceptual flow from Sm to the receiver t in ses-
sion m . xm

ij is the multicast streaming rate of session m on the link
(i, j), ∀(i, j) ∈ A. rm is the end-to-end streaming rate for session
m and αm is its tolerance factor. We obtain the following LP:
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min
X

m∈M

X
t∈Tm

X
(i,j)∈A

cijf
mt
ij (9)

subject toX
j:(i,j)∈A

fmt
ij −

X
j:(j,i)∈A

fmt
ji = bmt

i , ∀i ∈ N,∀t ∈ Tm, ∀m ∈ M,

fmt
ij ≥ 0, ∀(i, j) ∈ A, ∀t ∈ Tm, ∀m ∈ M,

fmt
ij ≤ xm

ij , ∀(i, j) ∈ A, ∀t ∈ Tm, ∀m ∈ M,

(10)P
j:(i,j)∈A

P
m∈M xm

ij ≤ Oi, ∀i ∈ N, (11)P
j:(j,i)∈A

P
m∈M xm

ji ≤ Ii, ∀i ∈ N, (12)

where

bmt
i =

8<
:

αmrm if i = Sm,
−αmrm if i = t,

0 otherwise.

The LP in Eq. (9) is the result of extending the LP in Eq. (2) to
its multicommodity variant. Similar to the single session case, the
conceptual flows in each session don’t contend for the capacities,
and the multicast streaming rate for the session on each link is the
maximum of all the conceptual flow rates in the session, as shown
in constraint group (10). However, the multicast streaming flows
belonging to different sessions contend for the capacities, and thus
the summation of the per-session multicast streaming rates on the
incoming and outgoing links of a node should not exceed its down-
load and upload capacities, which are the constraints in (11) and
(12) respectively.

Similarly, based on the optimal solution to the LP in Eq. (9), we
can obtain the optimal peer selection and streaming rate allocation
strategy for the multiple sessions. Let zm be the optimal multicast
streaming flow of session m. We have zm

ij = maxt∈Tm fmt
ij on the

link (i, j), ∀(i, j) ∈ A.
Because of the similarities between the linear programs in Eq. (2)

and Eq. (9), they can be solved in a similar fashion. Due to space
limitation, in the rest of the paper, we focus on the LP for the single
session case.

2.4 Encoding and recoding with rateless codes
As the linear optimization model optimally decides the stream-

ing rates on each individual overlay link, the media contents to be
delivered along each link still need to be carefully assigned to elim-
inate the delivery redundancy. To address this problem, we employ
our coding scheme based on rateless codes, as presented in [21].

We briefly introduce rateless codes and review the main idea of
our coding scheme. Rateless fountain codes, are a recently devel-
oped category of erasure codes, including LT codes [13], Raptor
codes [18] and online codes [14]. The “rate” of a traditional erasure
code is usually defined as the number of original symbols divided
by the number of different encoded symbols that can be generated
from them. As for rateless codes, the number of encoded symbols
that can be generated from the original symbols is potentially un-
limited, which explains the name.

In our coding scheme with rateless codes, we treat the multi-
media bit stream to be delivered from the source as a stream of
symbols and partition it into consecutive segments. Each segment
is further divided into a number of blocks, which are the input units
to rateless-code encoders. At the streaming source, the blocks of
each media segment are coded with rateless codes before they are
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(b) Peer-to-peer streaming with rateless-code encoding and recoding
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Figure 3: A comparison of peer-to-peer streaming with or with-
out the rateless-code coding scheme.

transmitted over the peer-to-peer links. At each receiver, after re-
ceiving all the encoded blocks belong to one segment, we decode
and obtain the original segment. When this segment is further re-
quested by some other peers, we encode its decoded blocks again
and deliver the freshly encoded blocks.

As rateless codes are naturally loss-resilient, our coding scheme
provides excellent resilience to peer dynamics. Being rateless,
there is potentially no limit with respect to the number of uniquely
encoded “blocks” generated for each segment, and a sufficient num-
ber of encoded blocks from any set of upstream peers may be used
to recover the original segment. Therefore, by recoding the re-
ceived blocks at the receivers with rateless codes before their fur-
ther transmission, our scheme guarantees the uniqueness and use-
fulness of all the delivered contents, and thus completely eliminates
the needs for set reconciliation and content assignment. We have
also shown that our coding scheme will not introduce much delay
and computation overhead into the streaming session, due to the
high efficiency of rateless-code encoding and decoding [21].

We illustrate our coding scheme with a simple example given
in Fig. 3. In this example, S transmits a unit streaming flow to
receivers t1, t2, t3 and t4. Assume the optimal streaming rates
computed by the optimization model are 1, 1, 0.5, 0.75, 0.5 and
0.25 on link 1 to link 6 respectively. Each segment of the media
stream is composed of 4 blocks. Based on the optimal streaming
rates, t1 and t3 directly retrieve 4 blocks from S; t2 parallelly re-
trieves 2 blocks from t1 and 2 blocks from t3, while t4 retrieves 3
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blocks from t1 and 1 block from t2. In the case that no rateless-
code coding scheme is applied as in Fig. 3(a), both t2 and t4 need
to carefully reconcile the block difference between their upstream
peers and then decide which block to retrieve from which upstream
peer. In Fig. 3(b) with our rateless-code coding scheme, S gener-
ates a potentially unlimited number of blocks 1(0), 2(0), . . . from
the 4 original blocks. After receiving 1(0), 2(0), 3(0) and 4(0) from
S, t1 decodes them to derive the original blocks 1, 2, 3 and 4.
Then it encodes the original blocks again into 1(1), 2(1), 3(1), 4(1),
. . ., upon downloading requests from t2 and t4. The same recod-
ing process is performed at the other receivers. As all the freshly
encoded blocks are unique, t2 and t4 can safely retrieve any new
blocks from their upstream peers without reconciliation.

We combine the optimal peer selection strategy decided by the
linear optimization model with our coding scheme based on rateless
codes. As they address the two fundamental peer-to-peer streaming
problems of optimal peer selection and content assignment respec-
tively, together we are able to achieve a complete minimum-delay
peer-to-peer streaming scheme.

In the following section, we proceed to design a distributed al-
gorithm to solve the linear program given in Eq. (2). Combined
with our rateless-code coding scheme which is carried out in a dis-
tributed manner, this completes our design for the fully-decentralized
minimum-delay peer-to-peer streaming.

3. DISTRIBUTED SOLUTION
We aim at designing an efficient distributed algorithm to solve

the linear program in Eq. (2). General LP algorithms, such as the
simplex, ellipsoid and interior point methods, are inherently cen-
tralized and costly, which are not appropriate for our purpose. Our
solution is based on the technique of Lagrangian relaxation and
subgradient algorithm, and can be naturally implemented in a dis-
tributed manner.

3.1 Lagrangian dualization
We start our solution by relaxing the constraint group (5) in

Eq. (2) to obtain its Lagrangian dual. We choose to relax this set
of constraints, since with such relaxation, the resulting Lagrangian
subproblem can be decomposed into classical LP problems, for
each of which efficient algorithms exist. We associate Lagrangian
multipliers µt

ij with the constraints in (5) and modify the objective
function in (2) as follows:X

t∈T

X
(i,j)∈A

cijf
t
ij +

X
t∈T

X
(i,j)∈A

µt
ij(f

t
ij − xij)

=
X
t∈T

X
(i,j)∈A

(cij + µt
ij)f

t
ij −

X
t∈T

X
(i,j)∈A

µt
ijxij .

We thus derive the Lagrangian dual of the LP in Eq. (2):

max
µ≥0

L(µ) (13)

where

L(µ) = min
P

X
t∈T

X
(i,j)∈A

(cij + µt
ij)f

t
ij −

X
t∈T

X
(i,j)∈A

µt
ijxij (14)

and the polytope P is defined by the following constraints:P
j:(i,j)∈A f t

ij −
P

j:(j,i)∈A f t
ji = bt

i, ∀i ∈ N,∀t ∈ T,

f t
ij ≥ 0, ∀(i, j) ∈ A, ∀t ∈ T,P

j:(i,j)∈A xij ≤ Oi, ∀i ∈ N,P
j:(j,i)∈A xji ≤ Ii, ∀i ∈ N.

Here, the Lagrangian multiplier µt
ij can be understood as the link

price on the link (i, j) for the conceptual flow from the source S
to the receiver t. Such interpretation should be clear as we come to
the adjustment of µt

ij in the subgradient algorithm.
We further observe that the Lagrangian subproblem in Eq. (14)

can be decomposed into a maximization problem

max
X
t∈T

X
(i,j)∈A

µt
ijxij (15)

subject to P
j:(i,j)∈A xij ≤ Oi, ∀i ∈ N,P
j:(j,i)∈A xji ≤ Ii, ∀i ∈ N,

and multiple minimization problems (∀t ∈ T )

min
X

(i,j)∈A

(cij + µt
ij)f

t
ij (16)

subject toP
j:(i,j)∈A f t

ij −
P

j:(j,i)∈A f t
ji = bt

i, ∀i ∈ N,

f t
ij ≥ 0, ∀(i, j) ∈ A.

We notice that the maximization problem in Eq. (15) is an in-
equality constrained transportation problem. For this class of trans-
portation problems, there exist distributed algorithms, such as the
auction algorithm [4], to solve them in polynomial time. For the
minimization problem in Eq. (16), we make the substitution f t

ij
′
=

f t
ij/αr and obtain the following shortest path problem:

min
X

(i,j)∈A

αr(cij + µt
ij)f

t
ij

′
(17)

subject toP
j:(i,j)∈A f t

ij
′ − P

j:(j,i)∈A f t
ji

′
= bt

i
′
, ∀i ∈ N,

f t
ij

′ ≥ 0, ∀(i, j) ∈ A,

where

bt
i
′
=

8<
:

1 if i = S,
−1 if i = t,
0 otherwise.

The shortest path problem is a classical combinatorial optimiza-
tion problem, and efficient distributed algorithms exist to solve
the problem in a directed network. The classical algorithm is the
Bellman-Ford algorithm, and there are other algorithms, such as
label-correcting algorithms [2] and relaxation algorithms [6], that
are essentially the same as the Bellman-Ford algorithm. In our al-
gorithm, we employ the distributed Bellman-Ford algorithm [5, 6]
to obtain the shortest path from S to the receiver t with weight
αr(cij +µt

ij) on the link (i, j). Then, by letting f t
ij

′
= 1 when the

link (i, j) is on the shortest path and f t
ij

′
= 0 otherwise, we ob-

tain an optimal solution to the LP in Eq. (17). Therefore, by taking
f t

ij = αrf t
ij

′
, which can be understood as the delivery of a concept

flow of rate αr along the shortest path, we further obtain an optimal
solution to the LP in Eq. (16).

3.2 Subgradient algorithm
We now describe the subgradient algorithm, which we apply to

solve the Lagrangian dual problem in Eq. (13). We start with a
set of initial non-negative Lagrangian multipliers µt

ij [0]. During
each iteration k, given current Lagrangian multiplier values µt

ij [k],
we solve the transportation problem in (15) and the shortest path
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problems in (16) to obtain new primal values xij [k] and f t
ij [k]. We

then update the Lagrangian multipliers by

µt
ij [k + 1] = max(0, µt

ij [k] + θ[k](f t
ij [k] − xij [k])),

∀(i, j) ∈ A, ∀t ∈ T, (18)

where θ is a prescribed sequence of step sizes that decides the con-
vergence and the convergence speed of the subgradient algorithm.
When θ satisfies the following conditions, the algorithm is guaran-
teed to converge:

θ[k] > 0, limk→∞θ[k] = 0, and
∞X

k=1

θ[k] = ∞.

Eq. (18) shows the adjustment of link prices for each conceptual
flow. If the rate of the conceptual flow exceeds the multicast flow
rate on the link, constraint (5) is violated, so the link price is raised.
Otherwise, the link price is reduced.

Since the primal values in the optimal solution of the Lagrangian
dual in Eq. (13) are not necessarily an optimal solution to the pri-
mal LP in Eq. (2), and even not a feasible solution to it, we use
the algorithm introduced by Sherali et al. [17] to recover the op-

timal primal values f t
ij

∗
. At the kth iteration of the subgradient

algorithm, we also compose a primal iterate cf t
ij [k] via

cf t
ij [k] =

kX
h=1

λk
hf

t
ij [h], (19)

where
Pk

h=1 λ
k
h = 1 and λk

h ≥ 0, for h = 1, . . . , k. Thus,cf t
ij [k] is a convex combination of the primal values obtained in

the earlier iterations.
In our algorithm, we choose the step length sequence θ[k] =

a/(b + ck), ∀k, a > 0, b ≥ 0, c > 0, and convex combination
weights λk

h = 1/k, ∀h = 1, . . . , k, ∀k. These guarantee the con-
vergence of our subgradient algorithm; they also guarantee that any
accumulation point bf∗ of the sequence { bf [k]} generated via (19)
is an optimal solution to the primal problem in Eq. (2) [17].

We can thus calculate cf t
ij [k] by

cf t
ij [k] =

kX
h=1

1

k
f t

ij [h]

=
k − 1

k

k−1X
h=1

1

k − 1
f t

ij [h] +
1

k
f t

ij [k]

=
k − 1

k
cf t
ij [k − 1] +

1

k
f t

ij [k].

and obtain cf t
ij [k] from the current primal value f t

ij [k] and the pri-

mal iterate cf t
ij [k − 1] of the last iteration. In this way, we do not

need to keep all the primal values calculated since the very first
iteration, which are needed by Eq. (19).

3.3 Distributed algorithm
Based on the subgradient algorithm and primal solution recovery

algorithm, we design our distributed algorithm to solve the linear
program in Eq. (2) and achieve the optimal streaming rates on the
links by Eq. (8). The distributed algorithm to be executed by link
(i, j) is summarized in Table 1. In practice, we have each link (i, j)
in the peer-to-peer network delegated by the receiver j, and thus the
computation tasks on all the incoming links of one peer is carried
out by the peer.

Table 1: The distributed algorithm on link (i, j)

1. Choose initial Lagrangian multiplier values µt
ij [0], ∀(i, j) ∈ A, ∀t ∈

T .

2. Repeat the following iteration until the sequence {µ[k]} converges to
µ∗ and the sequence { bf [k]} converges to bf∗: ∀(i, j) ∈ A, ∀t ∈ T

1) Compute xij [k] by the distributed auction algorithm;

2) Compute f t
ij [k] by the distributed Bellman-Ford algorithm;

3) Compute cf t
ij [k] = k−1

k
cf t
ij [k − 1] + 1

k
f t

ij [k];

4) Update Lagrangian multiplier µt
ij [k + 1] = max(0, µt

ij [k] +

θ[k](f t
ij [k] − xij [k])), where θ[k] = a/(b + ck).

3. Compute the optimal multicast streaming rate zij = maxt∈T
cf t
ij

∗
.

By delivering the media contents at the computed optimal stream-
ing rates on the links, we achieve minimum-delay peer-to-peer stream-
ing. We further emphasize that this is actually achieved by applying
our coding scheme with rateless codes, but without the complex set
reconciliation and content assignment in the streaming session.

4. HANDLING PEER DYNAMICS
In peer-to-peer streaming, peers may arbitrarily join a streaming

session at any time, and may depart or fail unexpectedly. By ap-
plying rateless codes and introducing the tolerance factor α into
our linear optimization model, our minimum-delay peer-to-peer
streaming scheme provides excellent resilience to peer dynamics.

4.1 Peer joins
In our system, a new peer is bootstrapped and admitted into a

streaming session only if its download capacity can support the
streaming rate r of the session. The new peer then starts stream-
ing immediately with the available upload capacities acquired from
its known upstream peers. At the same time, it sends a request to
the streaming source, asking for re-computation of the new globally
optimal streaming rates on the links. The source broadcasts such a
request, such that all the peers in the session activate a new round
of execution of the distributed algorithm in Table 1, while contin-
uing with their own streaming at the original optimal rates. If the
distributed algorithm converges, all the peers adjust their download
rates from their upstream peers to the new optimal values. If the
algorithm fails to converge, it is evident that the upload capacities
provided by the peers in the session now are not able to support
all the receivers at the session rate of r. In this case, the original
streaming rate allocation is not to be adjusted.

4.2 Peer departures and failures
The departures and failures of peers may lead to interrupted play-

back at the remaining receivers. To compensate the rate loss, we
trade off some of the optimality, and always deliver slightly more
than the end-to-end rate of r, controlled by the tolerance factor α.
Thus, when a peer detects the departure of its upstream peer(s),
it first estimates whether its remaining aggregate streaming rate is
still no less than r. If so, it is not affected and keeps its current
streaming rates; otherwise, it attempts to acquire more upload ca-
pacities from its remaining upstream peers. Only when the peer still
fails to receive at the adequate aggregate streaming rate, it sends a
re-calculation request to the source for the new globally optimal
rates. Similarly, the remaining peers adjust their streaming rates to
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the new values if the distributed algorithm converges. Otherwise,
they do not do so in order to keep the streaming optimality of unaf-
fected peers. In this way, we only invoke the distributed algorithm
and adjust the rates when necessary, so as to minimize the compu-
tation and communication overhead.

The value of the tolerance factor α (α ≥ 1) in our optimiza-
tion model is adjustable based on the dynamics of the peer-to-peer
network. We start with an initial value of α based on an estima-
tion of the peer failure probability in the network. The peer failure
probability is continuously re-estimated by the streaming source,
according to the frequency of re-calculation requests due to peer
failures. When the source frequently receives requests to invoke
the distributed algorithm and thus the estimated peer failure prob-
ability increases, α is also increased, as long as the network can
support the end-to-end streaming rate of αr. When the estimated
peer failure probability is low and it occurs that the network fails
to accommodate more freshly joined peers at the rate of αr, we re-
duce α so that the network is able to support more receivers at an
end-to-end rate of at least r. The relationship between α and the
percentage of peer failures is to be shown in the simulations.

5. PERFORMANCE EVALUATION
We have carried out extensive simulations to investigate the per-

formance of our optimal peer selection algorithm over realistic net-
work topologies. To this end, we generate random networks with
power-law degree distributions with the BRITE topology generator
[15]. We simulate a live streaming session of a high-quality 300
Kbps multimedia bitstream from a streaming source with 10 Mbps
of upload capacity. There are two classes of receivers: ADSL/cable
modem peers and Ethernet peers. In our general setting, ADSL/cable
modem peers take 70% of the total population with 1.5−4.5 Mbps
of download capacity and 0.6 − 0.9 Mbps of upload capacity, and
Ethernet peers take the other 30% with both upload and download
capacities of 8 − 12 Mbps.

5.1 Performance of the distributed algorithm
We first investigate the convergence speed of our distributed al-

gorithm to obtain the optimal streaming topology. The result is
shown in Fig. 4. We compare the convergence speed in networks
of different network sizes (numbers of peers in the network) and
different edge densities (the ratio of the number of edges to the
number of peers in the network). We can see that it takes around 70
iterations to converge to optimality in a network of 50 peers, and
this number increases slowly to about 170 for a network of 500
peers. However, the convergence speed remains approximately the
same in a fixed-sized network with different edge densities. There-
fore, the slow increase of iteration numbers with network sizes does
not affect the scalability of our algorithm.

We further compare the convergence speeds of our algorithm
to the first primal feasible solution, to the feasible solution which
achieves 90% optimality as to the value of the objective function,
and to the optimal solution. From Fig. 5, we observe that the con-
vergence speed to the first primal feasible solution is usually much
faster than the convergence to optimality. It can also be seen that the
number of iterations needed to converge to feasibility drops quickly
with the increase of the percentage of Ethernet peers in the net-
work, which bring more abundant upload capacities. Furthermore,
in order to converge to the feasible solution which achieves 90%
optimality, the algorithm takes only 75% of the number of itera-
tions required for convergence to the optimal solution. Therefore,
in practice, we can obtain a feasible solution to a certain degree of
the optimality in a much shorter time, when it is not always neces-
sary to achieve the optimal solution in a realistic streaming system.
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Figure 4: Convergence speed in random networks.
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Figure 5: Convergence speed to feasibility, 90%-optimality and
optimality in random networks of 300 peers and 2400 edges.

We next compare our optimal peer selection algorithm with a
commonly used peer selection heuristic [11, 22]. In the heuristic, a
receiver distributes the streaming rates among its upstream peers in
proportion to their upload capacities. We compare the end-to-end
latencies at receivers in the resulting streaming topologies. The
end-to-end latency at each receiver is calculated as the weighted
average of the delays of flows from all its upstream peers, and the
weight for each flow is the portion of the assigned streaming rate
from the upstream peer in the aggregate streaming rate.

The results illustrated in Fig. 6 meet our expectations. In net-
works of different network sizes and edge densities, our end-to-end
latency minimization algorithm is able to achieve much lower la-
tencies than the heuristic, which does not take link delay into con-
sideration. We further notice that the denser the network is, the
higher the average end-to-end latency is by the heuristic. In con-
trast, our optimal algorithm achieves lower latencies in denser net-
works. When the edge density is 4N in a network of N peers, the
average end-to-end latency of the heuristic is about 1.5 times higher
than that of our optimal algorithm, while this ratio becomes 2 in a
network with 8N edges. For such an achievement of lower laten-
cies in denser networks with our algorithm, we believe the reason
is that there are more choices of upstream peers in a denser network
and our algorithm can always find the best set of upstream peers on
low delay paths. Thus, in realistic peer-to-peer streaming networks
with high edge densities, the advantage of our algorithm is more
evident over the commonly used heuristic.

The streaming topologies shown in Fig. 7(a) and Fig. 7(b) further
illustrate the superiority of our optimal algorithm. In these graphs,
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Figure 6: Average end-to-end latency: a comparison between
optimal peer selection algorithm and a peer selection heuristic.
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Figure 7: Peer-to-peer streaming topologies of 20 peers: a com-
parison.

distances between pairs of peers represent latencies, and the widths
of edges show the streaming rates along them. The dotted lines
represent links that are not used in the resulting streaming topolo-
gies. It can be seen that by our optimal peer selection, receivers are
streaming from the best upstream peers with minimal end-to-end
latencies, while with the peer selection heuristic, peers simply dis-
tribute their download rates among the upstream peers, which may
lead to large end-to-end latencies.

5.2 Resilience to peer failures
In this section, we examine the resilience of our complete peer-

to-peer streaming scheme in case of peer failures. We focus on
evaluating the effects of α, the failure tolerance factor in our opti-
mization model, on the tolerance to failures in the resulting stream-
ing topologies. For this purpose, we randomly choose different
percentages of failed peers in the streaming session. At differ-
ent values of α, we calculate the remaining aggregate streaming
rates at the remaining peers. We seek to answer the question: at
what percentage of peer failures can we still maintain an end-to-
end streaming rate of 300 Kbps at all receivers?

From Fig. 8, besides the fact that higher failure percentages can
be tolerated by larger values of α in each network, we also ob-
serve that this failure tolerance improves quickly with the increase
of edge densities in the network, under each fixed value of α. A
setting of α = 1.5 can tolerate peer failure percentage of up to
60% in a dense network. The impact of edge densities is further
illustrated in Fig. 9. In this simulation, when α is set to a rela-
tively small value of 1.2, which means we stream at the end-to-end
rate of 360 Kbps, the 300 Kbps required aggregate rate can still be
guaranteed at the receivers in a dense network in case of 30% peer
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Figure 8: Tolerance of peer failures in random networks with
200 peers.
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Figure 9: Average aggregate streaming rates in case of peer
failures in random networks, network size = 200, α = 1.2.

failures. We believe that dense networks are more akin to realistic
peer-to-peer streaming networks, in which each peer knows quite
a number of upstream peers. Such satisfactory failure tolerance in
dense networks achieved by small values of α suggests that our
scheme may deliver good performance in practice, with respect to
tolerating peer departures and failures.

6. RELATED WORK
Earlier work on peer-to-peer multimedia streaming has been based

on a single multicast tree [9, 19], rooted at the streaming source,
and constructed with a minimized height and a bounded node de-
gree. The challenge, however, surfaces when interior peers in the
tree do not have sufficient available capacities to upload to multiple
children nodes, and when they depart or fail, which interrupts the
streaming session and requires expensive repair processes.

Streaming based on multiple multicast trees has been proposed to
address this problem, as in CoopNet [16] and SplitStream [8]. The
media can be split into multiple sub-streams, each delivered along
a different multicast tree. As a result, these systems accommodate
peers with heterogeneous bandwidths by having each peer join dif-
ferent numbers of trees. It also is more robust to peer departures and
failures, as an affected receiving peer may still be able to continu-
ously display the media at a degraded quality, while waiting for the
tree to be repaired. These advantages come with a cost, however, as
all the trees need to be maintained in highly dynamic peer-to-peer
networks. Combined with rateless codes, our optimal peer selec-
tion algorithm constructs mesh topologies to provide resilience and
flexibility, but without the costs of explicit tree maintenance.
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Similar to our peer-to-peer streaming model, CoolStreaming [22]
and PeerStreaming [11] fall into the category of streaming over
mesh topologies. In CoolStreaming, each peer periodically ex-
changes media availability with its neighbors, and the media seg-
ments to be retrieved from each neighbor are dependent upon the
number of potential suppliers for each segment and the available
upload capacities of neighbors. In PeerStreaming, the media down-
loading load is distributed among the set of supplying peers in pro-
portion to their upload capacities. Compared to our peer selection
algorithm, these heuristics fall short of achieving global optimality,
and thus may starve the peers with high download demands. Our
algorithm also considers the heterogeneity of link delays, which
has not been taken into consideration in their work.

With respect to peer selection, like CoolStreaming and Peer-
Streaming, most existing work employs various heuristics with-
out formulating the problem theoretically, with only one exception:
Adler et al. [1] propose linear programming models that aim at
minimizing general cost functions in peer-to-peer streaming. Our
algorithm is tailored to the specific requirements of media stream-
ing, by minimizing streaming latencies. In [1], i supplying peers
are allowed to fail, by having constraints guaranteeing the aggre-
gate rate from any subset composed of n − i supplying peers out
of the total n is larger than the streaming rate. Our algorithm han-
dles peer failures by simply incorporating a tolerance factor, which
can be flexibly adjusted according to the network dynamics. The
problem of content reconciliation and assignment is not addressed
in [1], which is the motivating factor towards the combination of
rateless codes with our peer selection algorithm.

As for the content reconciliation problem that naturally arises
in all mesh-based proposals, Byers et al. [7] provide algorithms
for estimation and approximate reconciliation of sets of symbols
between pairs of collaborating peers. These algorithms are very re-
source intensive with respect to both computation and messaging.
Besides, although Byers et al. advocate the use of Tornado codes to
provide reliability and flexibility, the sets of encoded symbols ac-
quired by different peers are still likely to overlap, as Tornado codes
are not rateless. PeerStreaming [11] also employs a high rate era-
sure code, which is a modified Reed-Solomon code on the Galois
Field GF(216), and ensures with high probability that the serving
peers hold parts of the media without conflicts. PROMISE [10]
uses Tornado codes to tolerate packet losses and peer dynamics,
and performs rate assignment of the encoded streams to a selected
set of supplying peers. By applying these erasure codes with fixed
rates, the need for content reconciliation is mitigated, but not elim-
inated. In comparison, by using rateless codes and recoding, our
scheme completely excludes any necessity for content reconcilia-
tion and assignment among peers.

7. CONCLUSION
The problem of interest in this paper is to design an efficient

distributed algorithm for optimal peer selection and streaming rate
allocation in peer-to-peer streaming. For this purpose, we formu-
late the problem as a linear optimization problem, which optimizes
bandwidth utilization towards minimized end-to-end latencies. Based
on the efficient subgradient solution, we develop a fully decentral-
ized algorithm to efficiently compute the optimal streaming rates
over the peer-to-peer links. We believe combining this optimal peer
selection algorithm with our rateless-code coding scheme, it pro-
vides a complete solution to battle on the fundamental challenges
of peer-to-peer streaming: dynamics, reconciliation, and limited
bandwidth. In the ongoing work, we are working towards a prac-
tical implementation of the minimum-delay peer-to-peer streaming
system, in the real-life environment of the Internet.
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